//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a basic region store model. In this model, we do have field // sensitivity. But we assume nothing about the heap shape. So recursive data // structures are largely ignored. Basically we do 1-limiting analysis. // Parameter pointers are assumed with no aliasing. Pointee objects of // parameters are created lazily. // //===----------------------------------------------------------------------===// #include "clang/Checker/PathSensitive/MemRegion.h" #include "clang/Analysis/AnalysisContext.h" #include "clang/Checker/PathSensitive/GRState.h" #include "clang/Checker/PathSensitive/GRStateTrait.h" #include "clang/Analysis/Analyses/LiveVariables.h" #include "clang/Analysis/Support/Optional.h" #include "clang/Basic/TargetInfo.h" #include "clang/AST/CharUnits.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/ExprCXX.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/ImmutableList.h" #include "llvm/Support/raw_ostream.h" using namespace clang; //===----------------------------------------------------------------------===// // Representation of binding keys. //===----------------------------------------------------------------------===// namespace { class BindingKey { public: enum Kind { Direct = 0x0, Default = 0x1 }; private: llvm ::PointerIntPair P; uint64_t Offset; explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k) : P(r, (unsigned) k), Offset(offset) { assert(r); } public: bool isDefault() const { return P.getInt() == Default; } bool isDirect() const { return P.getInt() == Direct; } const MemRegion *getRegion() const { return P.getPointer(); } uint64_t getOffset() const { return Offset; } void Profile(llvm::FoldingSetNodeID& ID) const { ID.AddPointer(P.getOpaqueValue()); ID.AddInteger(Offset); } static BindingKey Make(const MemRegion *R, Kind k); bool operator<(const BindingKey &X) const { if (P.getOpaqueValue() < X.P.getOpaqueValue()) return true; if (P.getOpaqueValue() > X.P.getOpaqueValue()) return false; return Offset < X.Offset; } bool operator==(const BindingKey &X) const { return P.getOpaqueValue() == X.P.getOpaqueValue() && Offset == X.Offset; } }; } // end anonymous namespace namespace llvm { static inline llvm::raw_ostream& operator<<(llvm::raw_ostream& os, BindingKey K) { os << '(' << K.getRegion() << ',' << K.getOffset() << ',' << (K.isDirect() ? "direct" : "default") << ')'; return os; } } // end llvm namespace //===----------------------------------------------------------------------===// // Actual Store type. //===----------------------------------------------------------------------===// typedef llvm::ImmutableMap RegionBindings; //===----------------------------------------------------------------------===// // Fine-grained control of RegionStoreManager. //===----------------------------------------------------------------------===// namespace { struct minimal_features_tag {}; struct maximal_features_tag {}; class RegionStoreFeatures { bool SupportsFields; bool SupportsRemaining; public: RegionStoreFeatures(minimal_features_tag) : SupportsFields(false), SupportsRemaining(false) {} RegionStoreFeatures(maximal_features_tag) : SupportsFields(true), SupportsRemaining(false) {} void enableFields(bool t) { SupportsFields = t; } bool supportsFields() const { return SupportsFields; } bool supportsRemaining() const { return SupportsRemaining; } }; } //===----------------------------------------------------------------------===// // Region "Extents" //===----------------------------------------------------------------------===// // // MemRegions represent chunks of memory with a size (their "extent"). This // GDM entry tracks the extents for regions. Extents are in bytes. // namespace { class RegionExtents {}; } static int RegionExtentsIndex = 0; namespace clang { template<> struct GRStateTrait : public GRStatePartialTrait > { static void* GDMIndex() { return &RegionExtentsIndex; } }; } //===----------------------------------------------------------------------===// // Utility functions. //===----------------------------------------------------------------------===// static bool IsAnyPointerOrIntptr(QualType ty, ASTContext &Ctx) { if (ty->isAnyPointerType()) return true; return ty->isIntegerType() && ty->isScalarType() && Ctx.getTypeSize(ty) == Ctx.getTypeSize(Ctx.VoidPtrTy); } //===----------------------------------------------------------------------===// // Main RegionStore logic. //===----------------------------------------------------------------------===// namespace { class RegionStoreSubRegionMap : public SubRegionMap { public: typedef llvm::ImmutableSet Set; typedef llvm::DenseMap Map; private: Set::Factory F; Map M; public: bool add(const MemRegion* Parent, const MemRegion* SubRegion) { Map::iterator I = M.find(Parent); if (I == M.end()) { M.insert(std::make_pair(Parent, F.Add(F.GetEmptySet(), SubRegion))); return true; } I->second = F.Add(I->second, SubRegion); return false; } void process(llvm::SmallVectorImpl &WL, const SubRegion *R); ~RegionStoreSubRegionMap() {} const Set *getSubRegions(const MemRegion *Parent) const { Map::const_iterator I = M.find(Parent); return I == M.end() ? NULL : &I->second; } bool iterSubRegions(const MemRegion* Parent, Visitor& V) const { Map::const_iterator I = M.find(Parent); if (I == M.end()) return true; Set S = I->second; for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) { if (!V.Visit(Parent, *SI)) return false; } return true; } }; class RegionStoreManager : public StoreManager { const RegionStoreFeatures Features; RegionBindings::Factory RBFactory; public: RegionStoreManager(GRStateManager& mgr, const RegionStoreFeatures &f) : StoreManager(mgr), Features(f), RBFactory(mgr.getAllocator()) {} SubRegionMap *getSubRegionMap(Store store) { return getRegionStoreSubRegionMap(store); } RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store); Optional getBinding(RegionBindings B, const MemRegion *R); Optional getDirectBinding(RegionBindings B, const MemRegion *R); /// getDefaultBinding - Returns an SVal* representing an optional default /// binding associated with a region and its subregions. Optional getDefaultBinding(RegionBindings B, const MemRegion *R); /// setImplicitDefaultValue - Set the default binding for the provided /// MemRegion to the value implicitly defined for compound literals when /// the value is not specified. Store setImplicitDefaultValue(Store store, const MemRegion *R, QualType T); /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by GRExprEngine when evaluating /// casts from arrays to pointers. SVal ArrayToPointer(Loc