//=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a meta-engine for path-sensitive dataflow analysis that // is built on GREngine, but provides the boilerplate to execute transfer // functions and build the ExplodedGraph at the expression level. // //===----------------------------------------------------------------------===// #include "GRExprEngineInternalChecks.h" #include "clang/Checker/PathSensitive/GRExprEngine.h" #include "clang/Checker/PathSensitive/GRExprEngineBuilders.h" #include "clang/Checker/PathSensitive/Checker.h" #include "clang/AST/CharUnits.h" #include "clang/AST/ParentMap.h" #include "clang/AST/StmtObjC.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/PrettyStackTrace.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/ImmutableList.h" #ifndef NDEBUG #include "llvm/Support/GraphWriter.h" #endif using namespace clang; using llvm::dyn_cast; using llvm::dyn_cast_or_null; using llvm::cast; using llvm::APSInt; namespace { // Trait class for recording returned expression in the state. struct ReturnExpr { static int TagInt; typedef const Stmt *data_type; }; int ReturnExpr::TagInt; } //===----------------------------------------------------------------------===// // Utility functions. //===----------------------------------------------------------------------===// static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) { IdentifierInfo* II = &Ctx.Idents.get(name); return Ctx.Selectors.getSelector(0, &II); } static QualType GetCalleeReturnType(const CallExpr *CE) { const Expr *Callee = CE->getCallee(); QualType T = Callee->getType(); if (const PointerType *PT = T->getAs()) { const FunctionType *FT = PT->getPointeeType()->getAs(); T = FT->getResultType(); } else { const BlockPointerType *BT = T->getAs(); T = BT->getPointeeType()->getAs()->getResultType(); } return T; } static bool CalleeReturnsReference(const CallExpr *CE) { return (bool) GetCalleeReturnType(CE)->getAs(); } static bool ReceiverReturnsReference(const ObjCMessageExpr *ME) { const ObjCMethodDecl *MD = ME->getMethodDecl(); if (!MD) return false; return MD->getResultType()->getAs(); } #ifndef NDEBUG static bool ReceiverReturnsReferenceOrRecord(const ObjCMessageExpr *ME) { const ObjCMethodDecl *MD = ME->getMethodDecl(); if (!MD) return false; QualType T = MD->getResultType(); return T->getAs() || T->getAs(); } static bool CalleeReturnsReferenceOrRecord(const CallExpr *CE) { QualType T = GetCalleeReturnType(CE); return T->getAs() || T->getAs(); } #endif //===----------------------------------------------------------------------===// // Batch auditor. DEPRECATED. //===----------------------------------------------------------------------===// namespace { class MappedBatchAuditor : public GRSimpleAPICheck { typedef llvm::ImmutableList Checks; typedef llvm::DenseMap MapTy; MapTy M; Checks::Factory F; Checks AllStmts; public: MappedBatchAuditor(llvm::BumpPtrAllocator& Alloc) : F(Alloc), AllStmts(F.GetEmptyList()) {} virtual ~MappedBatchAuditor() { llvm::DenseSet AlreadyVisited; for (MapTy::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI) for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E;++I){ GRSimpleAPICheck* check = *I; if (AlreadyVisited.count(check)) continue; AlreadyVisited.insert(check); delete check; } } void AddCheck(GRSimpleAPICheck *A, Stmt::StmtClass C) { assert (A && "Check cannot be null."); void* key = reinterpret_cast((uintptr_t) C); MapTy::iterator I = M.find(key); M[key] = F.Concat(A, I == M.end() ? F.GetEmptyList() : I->second); } void AddCheck(GRSimpleAPICheck *A) { assert (A && "Check cannot be null."); AllStmts = F.Concat(A, AllStmts); } virtual bool Audit(ExplodedNode* N, GRStateManager& VMgr) { // First handle the auditors that accept all statements. bool isSink = false; for (Checks::iterator I = AllStmts.begin(), E = AllStmts.end(); I!