//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Builtin calls as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/Basic/TargetInfo.h" #include "clang/AST/APValue.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/Basic/TargetBuiltins.h" #include "llvm/Intrinsics.h" using namespace clang; using namespace CodeGen; using namespace llvm; /// Utility to insert an atomic instruction based on Instrinsic::ID /// and the expression node. static RValue EmitBinaryAtomic(CodeGenFunction& CGF, Intrinsic::ID Id, const CallExpr *E) { const llvm::Type *ResType[2]; ResType[0] = CGF.ConvertType(E->getType()); ResType[1] = CGF.ConvertType(E->getArg(0)->getType()); Value *AtomF = CGF.CGM.getIntrinsic(Id, ResType, 2); return RValue::get(CGF.Builder.CreateCall2(AtomF, CGF.EmitScalarExpr(E->getArg(0)), CGF.EmitScalarExpr(E->getArg(1)))); } /// Utility to insert an atomic instruction based Instrinsic::ID and // the expression node, where the return value is the result of the // operation. static RValue EmitBinaryAtomicPost(CodeGenFunction& CGF, Intrinsic::ID Id, const CallExpr *E, Instruction::BinaryOps Op) { const llvm::Type *ResType[2]; ResType[0] = CGF.ConvertType(E->getType()); ResType[1] = CGF.ConvertType(E->getArg(0)->getType()); Value *AtomF = CGF.CGM.getIntrinsic(Id, ResType, 2); Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); Value *Operand = CGF.EmitScalarExpr(E->getArg(1)); Value *Result = CGF.Builder.CreateCall2(AtomF, Ptr, Operand); if (Id == Intrinsic::atomic_load_nand) Result = CGF.Builder.CreateNot(Result); return RValue::get(CGF.Builder.CreateBinOp(Op, Result, Operand)); } RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD, unsigned BuiltinID, const CallExpr *E) { // See if we can constant fold this builtin. If so, don't emit it at all. Expr::EvalResult Result; if (E->Evaluate(Result, CGM.getContext())) { if (Result.Val.isInt()) return RValue::get(llvm::ConstantInt::get(VMContext, Result.Val.getInt())); else if (Result.Val.isFloat()) return RValue::get(ConstantFP::get(VMContext, Result.Val.getFloat())); } switch (BuiltinID) { default: break; // Handle intrinsics and libm functions below. case Builtin::BI__builtin___CFStringMakeConstantString: return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0)); case Builtin::BI__builtin_stdarg_start: case Builtin::BI__builtin_va_start: case Builtin::BI__builtin_va_end: { Value *ArgValue = EmitVAListRef(E->getArg(0)); const llvm::Type *DestType = llvm::Type::getInt8PtrTy(VMContext); if (ArgValue->getType() != DestType) ArgValue = Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data()); Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ? Intrinsic::vaend : Intrinsic::vastart; return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue)); } case Builtin::BI__builtin_va_copy: { Value *DstPtr = EmitVAListRef(E->getArg(0)); Value *SrcPtr = EmitVAListRef(E->getArg(1)); const llvm::Type *Type = llvm::Type::getInt8PtrTy(VMContext); DstPtr = Builder.CreateBitCast(DstPtr, Type); SrcPtr = Builder.CreateBitCast(SrcPtr, Type); return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy), DstPtr, SrcPtr)); } case Builtin::BI__builtin_abs: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); Value *NegOp = Builder.CreateNeg(ArgValue, "neg"); Value *CmpResult = Builder.CreateICmpSGE(ArgValue, llvm::Constant::getNullValue(ArgValue->getType()), "abscond"); Value *Result = Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs"); return RValue::get(Result); } case Builtin::BI__builtin_ctz: case Builtin::BI__builtin_ctzl: case Builtin::BI__builtin_ctzll: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); const llvm::Type *ArgType = ArgValue->getType(); Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1); const llvm::Type *ResultType = ConvertType(E->getType()); Value *Result = Builder.CreateCall(F, ArgValue, "tmp"); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__builtin_clz: case Builtin::BI__builtin_clzl: case