Array); SVal EvalBinOp(BinaryOperator::Opcode Op,Loc L, NonLoc R, QualType resultTy); Store getInitialStore(const LocationContext *InitLoc) { return RBFactory.GetEmptyMap().getRoot(); } //===-------------------------------------------------------------------===// // Binding values to regions. //===-------------------------------------------------------------------===// Store InvalidateRegion(Store store, const MemRegion *R, const Expr *E, unsigned Count, InvalidatedSymbols *IS) { return RegionStoreManager::InvalidateRegions(store, &R, &R+1, E, Count, IS); } Store InvalidateRegions(Store store, const MemRegion * const *Begin, const MemRegion * const *End, const Expr *E, unsigned Count, InvalidatedSymbols *IS); public: // Made public for helper classes. void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R, RegionStoreSubRegionMap &M); RegionBindings Add(RegionBindings B, BindingKey K, SVal V); RegionBindings Add(RegionBindings B, const MemRegion *R, BindingKey::Kind k, SVal V); const SVal *Lookup(RegionBindings B, BindingKey K); const SVal *Lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k); RegionBindings Remove(RegionBindings B, BindingKey K); RegionBindings Remove(RegionBindings B, const MemRegion *R, BindingKey::Kind k); RegionBindings Remove(RegionBindings B, const MemRegion *R) { return Remove(Remove(B, R, BindingKey::Direct), R, BindingKey::Default); } Store Remove(Store store, BindingKey K); public: // Part of public interface to class. Store Bind(Store store, Loc LV, SVal V); Store BindCompoundLiteral(Store store, const CompoundLiteralExpr* CL, const LocationContext *LC, SVal V); Store BindDecl(Store store, const VarRegion *VR, SVal InitVal); Store BindDeclWithNoInit(Store store, const VarRegion *) { return store; } /// BindStruct - Bind a compound value to a structure. Store BindStruct(Store store, const TypedRegion* R, SVal V); Store BindArray(Store store, const TypedRegion* R, SVal V); /// KillStruct - Set the entire struct to unknown. Store KillStruct(Store store, const TypedRegion* R); Store Remove(Store store, Loc LV); //===------------------------------------------------------------------===// // Loading values from regions. //===------------------------------------------------------------------===// /// The high level logic for this method is this: /// Retrieve (L) /// if L has binding /// return L's binding /// else if L is in killset /// return unknown /// else /// if L is on stack or heap /// return undefined /// else /// return symbolic SVal Retrieve(Store store, Loc L, QualType T = QualType()); SVal RetrieveElement(Store store, const ElementRegion *R); SVal RetrieveField(Store store, const FieldRegion *R); SVal RetrieveObjCIvar(Store store, const ObjCIvarRegion *R); SVal RetrieveVar(Store store, const VarRegion *R); SVal RetrieveLazySymbol(const TypedRegion *R); SVal RetrieveFieldOrElementCommon(Store store, const TypedRegion *R, QualType Ty, const MemRegion *superR); /// Retrieve the values in a struct and return a CompoundVal, used when doing /// struct copy: /// struct s x, y; /// x = y; /// y's value is retrieved by this method. SVal RetrieveStruct(Store store, const TypedRegion* R); SVal RetrieveArray(Store store, const TypedRegion* R); /// Get the state and region whose binding this region R corresponds to. std::pair GetLazyBinding(RegionBindings B, const MemRegion *R); Store CopyLazyBindings(nonloc::LazyCompoundVal V, Store store, const TypedRegion *R); const ElementRegion *GetElementZeroRegion(const MemRegion *R, QualType T); //===------------------------------------------------------------------===// // State pruning. //===------------------------------------------------------------------===// /// RemoveDeadBindings - Scans the RegionStore of 'state' for dead values. /// It returns a new Store with these values removed. Store RemoveDeadBindings(Store store, Stmt* Loc, SymbolReaper& SymReaper, llvm::SmallVectorImpl& RegionRoots); const GRState *EnterStackFrame(const GRState *state, const StackFrameContext *frame); //===------------------------------------------------------------------===// // Region "extents". //===------------------------------------------------------------------===// const GRState *setExtent(const GRState *state,const MemRegion* R,SVal Extent); DefinedOrUnknownSVal getSizeInElements(const GRState *state, const MemRegion* R, QualType EleTy); //===------------------------------------------------------------------===// // Utility methods. //===------------------------------------------------------------------===// static inline RegionBindings GetRegionBindings(Store store) { return RegionBindings(static_cast(store)); } void print(Store store, llvm::raw_ostream& Out, const char* nl, const char *sep); void iterBindings(Store store, BindingsHandler& f) { // FIXME: Implement. } // FIXME: Remove. BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); } // FIXME: Remove. ASTContext& getContext() { return StateMgr.getContext(); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // RegionStore creation. //===----------------------------------------------------------------------===// StoreManager *clang::CreateRegionStoreManager(GRStateManager& StMgr) { RegionStoreFeatures F = maximal_features_tag(); return new RegionStoreManager(StMgr, F); } StoreManager *clang::CreateFieldsOnlyRegionStoreManager(GRStateManager &StMgr) { RegionStoreFeatures F = minimal_features_tag(); F.enableFields(true); return new RegionStoreManager(StMgr, F); } void RegionStoreSubRegionMap::process(llvm::SmallVectorImpl &WL, const SubRegion *R) { const MemRegion *superR = R->getSuperRegion(); if (add(superR, R)) if (const SubRegion *sr = dyn_cast(superR)) WL.push_back(sr); } RegionStoreSubRegionMap* RegionStoreManager::getRegionStoreSubRegionMap(Store store) { RegionBindings B = GetRegionBindings(store); RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap(); llvm::SmallVector WL; for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) if (const SubRegion *R = dyn_cast(I.getKey().getRegion())) M->process(WL, R); // We also need to record in the subregion map "intermediate" regions that // don't have direct bindings but are super regions of those that do. while (!WL.empty()) { const SubRegion *R = WL.back(); WL.pop_back(); M->process(WL, R); } return M; } //===----------------------------------------------------------------------===// // Region Cluster analysis. //===----------------------------------------------------------------------===// namespace { template class ClusterAnalysis { protected: typedef BumpVector RegionCluster; typedef llvm::DenseMap