=E; ++I) isSink |= (*I)->Audit(N, VMgr); // Next handle the auditors that accept only specific statements. const Stmt* S = cast(N->getLocation()).getStmt(); void* key = reinterpret_cast((uintptr_t) S->getStmtClass()); MapTy::iterator MI = M.find(key); if (MI != M.end()) { for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E; ++I) isSink |= (*I)->Audit(N, VMgr); } return isSink; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Checker worklist routines. //===----------------------------------------------------------------------===// void GRExprEngine::CheckerVisit(Stmt *S, ExplodedNodeSet &Dst, ExplodedNodeSet &Src, bool isPrevisit) { if (Checkers.empty()) { Dst.insert(Src); return; } ExplodedNodeSet Tmp; ExplodedNodeSet *PrevSet = &Src; for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E;++I){ ExplodedNodeSet *CurrSet = 0; if (I+1 == E) CurrSet = &Dst; else { CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp; CurrSet->clear(); } void *tag = I->first; Checker *checker = I->second; for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end(); NI != NE; ++NI) checker->GR_Visit(*CurrSet, *Builder, *this, S, *NI, tag, isPrevisit); PrevSet = CurrSet; } // Don't autotransition. The CheckerContext objects should do this // automatically. } void GRExprEngine::CheckerEvalNilReceiver(const ObjCMessageExpr *ME, ExplodedNodeSet &Dst, const GRState *state, ExplodedNode *Pred) { bool Evaluated = false; ExplodedNodeSet DstTmp; for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) { void *tag = I->first; Checker *checker = I->second; if (checker->GR_EvalNilReceiver(DstTmp, *Builder, *this, ME, Pred, state, tag)) { Evaluated = true; break; } else // The checker didn't evaluate the expr. Restore the Dst. DstTmp.clear(); } if (Evaluated) Dst.insert(DstTmp); else Dst.insert(Pred); } // CheckerEvalCall returns true if one of the checkers processed the node. // This may return void when all call evaluation logic goes to some checker // in the future. bool GRExprEngine::CheckerEvalCall(const CallExpr *CE, ExplodedNodeSet &Dst, ExplodedNode *Pred) { bool Evaluated = false; ExplodedNodeSet DstTmp; for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) { void *tag = I->first; Checker *checker = I->second; if (checker->GR_EvalCallExpr(DstTmp, *Builder, *this, CE, Pred, tag)) { Evaluated = true; break; } else // The checker didn't evaluate the expr. Restore the DstTmp set. DstTmp.clear(); } if (Evaluated) Dst.insert(DstTmp); else Dst.insert(Pred); return Evaluated; } // FIXME: This is largely copy-paste from CheckerVisit(). Need to // unify. void GRExprEngine::CheckerVisitBind(const Stmt *AssignE, const Stmt *StoreE, ExplodedNodeSet &Dst, ExplodedNodeSet &Src, SVal location, SVal val, bool isPrevisit) { if (Checkers.empty()) { Dst.insert(Src); return; } ExplodedNodeSet Tmp; ExplodedNodeSet *PrevSet = &Src; for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E; ++I) { ExplodedNodeSet *CurrSet = 0; if (I+1 == E) CurrSet = &Dst; else { CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp; CurrSet->clear(); } void *tag = I->first; Checker *checker = I->second; for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end(); NI != NE; ++NI) checker->GR_VisitBind(*CurrSet, *Builder, *this, AssignE, StoreE, *NI, tag, location, val, isPrevisit); // Update which NodeSet is the current one. PrevSet = CurrSet; } // Don't autotransition. The CheckerContext objects should do this // automatically. } //===----------------------------------------------------------------------===// // Engine construction and deletion. //===----------------------------------------------------------------------===// static void RegisterInternalChecks(GRExprEngine &Eng) { // Register internal "built-in" BugTypes with the BugReporter. These BugTypes // are different than what probably many checks will do since they don't // create BugReports on-the-fly but instead wait until GRExprEngine finishes // analyzing a function. Generation of BugReport objects is done via a call // to 'FlushReports' from BugReporter. // The