//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Expr nodes as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "CGCall.h" #include "CGCXXABI.h" #include "CGRecordLayout.h" #include "CGObjCRuntime.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "llvm/Intrinsics.h" #include "clang/Frontend/CodeGenOptions.h" #include "llvm/Target/TargetData.h" using namespace clang; using namespace CodeGen; //===--------------------------------------------------------------------===// // Miscellaneous Helper Methods //===--------------------------------------------------------------------===// llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { unsigned addressSpace = cast(value->getType())->getAddressSpace(); const llvm::PointerType *destType = Int8PtrTy; if (addressSpace) destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); if (value->getType() == destType) return value; return Builder.CreateBitCast(value, destType); } /// CreateTempAlloca - This creates a alloca and inserts it into the entry /// block. llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty, const llvm::Twine &Name) { if (!Builder.isNamePreserving()) return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); } void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, llvm::Value *Init) { llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); llvm::BasicBlock *Block = AllocaInsertPt->getParent(); Block->getInstList().insertAfter(&*AllocaInsertPt, Store); } llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, const llvm::Twine &Name) { llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); // FIXME: Should we prefer the preferred type alignment here? CharUnits Align = getContext().getTypeAlignInChars(Ty); Alloc->setAlignment(Align.getQuantity()); return Alloc; } llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, const llvm::Twine &Name) { llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); // FIXME: Should we prefer the preferred type alignment here? CharUnits Align = getContext().getTypeAlignInChars(Ty); Alloc->setAlignment(Align.getQuantity()); return Alloc; } /// EvaluateExprAsBool - Perform the usual unary conversions on the specified /// expression and compare the result against zero, returning an Int1Ty value. llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { if (const MemberPointerType *MPT = E->getType()->getAs()) { llvm::Value *MemPtr = EmitScalarExpr(E); return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); } QualType BoolTy = getContext().BoolTy; if (!E->getType()->isAnyComplexType()) return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); } /// EmitIgnoredExpr - Emit code to compute the specified expression, /// ignoring the result. void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { if (E->isRValue()) return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); // Just emit it as an l-value and drop the result. EmitLValue(E); } /// EmitAnyExpr - Emit code to compute the specified expression which /// can have any type. The result is returned as an RValue struct. /// If this is an aggregate expression, AggSlot indicates where the /// result should be returned. RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, bool IgnoreResult) { if (!hasAggregateLLVMType(E->getType())) return RValue::get(EmitScalarExpr(E, IgnoreResult)); else if (E->getType()->isAnyComplexType()) return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); EmitAggExpr(E, AggSlot, IgnoreResult); return AggSlot.asRValue(); } /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will /// always be accessible even if no aggregate location is provided. RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { AggValueSlot AggSlot = AggValueSlot::ignored(); if (hasAggregateLLVMType(E->getType()) && !E->getType()->isAnyComplexType()) AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); return EmitAnyExpr(E, AggSlot); } /// EmitAnyExprToMem - Evaluate an expression into a given memory /// location. void CodeGenFunction::EmitAnyExprToMem(const Expr *E, llvm::Value *Location, bool IsLocationVolatile, bool IsInit) { if (E->getType()->isComplexType()) EmitComplexExprIntoAddr(E, Location, IsLocationVolatile); else if (hasAggregateLLVMType(E->getType())) EmitAggExpr(E, AggValueSlot::forAddr(Location, IsLocationVolatile, IsInit)); else { RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); LValue LV = MakeAddrLValue(Location, E->getType()); EmitStoreThroughLValue(RV, LV, E->getType()); } } namespace { /// \brief An adjustment to be made to the temporary created when emitting a /// reference binding, which accesses a particular subobject of that temporary. struct SubobjectAdjustment { enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; union { struct { const CastExpr *BasePath; const CXXRecordDecl *DerivedClass; } DerivedToBase; FieldDecl *Field; }; SubobjectAdjustment(const CastExpr *BasePath, const CXXRecordDecl *DerivedClass) : Kind(DerivedToBaseAdjustment) { DerivedToBase.BasePath = BasePath; DerivedToBase.DerivedClass = DerivedClass; } SubobjectAdjustment(FieldDecl *Field) : Kind(FieldAdjustment) { this->Field = Field; } }; } static llvm::Value * CreateReferenceTemporary(CodeGenFunction& CGF, QualType Type, const NamedDecl *InitializedDecl) { if (const VarDecl *VD = dyn_cast_or_null(InitializedDecl)) { if (VD->hasGlobalStorage()) { llvm::SmallString<256> Name; llvm::raw_svector_ostream Out(Name); CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); Out.flush(); const llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); // Create the reference temporary. llvm::GlobalValue *RefTemp = new llvm::GlobalVariable(CGF.CGM.getModule(), RefTempTy, /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(RefTempTy), Name.str()); return RefTemp; } } return CGF.CreateMemTemp(Type, "ref.tmp"); } static llvm::Value * EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, llvm::Value *&ReferenceTemporary, const CXXDestructorDecl *&ReferenceTemporaryDtor, const NamedDecl *InitializedDecl) { if (const CXXDefaultArgExpr *DAE = dyn_cast(E)) E = DAE->getExpr(); if (const ExprWithCleanups *TE = dyn_cast(E)) { CodeGenFunction::RunCleanupsScope Scope(CGF); return EmitExprForReferenceBinding(CGF, TE->getSubExpr(), ReferenceTemporary, ReferenceTemporaryDtor, InitializedDecl); } RValue RV; if (E->isGLValue()) { // Emit the expression as an lvalue. LValue LV = CGF.EmitLValue(E); if (LV.isSimple()) return LV.getAddress(); // We have to load the lvalue. RV = CGF.EmitLoadOfLValue(LV, E->getType()); } else { QualType ResultTy = E->getType(); llvm::SmallVector Adjustments; while (true) { if (const ParenExpr *PE = dyn_cast(E)) { E = PE->getSubExpr(); continue; } if (const CastExpr *CE = dyn_cast(E)) { if ((CE->getCastKind() == CK_DerivedToBase || CE->getCastKind() == CK_UncheckedDerivedToBase) && E->getType()->isRecordType()) { E = CE->getSubExpr(); CXXRecordDecl *Derived = cast(E->getType()->getAs()->getDecl()); Adjustments.push_back(SubobjectAdjustment(CE, Derived)); continue; } if (CE->getCastKind() == CK_NoOp) { E = CE->getSubExpr(); continue; } } else if (const MemberExpr *ME = dyn_cast(E)) { if (!ME->isArrow() && ME->getBase()->isRValue()) { assert(ME->getBase()->getType()->isRecordType()); if (FieldDecl *Field = dyn_cast(ME->getMemberDecl())) { E = ME->getBase(); Adjustments.push_back(SubobjectAdjustment(Field)); continue; } } } if (const OpaqueValueExpr *opaque = dyn_cast(E)) if (opaque->getType()->isRecordType()) return CGF.EmitOpaqueValueLValue(opaque).getAddress(); // Nothing changed. break; } // Create a reference temporary if necessary. AggValueSlot AggSlot = AggValueSlot::ignored(); if (CGF.hasAggregateLLVMType(E->getType()) && !E->getType()->isAnyComplexType()) { ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), InitializedDecl); AggSlot = AggValueSlot::forAddr(ReferenceTemporary, false, InitializedDecl != 0); } RV = CGF.EmitAnyExpr(E, AggSlot); if (InitializedDecl) { // Get the destructor for the reference temporary. if (const RecordType *RT = E->getType()->getAs()) { CXXRecordDecl *ClassDecl = cast(RT->getDecl()); if (!ClassDecl->hasTrivialDestructor()) ReferenceTemporaryDtor = ClassDecl->getDestructor(); } } // Check if need to perform derived-to-base casts and/or field accesses, to // get from the temporary object we created (and, potentially, for which we // extended the lifetime) to the subobject we're binding the reference to. if (!Adjustments.empty()) { llvm::Value *Object = RV.getAggregateAddr(); for (unsigned I = Adjustments.size(); I != 0; --I) { SubobjectAdjustment &Adjustment = Adjustments[I-1]; switch (Adjustment.Kind) { case SubobjectAdjustment::DerivedToBaseAdjustment: Object = CGF.GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, Adjustment.DerivedToBase.BasePath->path_begin(), Adjustment.DerivedToBase.BasePath->path_end(), /*NullCheckValue=*/false); break; case SubobjectAdjustment::FieldAdjustment: { LValue LV = CGF.EmitLValueForField(Object, Adjustment.Field, 0); if (LV.isSimple()) { Object = LV.getAddress(); break; } // For non-simple lvalues, we actually have to create a copy of // the object we're binding to. QualType T = Adjustment.Field->getType().getNonReferenceType() .getUnqualifiedType(); Object = CreateReferenceTemporary(CGF, T, InitializedDecl); LValue TempLV = CGF.MakeAddrLValue(Object, Adjustment.Field->getType()); CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV, T), TempLV, T); break; } } } const llvm::Type *ResultPtrTy = CGF.ConvertType(ResultTy)->getPointerTo(); return CGF.Builder.CreateBitCast(Object, ResultPtrTy, "temp"); } } if (RV.isAggregate()) return RV.getAggregateAddr(); // Create a temporary variable that we can bind the reference to. ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), InitializedDecl); unsigned Alignment = CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); if (RV.isScalar()) CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, /*Volatile=*/false, Alignment, E->getType()); else CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, /*Volatile=*/false); return ReferenceTemporary; } RValue CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, const NamedDecl *InitializedDecl) { llvm::Value *ReferenceTemporary = 0; const CXXDestructorDecl *ReferenceTemporaryDtor = 0; llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, ReferenceTemporaryDtor, InitializedDecl); if (!ReferenceTemporaryDtor) return RValue::get(Value); // Make sure to call the destructor for the reference temporary. if (const VarDecl *VD = dyn_cast_or_null(InitializedDecl)) { if (VD->hasGlobalStorage()) { llvm::Constant *DtorFn = CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); EmitCXXGlobalDtorRegistration(DtorFn, cast(ReferenceTemporary)); return RValue::get(Value); } } PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); return RValue::get(Value); } /// getAccessedFieldNo - Given an encoded value and a result number, return the /// input field number being accessed. unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts) { if (isa(Elts)) return 0; return cast(Elts->getOperand(Idx))->getZExtValue(); } void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { if (!CatchUndefined) return; // This needs to be to the standard address space. Address = Builder.CreateBitCast(Address, Int8PtrTy); const llvm::Type *IntPtrT = IntPtrTy; llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, &IntPtrT, 1); // In time, people may want to control this and use a 1 here. llvm::Value *Arg = Builder.getFalse(); llvm::Value *C = Builder.CreateCall2(F, Address, Arg); llvm::BasicBlock *Cont = createBasicBlock(); llvm::BasicBlock *Check = createBasicBlock(); llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); EmitBlock(Check); Builder.CreateCondBr(Builder.CreateICmpUGE(C, llvm::ConstantInt::get(IntPtrTy, Size)), Cont, getTrapBB()); EmitBlock(Cont); } CodeGenFunction::ComplexPairTy CodeGenFunction:: EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre) { ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), LV.isVolatileQualified()); llvm::Value *NextVal; if (isa(InVal.first->getType())) { uint64_t AmountVal = isInc ? 1 : -1; NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); // Add the inc/dec to the real part. NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); } else { QualType ElemTy = E->getType()->getAs()->getElementType(); llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); if (!isInc) FVal.changeSign(); NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); // Add the inc/dec to the real part. NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); } ComplexPairTy IncVal(NextVal, InVal.second); // Store the updated result through the lvalue. StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); // If this is a postinc, return the value read from memory, otherwise use the // updated value. return isPre ? IncVal : InVal; } //===----------------------------------------------------------------------===// // LValue Expression Emission //===----------------------------------------------------------------------===// RValue CodeGenFunction::GetUndefRValue(QualType Ty) { if (Ty->isVoidType()) return RValue::get(0); if (const ComplexType *CTy = Ty->getAs()) { const llvm::Type *EltTy = ConvertType(CTy->getElementType()); llvm::Value *U = llvm::UndefValue::get(EltTy); return RValue::getComplex(std::make_pair(U, U)); } // If this is a use of an undefined aggregate type, the aggregate must have an // identifiable address. Just because the contents of the value are undefined // doesn't mean that the address can't be taken and compared. if (hasAggregateLLVMType(Ty)) { llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); return RValue::getAggregate(DestPtr); } return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); } RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, const char *Name) { ErrorUnsupported(E, Name); return GetUndefRValue(E->getType()); } LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, const char *Name) { ErrorUnsupported(E, Name); llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); } LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { LValue LV = EmitLValue(E); if (!isa(E) && !LV.isBitField() && LV.isSimple()) EmitCheck(LV.getAddress(), getContext().getTypeSizeInChars(E->getType()).getQuantity()); return LV; } /// EmitLValue - Emit code to compute a designator that specifies the location /// of the expression. /// /// This can return one of two things: a simple address or a bitfield reference. /// In either case, the LLVM Value* in the LValue structure is guaranteed to be /// an LLVM pointer type. /// /// If this returns a bitfield reference, nothing about the pointee type of the /// LLVM value is known: For example, it may not be a pointer to an integer. /// /// If this returns a normal address, and if the lvalue's C type is fixed size, /// this method guarantees that the returned pointer type will point to an LLVM /// type of the same size of the lvalue's type. If the lvalue has a variable /// length type, this is not possible. /// LValue CodeGenFunction::EmitLValue(const Expr *E) { switch (E->getStmtClass()) { default: return EmitUnsupportedLValue(E, "l-value expression"); case Expr::ObjCSelectorExprClass: return EmitObjCSelectorLValue(cast(E)); case Expr::ObjCIsaExprClass: return EmitObjCIsaExpr(cast(E)); case Expr::BinaryOperatorClass: return EmitBinaryOperatorLValue(cast(E)); case Expr::CompoundAssignOperatorClass: if (!E->getType()->isAnyComplexType()) return EmitCompoundAssignmentLValue(cast(E)); return EmitComplexCompoundAssignmentLValue(cast(E)); case Expr::CallExprClass: case Expr::CXXMemberCallExprClass: case Expr::CXXOperatorCallExprClass: return EmitCallExprLValue(cast(E)); case Expr::VAArgExprClass: return EmitVAArgExprLValue(cast(E)); case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast(E)); case Expr::ParenExprClass:return EmitLValue(cast(E)->getSubExpr()); case Expr::PredefinedExprClass: return EmitPredefinedLValue(cast(E)); case Expr::StringLiteralClass: return EmitStringLiteralLValue(cast(E)); case