ClusterMap; llvm::DenseMap Visited; typedef llvm::SmallVector, 10> WorkList; BumpVectorContext BVC; ClusterMap ClusterM; WorkList WL; RegionStoreManager &RM; ASTContext &Ctx; ValueManager &ValMgr; RegionBindings B; public: ClusterAnalysis(RegionStoreManager &rm, GRStateManager &StateMgr, RegionBindings b) : RM(rm), Ctx(StateMgr.getContext()), ValMgr(StateMgr.getValueManager()), B(b) {} RegionBindings getRegionBindings() const { return B; } void AddToCluster(BindingKey K) { const MemRegion *R = K.getRegion(); const MemRegion *baseR = R->getBaseRegion(); RegionCluster &C = getCluster(baseR); C.push_back(K, BVC); static_cast(this)->VisitAddedToCluster(baseR, C); } bool isVisited(const MemRegion *R) { return (bool) Visited[&getCluster(R->getBaseRegion())]; } RegionCluster& getCluster(const MemRegion *R) { RegionCluster *&CRef = ClusterM[R]; if (!CRef) { void *Mem = BVC.getAllocator().template Allocate(); CRef = new (Mem) RegionCluster(BVC, 10); } return *CRef; } void GenerateClusters() { // Scan the entire set of bindings and make the region clusters. for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ AddToCluster(RI.getKey()); if (const MemRegion *R = RI.getData().getAsRegion()) { // Generate a cluster, but don't add the region to the cluster // if there aren't any bindings. getCluster(R->getBaseRegion()); } } } bool AddToWorkList(const MemRegion *R, RegionCluster &C) { if (unsigned &visited = Visited[&C]) return false; else visited = 1; WL.push_back(std::make_pair(R, &C)); return true; } bool AddToWorkList(BindingKey K) { return AddToWorkList(K.getRegion()); } bool AddToWorkList(const MemRegion *R) { const MemRegion *baseR = R->getBaseRegion(); return AddToWorkList(baseR, getCluster(baseR)); } void RunWorkList() { while (!WL.empty()) { const MemRegion *baseR; RegionCluster *C; llvm::tie(baseR, C) = WL.back(); WL.pop_back(); // First visit the cluster. static_cast(this)->VisitCluster(baseR, C->begin(), C->end()); // Next, visit the region. static_cast(this)->VisitRegion(baseR); } } public: void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {} void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {} void VisitRegion(const MemRegion *baseR) {} }; } //===----------------------------------------------------------------------===// // Binding invalidation. //===----------------------------------------------------------------------===// void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R, RegionStoreSubRegionMap &M) { if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R)) for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end(); I != E; ++I) RemoveSubRegionBindings(B, *I, M); B = Remove(B, R); } namespace { class InvalidateRegionsWorker : public ClusterAnalysis { const Expr *Ex; unsigned Count; StoreManager::InvalidatedSymbols *IS; public: InvalidateRegionsWorker(RegionStoreManager &rm, GRStateManager &stateMgr, RegionBindings b, const Expr *ex, unsigned count, StoreManager::InvalidatedSymbols *is) : ClusterAnalysis(rm, stateMgr, b), Ex(ex), Count(count), IS(is) {} void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E); void VisitRegion(const MemRegion *baseR); private: void VisitBinding(SVal V); }; } void InvalidateRegionsWorker::VisitBinding(SVal V) { // A symbol? Mark it touched by the invalidation. if (IS) if (SymbolRef Sym = V.getAsSymbol()) IS->insert(Sym); if (const MemRegion *R = V.getAsRegion()) { AddToWorkList(R); return; } // Is it a LazyCompoundVal? All references get invalidated as well. if (const nonloc::LazyCompoundVal *LCS = dyn_cast(&V)) { const MemRegion *LazyR = LCS->getRegion(); RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore()); for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ const MemRegion *baseR = RI.getKey().getRegion(); if (cast(baseR)->isSubRegionOf(LazyR)) VisitBinding(RI.getData()); } return; } } void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) { for ( ; I != E; ++I) { // Get the old binding. Is it a region? If so, add it to the worklist. const BindingKey &K = *I; if (const SVal *V = RM.Lookup(B, K)) VisitBinding(*V); B = RM.Remove(B, K); } } void InvalidateRegionsWorker::VisitRegion(const MemRegion *baseR) { if (IS) { // Symbolic region? Mark that symbol touched by the invalidation. if (const SymbolicRegion *SR = dyn_cast(baseR)) IS->insert(SR->getSymbol()); } // BlockDataRegion? If so, invalidate captured variables that are passed // by reference. if (const BlockDataRegion *BR = dyn_cast(baseR)) { for (BlockDataRegion::referenced_vars_iterator BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ; BI != BE; ++BI) { const VarRegion *VR = *BI; const VarDecl *VD = VR->getDecl(); if (VD->getAttr() || !VD->hasLocalStorage()) AddToWorkList(VR); } return; } if (isa(baseR) || isa(baseR)) { // Invalidate the region by setting its default value to // conjured symbol. The type of the symbol is irrelavant. DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count); B = RM.Add(B, baseR, BindingKey::Default, V); return; } if (!baseR->isBoundable()) return; const TypedRegion *TR = cast(baseR); QualType T = TR->getValueType(Ctx); // Invalidate the binding. if (const RecordType *RT = T->getAsStructureType()) { const RecordDecl *RD = RT->getDecl()->getDefinition(); // No record definition. There is nothing we can do. if (!RD) { B = RM.Remove(B, baseR); return; } // Invalidate the region by setting its default value to // conjured symbol. The type of the symbol is irrelavant. DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count); B = RM.Add(B, baseR, BindingKey::Default, V); return; } if (const ArrayType *AT = Ctx.getAsArrayType(T)) { // Set the default value of the array to conjured symbol. DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count); B = RM.Add(B, baseR, BindingKey::Default, V); return; } DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, T, Count); assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); B = RM.Add(B, baseR, BindingKey::Direct, V); } Store RegionStoreManager::InvalidateRegions(Store store, const MemRegion * const *I, const MemRegion * const *E, const Expr *Ex, unsigned Count, InvalidatedSymbols *IS) { InvalidateRegionsWorker W(*this, StateMgr, RegionStoreManager::GetRegionBindings(store), Ex, Count, IS); // Scan the bindings and generate the clusters. W.GenerateClusters(); // Add I .. E to the worklist. for ( ; I != E; ++I) W.AddToWorkList(*I); W.RunWorkList(); // Return the new bindings. return W.getRegionBindings().getRoot(); } //===----------------------------------------------------------------------===// // Extents for