following checks do not need to have their associated BugTypes // explicitly registered with the BugReporter. If they issue any BugReports, // their associated BugType will get registered with the BugReporter // automatically. Note that the check itself is owned by the GRExprEngine // object. RegisterAdjustedReturnValueChecker(Eng); RegisterAttrNonNullChecker(Eng); RegisterCallAndMessageChecker(Eng); RegisterDereferenceChecker(Eng); RegisterVLASizeChecker(Eng); RegisterDivZeroChecker(Eng); RegisterReturnStackAddressChecker(Eng); RegisterReturnUndefChecker(Eng); RegisterUndefinedArraySubscriptChecker(Eng); RegisterUndefinedAssignmentChecker(Eng); RegisterUndefBranchChecker(Eng); RegisterUndefCapturedBlockVarChecker(Eng); RegisterUndefResultChecker(Eng); // This is not a checker yet. RegisterNoReturnFunctionChecker(Eng); RegisterBuiltinFunctionChecker(Eng); RegisterOSAtomicChecker(Eng); RegisterUnixAPIChecker(Eng); RegisterMacOSXAPIChecker(Eng); } GRExprEngine::GRExprEngine(AnalysisManager &mgr, GRTransferFuncs *tf) : AMgr(mgr), CoreEngine(mgr.getASTContext(), *this), G(CoreEngine.getGraph()), Builder(NULL), StateMgr(G.getContext(), mgr.getStoreManagerCreator(), mgr.getConstraintManagerCreator(), G.getAllocator(), *this), SymMgr(StateMgr.getSymbolManager()), ValMgr(StateMgr.getValueManager()), SVator(ValMgr.getSValuator()), CurrentStmt(NULL), NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL), RaiseSel(GetNullarySelector("raise", G.getContext())), BR(mgr, *this), TF(tf) { // Register internal checks. RegisterInternalChecks(*this); // FIXME: Eventually remove the TF object entirely. TF->RegisterChecks(*this); TF->RegisterPrinters(getStateManager().Printers); } GRExprEngine::~GRExprEngine() { BR.FlushReports(); delete [] NSExceptionInstanceRaiseSelectors; for (CheckersOrdered::iterator I=Checkers.begin(), E=Checkers.end(); I!=E;++I) delete I->second; } //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// void GRExprEngine::AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C) { if (!BatchAuditor) BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator())); ((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A, C); } void GRExprEngine::AddCheck(GRSimpleAPICheck *A) { if (!BatchAuditor) BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator())); ((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A); } const GRState* GRExprEngine::getInitialState(const LocationContext *InitLoc) { const GRState *state = StateMgr.getInitialState(InitLoc); // Preconditions. // FIXME: It would be nice if we had a more general mechanism to add // such preconditions. Some day. do { const Decl *D = InitLoc->getDecl(); if (const FunctionDecl *FD = dyn_cast(D)) { // Precondition: the first argument of 'main' is an integer guaranteed // to be > 0. const IdentifierInfo *II = FD->getIdentifier(); if (!II || !(II->getName() == "main" && FD->getNumParams() > 0)) break; const ParmVarDecl *PD = FD->getParamDecl(0); QualType T = PD->getType(); if (!T->isIntegerType()) break; const MemRegion *R = state->getRegion(PD, InitLoc); if (!R) break; SVal V = state->getSVal(loc::MemRegionVal(R)); SVal Constraint_untested = EvalBinOp(state, BinaryOperator::GT, V, ValMgr.makeZeroVal(T), getContext().IntTy); DefinedOrUnknownSVal *Constraint = dyn_cast(&Constraint_untested); if (!Constraint) break; if (const GRState *newState = state->Assume(*Constraint, true)) state = newState; break; } if (const ObjCMethodDecl *MD = dyn_cast(D)) { // Precondition: 'self' is always non-null upon entry to an Objective-C // method. const ImplicitParamDecl *SelfD = MD->getSelfDecl(); const MemRegion *R = state->getRegion(SelfD, InitLoc); SVal V = state->getSVal(loc::MemRegionVal(R)); if (const Loc *LV = dyn_cast(&V)) { // Assume that the pointer value in 'self' is non-null. state = state->Assume(*LV, true); assert(state && "'self' cannot be null"); } } } while (0); return