Builtin::BI__builtin_clzll: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); const llvm::Type *ArgType = ArgValue->getType(); Value *F = CGM.getIntrinsic(Intrinsic::ctlz, &ArgType, 1); const llvm::Type *ResultType = ConvertType(E->getType()); Value *Result = Builder.CreateCall(F, ArgValue, "tmp"); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__builtin_ffs: case Builtin::BI__builtin_ffsl: case Builtin::BI__builtin_ffsll: { // ffs(x) -> x ? cttz(x) + 1 : 0 Value *ArgValue = EmitScalarExpr(E->getArg(0)); const llvm::Type *ArgType = ArgValue->getType(); Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1); const llvm::Type *ResultType = ConvertType(E->getType()); Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, ArgValue, "tmp"), llvm::ConstantInt::get(ArgType, 1), "tmp"); Value *Zero = llvm::Constant::getNullValue(ArgType); Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__builtin_parity: case Builtin::BI__builtin_parityl: case Builtin::BI__builtin_parityll: { // parity(x) -> ctpop(x) & 1 Value *ArgValue = EmitScalarExpr(E->getArg(0)); const llvm::Type *ArgType = ArgValue->getType(); Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1); const llvm::Type *ResultType = ConvertType(E->getType()); Value *Tmp = Builder.CreateCall(F, ArgValue, "tmp"); Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1), "tmp"); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__builtin_popcount: case Builtin::BI__builtin_popcountl: case Builtin::BI__builtin_popcountll: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); const llvm::Type *ArgType = ArgValue->getType(); Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1); const llvm::Type *ResultType = ConvertType(E->getType()); Value *Result = Builder.CreateCall(F, ArgValue, "tmp"); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__builtin_expect: // FIXME: pass expect through to LLVM return RValue::get(EmitScalarExpr(E->getArg(0))); case Builtin::BI__builtin_bswap32: case Builtin::BI__builtin_bswap64: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); const llvm::Type *ArgType = ArgValue->getType(); Value *F = CGM.getIntrinsic(Intrinsic::bswap, &ArgType, 1); return RValue::get(Builder.CreateCall(F, ArgValue, "tmp")); } case Builtin::BI__builtin_object_size: { #if 1 // We pass this builtin onto the optimizer so that it can // figure out the object size in more complex cases. const llvm::Type *ResType[] = { ConvertType(E->getType()) }; Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType, 1); return RValue::get(Builder.CreateCall2(F, EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)))); #else // FIXME: Remove after testing. llvm::APSInt TypeArg = E->getArg(1)->EvaluateAsInt(CGM.getContext()); const llvm::Type *ResType = ConvertType(E->getType()); // bool UseSubObject = TypeArg.getZExtValue() & 1; bool UseMinimum = TypeArg.getZExtValue() & 2; return RValue::get( llvm::ConstantInt::get(ResType, UseMinimum ? 0 : -1LL)); #endif } case Builtin::BI__builtin_prefetch: { Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); // FIXME: Technically these constants should of type 'int', yes? RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0); Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 3); Value *F = CGM.getIntrinsic(Intrinsic::prefetch, 0, 0); return RValue::get(Builder.CreateCall3(F, Address, RW, Locality)); } case Builtin::BI__builtin_trap: { Value *F = CGM.getIntrinsic(Intrinsic::trap, 0, 0); return RValue::get(Builder.CreateCall(F)); } case Builtin::BI__builtin_unreachable: { Value *V = Builder.CreateUnreachable(); Builder.ClearInsertionPoint(); return RValue::get(V); } case Builtin::BI__builtin_powi: case Builtin::BI__builtin_powif: case Builtin::BI__builtin_powil: { Value *Base = EmitScalarExpr(E->getArg(0)); Value *Exponent = EmitScalarExpr(E->getArg(1)); const llvm::Type *ArgType = Base->getType(); Value *F = CGM.getIntrinsic(Intrinsic::powi, &ArgType, 1); return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp")); } case