regions. //===----------------------------------------------------------------------===// DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const GRState *state, const MemRegion *R, QualType EleTy) { switch (R->getKind()) { case MemRegion::CXXThisRegionKind: assert(0 && "Cannot get size of 'this' region"); case MemRegion::GenericMemSpaceRegionKind: case MemRegion::StackLocalsSpaceRegionKind: case MemRegion::StackArgumentsSpaceRegionKind: case MemRegion::HeapSpaceRegionKind: case MemRegion::GlobalsSpaceRegionKind: case MemRegion::UnknownSpaceRegionKind: assert(0 && "Cannot index into a MemSpace"); return UnknownVal(); case MemRegion::FunctionTextRegionKind: case MemRegion::BlockTextRegionKind: case MemRegion::BlockDataRegionKind: // Technically this can happen if people do funny things with casts. return UnknownVal(); // Not yet handled. case MemRegion::AllocaRegionKind: case MemRegion::CompoundLiteralRegionKind: case MemRegion::ElementRegionKind: case MemRegion::FieldRegionKind: case MemRegion::ObjCIvarRegionKind: case MemRegion::CXXObjectRegionKind: return UnknownVal(); case MemRegion::SymbolicRegionKind: { const SVal *Size = state->get(R); if (!Size) return UnknownVal(); const nonloc::ConcreteInt *CI = dyn_cast(Size); if (!CI) return UnknownVal(); CharUnits RegionSize = CharUnits::fromQuantity(CI->getValue().getSExtValue()); CharUnits EleSize = getContext().getTypeSizeInChars(EleTy); assert(RegionSize % EleSize == 0); return ValMgr.makeIntVal(RegionSize / EleSize, false); } case MemRegion::StringRegionKind: { const StringLiteral* Str = cast(R)->getStringLiteral(); // We intentionally made the size value signed because it participates in // operations with signed indices. return ValMgr.makeIntVal(Str->getByteLength()+1, false); } case MemRegion::VarRegionKind: { const VarRegion* VR = cast(R); // Get the type of the variable. QualType T = VR->getDesugaredValueType(getContext()); // FIXME: Handle variable-length arrays. if (isa(T)) return UnknownVal(); if (const ConstantArrayType* CAT = dyn_cast(T)) { // return the size as signed integer. return ValMgr.makeIntVal(CAT->getSize(), false); } // Clients can use ordinary variables as if they were arrays. These // essentially are arrays of size 1. return ValMgr.makeIntVal(1, false); } } assert(0 && "Unreachable"); return UnknownVal(); } const GRState *RegionStoreManager::setExtent(const GRState *state, const MemRegion *region, SVal extent) { return state->set(region, extent); } //===----------------------------------------------------------------------===// // Location and region casting. //===----------------------------------------------------------------------===// /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by GRExprEngine when evaluating casts /// from arrays to pointers. SVal RegionStoreManager::ArrayToPointer(Loc Array) { if (!isa(Array)) return UnknownVal(); const MemRegion* R = cast(&Array)->getRegion(); const TypedRegion* ArrayR = dyn_cast(R); if (!ArrayR) return UnknownVal(); // Strip off typedefs from the ArrayRegion's ValueType. QualType T = ArrayR->getValueType(getContext()).getDesugaredType(); ArrayType *AT = cast(T); T = AT->getElementType(); SVal ZeroIdx = ValMgr.makeZeroArrayIndex(); return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, getContext())); } //===----------------------------------------------------------------------===// // Pointer arithmetic. //===----------------------------------------------------------------------===// SVal RegionStoreManager::EvalBinOp(BinaryOperator::Opcode Op, Loc L, NonLoc R, QualType resultTy) { // Assume the base location is MemRegionVal. if (!isa(L)) return UnknownVal(); const MemRegion* MR = cast(L).getRegion(); const ElementRegion *ER = 0; switch (MR->getKind()) { case MemRegion::SymbolicRegionKind: { const SymbolicRegion *SR = cast(MR); SymbolRef Sym = SR->getSymbol(); QualType T = Sym->getType(getContext()); QualType EleTy; if (const PointerType *PT = T->getAs()) EleTy = PT->getPointeeType(); else EleTy = T->getAs()->getPointeeType(); SVal ZeroIdx = ValMgr.makeZeroArrayIndex(); ER = MRMgr.getElementRegion(EleTy, ZeroIdx, SR, getContext()); break; } case MemRegion::AllocaRegionKind: { const AllocaRegion *AR = cast(MR); QualType T = getContext().CharTy; // Create an ElementRegion of bytes. QualType EleTy = T->getAs()->getPointeeType(); SVal ZeroIdx = ValMgr.makeZeroArrayIndex(); ER = MRMgr.getElementRegion(EleTy, ZeroIdx, AR, getContext()); break; } case MemRegion::ElementRegionKind: { ER = cast(MR); break; } // Not yet handled. case MemRegion::VarRegionKind: case MemRegion::StringRegionKind: { } // Fall-through. case MemRegion::CompoundLiteralRegionKind: case MemRegion::FieldRegionKind: case MemRegion::ObjCIvarRegionKind: case MemRegion::CXXObjectRegionKind: return UnknownVal(); case MemRegion::FunctionTextRegionKind: case MemRegion::BlockTextRegionKind: case MemRegion::BlockDataRegionKind: // Technically this can happen if people do funny things with casts. return UnknownVal(); case MemRegion::CXXThisRegionKind: assert(0 && "Cannot perform pointer arithmetic on implicit argument 'this'"); case MemRegion::GenericMemSpaceRegionKind: case MemRegion::StackLocalsSpaceRegionKind: case MemRegion::StackArgumentsSpaceRegionKind: case MemRegion::HeapSpaceRegionKind: case MemRegion::GlobalsSpaceRegionKind: case MemRegion::UnknownSpaceRegionKind: assert(0 && "Cannot perform pointer arithmetic on a MemSpace"); return UnknownVal(); } SVal Idx = ER->getIndex(); nonloc::ConcreteInt* Base = dyn_cast(&Idx); // For now, only support: // (a) concrete integer indices that can easily be resolved // (b) 0 + symbolic index if (Base) { if (nonloc::ConcreteInt *Offset = dyn_cast(&R)) { // FIXME: Should use SValuator here. SVal NewIdx = Base->evalBinOp(ValMgr, Op, cast(ValMgr.convertToArrayIndex(*Offset))); const MemRegion* NewER = MRMgr.getElementRegion(ER->getElementType(), NewIdx, ER->getSuperRegion(), getContext()); return ValMgr.makeLoc(NewER); } if (0 == Base->getValue()) { const MemRegion* NewER = MRMgr.getElementRegion(ER->getElementType(), R, ER->getSuperRegion(), getContext()); return ValMgr.makeLoc(NewER); } } return UnknownVal(); } //===----------------------------------------------------------------------===// // Loading values from regions. //===----------------------------------------------------------------------===// Optional RegionStoreManager::getDirectBinding(RegionBindings B, const MemRegion *R) { if (const SVal *V = Lookup(B, R, BindingKey::Direct)) return *V; return Optional(); } Optional RegionStoreManager::getDefaultBinding(RegionBindings B, const MemRegion *R) { if (R->isBoundable()) if (const TypedRegion *TR = dyn_cast(R)) if (TR->getValueType(getContext())->isUnionType()) return UnknownVal(); if (const SVal *V = Lookup(B, R, BindingKey::Default)) return *V; return Optional(); } Optional RegionStoreManager::getBinding(RegionBindings B, const MemRegion *R) { if (Optional V = getDirectBinding(B, R)) return V; return getDefaultBinding(B, R); } static bool IsReinterpreted(QualType RTy, QualType UsedTy, ASTContext &Ctx) { RTy = Ctx.getCanonicalType(RTy); UsedTy = Ctx.getCanonicalType(UsedTy); if (RTy == UsedTy) return false; // Recursively check the types. We basically want to see if a pointer value // is ever reinterpreted as a non-pointer, e.g. void** and intptr_t* // represents a reinterpretation. if (Loc::IsLocType(RTy) && Loc::IsLocType(UsedTy)) { const PointerType *PRTy = RTy->getAs(); const PointerType *PUsedTy = UsedTy->getAs(); return PUsedTy && PRTy && IsReinterpreted(PRTy->getPointeeType(), PUsedTy->getPointeeType(), Ctx); } return true; } const ElementRegion * RegionStoreManager::GetElementZeroRegion(const MemRegion *R, QualType T) { ASTContext &Ctx = getContext(); SVal idx = ValMgr.makeZeroArrayIndex(); assert(!T.isNull()); return MRMgr.getElementRegion(T, idx, R, Ctx); } SVal RegionStoreManager::Retrieve(Store store, Loc L, QualType T) { assert(!isa(L) && "location unknown"); assert(!isa(L) && "location undefined"); // FIXME: Is this even possible? Shouldn't this be treated as a null // dereference at a higher level? if (isa(L)) return UndefinedVal(); const MemRegion *MR = cast(L).getRegion(); if (isa(MR) || isa(MR)) MR = GetElementZeroRegion(MR, T); if (isa(MR)) { assert(0 && "Why load from a code text region?"); return UnknownVal(); } // FIXME: Perhaps this method should just take a 'const MemRegion*' argument // instead of 'Loc', and have the other Loc cases handled at a higher level. const TypedRegion *R = cast(MR); QualType RTy = R->getValueType(getContext()); // FIXME: We should eventually handle funny addressing. e.g.: // // int x = ...; // int *p = &x; // char *q = (char*) p; // char c = *q; // returns the first byte of 'x'. // // Such funny addressing will occur due to layering of regions. #if 0 ASTContext &Ctx = getContext(); if (!T.isNull() && IsReinterpreted(RTy, T, Ctx)) { SVal ZeroIdx = ValMgr.makeZeroArrayIndex(); R = MRMgr.getElementRegion(T, ZeroIdx, R, Ctx); RTy = T; assert(Ctx.getCanonicalType(RTy) == Ctx.getCanonicalType(R->getValueType(Ctx))); } #endif if (RTy->isStructureType()) return RetrieveStruct(store, R); // FIXME: Handle unions. if (RTy->isUnionType()) return UnknownVal(); if (RTy->isArrayType()) return RetrieveArray(store, R); // FIXME: handle Vector types. if (RTy->isVectorType()) return UnknownVal(); if (const FieldRegion* FR = dyn_cast(R)) return CastRetrievedVal(RetrieveField(store, FR), FR, T, false); if (const ElementRegion* ER = dyn_cast(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the element type. Eventually we want to compose these values // more intelligently. For example, an 'element' can encompass multiple // bound regions (e.g., several bound bytes), or could be a subset of // a larger value. return CastRetrievedVal(RetrieveElement(store, ER), ER, T, false); } if (const ObjCIvarRegion *IVR = dyn_cast(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the ivar type. What we should model is stores to ivars // that blow past the extent of the ivar. If the address of the ivar is // reinterpretted, it is possible we stored a different value that could // fit within the ivar. Either we need to cast these when storing them // or reinterpret them lazily (as we do here). return CastRetrievedVal(RetrieveObjCIvar(store, IVR), IVR, T, false); } if (const VarRegion *VR = dyn_cast(R)) { // FIXME: Here we actually perform an implicit conversion from the loaded // value to the variable type. What we should model is stores to variables // that blow past the extent of the variable. If the address of the // variable is reinterpretted, it is possible we stored a different value // that could fit within the variable. Either we need to cast these when // storing them or reinterpret them lazily (as we do here). return CastRetrievedVal(RetrieveVar(store, VR), VR, T, false); } RegionBindings B = GetRegionBindings(store); const SVal *V = Lookup(B, R, BindingKey::Direct); // Check if the region has a binding. if (V) return *V; // The location does not have a bound value. This means that it has // the value it had upon its creation and/or entry to the analyzed // function/method. These are either symbolic values or 'undefined'. if (R->hasStackNonParametersStorage()) { // All stack variables are considered to have undefined values // upon creation. All heap allocated blocks are considered to // have undefined values as well unless they are explicitly bound // to specific values. return UndefinedVal(); } // All other values are symbolic. return ValMgr.getRegionValueSymbolVal(R); } std::pair RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R) { if (Optional OV = getDirectBinding(B, R)) if (const nonloc::LazyCompoundVal *V = dyn_cast(OV.getPointer())) return std::make_pair(V->getStore(), V->getRegion()); if (const ElementRegion *ER = dyn_cast(R)) { const std::pair &X = GetLazyBinding(B, ER->getSuperRegion()); if (X.second) return std::make_pair(X.first, MRMgr.getElementRegionWithSuper(ER, X.second)); } else if (const FieldRegion *FR = dyn_cast(R)) { const std::pair &X = GetLazyBinding(B, FR->getSuperRegion()); if (X.second) return std::make_pair(X.first, MRMgr.getFieldRegionWithSuper(FR, X.second)); } // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is // possible for a valid lazy binding. return std::make_pair((Store) 0, (const MemRegion *) 0); } SVal RegionStoreManager::RetrieveElement(Store store, const ElementRegion* R) { // Check if the region has a binding. RegionBindings B = GetRegionBindings(store); if (Optional V = getDirectBinding(B, R)) return *V; const MemRegion* superR = R->getSuperRegion(); // Check if the region is an element region of a string literal. if (const StringRegion *StrR=dyn_cast(superR)) { // FIXME: Handle loads from strings where the literal is treated as // an integer, e.g., *((unsigned int*)"hello") ASTContext &Ctx = getContext(); QualType T = Ctx.getAsArrayType(StrR->getValueType(Ctx))->getElementType(); if (T != Ctx.getCanonicalType(R->getElementType())) return UnknownVal(); const StringLiteral *Str = StrR->getStringLiteral(); SVal Idx = R->getIndex(); if (nonloc::ConcreteInt *CI = dyn_cast(&Idx)) { int64_t i = CI->getValue().getSExtValue(); int64_t byteLength = Str->getByteLength(); if (i > byteLength) { // Buffer overflow checking in GRExprEngine should handle this case, // but we shouldn't rely on it to not overflow here if that checking // is disabled. return UnknownVal(); } char c = (i == byteLength) ? '\0' : Str->getStrData()[i]; return ValMgr.makeIntVal(c, T); } } // Check if the immediate super region has a direct binding. if (Optional V = getDirectBinding(B, superR)) { if (SymbolRef parentSym = V->getAsSymbol()) return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R); if (V->isUnknownOrUndef()) return *V; // Handle LazyCompoundVals for the immediate super region. Other cases // are handled in 'RetrieveFieldOrElementCommon'. if (const nonloc::LazyCompoundVal *LCV = dyn_cast(V)) { R = MRMgr.getElementRegionWithSuper(R, LCV->getRegion()); return RetrieveElement(LCV->getStore(), R); } // Other cases: give up. return UnknownVal(); } return RetrieveFieldOrElementCommon(store, R, R->getElementType(), superR); } SVal RegionStoreManager::RetrieveField(Store store, const FieldRegion* R) { // Check if the region has a binding. RegionBindings B = GetRegionBindings(store); if (Optional V = getDirectBinding(B, R)) return *V; QualType Ty = R->getValueType(getContext()); return RetrieveFieldOrElementCommon(store, R, Ty, R->getSuperRegion()); } SVal RegionStoreManager::RetrieveFieldOrElementCommon(Store store, const TypedRegion *R, QualType Ty, const MemRegion *superR) { // At this point we have already checked in either RetrieveElement or // RetrieveField if 'R' has a direct binding. RegionBindings B = GetRegionBindings(store); while (superR) { if (const Optional &D = getDefaultBinding(B, superR)) { if (SymbolRef parentSym = D->getAsSymbol()) return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R); if (D->isZeroConstant()) return ValMgr.makeZeroVal(Ty); if (D->isUnknown()) return *D; assert(0 && "Unknown default value"); } // If our super region is a field or element itself, walk up the region // hierarchy to see if there is a default value installed in an ancestor. if (isa(superR) || isa(superR)) { superR = cast(superR)->getSuperRegion(); continue; } break; } // Lazy binding? Store lazyBindingStore = NULL; const MemRegion *lazyBindingRegion = NULL; llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R); if (lazyBindingRegion) { if (const ElementRegion *ER = dyn_cast(lazyBindingRegion)) return RetrieveElement(lazyBindingStore, ER); return RetrieveField(lazyBindingStore, cast(lazyBindingRegion)); } if (R->hasStackNonParametersStorage()) { if (isa(R)) { // Currently we don't reason specially about Clang-style vectors. Check // if superR is a vector and if so return Unknown. if (const TypedRegion *typedSuperR = dyn_cast(superR)) { if (typedSuperR->getValueType(getContext())->isVectorType()) return UnknownVal(); } } return UndefinedVal(); } // All other values are symbolic. return ValMgr.getRegionValueSymbolVal(R); } SVal RegionStoreManager::RetrieveObjCIvar(Store store, const ObjCIvarRegion* R){ // Check if the region has a binding. RegionBindings B = GetRegionBindings(store); if (Optional V = getDirectBinding(B, R)) return *V; const MemRegion *superR = R->getSuperRegion(); // Check if the super region has a default binding. if (Optional V = getDefaultBinding(B, superR)) { if (SymbolRef parentSym = V->getAsSymbol()) return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R); // Other cases: give up. return UnknownVal(); } return RetrieveLazySymbol(R); } SVal RegionStoreManager::RetrieveVar(Store store, const VarRegion *R) { // Check if the region has a binding. RegionBindings B = GetRegionBindings(store); if (Optional V = getDirectBinding(B, R)) return *V; // Lazily derive a value for the VarRegion. const VarDecl *VD = R->getDecl(); QualType T = VD->getType(); const MemSpaceRegion *MS = R->getMemorySpace(); if (isa(MS) || isa(MS)) return ValMgr.getRegionValueSymbolVal(R); if (isa(MS)) { if (VD->isFileVarDecl()) return ValMgr.getRegionValueSymbolVal(R); if (T->isIntegerType()) return ValMgr.makeIntVal(0, T); if (T->isPointerType()) return ValMgr.makeNull(); return UnknownVal(); } return UndefinedVal(); } SVal RegionStoreManager::RetrieveLazySymbol(const TypedRegion *R) { QualType valTy = R->getValueType(getContext()); // All other values are symbolic. return ValMgr.getRegionValueSymbolVal(R); } SVal RegionStoreManager::RetrieveStruct(Store store, const TypedRegion* R) { QualType T = R->getValueType(getContext()); assert(T->isStructureType()); assert(T->getAsStructureType()->getDecl()->isDefinition()); return ValMgr.makeLazyCompoundVal(store, R); } SVal RegionStoreManager::RetrieveArray(Store store, const TypedRegion * R) { assert(isa(R->getValueType(getContext()))); return ValMgr.makeLazyCompoundVal(store, R); } //===----------------------------------------------------------------------===// // Binding values to regions. //===----------------------------------------------------------------------===// Store RegionStoreManager::Remove(Store store, Loc L) { if (isa(L)) if (const MemRegion* R = cast(L).getRegion()) return Remove(GetRegionBindings(store), R).getRoot(); return store; } Store RegionStoreManager::Bind(Store store, Loc L, SVal V) { if (isa(L)) return store; // If we get here, the location should be a region. const MemRegion *R = cast(L).getRegion(); // Check if the region is a struct region. if (const TypedRegion* TR = dyn_cast(R)) if (TR->getValueType(getContext())->isStructureType()) return BindStruct(store, TR, V); // Special case: the current region represents a cast and it and the super // region both have pointer types or intptr_t types. If so, perform the // bind to the super region. // This is needed to support OSAtomicCompareAndSwap and friends or other // loads that treat integers as pointers and vis versa. if (const ElementRegion *ER = dyn_cast(R)) { if (ER->getIndex().isZeroConstant()) { if (const TypedRegion *superR = dyn_cast(ER->getSuperRegion())) { ASTContext &Ctx = getContext(); QualType superTy = superR->getValueType(Ctx); QualType erTy = ER->getValueType(Ctx); if (IsAnyPointerOrIntptr(superTy, Ctx) && IsAnyPointerOrIntptr(erTy, Ctx)) { V = ValMgr.getSValuator().EvalCast(V, superTy, erTy); return Bind(store, loc::MemRegionVal(superR), V); } // For now, just invalidate the fields of the struct/union/class. // FIXME: Precisely handle the fields of the record. if (superTy->isRecordType()) return InvalidateRegion(store, superR, NULL, 0, NULL); } } } else if (const SymbolicRegion *SR = dyn_cast(R)) { // Binding directly to a symbolic region should be treated as binding // to element 0. QualType T = SR->getSymbol()->getType(getContext()); // FIXME: Is this the right way to handle symbols that are references? if (const PointerType *PT = T->getAs()) T = PT->getPointeeType(); else T = T->getAs()->getPointeeType(); R = GetElementZeroRegion(SR, T); } // Perform the binding. RegionBindings B = GetRegionBindings(store); return Add(B, R, BindingKey::Direct, V).getRoot(); } Store RegionStoreManager::BindDecl(Store store, const VarRegion *VR, SVal InitVal) { QualType T = VR->getDecl()->getType(); if (T->isArrayType()) return BindArray(store, VR, InitVal); if (T->isStructureType()) return BindStruct(store, VR, InitVal); return Bind(store, ValMgr.makeLoc(VR), InitVal); } // FIXME: this method should be merged into Bind(). Store RegionStoreManager::BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL, const LocationContext *LC, SVal V) { return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)), V); } Store RegionStoreManager::setImplicitDefaultValue(Store store, const MemRegion *R, QualType T) { RegionBindings B = GetRegionBindings(store); SVal V; if (Loc::IsLocType(T)) V = ValMgr.makeNull(); else if (T->isIntegerType()) V = ValMgr.makeZeroVal(T); else if (T->isStructureType() || T->isArrayType()) { // Set the default value to a zero constant when it is a structure // or array. The type doesn't really matter. V = ValMgr.makeZeroVal(ValMgr.getContext().IntTy); } else { return store; } return Add(B, R, BindingKey::Default, V).getRoot(); } Store RegionStoreManager::BindArray(Store store, const TypedRegion* R, SVal Init) { ASTContext &Ctx = getContext(); const ArrayType *AT = cast(Ctx.getCanonicalType(R->getValueType(Ctx))); QualType ElementTy = AT->getElementType(); Optional Size; if (const ConstantArrayType* CAT = dyn_cast(AT)) Size = CAT->getSize().getZExtValue(); // Check if the init expr is a StringLiteral. if (isa(Init)) { const MemRegion* InitR = cast(Init).getRegion(); const StringLiteral* S = cast(InitR)->getStringLiteral(); const char* str = S->getStrData(); unsigned len = S->getByteLength(); unsigned j = 0; // Copy bytes from the string literal into the target array. Trailing bytes // in the array that are not covered by the string literal are initialized // to zero. // We assume that string constants are bound to // constant arrays. uint64_t size = Size.getValue(); for (uint64_t i = 0; i < size; ++i, ++j) { if (j >= len) break; SVal Idx = ValMgr.makeArrayIndex(i); const ElementRegion* ER = MRMgr.getElementRegion(ElementTy, Idx, R, getContext()); SVal V = ValMgr.makeIntVal(str[j], sizeof(char)*8, true); store = Bind(store, loc::MemRegionVal(ER), V); } return store; } // Handle lazy compound values. if (nonloc::LazyCompoundVal *LCV = dyn_cast(&Init)) return CopyLazyBindings(*LCV, store, R); // Remaining case: explicit compound values. if (Init.isUnknown()) return setImplicitDefaultValue(store, R, ElementTy); nonloc::CompoundVal& CV = cast(Init); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); uint64_t i = 0; for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) { // The init list might be shorter than the array length. if (VI == VE) break; SVal Idx = ValMgr.makeArrayIndex(i); const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, getContext()); if (ElementTy->isStructureType()) store = BindStruct(store, ER, *VI); else store = Bind(store, ValMgr.makeLoc(ER), *VI); } // If the init list is shorter than the array length, set the // array default value. if (Size.hasValue() && i < Size.getValue()) store = setImplicitDefaultValue(store, R, ElementTy); return store; } Store RegionStoreManager::BindStruct(Store store, const TypedRegion* R, SVal V) { if (!Features.supportsFields()) return store; QualType T = R->getValueType(getContext()); assert(T->isStructureType()); const RecordType* RT = T->getAs(); RecordDecl* RD = RT->getDecl(); if (!RD->isDefinition()) return store; // Handle lazy compound values. if (const nonloc::LazyCompoundVal *LCV=dyn_cast(&V)) return CopyLazyBindings(*LCV, store, R); // We may get non-CompoundVal accidentally due to imprecise cast logic. // Ignore them and kill the field values. if (V.isUnknown() || !isa(V)) return KillStruct(store, R); nonloc::CompoundVal& CV = cast(V); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); RecordDecl::field_iterator FI, FE; for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI, ++VI) { if (VI == VE) break; QualType FTy = (*FI)->getType(); const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); if (FTy->isArrayType()) store = BindArray(store, FR, *VI); else if (FTy->isStructureType()) store = BindStruct(store, FR, *VI); else store = Bind(store, ValMgr.makeLoc(FR), *VI); } // There may be fewer values in the initialize list than the fields of struct. if (FI != FE) { RegionBindings B = GetRegionBindings(store); B = Add(B, R, BindingKey::Default, ValMgr.makeIntVal(0, false)); store = B.getRoot(); } return store; } Store RegionStoreManager::KillStruct(Store store, const TypedRegion* R) { RegionBindings B = GetRegionBindings(store); llvm::OwningPtr SubRegions(getRegionStoreSubRegionMap(store)); RemoveSubRegionBindings(B, R, *SubRegions); // Set the default value of the struct region to "unknown". return Add(B, R, BindingKey::Default, UnknownVal()).getRoot(); } Store RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V, Store store, const TypedRegion *R) { // Nuke the old bindings stemming from R. RegionBindings B = GetRegionBindings(store); llvm::OwningPtr SubRegions(getRegionStoreSubRegionMap(store)); // B and DVM are updated after the call to RemoveSubRegionBindings. RemoveSubRegionBindings(B, R, *SubRegions.get()); // Now copy the bindings. This amounts to just binding 'V' to 'R'. This // results in a zero-copy algorithm. return Add(B, R, BindingKey::Direct, V).getRoot(); } //===----------------------------------------------------------------------===// // "Raw" retrievals and bindings. //===----------------------------------------------------------------------===// BindingKey BindingKey::Make(const MemRegion *R, Kind k) { if (const ElementRegion *ER = dyn_cast(R)) { const RegionRawOffset &O = ER->getAsRawOffset(); if (O.getRegion()) return BindingKey(O.getRegion(), O.getByteOffset(), k); // FIXME: There are some ElementRegions for which we cannot compute // raw offsets yet, including regions with symbolic offsets. } return BindingKey(R, 0, k); } RegionBindings RegionStoreManager::Add(RegionBindings B, BindingKey K, SVal V) { return RBFactory.Add(B, K, V); } RegionBindings RegionStoreManager::Add(RegionBindings B, const MemRegion *R, BindingKey::Kind k, SVal V) { return Add(B, BindingKey::Make(R, k), V); } const