//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Aggregate Expr nodes as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/StmtVisitor.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Support/Compiler.h" #include "llvm/Intrinsics.h" using namespace clang; using namespace CodeGen; //===----------------------------------------------------------------------===// // Aggregate Expression Emitter //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor { CodeGenFunction &CGF; CGBuilderTy &Builder; llvm::Value *DestPtr; bool VolatileDest; bool IgnoreResult; public: AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v, bool ignore) : CGF(cgf), Builder(CGF.Builder), DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore) { } //===--------------------------------------------------------------------===// // Utilities //===--------------------------------------------------------------------===// /// EmitAggLoadOfLValue - Given an expression with aggregate type that /// represents a value lvalue, this method emits the address of the lvalue, /// then loads the result into DestPtr. void EmitAggLoadOfLValue(const Expr *E); /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); //===--------------------------------------------------------------------===// // Visitor Methods //===--------------------------------------------------------------------===// void VisitStmt(Stmt *S) { CGF.ErrorUnsupported(S, "aggregate expression"); } void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } // l-values. void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { EmitAggLoadOfLValue(E); } void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { EmitAggLoadOfLValue(E); } void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { EmitAggLoadOfLValue(E); } void VisitPredefinedExpr(const PredefinedExpr *E) { EmitAggLoadOfLValue(E); } // Operators. void VisitCStyleCastExpr(CStyleCastExpr *E); void VisitImplicitCastExpr(ImplicitCastExpr *E); void VisitCallExpr(const CallExpr *E); void VisitStmtExpr(const StmtExpr *E); void VisitBinaryOperator(const BinaryOperator *BO); void VisitBinAssign(const BinaryOperator *E); void VisitBinComma(const BinaryOperator *E); void VisitObjCMessageExpr(ObjCMessageExpr *E); void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { EmitAggLoadOfLValue(E); } void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); void VisitConditionalOperator(const ConditionalOperator *CO); void VisitInitListExpr(InitListExpr *E); void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { Visit(DAE->getExpr()); } void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); void VisitCXXConstructExpr(const CXXConstructExpr *E); void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); void VisitVAArgExpr(VAArgExpr *E); void EmitInitializationToLValue(Expr *E, LValue Address); void EmitNullInitializationToLValue(LValue Address, QualType T); // case Expr::ChooseExprClass: }; } // end anonymous namespace. //===----------------------------------------------------------------------===// // Utilities //===----------------------------------------------------------------------===// /// EmitAggLoadOfLValue - Given an expression with aggregate type that /// represents a value lvalue, this method emits the address of the lvalue, /// then loads the result into DestPtr. void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { LValue LV = CGF.EmitLValue(E); EmitFinalDestCopy(E, LV); } /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { assert(Src.isAggregate() && "value must be aggregate value!"); // If the result is ignored, don't copy from the value. if (DestPtr == 0) { if (!Src.isVolatileQualified() || (IgnoreResult && Ignore)) return; // If the source is volatile, we must read from it; to do that, we need // some place to put it. DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp"); } // If the result of the assignment is used, copy the LHS there also. // FIXME: Pass VolatileDest as well. I think we also need to merge volatile // from the source as well, as we can't eliminate it if either operand // is volatile, unless copy has volatile for both source and destination.. CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(), VolatileDest|Src.isVolatileQualified()); } /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), Src.isVolatileQualified()), Ignore); } //===----------------------------------------------------------------------===// // Visitor Methods //===----------------------------------------------------------------------===// void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { // GCC union extension if (E->getType()->isUnionType()) { RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *SD->field_begin(CGF.getContext()), true, 0); EmitInitializationToLValue(E->getSubExpr(), FieldLoc); return; } Visit(E->getSubExpr()); } void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), E->getType()) && "Implicit cast types must be compatible"); Visit(E->getSubExpr()); } void AggExprEmitter::VisitCallExpr(const CallExpr *E) { if (E->getCallReturnType()->isReferenceType()) { EmitAggLoadOfLValue(E); return; } RValue RV = CGF.EmitCallExpr(E); EmitFinalDestCopy(E, RV); } void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { RValue RV = CGF.EmitObjCMessageExpr(E); EmitFinalDestCopy(E, RV); } void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { RValue RV = CGF.EmitObjCPropertyGet(E); EmitFinalDestCopy(E, RV); } void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { RValue RV = CGF.EmitObjCPropertyGet(E); EmitFinalDestCopy(E, RV); } void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { CGF.EmitAnyExpr(E->getLHS(), 0, false, true); CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest); } void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); } void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { CGF.ErrorUnsupported(E, "aggregate binary expression"); } void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { // For an assignment to work, the value on the right has // to be compatible with the value on the left. assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), E->getRHS()->getType()) && "Invalid assignment"); LValue LHS = CGF.EmitLValue(E->getLHS()); // We have to special case property setters, otherwise we must have // a simple lvalue (no aggregates inside vectors, bitfields). if (LHS.isPropertyRef()) { llvm::Value *AggLoc = DestPtr; if (!AggLoc) AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), RValue::getAggregate(AggLoc, VolatileDest)); } else if (LHS.isKVCRef()) { llvm::Value *AggLoc = DestPtr; if (!AggLoc) AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), RValue::getAggregate(AggLoc, VolatileDest)); } else { // Codegen the RHS so that it stores directly into the LHS. CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified()); EmitFinalDestCopy(E, LHS, true); } } void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); CGF.EmitBlock(LHSBlock); // Handle the GNU extension for missing LHS. assert(E->getLHS() && "Must have LHS for aggregate value"); Visit(E->getLHS()); CGF.EmitBranch(ContBlock); CGF.EmitBlock(RHSBlock); Visit(E->getRHS()); CGF.EmitBranch(ContBlock); CGF.EmitBlock(ContBlock); } void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); if (!ArgPtr) { CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); return; } EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0)); } void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { llvm::Value *Val = DestPtr; if (!Val) { // Create a temporary variable. Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); // FIXME: volatile CGF.EmitAggExpr(E->getSubExpr(), Val, false); } else Visit(E->getSubExpr()); CGF.PushCXXTemporary(E->getTemporary(), Val); } void AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { llvm::Value *Val = DestPtr; if (!Val) { // Create a temporary variable. Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); } CGF.EmitCXXConstructExpr(Val, E); } void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { CGF.EmitCXXExprWithTemporaries(E, DestPtr, VolatileDest); } void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { // FIXME: Ignore result? // FIXME: Are initializers affected by volatile? if (isa(E)) { EmitNullInitializationToLValue(LV, E->getType()); } else if (E->getType()->isComplexType()) { CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); } else if (CGF.hasAggregateLLVMType(E->getType())) { CGF.EmitAnyExpr(E, LV.getAddress(), false); } else { CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); } } void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { if (!CGF.hasAggregateLLVMType(T)) { // For non-aggregates, we can store zero llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); } else { // Otherwise, just memset the whole thing to zero. This is legal // because in LLVM, all default initializers are guaranteed to have a // bit pattern of all zeros. // FIXME: That isn't true for member pointers! // There's a potential optimization opportunity in combining // memsets; that would be easy for arrays, but relatively // difficult for structures with the current code. CGF.EmitMemSetToZero(LV.getAddress(), T); } } void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { #if 0 // FIXME: Disabled while we figure out what to do about // test/CodeGen/bitfield.c // // If we can, prefer a copy from a global; this is a lot less code for long // globals, and it's easier for the current optimizers to analyze. // FIXME: Should we really be doing this? Should we try to avoid cases where // we emit a global with a lot of zeros? Should we try to avoid short // globals? if (E->isConstantInitializer(CGF.getContext(), 0)) { llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); llvm::GlobalVariable* GV = new llvm::GlobalVariable(C->getType(), true, llvm::GlobalValue::InternalLinkage, C, "", &CGF.CGM.getModule(), 0); EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0)); return; } #endif if (E->hadArrayRangeDesignator()) { CGF.ErrorUnsupported(E, "GNU array range designator extension"); } // Handle initialization of an array. if (E->getType()->isArrayType()) { const llvm::PointerType *APType = cast(DestPtr->getType()); const llvm::ArrayType *AType = cast(APType->getElementType()); uint64_t NumInitElements = E->getNumInits(); if (E->getNumInits() > 0) { QualType T1 = E->getType(); QualType T2 = E->getInit(0)->getType(); if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { EmitAggLoadOfLValue(E->getInit(0)); return; } } uint64_t