Builtin::BI__builtin_isgreater: case Builtin::BI__builtin_isgreaterequal: case Builtin::BI__builtin_isless: case Builtin::BI__builtin_islessequal: case Builtin::BI__builtin_islessgreater: case Builtin::BI__builtin_isunordered: { // Ordered comparisons: we know the arguments to these are matching scalar // floating point values. Value *LHS = EmitScalarExpr(E->getArg(0)); Value *RHS = EmitScalarExpr(E->getArg(1)); switch (BuiltinID) { default: assert(0 && "Unknown ordered comparison"); case Builtin::BI__builtin_isgreater: LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_isgreaterequal: LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_isless: LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_islessequal: LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_islessgreater: LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_isunordered: LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); break; } // ZExt bool to int type. return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()), "tmp")); } case Builtin::BI__builtin_isnan: { Value *V = EmitScalarExpr(E->getArg(0)); V = Builder.CreateFCmpUNO(V, V, "cmp"); return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp")); } case Builtin::BIalloca: case Builtin::BI__builtin_alloca: { // FIXME: LLVM IR Should allow alloca with an i64 size! Value *Size = EmitScalarExpr(E->getArg(0)); Size = Builder.CreateIntCast(Size, llvm::Type::getInt32Ty(VMContext), false, "tmp"); return RValue::get(Builder.CreateAlloca(llvm::Type::getInt8Ty(VMContext), Size, "tmp")); } case Builtin::BI__builtin_bzero: { Value *Address = EmitScalarExpr(E->getArg(0)); Builder.CreateCall4(CGM.getMemSetFn(), Address, llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), 0), EmitScalarExpr(E->getArg(1)), llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1)); return RValue::get(Address); } case Builtin::BI__builtin_memcpy: { Value *Address = EmitScalarExpr(E->getArg(0)); Builder.CreateCall4(CGM.getMemCpyFn(), Address, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1)); return RValue::get(Address); } case Builtin::BI__builtin_memmove: { Value *Address = EmitScalarExpr(E->getArg(0)); Builder.CreateCall4(CGM.getMemMoveFn(), Address, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1)); return RValue::get(Address); } case Builtin::BI__builtin_memset: { Value *Address = EmitScalarExpr(E->getArg(0)); Builder.CreateCall4(CGM.getMemSetFn(), Address, Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), llvm::Type::getInt8Ty(VMContext)), EmitScalarExpr(E->getArg(2)), llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1)); return RValue::get(Address); } case Builtin::BI__builtin_return_address: { Value *F = CGM.getIntrinsic(Intrinsic::returnaddress, 0, 0); return RValue::get(Builder.CreateCall(F, EmitScalarExpr(E->getArg(0)))); } case Builtin::BI__builtin_frame_address: { Value *F = CGM.getIntrinsic(Intrinsic::frameaddress, 0, 0); return RValue::get(Builder.CreateCall(F, EmitScalarExpr(E->getArg(0)))); } case Builtin::BI__builtin_extract_return_addr: { // FIXME: There should be a target hook for this return RValue::get(EmitScalarExpr(E->getArg(0))); } case Builtin::BI__builtin_unwind_init: { Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init, 0, 0); return RValue::get(Builder.CreateCall(F)); } #if 0 // FIXME: Finish/enable when LLVM backend support stabilizes case Builtin::BI__builtin_setjmp: { Value *Buf = EmitScalarExpr(E->getArg(0)); // Store the frame pointer to the buffer Value *FrameAddrF = CGM.getIntrinsic(Intrinsic::frameaddress, 0, 0); Value *FrameAddr = Builder.CreateCall(FrameAddrF, Constant::getNullValue(llvm::Type::getInt32Ty(VMContext))); Builder.CreateStore(FrameAddr, Buf); // Call the setjmp intrinsic Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp, 0, 0); const llvm::Type *DestType = llvm::Type::getInt8PtrTy(VMContext); Buf = Builder.CreateBitCast(Buf, DestType); return RValue::get(Builder.CreateCall(F, Buf)); } case