SVal *RegionStoreManager::Lookup(RegionBindings B, BindingKey K) { return B.lookup(K); } const SVal *RegionStoreManager::Lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k) { return Lookup(B, BindingKey::Make(R, k)); } RegionBindings RegionStoreManager::Remove(RegionBindings B, BindingKey K) { return RBFactory.Remove(B, K); } RegionBindings RegionStoreManager::Remove(RegionBindings B, const MemRegion *R, BindingKey::Kind k){ return Remove(B, BindingKey::Make(R, k)); } Store RegionStoreManager::Remove(Store store, BindingKey K) { RegionBindings B = GetRegionBindings(store); return Remove(B, K).getRoot(); } //===----------------------------------------------------------------------===// // State pruning. //===----------------------------------------------------------------------===// namespace { class RemoveDeadBindingsWorker : public ClusterAnalysis { llvm::SmallVector Postponed; SymbolReaper &SymReaper; Stmt *Loc; public: RemoveDeadBindingsWorker(RegionStoreManager &rm, GRStateManager &stateMgr, RegionBindings b, SymbolReaper &symReaper, Stmt *loc) : ClusterAnalysis(rm, stateMgr, b), SymReaper(symReaper), Loc(loc) {} // Called by ClusterAnalysis. void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C); void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E); void VisitRegion(const MemRegion *baseR); bool UpdatePostponed(); void VisitBinding(SVal V); }; } void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) { if (const VarRegion *VR = dyn_cast(baseR)) { if (SymReaper.isLive(Loc, VR)) AddToWorkList(baseR, C); return; } if (const SymbolicRegion *SR = dyn_cast(baseR)) { if (SymReaper.isLive(SR->getSymbol())) AddToWorkList(SR, C); else Postponed.push_back(SR); return; } } void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) { for ( ; I != E; ++I) { const MemRegion *R = I->getRegion(); if (R != baseR) VisitRegion(R); } } void RemoveDeadBindingsWorker::VisitBinding(SVal V) { // Is it a LazyCompoundVal? All referenced regions are live as well. if (const nonloc::LazyCompoundVal *LCS = dyn_cast(&V)) { const MemRegion *LazyR = LCS->getRegion(); RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore()); for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ const MemRegion *baseR = RI.getKey().getRegion(); if (cast(baseR)->isSubRegionOf(LazyR)) VisitBinding(RI.getData()); } return; } // If V is a region, then add it to the worklist. if (const MemRegion *R = V.getAsRegion()) AddToWorkList(R); // Update the set of live symbols. for (SVal::symbol_iterator SI=V.symbol_begin(), SE=V.symbol_end(); SI!=SE;++SI) SymReaper.markLive(*SI); } void RemoveDeadBindingsWorker::VisitRegion(const MemRegion *R) { // Mark this region "live" by adding it to the worklist. This will cause // use to visit all regions in the cluster (if we haven't visited them // already). AddToWorkList(R); // Mark the symbol for any live SymbolicRegion as "live". This means we // should continue to track that symbol. if (const SymbolicRegion *SymR = dyn_cast(R)) SymReaper.markLive(SymR->getSymbol()); // For BlockDataRegions, enqueue the VarRegions for variables marked // with __block (passed-by-reference). // via BlockDeclRefExprs. if (const BlockDataRegion *BD = dyn_cast(R)) { for (BlockDataRegion::referenced_vars_iterator RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end(); RI != RE; ++RI) { if ((*RI)->getDecl()->getAttr()) AddToWorkList(*RI); } // No possible data bindings on a BlockDataRegion. return; } // Get the data binding for R (if any). if (Optional V = RM.getBinding(B, R)) VisitBinding(*V); } bool RemoveDeadBindingsWorker::UpdatePostponed() { // See if any postponed SymbolicRegions are actually live now, after // having done a scan. bool changed = false; for (llvm::SmallVectorImpl::iterator I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) { if (const SymbolicRegion *SR = cast_or_null(*I)) { if (SymReaper.isLive(SR->getSymbol())) { changed |= AddToWorkList(SR); *I = NULL; } } } return changed; } Store RegionStoreManager::RemoveDeadBindings(Store store, Stmt* Loc, SymbolReaper& SymReaper, llvm::SmallVectorImpl& RegionRoots) { RegionBindings B = GetRegionBindings(store); RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, Loc); W.GenerateClusters(); // Enqueue the region roots onto the worklist. for (llvm::SmallVectorImpl::iterator I=RegionRoots.begin(), E=RegionRoots.end(); I!=E; ++I) W.AddToWorkList(*I); do W.RunWorkList(); while (W.UpdatePostponed()); // We have now scanned the store, marking reachable regions and symbols // as live. We now remove all the regions that are dead from the store // as well as update DSymbols with the set symbols that are now dead. for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) { const BindingKey &K = I.getKey(); // If the cluster has been visited, we know the region has been marked. if (W.isVisited(K.getRegion())) continue; // Remove the dead entry. B = Remove(B, K); // Mark all non-live symbols that this binding references as dead. if (const SymbolicRegion* SymR = dyn_cast(K.getRegion())) SymReaper.maybeDead(SymR->getSymbol()); SVal X = I.getData(); SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end(); for (; SI != SE; ++SI) SymReaper.maybeDead(*SI); } return B.getRoot(); } GRState const *RegionStoreManager::EnterStackFrame(GRState const *state, StackFrameContext const *frame) { FunctionDecl const *FD = cast(frame->getDecl()); FunctionDecl::param_const_iterator PI = FD->param_begin(); Store store = state->getStore(); if (CallExpr const *CE = dyn_cast(frame->getCallSite())) { CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end(); // Copy the arg expression value to the arg variables. for (; AI != AE; ++AI, ++PI) { SVal ArgVal = state->getSVal(*AI); store = Bind(store, ValMgr.makeLoc(MRMgr.getVarRegion(*PI,frame)),ArgVal); } } else if (const CXXConstructExpr *CE = dyn_cast(frame->getCallSite())) { CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end(); // Copy the arg expression value to the arg variables. for (; AI != AE; ++AI, ++PI) { SVal ArgVal = state->getSVal(*AI); store = Bind(store, ValMgr.makeLoc(MRMgr.getVarRegion(*PI,frame)),ArgVal); } } else assert(0 && "Unhandled call expression."); return state->makeWithStore(store); } //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// void RegionStoreManager::print(Store store, llvm::raw_ostream& OS, const char* nl, const char *sep) { RegionBindings B = GetRegionBindings(store); OS << "Store (direct and default bindings):" << nl; for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) OS << ' ' << I.getKey() << " : " << I.getData() << nl; }