NumArrayElements = AType->getNumElements(); QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); unsigned CVRqualifier = ElementType.getCVRQualifiers(); for (uint64_t i = 0; i != NumArrayElements; ++i) { llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); if (i < NumInitElements) EmitInitializationToLValue(E->getInit(i), LValue::MakeAddr(NextVal, CVRqualifier)); else EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), ElementType); } return; } assert(E->getType()->isRecordType() && "Only support structs/unions here!"); // Do struct initialization; this code just sets each individual member // to the approprate value. This makes bitfield support automatic; // the disadvantage is that the generated code is more difficult for // the optimizer, especially with bitfields. unsigned NumInitElements = E->getNumInits(); RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); unsigned CurInitVal = 0; if (E->getType()->isUnionType()) { // Only initialize one field of a union. The field itself is // specified by the initializer list. if (!E->getInitializedFieldInUnion()) { // Empty union; we have nothing to do. #ifndef NDEBUG // Make sure that it's really an empty and not a failure of // semantic analysis. for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), FieldEnd = SD->field_end(CGF.getContext()); Field != FieldEnd; ++Field) assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); #endif return; } // FIXME: volatility FieldDecl *Field = E->getInitializedFieldInUnion(); LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); if (NumInitElements) { // Store the initializer into the field EmitInitializationToLValue(E->getInit(0), FieldLoc); } else { // Default-initialize to null EmitNullInitializationToLValue(FieldLoc, Field->getType()); } return; } // Here we iterate over the fields; this makes it simpler to both // default-initialize fields and skip over unnamed fields. for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), FieldEnd = SD->field_end(CGF.getContext()); Field != FieldEnd; ++Field) { // We're done once we hit the flexible array member if (Field->getType()->isIncompleteArrayType()) break; if (Field->isUnnamedBitfield()) continue; // FIXME: volatility LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); // We never generate write-barries for initialized fields. LValue::SetObjCNonGC(FieldLoc, true); if (CurInitVal < NumInitElements) { // Store the initializer into the field EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); } else { // We're out of initalizers; default-initialize to null EmitNullInitializationToLValue(FieldLoc, Field->getType()); } } } //===----------------------------------------------------------------------===// // Entry Points into this File //===----------------------------------------------------------------------===// /// EmitAggExpr - Emit the computation of the specified expression of aggregate /// type. The result is computed into DestPtr. Note that if DestPtr is null, /// the value of the aggregate expression is not needed. If VolatileDest is /// true, DestPtr cannot be 0. void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, bool VolatileDest, bool IgnoreResult) { assert(E && hasAggregateLLVMType(E->getType()) && "Invalid aggregate expression to emit"); assert ((DestPtr != 0 || VolatileDest == false) && "volatile aggregate can't be 0"); AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult) .Visit(const_cast(E)); } void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); EmitMemSetToZero(DestPtr, Ty); } void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, QualType Ty, bool isVolatile) { assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); // Aggregate assignment turns into llvm.memcpy. This is almost valid per // C99 6.5.16.1p3, which states "If the value being stored in an object is // read from another object that overlaps in anyway the storage of the first // object, then the overlap shall be exact and the two objects shall have // qualified or unqualified versions of a compatible type." // // memcpy is not defined if the source and destination pointers are exactly // equal, but other compilers do this optimization, and almost every memcpy // implementation handles this case safely. If there is a libc that does not // safely handle this, we can add a target hook. const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); if (DestPtr->getType() != BP) DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); if (SrcPtr->getType() != BP) SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); // Get size and alignment info for this aggregate. std::pair TypeInfo = getContext().getTypeInfo(Ty); // FIXME: Handle variable sized types. const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); // FIXME: If we have a volatile struct, the optimizer can remove what might // appear to be `extra' memory ops: // // volatile struct { int i; } a, b; // // int main() { // a = b; // a = b; // } // // we need to use a differnt call here. We use isVolatile to indicate when // either the source or the destination is volatile. Builder.CreateCall4(CGM.getMemCpyFn(), DestPtr, SrcPtr, // TypeInfo.first describes size in bits. llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8)); }