Builtin::BI__builtin_longjmp: { Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp, 0, 0); Value *Buf = EmitScalarExpr(E->getArg(0)); const llvm::Type *DestType = llvm::Type::getInt8PtrTy(VMContext); Buf = Builder.CreateBitCast(Buf, DestType); return RValue::get(Builder.CreateCall(F, Buf)); } #endif case Builtin::BI__sync_fetch_and_add: case Builtin::BI__sync_fetch_and_sub: case Builtin::BI__sync_fetch_and_or: case Builtin::BI__sync_fetch_and_and: case Builtin::BI__sync_fetch_and_xor: case Builtin::BI__sync_add_and_fetch: case Builtin::BI__sync_sub_and_fetch: case Builtin::BI__sync_and_and_fetch: case Builtin::BI__sync_or_and_fetch: case Builtin::BI__sync_xor_and_fetch: case Builtin::BI__sync_val_compare_and_swap: case Builtin::BI__sync_bool_compare_and_swap: case Builtin::BI__sync_lock_test_and_set: case Builtin::BI__sync_lock_release: assert(0 && "Shouldn't make it through sema"); case Builtin::BI__sync_fetch_and_add_1: case Builtin::BI__sync_fetch_and_add_2: case Builtin::BI__sync_fetch_and_add_4: case Builtin::BI__sync_fetch_and_add_8: case Builtin::BI__sync_fetch_and_add_16: return EmitBinaryAtomic(*this, Intrinsic::atomic_load_add, E); case Builtin::BI__sync_fetch_and_sub_1: case Builtin::BI__sync_fetch_and_sub_2: case Builtin::BI__sync_fetch_and_sub_4: case Builtin::BI__sync_fetch_and_sub_8: case Builtin::BI__sync_fetch_and_sub_16: return EmitBinaryAtomic(*this, Intrinsic::atomic_load_sub, E); case Builtin::BI__sync_fetch_and_or_1: case Builtin::BI__sync_fetch_and_or_2: case Builtin::BI__sync_fetch_and_or_4: case Builtin::BI__sync_fetch_and_or_8: case Builtin::BI__sync_fetch_and_or_16: return EmitBinaryAtomic(*this, Intrinsic::atomic_load_or, E); case Builtin::BI__sync_fetch_and_and_1: case Builtin::BI__sync_fetch_and_and_2: case Builtin::BI__sync_fetch_and_and_4: case Builtin::BI__sync_fetch_and_and_8: case Builtin::BI__sync_fetch_and_and_16: return EmitBinaryAtomic(*this, Intrinsic::atomic_load_and, E); case Builtin::BI__sync_fetch_and_xor_1: case Builtin::BI__sync_fetch_and_xor_2: case Builtin::BI__sync_fetch_and_xor_4: case Builtin::BI__sync_fetch_and_xor_8: case Builtin::BI__sync_fetch_and_xor_16: return EmitBinaryAtomic(*this, Intrinsic::atomic_load_xor, E); case Builtin::BI__sync_fetch_and_nand_1: case Builtin::BI__sync_fetch_and_nand_2: case Builtin::BI__sync_fetch_and_nand_4: case Builtin::BI__sync_fetch_and_nand_8: case Builtin::BI__sync_fetch_and_nand_16: return EmitBinaryAtomic(*this, Intrinsic::atomic_load_nand, E); // Clang extensions: not overloaded yet. case Builtin::BI__sync_fetch_and_min: return EmitBinaryAtomic(*this, Intrinsic::atomic_load_min, E); case Builtin::BI__sync_fetch_and_max: return EmitBinaryAtomic(*this, Intrinsic::atomic_load_max, E); case Builtin::BI__sync_fetch_and_umin: return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umin, E); case Builtin::BI__sync_fetch_and_umax: return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umax, E); case Builtin::BI__sync_add_and_fetch_1: case Builtin::BI__sync_add_and_fetch_2: case Builtin::BI__sync_add_and_fetch_4: case Builtin::BI__sync_add_and_fetch_8: case Builtin::BI__sync_add_and_fetch_16: return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_add, E, llvm::Instruction::Add); case Builtin::BI__sync_sub_and_fetch_1: case Builtin::BI__sync_sub_and_fetch_2: case Builtin::BI__sync_sub_and_fetch_4: case Builtin::BI__sync_sub_and_fetch_8: case Builtin::BI__sync_sub_and_fetch_16: return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_sub, E, llvm::Instruction::Sub); case Builtin::BI__sync_and_and_fetch_1: case Builtin::BI__sync_and_and_fetch_2: case Builtin::BI__sync_and_and_fetch_4: case Builtin::BI__sync_and_and_fetch_8: case Builtin::BI__sync_and_and_fetch_16: return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_and, E, llvm::Instruction::And); case Builtin::BI__sync_or_and_fetch_1: case Builtin::BI__sync_or_and_fetch_2: case Builtin::BI__sync_or_and_fetch_4: case