state; } //===----------------------------------------------------------------------===// // Top-level transfer function logic (Dispatcher). //===----------------------------------------------------------------------===// /// EvalAssume - Called by ConstraintManager. Used to call checker-specific /// logic for handling assumptions on symbolic values. const GRState *GRExprEngine::ProcessAssume(const GRState *state, SVal cond, bool assumption) { for (CheckersOrdered::iterator I = Checkers.begin(), E = Checkers.end(); I != E; ++I) { if (!state) return NULL; state = I->second->EvalAssume(state, cond, assumption); } if (!state) return NULL; return TF->EvalAssume(state, cond, assumption); } void GRExprEngine::ProcessStmt(CFGElement CE, GRStmtNodeBuilder& builder) { CurrentStmt = CE.getStmt(); PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), CurrentStmt->getLocStart(), "Error evaluating statement"); Builder = &builder; EntryNode = builder.getBasePredecessor(); // Set up our simple checks. if (BatchAuditor) Builder->setAuditor(BatchAuditor.get()); // Create the cleaned state. const ExplodedNode *BasePred = Builder->getBasePredecessor(); SymbolReaper SymReaper(BasePred->getLocationContext(), SymMgr); CleanedState = AMgr.shouldPurgeDead() ? StateMgr.RemoveDeadBindings(EntryNode->getState(), CurrentStmt, SymReaper) : EntryNode->getState(); // Process any special transfer function for dead symbols. ExplodedNodeSet Tmp; if (!SymReaper.hasDeadSymbols()) Tmp.Add(EntryNode); else { SaveAndRestore OldSink(Builder->BuildSinks); SaveOr OldHasGen(Builder->HasGeneratedNode); SaveAndRestore OldPurgeDeadSymbols(Builder->PurgingDeadSymbols); Builder->PurgingDeadSymbols = true; // FIXME: This should soon be removed. ExplodedNodeSet Tmp2; getTF().EvalDeadSymbols(Tmp2, *this, *Builder, EntryNode, CurrentStmt, CleanedState, SymReaper); if (Checkers.empty()) Tmp.insert(Tmp2); else { ExplodedNodeSet Tmp3; ExplodedNodeSet *SrcSet = &Tmp2; for (CheckersOrdered::iterator I = Checkers.begin(), E = Checkers.end(); I != E; ++I) { ExplodedNodeSet *DstSet = 0; if (I+1 == E) DstSet = &Tmp; else { DstSet = (SrcSet == &Tmp2) ? &Tmp3 : &Tmp2; DstSet->clear(); } void *tag = I->first; Checker *checker = I->second; for (ExplodedNodeSet::iterator NI = SrcSet->begin(), NE = SrcSet->end(); NI != NE; ++NI) checker->GR_EvalDeadSymbols(*DstSet, *Builder, *this, CurrentStmt, *NI, SymReaper, tag); SrcSet = DstSet; } } if (!Builder->BuildSinks && !Builder->HasGeneratedNode) Tmp.Add(EntryNode); } bool HasAutoGenerated = false; for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { ExplodedNodeSet Dst; // Set the cleaned state. Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I)); // Visit the statement. if (CE.asLValue()) VisitLValue(cast(CurrentStmt), *I, Dst); else Visit(CurrentStmt, *I, Dst); // Do we need to auto-generate a node? We only need to do this to generate // a node with a "cleaned" state; GRCoreEngine will actually handle // auto-transitions for other cases. if (Dst.size() == 1 && *Dst.begin() == EntryNode && !Builder->HasGeneratedNode && !HasAutoGenerated) { HasAutoGenerated = true; builder.generateNode(CurrentStmt, GetState(EntryNode), *I); } } // NULL out these variables to cleanup. CleanedState = NULL; EntryNode = NULL; CurrentStmt = 0; Builder = NULL; } void GRExprEngine::Visit(Stmt* S, ExplodedNode* Pred, ExplodedNodeSet& Dst) { PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), S->getLocStart(), "Error evaluating statement"); // FIXME: add metadata to the CFG so that we can disable // this check when we KNOW that there is no block-level subexpression. // The motivation is that this check requires a hashtable lookup. if (S != CurrentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(S)) { Dst.Add(Pred); return; } switch (S->getStmtClass()) { // C++ stuff we don't support yet. case Stmt::CXXMemberCallExprClass: case Stmt::CXXNamedCastExprClass: case Stmt::CXXStaticCastExprClass: case Stmt::CXXDynamicCastExprClass: case