Expr::ObjCEncodeExprClass: return EmitObjCEncodeExprLValue(cast(E)); case Expr::BlockDeclRefExprClass: return EmitBlockDeclRefLValue(cast(E)); case Expr::CXXTemporaryObjectExprClass: case Expr::CXXConstructExprClass: return EmitCXXConstructLValue(cast(E)); case Expr::CXXBindTemporaryExprClass: return EmitCXXBindTemporaryLValue(cast(E)); case Expr::ExprWithCleanupsClass: return EmitExprWithCleanupsLValue(cast(E)); case Expr::CXXScalarValueInitExprClass: return EmitNullInitializationLValue(cast(E)); case Expr::CXXDefaultArgExprClass: return EmitLValue(cast(E)->getExpr()); case Expr::CXXTypeidExprClass: return EmitCXXTypeidLValue(cast(E)); case Expr::ObjCMessageExprClass: return EmitObjCMessageExprLValue(cast(E)); case Expr::ObjCIvarRefExprClass: return EmitObjCIvarRefLValue(cast(E)); case Expr::ObjCPropertyRefExprClass: return EmitObjCPropertyRefLValue(cast(E)); case Expr::StmtExprClass: return EmitStmtExprLValue(cast(E)); case Expr::UnaryOperatorClass: return EmitUnaryOpLValue(cast(E)); case Expr::ArraySubscriptExprClass: return EmitArraySubscriptExpr(cast(E)); case Expr::ExtVectorElementExprClass: return EmitExtVectorElementExpr(cast(E)); case Expr::MemberExprClass: return EmitMemberExpr(cast(E)); case Expr::CompoundLiteralExprClass: return EmitCompoundLiteralLValue(cast(E)); case Expr::ConditionalOperatorClass: return EmitConditionalOperatorLValue(cast(E)); case Expr::BinaryConditionalOperatorClass: return EmitConditionalOperatorLValue(cast(E)); case Expr::ChooseExprClass: return EmitLValue(cast(E)->getChosenSubExpr(getContext())); case Expr::OpaqueValueExprClass: return EmitOpaqueValueLValue(cast(E)); case Expr::ImplicitCastExprClass: case Expr::CStyleCastExprClass: case Expr::CXXFunctionalCastExprClass: case Expr::CXXStaticCastExprClass: case Expr::CXXDynamicCastExprClass: case Expr::CXXReinterpretCastExprClass: case Expr::CXXConstCastExprClass: return EmitCastLValue(cast(E)); } } llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, unsigned Alignment, QualType Ty, llvm::MDNode *TBAAInfo) { llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp"); if (Volatile) Load->setVolatile(true); if (Alignment) Load->setAlignment(Alignment); if (TBAAInfo) CGM.DecorateInstruction(Load, TBAAInfo); return EmitFromMemory(Load, Ty); } static bool isBooleanUnderlyingType(QualType Ty) { if (const EnumType *ET = dyn_cast(Ty)) return ET->getDecl()->getIntegerType()->isBooleanType(); return false; } llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { // Bool has a different representation in memory than in registers. if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { // This should really always be an i1, but sometimes it's already // an i8, and it's awkward to track those cases down. if (Value->getType()->isIntegerTy(1)) return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); } return Value; } llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { // Bool has a different representation in memory than in registers. if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); } return Value; } void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, bool Volatile, unsigned Alignment, QualType Ty, llvm::MDNode *TBAAInfo) { Value = EmitToMemory(Value, Ty); llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); if (Alignment) Store->setAlignment(Alignment); if (TBAAInfo) CGM.DecorateInstruction(Store, TBAAInfo); } /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this /// method emits the address of the lvalue, then loads the result as an rvalue, /// returning the rvalue. RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) { if (LV.isObjCWeak()) { // load of a __weak object. llvm::Value *AddrWeakObj = LV.getAddress(); return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, AddrWeakObj)); } if (LV.isSimple()) { llvm::Value *Ptr = LV.getAddress(); // Functions are l-values that don't require loading. if (ExprType->isFunctionType()) return RValue::get(Ptr); // Everything needs a load. return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(), LV.getAlignment(), ExprType, LV.getTBAAInfo())); } if (LV.isVectorElt()) { llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), LV.isVolatileQualified(), "tmp"); return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), "vecext")); } // If this is a reference to a subset of the elements of a vector, either // shuffle the input or extract/insert them as appropriate. if (LV.isExtVectorElt()) return EmitLoadOfExtVectorElementLValue(LV, ExprType); if (LV.isBitField()) return EmitLoadOfBitfieldLValue(LV, ExprType); assert(LV.isPropertyRef() && "Unknown LValue type!"); return EmitLoadOfPropertyRefLValue(LV); } RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, QualType ExprType) { const CGBitFieldInfo &Info = LV.getBitFieldInfo(); // Get the output type. const llvm::Type *ResLTy = ConvertType(ExprType); unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); // Compute the result as an OR of all of the individual component accesses. llvm::Value *Res = 0; for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); // Get the field pointer. llvm::Value *Ptr = LV.getBitFieldBaseAddr(); // Only offset by the field index if used, so that incoming values are not // required to be structures. if (AI.FieldIndex) Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); // Offset by the byte offset, if used. if (AI.FieldByteOffset) { Ptr = EmitCastToVoidPtr(Ptr); Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset,"bf.field.offs"); } // Cast to the access type. const llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, ExprType.getAddressSpace()); Ptr = Builder.CreateBitCast(Ptr, PTy); // Perform the load. llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); if (AI.AccessAlignment) Load->setAlignment(AI.AccessAlignment); // Shift out unused low bits and mask out unused high bits. llvm::Value *Val = Load; if (AI.FieldBitStart) Val = Builder.CreateLShr(Load, AI.FieldBitStart); Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, AI.TargetBitWidth), "bf.clear"); // Extend or truncate to the target size. if (AI.AccessWidth < ResSizeInBits) Val = Builder.CreateZExt(Val, ResLTy); else if (AI.AccessWidth > ResSizeInBits) Val = Builder.CreateTrunc(Val, ResLTy); // Shift into place, and OR into the result. if (AI.TargetBitOffset) Val = Builder.CreateShl(Val, AI.TargetBitOffset); Res = Res ? Builder.CreateOr(Res, Val) : Val; } // If the bit-field is signed, perform the sign-extension. // // FIXME: This can easily be folded into the load of the high bits, which // could also eliminate the mask of high bits in some situations. if (Info.isSigned()) { unsigned ExtraBits = ResSizeInBits - Info.getSize(); if (ExtraBits) Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), ExtraBits, "bf.val.sext"); } return RValue::get(Res); } // If this is a reference to a subset of the elements of a vector, create an // appropriate shufflevector. RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV, QualType ExprType) { llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), LV.isVolatileQualified(), "tmp"); const llvm::Constant *Elts = LV.getExtVectorElts(); // If the result of the expression is a non-vector type, we must be extracting // a single element. Just codegen as an extractelement. const VectorType *ExprVT = ExprType->getAs(); if (!ExprVT) { unsigned InIdx = getAccessedFieldNo(0, Elts); llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp")); } // Always use shuffle vector to try to retain the original program structure unsigned NumResultElts = ExprVT->getNumElements(); llvm::SmallVector Mask; for (unsigned i = 0; i != NumResultElts; ++i) { unsigned InIdx = getAccessedFieldNo(i, Elts); Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx)); } llvm::Value *MaskV = llvm::ConstantVector::get(Mask); Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), MaskV, "tmp"); return RValue::get(Vec); } /// EmitStoreThroughLValue - Store the specified rvalue into the specified /// lvalue, where both are guaranteed to the have the same type, and that