Builtin::BI__sync_or_and_fetch_8: case Builtin::BI__sync_or_and_fetch_16: return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_or, E, llvm::Instruction::Or); case Builtin::BI__sync_xor_and_fetch_1: case Builtin::BI__sync_xor_and_fetch_2: case Builtin::BI__sync_xor_and_fetch_4: case Builtin::BI__sync_xor_and_fetch_8: case Builtin::BI__sync_xor_and_fetch_16: return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_xor, E, llvm::Instruction::Xor); case Builtin::BI__sync_nand_and_fetch_1: case Builtin::BI__sync_nand_and_fetch_2: case Builtin::BI__sync_nand_and_fetch_4: case Builtin::BI__sync_nand_and_fetch_8: case Builtin::BI__sync_nand_and_fetch_16: return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_nand, E, llvm::Instruction::And); case Builtin::BI__sync_val_compare_and_swap_1: case Builtin::BI__sync_val_compare_and_swap_2: case Builtin::BI__sync_val_compare_and_swap_4: case Builtin::BI__sync_val_compare_and_swap_8: case Builtin::BI__sync_val_compare_and_swap_16: { const llvm::Type *ResType[2]; ResType[0]= ConvertType(E->getType()); ResType[1] = ConvertType(E->getArg(0)->getType()); Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap, ResType, 2); return RValue::get(Builder.CreateCall3(AtomF, EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)))); } case Builtin::BI__sync_bool_compare_and_swap_1: case Builtin::BI__sync_bool_compare_and_swap_2: case Builtin::BI__sync_bool_compare_and_swap_4: case Builtin::BI__sync_bool_compare_and_swap_8: case Builtin::BI__sync_bool_compare_and_swap_16: { const llvm::Type *ResType[2]; ResType[0]= ConvertType(E->getArg(1)->getType()); ResType[1] = llvm::PointerType::getUnqual(ResType[0]); Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap, ResType, 2); Value *OldVal = EmitScalarExpr(E->getArg(1)); Value *PrevVal = Builder.CreateCall3(AtomF, EmitScalarExpr(E->getArg(0)), OldVal, EmitScalarExpr(E->getArg(2))); Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal); // zext bool to int. return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType()))); } case Builtin::BI__sync_lock_test_and_set_1: case Builtin::BI__sync_lock_test_and_set_2: case Builtin::BI__sync_lock_test_and_set_4: case Builtin::BI__sync_lock_test_and_set_8: case Builtin::BI__sync_lock_test_and_set_16: return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E); case Builtin::BI__sync_lock_release_1: case Builtin::BI__sync_lock_release_2: case Builtin::BI__sync_lock_release_4: case Builtin::BI__sync_lock_release_8: case Builtin::BI__sync_lock_release_16: { Value *Ptr = EmitScalarExpr(E->getArg(0)); const llvm::Type *ElTy = cast(Ptr->getType())->getElementType(); Builder.CreateStore(llvm::Constant::getNullValue(ElTy), Ptr, true); return RValue::get(0); } case Builtin::BI__sync_synchronize: { Value *C[5]; C[0] = C[1] = C[2] = C[3] = llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 1); C[4] = llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 0); Builder.CreateCall(CGM.getIntrinsic(Intrinsic::memory_barrier), C, C + 5); return RValue::get(0); } // Library functions with special handling. case Builtin::BIsqrt: case Builtin::BIsqrtf: case Builtin::BIsqrtl: { // Rewrite sqrt to intrinsic if allowed. if (!FD->hasAttr()) break; Value *Arg0 = EmitScalarExpr(E->getArg(0)); const llvm::Type *ArgType = Arg0->getType(); Value *F = CGM.getIntrinsic(Intrinsic::sqrt, &ArgType, 1); return RValue::get(Builder.CreateCall(F, Arg0, "tmp")); } case Builtin::BIpow: case Builtin::BIpowf: case Builtin::BIpowl: { // Rewrite sqrt to intrinsic if allowed. if (!FD->hasAttr()) break; Value *Base = EmitScalarExpr(E->getArg(0)); Value *Exponent = EmitScalarExpr(E->getArg(1)); const llvm::Type *ArgType = Base->getType(); Value *F = CGM.getIntrinsic(Intrinsic::pow, &ArgType, 1); return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp")); } } // If this is an alias for a libm function (e.g. __builtin_sin) turn it into // that function. if (getContext().BuiltinInfo.isLibFunction(BuiltinID) || getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) return EmitCall(CGM.getBuiltinLibFunction(FD, BuiltinID), E->getCallee()->getType(), E->arg_begin(), E->arg_end()); // See if we have a target specific intrinsic. const char *Name = getContext().BuiltinInfo.GetName(BuiltinID); Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; if (const char *Prefix = llvm::Triple::getArchTypePrefix(Target.getTriple().getArch())) IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name); if (IntrinsicID != Intrinsic::not_intrinsic) { SmallVector Args; Function *F = CGM.getIntrinsic(IntrinsicID); const llvm::FunctionType *FTy = F->getFunctionType(); for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { Value *ArgValue = EmitScalarExpr(E->getArg(i)); // If the intrinsic arg type is different from the builtin arg type // we need to do a bit cast. const llvm::Type *PTy = FTy->getParamType(i); if (PTy != ArgValue->getType()) { assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && "Must be able to losslessly bit cast to param"); ArgValue = Builder.CreateBitCast(ArgValue, PTy); } Args.push_back(ArgValue); } Value *V = Builder.CreateCall(F, Args.data(), Args.data() + Args.size()); QualType BuiltinRetType = E->getType(); const llvm::Type *RetTy = llvm::Type::getVoidTy(VMContext); if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType); if (RetTy != V->getType()) { assert(V->getType()->canLosslesslyBitCastTo(RetTy) && "Must be able to losslessly bit cast result type"); V = Builder.CreateBitCast(V, RetTy); } return RValue::get(V); } // See if we have a target specific builtin that needs to be lowered. if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E)) return RValue::get(V); ErrorUnsupported(E, "builtin function"); // Unknown builtin, for now just dump it out and return undef. if (hasAggregateLLVMType(E->getType())) return RValue::getAggregate(CreateTempAlloca(ConvertType(E->getType()))); return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); } Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { switch (Target.getTriple().getArch()) { case llvm::Triple::x86: case llvm::Triple::x86_64: return EmitX86BuiltinExpr(BuiltinID, E); case llvm::Triple::ppc: case llvm::Triple::ppc64: return EmitPPCBuiltinExpr(BuiltinID, E); default: return 0; } } Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E) { llvm::SmallVector Ops; for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) Ops.push_back(EmitScalarExpr(E->getArg(i))); switch (BuiltinID) { default: return 0; case X86::BI__builtin_ia32_pslldi128: case X86::BI__builtin_ia32_psllqi128: case X86::BI__builtin_ia32_psllwi128: case X86::BI__builtin_ia32_psradi128: case X86::BI__builtin_ia32_psrawi128: case X86::BI__builtin_ia32_psrldi128: case X86::BI__builtin_ia32_psrlqi128: case X86::BI__builtin_ia32_psrlwi128: { Ops[1] = Builder.CreateZExt(Ops[1], llvm::Type::getInt64Ty(VMContext), "zext"); const llvm::Type *Ty = llvm::VectorType::get(llvm::Type::getInt64Ty(VMContext), 2); llvm::Value *Zero = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0); Ops[1] = Builder.CreateInsertElement(llvm::UndefValue::get(Ty), Ops[1], Zero, "insert"); Ops[1] = Builder.CreateBitCast(Ops[1], Ops[0]->getType(), "bitcast"); const char *name = 0; Intrinsic::ID ID = Intrinsic::not_intrinsic; switch (BuiltinID) { default: assert(0 && "Unsupported shift intrinsic!"); case X86::BI__builtin_ia32_pslldi128: name = "pslldi"; ID = Intrinsic::x86_sse2_psll_d; break; case X86::BI__builtin_ia32_psllqi128: name = "psllqi"; ID = Intrinsic::x86_sse2_psll_q; break; case X86::BI__builtin_ia32_psllwi128: name = "psllwi"; ID = Intrinsic::x86_sse2_psll_w; break; case X86::BI__builtin_ia32_psradi128: name = "psradi"; ID = Intrinsic::x86_sse2_psra_d; break; case X86::BI__builtin_ia32_psrawi128: name = "psrawi"; ID = Intrinsic::x86_sse2_psra_w; break; case X86::BI__builtin_ia32_psrldi128: name = "psrldi"; ID = Intrinsic::x86_sse2_psrl_d; break; case X86::BI__builtin_ia32_psrlqi128: name = "psrlqi"; ID = Intrinsic::x86_sse2_psrl_q; break; case X86::BI__builtin_ia32_psrlwi128: name = "psrlwi"; ID = Intrinsic::x86_sse2_psrl_w; break; } llvm::Function *F = CGM.getIntrinsic(ID); return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name); } case X86::BI__builtin_ia32_pslldi: case X86::BI__builtin_ia32_psllqi: case X86::BI__builtin_ia32_psllwi: case X86::BI__builtin_ia32_psradi: case X86::BI__builtin_ia32_psrawi: case X86::BI__builtin_ia32_psrldi: case X86::BI__builtin_ia32_psrlqi: case X86::BI__builtin_ia32_psrlwi: { Ops[1] = Builder.CreateZExt(Ops[1], llvm::Type::getInt64Ty(VMContext), "zext"); const llvm::Type *Ty = llvm::VectorType::get(llvm::Type::getInt64Ty(VMContext), 1); Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast"); const char *name = 0; Intrinsic::ID ID = Intrinsic::not_intrinsic; switch (BuiltinID) { default: assert(0 && "Unsupported shift intrinsic!"); case X86::BI__builtin_ia32_pslldi: name = "pslldi"; ID = Intrinsic::x86_mmx_psll_d; break; case X86::BI__builtin_ia32_psllqi: name = "psllqi"; ID = Intrinsic::x86_mmx_psll_q; break; case X86::BI__builtin_ia32_psllwi: name = "psllwi"; ID = Intrinsic::x86_mmx_psll_w; break; case X86::BI__builtin_ia32_psradi: name = "psradi"; ID = Intrinsic::x86_mmx_psra_d; break; case X86::BI__builtin_ia32_psrawi: name = "psrawi"; ID = Intrinsic::x86_mmx_psra_w; break; case X86::BI__builtin_ia32_psrldi: name = "psrldi"; ID = Intrinsic::x86_mmx_psrl_d; break; case X86::BI__builtin_ia32_psrlqi: name = "psrlqi"; ID = Intrinsic::x86_mmx_psrl_q; break; case X86::BI__builtin_ia32_psrlwi: name = "psrlwi"; ID = Intrinsic::x86_mmx_psrl_w; break; } llvm::Function *F = CGM.getIntrinsic(ID); return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name); } case X86::BI__builtin_ia32_cmpps: { llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps); return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpps"); } case X86::BI__builtin_ia32_cmpss: { llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss); return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpss"); } case X86::BI__builtin_ia32_ldmxcsr: { const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext); Value *One = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1); Value *Tmp = Builder.CreateAlloca(llvm::Type::getInt32Ty(VMContext), One, "tmp"); Builder.CreateStore(Ops[0], Tmp); return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr), Builder.CreateBitCast(Tmp, PtrTy)); } case X86::BI__builtin_ia32_stmxcsr: { const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext); Value *One = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1); Value *Tmp = Builder.CreateAlloca(llvm::Type::getInt32Ty(VMContext), One, "tmp"); One = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr), Builder.CreateBitCast(Tmp, PtrTy)); return Builder.CreateLoad(Tmp, "stmxcsr"); } case X86::BI__builtin_ia32_cmppd: { llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_pd); return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmppd"); } case X86::BI__builtin_ia32_cmpsd: { llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_sd); return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpsd"); } case X86::BI__builtin_ia32_storehps: case X86::BI__builtin_ia32_storelps: { const llvm::Type *EltTy = llvm::Type::getInt64Ty(VMContext); llvm::Type *PtrTy = llvm::PointerType::getUnqual(EltTy); llvm::Type *VecTy = llvm::VectorType::get(EltTy, 2); // cast val v2i64 Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast"); // extract (0, 1) unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1; llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), Index); Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract"); // cast pointer to i64 & store Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy); return Builder.CreateStore(Ops[1], Ops[0]); } } } Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { switch (BuiltinID) { default: return 0; } }