type /// is 'Ty'. void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, QualType Ty) { if (!Dst.isSimple()) { if (Dst.isVectorElt()) { // Read/modify/write the vector, inserting the new element. llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), Dst.isVolatileQualified(), "tmp"); Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), Dst.getVectorIdx(), "vecins"); Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified()); return; } // If this is an update of extended vector elements, insert them as // appropriate. if (Dst.isExtVectorElt()) return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty); if (Dst.isBitField()) return EmitStoreThroughBitfieldLValue(Src, Dst, Ty); assert(Dst.isPropertyRef() && "Unknown LValue type"); return EmitStoreThroughPropertyRefLValue(Src, Dst); } if (Dst.isObjCWeak() && !Dst.isNonGC()) { // load of a __weak object. llvm::Value *LvalueDst = Dst.getAddress(); llvm::Value *src = Src.getScalarVal(); CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); return; } if (Dst.isObjCStrong() && !Dst.isNonGC()) { // load of a __strong object. llvm::Value *LvalueDst = Dst.getAddress(); llvm::Value *src = Src.getScalarVal(); if (Dst.isObjCIvar()) { assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); const llvm::Type *ResultType = ConvertType(getContext().LongTy); llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); llvm::Value *dst = RHS; RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); llvm::Value *LHS = Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, BytesBetween); } else if (Dst.isGlobalObjCRef()) { CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, Dst.isThreadLocalRef()); } else CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); return; } assert(Src.isScalar() && "Can't emit an agg store with this method"); EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(), Dst.isVolatileQualified(), Dst.getAlignment(), Ty, Dst.getTBAAInfo()); } void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, QualType Ty, llvm::Value **Result) { const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); // Get the output type. const llvm::Type *ResLTy = ConvertTypeForMem(Ty); unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); // Get the source value, truncated to the width of the bit-field. llvm::Value *SrcVal = Src.getScalarVal(); if (Ty->isBooleanType()) SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, Info.getSize()), "bf.value"); // Return the new value of the bit-field, if requested. if (Result) { // Cast back to the proper type for result. const llvm::Type *SrcTy = Src.getScalarVal()->getType(); llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, "bf.reload.val"); // Sign extend if necessary. if (Info.isSigned()) { unsigned ExtraBits = ResSizeInBits - Info.getSize(); if (ExtraBits) ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), ExtraBits, "bf.reload.sext"); } *Result = ReloadVal; } // Iterate over the components, writing each piece to memory. for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); // Get the field pointer. llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); unsigned addressSpace = cast(Ptr->getType())->getAddressSpace(); // Only offset by the field index if used, so that incoming values are not // required to be structures. if (AI.FieldIndex) Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); // Offset by the byte offset, if used. if (AI.FieldByteOffset) { Ptr = EmitCastToVoidPtr(Ptr); Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset,"bf.field.offs"); } // Cast to the access type. const llvm::Type *AccessLTy = llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); const llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); Ptr = Builder.CreateBitCast(Ptr, PTy); // Extract the piece of the bit-field value to write in this access, limited // to the values that are part of this access. llvm::Value *Val = SrcVal; if (AI.TargetBitOffset) Val = Builder.CreateLShr(Val, AI.TargetBitOffset); Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, AI.TargetBitWidth)); // Extend or truncate to the access size. if (ResSizeInBits < AI.AccessWidth) Val = Builder.CreateZExt(Val, AccessLTy); else if (ResSizeInBits > AI.AccessWidth) Val = Builder.CreateTrunc(Val, AccessLTy); // Shift into the position in memory. if (AI.FieldBitStart) Val = Builder.CreateShl(Val, AI.FieldBitStart); // If necessary, load and OR in bits that are outside of the bit-field. if (AI.TargetBitWidth != AI.AccessWidth) { llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); if (AI.AccessAlignment) Load->setAlignment(AI.AccessAlignment); // Compute the mask for zeroing the bits that are part of the bit-field. llvm::APInt InvMask = ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, AI.FieldBitStart + AI.TargetBitWidth); // Apply the mask and OR in to the value to write. Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); } // Write the value. llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, Dst.isVolatileQualified()); if (AI.AccessAlignment) Store->setAlignment(AI.AccessAlignment); } } void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst, QualType Ty) { // This access turns into a read/modify/write of the vector. Load the input // value now. llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), Dst.isVolatileQualified(), "tmp"); const llvm::Constant *Elts = Dst.getExtVectorElts(); llvm::Value *SrcVal = Src.getScalarVal(); if (const VectorType *VTy = Ty->getAs()) { unsigned NumSrcElts = VTy->getNumElements(); unsigned NumDstElts = cast(Vec->getType())->getNumElements(); if (NumDstElts == NumSrcElts) { // Use shuffle vector is the src and destination are the same number of // elements and restore the vector mask since it is on the side it will be // stored. llvm::SmallVector Mask(NumDstElts); for (unsigned i = 0; i != NumSrcElts; ++i) { unsigned InIdx = getAccessedFieldNo(i, Elts); Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i); } llvm::Value *MaskV = llvm::ConstantVector::get(Mask); Vec = Builder.CreateShuffleVector(SrcVal, llvm::UndefValue::get(Vec->getType()), MaskV, "tmp"); } else if (NumDstElts > NumSrcElts) { // Extended the source vector to the same length and then shuffle it // into the destination. // FIXME: since we're shuffling with undef, can we just use the indices // into that? This could be simpler. llvm::SmallVector ExtMask; unsigned i; for (i = 0; i != NumSrcElts; ++i) ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i)); for (; i != NumDstElts; ++i) ExtMask.push_back(llvm::UndefValue::get(Int32Ty)); llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, llvm::UndefValue::get(SrcVal->getType()), ExtMaskV, "tmp"); // build identity llvm::SmallVector Mask; for (unsigned i = 0; i != NumDstElts; ++i) Mask.push_back(llvm::ConstantInt::get(Int32Ty, i)); // modify when what gets shuffled in for (unsigned i = 0; i != NumSrcElts; ++i) { unsigned Idx = getAccessedFieldNo(i, Elts); Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts); } llvm::Value *MaskV = llvm::ConstantVector::get(Mask); Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp"); } else { // We should never shorten the vector assert(0 && "unexpected shorten vector length"); } } else { // If the Src is a scalar (not a vector) it must be updating one element. unsigned InIdx = getAccessedFieldNo(0, Elts); llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp"); } Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); } // setObjCGCLValueClass - sets class of he lvalue for the purpose of // generating write-barries API. It is currently a global, ivar, // or neither. static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, LValue &LV) { if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC) return; if (isa(E)) { LV.setObjCIvar(true); ObjCIvarRefExpr *Exp = cast(const_cast(E)); LV.setBaseIvarExp(Exp->getBase()); LV.setObjCArray(E->getType()->isArrayType()); return; } if (const DeclRefExpr *Exp = dyn_cast(E)) { if (const VarDecl *VD = dyn_cast(Exp->getDecl())) { if (VD->hasGlobalStorage()) { LV.setGlobalObjCRef(true); LV.setThreadLocalRef(VD->isThreadSpecified()); } } LV.setObjCArray(E->getType()->isArrayType()); return; } if (const UnaryOperator *Exp = dyn_cast(E)) { setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); return; } if (const ParenExpr *Exp = dyn_cast(E)) { setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); if (LV.isObjCIvar()) { // If cast is to a structure pointer, follow gcc's behavior and make it // a non-ivar write-barrier. QualType ExpTy = E->getType(); if (ExpTy->isPointerType()) ExpTy = ExpTy->getAs()->getPointeeType(); if (ExpTy->isRecordType()) LV.setObjCIvar(false); } return; } if (const ImplicitCastExpr *Exp = dyn_cast(E)) { setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); return; } if (const CStyleCastExpr *Exp = dyn_cast(E)) { setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); return; } if (const ArraySubscriptExpr *Exp = dyn_cast(E)) { setObjCGCLValueClass(Ctx, Exp->getBase(), LV); if (LV.isObjCIvar() && !LV.isObjCArray()) // Using array syntax to assigning to what an ivar points to is not // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; LV.setObjCIvar(false); else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) // Using array syntax to assigning to what global points to is not // same as assigning to the global itself. {id *G;} G[i] = 0; LV.setGlobalObjCRef(false); return; } if (const MemberExpr *Exp = dyn_cast(E)) { setObjCGCLValueClass(Ctx, Exp->getBase(), LV); // We don't know if member is an 'ivar', but this flag is looked at // only in the context of LV.isObjCIvar(). LV.setObjCArray(E->getType()->isArrayType()); return; } } static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, const Expr *E, const VarDecl *VD) { assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && "Var decl must have external storage or be a file var decl!"); llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); if (VD->getType()->isReferenceType()) V = CGF.Builder.CreateLoad(V, "tmp"); unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity(); LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); setObjCGCLValueClass(CGF.getContext(), E, LV); return LV; } static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, const FunctionDecl *FD) { llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); if (!FD->hasPrototype()) { if (const FunctionProtoType *Proto = FD->getType()->getAs()) { // Ugly case: for a K&R-style definition, the type of the definition // isn't the same as the type of a use. Correct for this with a // bitcast. QualType NoProtoType = CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); NoProtoType = CGF.getContext().getPointerType(NoProtoType); V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp"); } } unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity(); return CGF.MakeAddrLValue(V, E->getType(), Alignment); } LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { const NamedDecl *ND = E->getDecl(); unsigned Alignment = getContext().getDeclAlign(ND).getQuantity(); if (ND->hasAttr()) { const ValueDecl *VD = cast(ND); llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); return MakeAddrLValue(Aliasee, E->getType(), Alignment); } if (const VarDecl *VD = dyn_cast(ND)) { // Check if this is a global variable. if (VD->hasExternalStorage() || VD->isFileVarDecl()) return EmitGlobalVarDeclLValue(*this, E, VD); bool NonGCable = VD->hasLocalStorage() && !VD->getType()->isReferenceType() && !VD->hasAttr(); llvm::Value *V = LocalDeclMap[VD]; if (!V && VD->isStaticLocal()) V = CGM.getStaticLocalDeclAddress(VD); assert(V && "DeclRefExpr not entered in LocalDeclMap?"); if (VD->hasAttr()) V = BuildBlockByrefAddress(V, VD); if (VD->getType()->isReferenceType()) V = Builder.CreateLoad(V, "tmp"); LValue LV = MakeAddrLValue(V, E->getType(), Alignment); if (NonGCable) { LV.getQuals().removeObjCGCAttr(); LV.setNonGC(true); } setObjCGCLValueClass(getContext(), E, LV); return LV; } if (const FunctionDecl *fn = dyn_cast(ND)) return EmitFunctionDeclLValue(*this, E, fn); assert(false && "Unhandled DeclRefExpr"); // an invalid LValue, but the assert will // ensure that this point is never reached. return LValue(); } LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) { unsigned Alignment = getContext().getDeclAlign(E->getDecl()).getQuantity(); return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment); } LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { // __extension__ doesn't affect lvalue-ness. if (E->getOpcode() == UO_Extension) return EmitLValue(E->getSubExpr()); QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); switch (E->getOpcode()) { default: assert(0 && "Unknown unary operator lvalue!"); case UO_Deref: { QualType T = E->getSubExpr()->getType()->getPointeeType(); assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T); LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); // We should not generate __weak write barrier on indirect reference // of a pointer to object; as in void foo (__weak id *param); *param = 0; // But, we continue to generate __strong write barrier on indirect write // into a pointer to object. if (getContext().getLangOptions().ObjC1 && getContext().getLangOptions().getGCMode() != LangOptions::NonGC && LV.isObjCWeak()) LV.setNonGC(!E->isOBJCGCCandidate(getContext())); return LV; } case UO_Real: case UO_Imag: { LValue LV = EmitLValue(E->getSubExpr()); assert(LV.isSimple() && "real/imag on non-ordinary l-value"); llvm::Value *Addr = LV.getAddress(); // real and imag are valid on scalars. This is a faster way of // testing that. if (!cast(Addr->getType()) ->getElementType()->isStructTy()) { assert(E->getSubExpr()->getType()->isArithmeticType()); return LV; } assert(E->getSubExpr()->getType()->isAnyComplexType()); unsigned Idx = E->getOpcode() == UO_Imag; return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), Idx, "idx"), ExprTy); } case UO_PreInc: case UO_PreDec: { LValue LV = EmitLValue(E->getSubExpr()); bool isInc = E->getOpcode() == UO_PreInc; if (E->getType()->isAnyComplexType()) EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); else EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); return LV; } } } LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), E->getType()); } LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), E->getType()); } LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { switch (E->getIdentType()) { default: return EmitUnsupportedLValue(E, "predefined expression"); case PredefinedExpr::Func: case PredefinedExpr::Function: case PredefinedExpr::PrettyFunction: { unsigned Type = E->getIdentType(); std::string GlobalVarName; switch (Type) { default: assert(0 && "Invalid type"); case PredefinedExpr::Func: GlobalVarName = "__func__."; break; case PredefinedExpr::Function: GlobalVarName = "__FUNCTION__."; break; case PredefinedExpr::PrettyFunction: GlobalVarName = "__PRETTY_FUNCTION__."; break; } llvm::StringRef FnName = CurFn->getName(); if (FnName.startswith("\01")) FnName = FnName.substr(1); GlobalVarName += FnName; const Decl *CurDecl = CurCodeDecl; if (CurDecl == 0) CurDecl = getContext().getTranslationUnitDecl(); std::string FunctionName = (isa(CurDecl) ? FnName.str() : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); llvm::Constant *C = CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); return MakeAddrLValue(C, E->getType()); } } } llvm::BasicBlock *CodeGenFunction::getTrapBB() { const CodeGenOptions &GCO = CGM.getCodeGenOpts(); // If we are not optimzing, don't collapse all calls to trap in the function // to the same call, that way, in the debugger they can see which operation // did in fact fail. If we are optimizing, we collapse all calls to trap down // to just one per function to save on codesize. if (GCO.OptimizationLevel && TrapBB) return TrapBB; llvm::BasicBlock *Cont = 0; if (HaveInsertPoint()) { Cont = createBasicBlock("cont"); EmitBranch(Cont); } TrapBB = createBasicBlock("trap"); EmitBlock(TrapBB); llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap, 0, 0); llvm::CallInst *TrapCall = Builder.CreateCall(F); TrapCall->setDoesNotReturn(); TrapCall->setDoesNotThrow(); Builder.CreateUnreachable(); if (Cont) EmitBlock(Cont); return TrapBB; } /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an /// array to pointer, return the array subexpression. static const Expr *isSimpleArrayDecayOperand(const Expr *E) { // If this isn't just an array->pointer decay, bail out. const CastExpr *CE = dyn_cast(E); if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) return 0; // If this is a decay from variable width array, bail out. const Expr *SubExpr = CE->getSubExpr(); if (SubExpr->getType()->isVariableArrayType()) return 0; return SubExpr; } LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { // The index must always be an integer, which is not an aggregate. Emit it. llvm::Value *Idx = EmitScalarExpr(E->getIdx()); QualType IdxTy = E->getIdx()->getType(); bool IdxSigned = IdxTy->isSignedIntegerType(); // If the base is a vector type, then we are forming a vector element lvalue // with this subscript. if (E->getBase()->getType()->isVectorType()) { // Emit the vector as an lvalue to get its address. LValue LHS = EmitLValue(E->getBase()); assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType().getCVRQualifiers()); } // Extend or truncate the index type to 32 or 64-bits. if (Idx->getType() != IntPtrTy) Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); // FIXME: As llvm implements the object size checking, this can come out. if (CatchUndefined) { if (const ImplicitCastExpr *ICE = dyn_cast(E->getBase())){ if (const DeclRefExpr *DRE = dyn_cast(ICE->getSubExpr())) { if (ICE->getCastKind() == CK_ArrayToPointerDecay) { if (const ConstantArrayType *CAT = getContext().getAsConstantArrayType(DRE->getType())) { llvm::APInt Size = CAT->getSize(); llvm::BasicBlock *Cont = createBasicBlock("cont"); Builder.CreateCondBr(Builder.CreateICmpULE(Idx, llvm::ConstantInt::get(Idx->getType(), Size)), Cont, getTrapBB()); EmitBlock(Cont); } } } } } // We know that the pointer points to a type of the correct size, unless the // size is a VLA or Objective-C interface. llvm::Value *Address = 0; if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(E->getType())) { llvm::Value *VLASize = GetVLASize(VAT); Idx = Builder.CreateMul(Idx, VLASize); // The base must be a pointer, which is not an aggregate. Emit it. llvm::Value *Base = EmitScalarExpr(E->getBase()); Address = EmitCastToVoidPtr(Base); Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); Address = Builder.CreateBitCast(Address, Base->getType()); } else if (const ObjCObjectType *OIT = E->getType()->getAs()){ // Indexing over an interface, as in "NSString *P; P[4];" llvm::Value *InterfaceSize = llvm::ConstantInt::get(Idx->getType(), getContext().getTypeSizeInChars(OIT).getQuantity()); Idx = Builder.CreateMul(Idx, InterfaceSize); // The base must be a pointer, which is not an aggregate. Emit it. llvm::Value *Base = EmitScalarExpr(E->getBase()); Address = EmitCastToVoidPtr(Base); Address = Builder.CreateGEP(Address, Idx, "arrayidx"); Address = Builder.CreateBitCast(Address, Base->getType()); } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { // If this is A[i] where A is an array, the frontend will have decayed the // base to be a ArrayToPointerDecay implicit cast. While correct, it is // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a // "gep x, i" here. Emit one "gep A, 0, i". assert(Array->getType()->isArrayType() && "Array to pointer decay must have array source type!"); llvm::Value *ArrayPtr = EmitLValue(Array).getAddress(); llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); llvm::Value *Args[] = { Zero, Idx }; Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, Args+2, "arrayidx"); } else { // The base must be a pointer, which is not an aggregate. Emit it. llvm::Value *Base = EmitScalarExpr(E->getBase()); Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); } QualType T = E->getBase()->getType()->getPointeeType(); assert(!T.isNull() && "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); LValue LV = MakeAddrLValue(Address, T); LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); if (getContext().getLangOptions().ObjC1 && getContext().getLangOptions().getGCMode() != LangOptions::NonGC) { LV.setNonGC(!E->isOBJCGCCandidate(getContext())); setObjCGCLValueClass(getContext(), E, LV); } return LV; } static llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext, llvm::SmallVector &Elts) { llvm::SmallVector CElts; const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext); for (unsigned i = 0, e = Elts.size(); i != e; ++i) CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i])); return llvm::ConstantVector::get(CElts); } LValue CodeGenFunction:: EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { // Emit the base vector as an l-value. LValue Base; // ExtVectorElementExpr's base can either be a vector or pointer to vector. if (E->isArrow()) { // If it is a pointer to a vector, emit the address and form an lvalue with // it. llvm::Value *Ptr = EmitScalarExpr(E->getBase()); const PointerType *PT = E->getBase()->getType()->getAs(); Base = MakeAddrLValue(Ptr, PT->getPointeeType()); Base.getQuals().removeObjCGCAttr(); } else if (E->getBase()->isGLValue()) { // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), // emit the base as an lvalue. assert(E->getBase()->getType()->isVectorType()); Base = EmitLValue(E->getBase()); } else { // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. assert(E->getBase()->getType()->getAs() && "Result must be a vector"); llvm::Value *Vec = EmitScalarExpr(E->getBase()); // Store the vector to memory (because LValue wants an address). llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); Builder.CreateStore(Vec, VecMem); Base = MakeAddrLValue(VecMem, E->getBase()->getType()); } // Encode the element access list into a vector of unsigned indices. llvm::SmallVector Indices; E->getEncodedElementAccess(Indices); if (Base.isSimple()) { llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices); return LValue::MakeExtVectorElt(Base.getAddress(), CV, Base.getVRQualifiers()); } assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); llvm::Constant *BaseElts = Base.getExtVectorElts(); llvm::SmallVector CElts; for (unsigned i = 0, e = Indices.size(); i != e; ++i) { if (isa(BaseElts)) CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0)); else CElts.push_back(cast(BaseElts->getOperand(Indices[i]))); } llvm::Constant *CV = llvm::ConstantVector::get(CElts); return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, Base.getVRQualifiers()); } LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { bool isNonGC = false; Expr *BaseExpr = E->getBase(); llvm::Value *BaseValue = NULL; Qualifiers BaseQuals; // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. if (E->isArrow()) { BaseValue = EmitScalarExpr(BaseExpr); const PointerType *PTy = BaseExpr->getType()->getAs(); BaseQuals = PTy->getPointeeType().getQualifiers(); } else { LValue BaseLV = EmitLValue(BaseExpr); if (BaseLV.isNonGC()) isNonGC = true; // FIXME: this isn't right for bitfields. BaseValue = BaseLV.getAddress(); QualType BaseTy = BaseExpr->getType(); BaseQuals = BaseTy.getQualifiers(); } NamedDecl *ND = E->getMemberDecl(); if (FieldDecl *Field = dyn_cast(ND)) { LValue LV = EmitLValueForField(BaseValue, Field, BaseQuals.getCVRQualifiers()); LV.setNonGC(isNonGC); setObjCGCLValueClass(getContext(), E, LV); return LV; } if (VarDecl *VD = dyn_cast(ND)) return EmitGlobalVarDeclLValue(*this, E, VD); if (const FunctionDecl *FD = dyn_cast(ND)) return EmitFunctionDeclLValue(*this, E, FD); assert(false && "Unhandled member declaration!"); return LValue(); } LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, const FieldDecl *Field, unsigned CVRQualifiers) { const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(Field->getParent()); const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); return LValue::MakeBitfield(BaseValue, Info, Field->getType().getCVRQualifiers()|CVRQualifiers); } /// EmitLValueForAnonRecordField - Given that the field is a member of /// an anonymous struct or union buried inside a record, and given /// that the base value is a pointer to the enclosing record, derive /// an lvalue for the ultimate field. LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, const IndirectFieldDecl *Field, unsigned CVRQualifiers) { IndirectFieldDecl::chain_iterator I = Field->chain_begin(), IEnd = Field->chain_end(); while (true) { LValue LV = EmitLValueForField(BaseValue, cast(*I), CVRQualifiers); if (++I == IEnd) return LV; assert(LV.isSimple()); BaseValue = LV.getAddress(); CVRQualifiers |= LV.getVRQualifiers(); } } LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr, const FieldDecl *field, unsigned cvr) { if (field->isBitField()) return EmitLValueForBitfield(baseAddr, field, cvr); const RecordDecl *rec = field->getParent(); QualType type = field->getType(); bool mayAlias = rec->hasAttr(); llvm::Value *addr; if (rec->isUnion()) { // For unions, we just cast to the appropriate type. assert(!type->isReferenceType() && "union has reference member"); const llvm::Type *llvmType = CGM.getTypes().ConvertTypeForMem(type); unsigned AS = cast(baseAddr->getType())->getAddressSpace(); addr = Builder.CreateBitCast(baseAddr, llvmType->getPointerTo(AS), field->getName()); } else { // For structs, we GEP to the field that the record layout suggests. unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); addr = Builder.CreateStructGEP(baseAddr, idx, field->getName()); // If this is a reference field, load the reference right now. if (const ReferenceType *refType = type->getAs()) { llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); if (cvr & Qualifiers::Volatile) load->setVolatile(true); if (CGM.shouldUseTBAA()) { llvm::MDNode *tbaa; if (mayAlias) tbaa = CGM.getTBAAInfo(getContext().CharTy); else tbaa = CGM.getTBAAInfo(type); CGM.DecorateInstruction(load, tbaa); } addr = load; mayAlias = false; type = refType->getPointeeType(); cvr = 0; // qualifiers don't recursively apply to referencee } } unsigned alignment = getContext().getDeclAlign(field).getQuantity(); LValue LV = MakeAddrLValue(addr, type, alignment); LV.getQuals().addCVRQualifiers(cvr); // __weak attribute on a field is ignored. if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) LV.getQuals().removeObjCGCAttr(); // Fields of may_alias structs act like 'char' for TBAA purposes. // FIXME: this should get propagated down through anonymous structs // and unions. if (mayAlias && LV.getTBAAInfo()) LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); return LV; } LValue CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue, const FieldDecl *Field, unsigned CVRQualifiers) { QualType FieldType = Field->getType(); if (!FieldType->isReferenceType()) return EmitLValueForField(BaseValue, Field, CVRQualifiers); const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(Field->getParent()); unsigned idx = RL.getLLVMFieldNo(Field); llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp"); assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); unsigned Alignment = getContext().getDeclAlign(Field).getQuantity(); return MakeAddrLValue(V, FieldType, Alignment); } LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); const Expr *InitExpr = E->getInitializer(); LValue Result = MakeAddrLValue(DeclPtr, E->getType()); EmitAnyExprToMem(InitExpr, DeclPtr, /*Volatile*/ false, /*Init*/ true); return Result; } LValue CodeGenFunction:: EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { if (!expr->isGLValue()) { // ?: here should be an aggregate. assert((hasAggregateLLVMType(expr->getType()) && !expr->getType()->isAnyComplexType()) && "Unexpected conditional operator!"); return EmitAggExprToLValue(expr); } const Expr *condExpr = expr->getCond(); if (int condValue = ConstantFoldsToSimpleInteger(condExpr)) { const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); if (condValue == -1) std::swap(live, dead); if (!ContainsLabel(dead)) return EmitLValue(live); } OpaqueValueMapping binding(*this, expr); llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); ConditionalEvaluation eval(*this); EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); // Any temporaries created here are conditional. EmitBlock(lhsBlock); eval.begin(*this); LValue lhs = EmitLValue(expr->getTrueExpr()); eval.end(*this); if (!lhs.isSimple()) return EmitUnsupportedLValue(expr, "conditional operator"); lhsBlock = Builder.GetInsertBlock(); Builder.CreateBr(contBlock); // Any temporaries created here are conditional. EmitBlock(rhsBlock); eval.begin(*this); LValue rhs = EmitLValue(expr->getFalseExpr()); eval.end(*this); if (!rhs.isSimple()) return EmitUnsupportedLValue(expr, "conditional operator"); rhsBlock = Builder.GetInsertBlock(); EmitBlock(contBlock); llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), "cond-lvalue"); phi->reserveOperandSpace(2); phi->addIncoming(lhs.getAddress(), lhsBlock); phi->addIncoming(rhs.getAddress(), rhsBlock); return MakeAddrLValue(phi, expr->getType()); } /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. /// If the cast is a dynamic_cast, we can have the usual lvalue result, /// otherwise if a cast is needed by the code generator in an lvalue context, /// then it must mean that we need the address of an aggregate in order to /// access one of its fields. This can happen for all the reasons that casts /// are permitted with aggregate result, including noop aggregate casts, and /// cast from scalar to union. LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { switch (E->getCastKind()) { case CK_ToVoid: return EmitUnsupportedLValue(E, "unexpected cast lvalue"); case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); case CK_GetObjCProperty: { LValue LV = EmitLValue(E->getSubExpr()); assert(LV.isPropertyRef()); RValue RV = EmitLoadOfPropertyRefLValue(LV); // Property is an aggregate r-value. if (RV.isAggregate()) { return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); } // Implicit property returns an l-value. assert(RV.isScalar()); return MakeAddrLValue(RV.getScalarVal(), E->getSubExpr()->getType()); } case CK_NoOp: case CK_LValueToRValue: if (!E->getSubExpr()->Classify(getContext()).isPRValue() || E->getType()->isRecordType()) return EmitLValue(E->getSubExpr()); // Fall through to synthesize a temporary. case CK_BitCast: case CK_ArrayToPointerDecay: case CK_FunctionToPointerDecay: case CK_NullToMemberPointer: case CK_NullToPointer: case CK_IntegralToPointer: case CK_PointerToIntegral: case CK_PointerToBoolean: case CK_VectorSplat: case CK_IntegralCast: case CK_IntegralToBoolean: case CK_IntegralToFloating: case CK_FloatingToIntegral: case CK_FloatingToBoolean: case CK_FloatingCast: case CK_FloatingRealToComplex: case CK_FloatingComplexToReal: case CK_FloatingComplexToBoolean: case CK_FloatingComplexCast: case CK_FloatingComplexToIntegralComplex: case CK_IntegralRealToComplex: case CK_IntegralComplexToReal: case CK_IntegralComplexToBoolean: case CK_IntegralComplexCast: case CK_IntegralComplexToFloatingComplex: case CK_DerivedToBaseMemberPointer: case CK_BaseToDerivedMemberPointer: case CK_MemberPointerToBoolean: case CK_AnyPointerToBlockPointerCast: { // These casts only produce lvalues when we're binding a reference to a // temporary realized from a (converted) pure rvalue. Emit the expression // as a value, copy it into a temporary, and return an lvalue referring to // that temporary. llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); EmitAnyExprToMem(E, V, false, false); return MakeAddrLValue(V, E->getType()); } case CK_Dynamic: { LValue LV = EmitLValue(E->getSubExpr()); llvm::Value *V = LV.getAddress(); const CXXDynamicCastExpr *DCE = cast(E); return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); } case CK_ConstructorConversion: case CK_UserDefinedConversion: case CK_AnyPointerToObjCPointerCast: return EmitLValue(E->getSubExpr()); case CK_UncheckedDerivedToBase: case CK_DerivedToBase: { const RecordType *DerivedClassTy = E->getSubExpr()->getType()->getAs(); CXXRecordDecl *DerivedClassDecl = cast(DerivedClassTy->getDecl()); LValue LV = EmitLValue(E->getSubExpr()); llvm::Value *This = LV.getAddress(); // Perform the derived-to-base conversion llvm::Value *Base = GetAddressOfBaseClass(This, DerivedClassDecl, E->path_begin(), E->path_end(), /*NullCheckValue=*/false); return MakeAddrLValue(Base, E->getType()); } case CK_ToUnion: return EmitAggExprToLValue(E); case CK_BaseToDerived: { const RecordType *DerivedClassTy = E->getType()->getAs(); CXXRecordDecl *DerivedClassDecl = cast(DerivedClassTy->getDecl()); LValue LV = EmitLValue(E->getSubExpr()); // Perform the base-to-derived conversion llvm::Value *Derived = GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, E->path_begin(), E->path_end(), /*NullCheckValue=*/false); return MakeAddrLValue(Derived, E->getType()); } case CK_LValueBitCast: { // This must be a reinterpret_cast (or c-style equivalent). const ExplicitCastExpr *CE = cast(E); LValue LV = EmitLValue(E->getSubExpr()); llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), ConvertType(CE->getTypeAsWritten())); return MakeAddrLValue(V, E->getType()); } case CK_ObjCObjectLValueCast: { LValue LV = EmitLValue(E->getSubExpr()); QualType ToType = getContext().getLValueReferenceType(E->getType()); llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), ConvertType(ToType)); return MakeAddrLValue(V, E->getType()); } } llvm_unreachable("Unhandled lvalue cast kind?"); } LValue CodeGenFunction::EmitNullInitializationLValue( const CXXScalarValueInitExpr *E) { QualType Ty = E->getType(); LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); EmitNullInitialization(LV.getAddress(), Ty); return LV; } LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { assert(e->isGLValue() || e->getType()->isRecordType()); return getOpaqueLValueMapping(e); } //===--------------------------------------------------------------------===// // Expression Emission //===--------------------------------------------------------------------===// RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue) { // Builtins never have block type. if (E->getCallee()->getType()->isBlockPointerType()) return EmitBlockCallExpr(E, ReturnValue); if (const CXXMemberCallExpr *CE = dyn_cast(E)) return EmitCXXMemberCallExpr(CE, ReturnValue); const Decl *TargetDecl = 0; if (const ImplicitCastExpr *CE = dyn_cast(E->getCallee())) { if (const DeclRefExpr *DRE = dyn_cast(CE->getSubExpr())) { TargetDecl = DRE->getDecl(); if (const FunctionDecl *FD = dyn_cast(TargetDecl)) if (unsigned builtinID = FD->getBuiltinID()) return EmitBuiltinExpr(FD, builtinID, E); } } if (const CXXOperatorCallExpr *CE = dyn_cast(E)) if (const CXXMethodDecl *MD = dyn_cast_or_null(TargetDecl)) return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); if (isa(E->getCallee()->IgnoreParens())) { // C++ [expr.pseudo]p1: // The result shall only be used as the operand for the function call // operator (), and the result of such a call has type void. The only // effect is the evaluation of the postfix-expression before the dot or // arrow. EmitScalarExpr(E->getCallee()); return RValue::get(0); } llvm::Value *Callee = EmitScalarExpr(E->getCallee()); return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl); } LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { // Comma expressions just emit their LHS then their RHS as an l-value. if (E->getOpcode() == BO_Comma) { EmitIgnoredExpr(E->getLHS()); EnsureInsertPoint(); return EmitLValue(E->getRHS()); } if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) return EmitPointerToDataMemberBinaryExpr(E); assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); if (!hasAggregateLLVMType(E->getType())) { // __block variables need the RHS evaluated first. RValue RV = EmitAnyExpr(E->getRHS()); LValue LV = EmitLValue(E->getLHS()); EmitStoreThroughLValue(RV, LV, E->getType()); return LV; } if (E->getType()->isAnyComplexType()) return EmitComplexAssignmentLValue(E); return EmitAggExprToLValue(E); } LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { RValue RV = EmitCallExpr(E); if (!RV.isScalar()) return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); assert(E->getCallReturnType()->isReferenceType() && "Can't have a scalar return unless the return type is a " "reference type!"); return MakeAddrLValue(RV.getScalarVal(), E->getType()); } LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { // FIXME: This shouldn't require another copy. return EmitAggExprToLValue(E); } LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() && "binding l-value to type which needs a temporary"); AggValueSlot Slot = CreateAggTemp(E->getType(), "tmp"); EmitCXXConstructExpr(E, Slot); return MakeAddrLValue(Slot.getAddr(), E->getType()); } LValue CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); } LValue CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); Slot.setLifetimeExternallyManaged(); EmitAggExpr(E->getSubExpr(), Slot); EmitCXXTemporary(E->getTemporary(), Slot.getAddr()); return MakeAddrLValue(Slot.getAddr(), E->getType()); } LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { RValue RV = EmitObjCMessageExpr(E); if (!RV.isScalar()) return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); assert(E->getMethodDecl()->getResultType()->isReferenceType() && "Can't have a scalar return unless the return type is a " "reference type!"); return MakeAddrLValue(RV.getScalarVal(), E->getType()); } LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { llvm::Value *V = CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); return MakeAddrLValue(V, E->getType()); } llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, const ObjCIvarDecl *Ivar) { return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); } LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, unsigned CVRQualifiers) { return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, Ivar, CVRQualifiers); } LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { // FIXME: A lot of the code below could be shared with EmitMemberExpr. llvm::Value *BaseValue = 0; const Expr *BaseExpr = E->getBase(); Qualifiers BaseQuals; QualType ObjectTy; if (E->isArrow()) { BaseValue = EmitScalarExpr(BaseExpr); ObjectTy = BaseExpr->getType()->getPointeeType(); BaseQuals = ObjectTy.getQualifiers(); } else { LValue BaseLV = EmitLValue(BaseExpr); // FIXME: this isn't right for bitfields. BaseValue = BaseLV.getAddress(); ObjectTy = BaseExpr->getType(); BaseQuals = ObjectTy.getQualifiers(); } LValue LV = EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), BaseQuals.getCVRQualifiers()); setObjCGCLValueClass(getContext(), E, LV); return LV; } LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { // Can only get l-value for message expression returning aggregate type RValue RV = EmitAnyExprToTemp(E); return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); } RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, ReturnValueSlot ReturnValue, CallExpr::const_arg_iterator ArgBeg, CallExpr::const_arg_iterator ArgEnd, const Decl *TargetDecl) { // Get the actual function type. The callee type will always be a pointer to // function type or a block pointer type. assert(CalleeType->isFunctionPointerType() && "Call must have function pointer type!"); CalleeType = getContext().getCanonicalType(CalleeType); const FunctionType *FnType = cast(cast(CalleeType)->getPointeeType()); CallArgList Args; EmitCallArgs(Args, dyn_cast(FnType), ArgBeg, ArgEnd); return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType), Callee, ReturnValue, Args, TargetDecl); } LValue CodeGenFunction:: EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { llvm::Value *BaseV; if (E->getOpcode() == BO_PtrMemI) BaseV = EmitScalarExpr(E->getLHS()); else BaseV = EmitLValue(E->getLHS()).getAddress(); llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); const MemberPointerType *MPT = E->getRHS()->getType()->getAs(); llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); return MakeAddrLValue(AddV, MPT->getPointeeType()); }