Stmt::CXXReinterpretCastExprClass: case Stmt::CXXConstCastExprClass: case Stmt::CXXFunctionalCastExprClass: case Stmt::CXXTypeidExprClass: case Stmt::CXXBoolLiteralExprClass: case Stmt::CXXNullPtrLiteralExprClass: case Stmt::CXXThrowExprClass: case Stmt::CXXDefaultArgExprClass: case Stmt::CXXZeroInitValueExprClass: case Stmt::CXXNewExprClass: case Stmt::CXXDeleteExprClass: case Stmt::CXXPseudoDestructorExprClass: case Stmt::UnresolvedLookupExprClass: case Stmt::UnaryTypeTraitExprClass: case Stmt::DependentScopeDeclRefExprClass: case Stmt::CXXConstructExprClass: case Stmt::CXXBindTemporaryExprClass: case Stmt::CXXExprWithTemporariesClass: case Stmt::CXXTemporaryObjectExprClass: case Stmt::CXXUnresolvedConstructExprClass: case Stmt::CXXDependentScopeMemberExprClass: case Stmt::UnresolvedMemberExprClass: case Stmt::CXXCatchStmtClass: case Stmt::CXXTryStmtClass: { SaveAndRestore OldSink(Builder->BuildSinks); Builder->BuildSinks = true; MakeNode(Dst, S, Pred, GetState(Pred)); break; } default: // Cases we intentionally have "default" handle: // AddrLabelExpr, IntegerLiteral, CharacterLiteral Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. break; case Stmt::ArraySubscriptExprClass: VisitArraySubscriptExpr(cast(S), Pred, Dst, false); break; case Stmt::AsmStmtClass: VisitAsmStmt(cast(S), Pred, Dst); break; case Stmt::BlockDeclRefExprClass: VisitBlockDeclRefExpr(cast(S), Pred, Dst, false); break; case Stmt::BlockExprClass: VisitBlockExpr(cast(S), Pred, Dst); break; case Stmt::BinaryOperatorClass: { BinaryOperator* B = cast(S); if (B->isLogicalOp()) { VisitLogicalExpr(B, Pred, Dst); break; } else if (B->getOpcode() == BinaryOperator::Comma) { const GRState* state = GetState(Pred); MakeNode(Dst, B, Pred, state->BindExpr(B, state->getSVal(B->getRHS()))); break; } if (AMgr.shouldEagerlyAssume() && (B->isRelationalOp() || B->isEqualityOp())) { ExplodedNodeSet Tmp; VisitBinaryOperator(cast(S), Pred, Tmp, false); EvalEagerlyAssume(Dst, Tmp, cast(S)); } else VisitBinaryOperator(cast(S), Pred, Dst, false); break; } case Stmt::CallExprClass: case Stmt::CXXOperatorCallExprClass: { CallExpr* C = cast(S); VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst, false); break; } // FIXME: ChooseExpr is really a constant. We need to fix // the CFG do not model them as explicit control-flow. case Stmt::ChooseExprClass: { // __builtin_choose_expr ChooseExpr* C = cast(S); VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); break; } case Stmt::CompoundAssignOperatorClass: VisitBinaryOperator(cast(S), Pred, Dst, false); break; case Stmt::CompoundLiteralExprClass: VisitCompoundLiteralExpr(cast(S), Pred, Dst, false); break; case Stmt::ConditionalOperatorClass: { // '?' operator ConditionalOperator* C = cast(S); VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); break; } case Stmt::CXXThisExprClass: VisitCXXThisExpr(cast(S), Pred, Dst); break; case Stmt::DeclRefExprClass: VisitDeclRefExpr(cast(S), Pred, Dst, false); break; case Stmt::DeclStmtClass: VisitDeclStmt(cast(S), Pred, Dst); break; case Stmt::ForStmtClass: // This case isn't for branch processing, but for handling the // initialization of a condition variable. VisitCondInit(cast(S)->getConditionVariable(), S, Pred, Dst); break; case Stmt::ImplicitCastExprClass: case Stmt::CStyleCastExprClass: { CastExpr* C = cast(S); VisitCast(C, C->getSubExpr(), Pred, Dst, false); break; } case Stmt::IfStmtClass: // This case isn't for branch processing, but for handling the // initialization of a condition variable. VisitCondInit(cast(S)->getConditionVariable(), S, Pred, Dst); break; case Stmt::InitListExprClass: VisitInitListExpr(cast(S), Pred, Dst); break; case Stmt::MemberExprClass: VisitMemberExpr(cast(S), Pred, Dst, false); break; case Stmt::ObjCIvarRefExprClass: VisitObjCIvarRefExpr(cast(S), Pred, Dst, false); break; case Stmt::ObjCForCollectionStmtClass: VisitObjCForCollectionStmt(cast(S), Pred, Dst); break; case Stmt::ObjCMessageExprClass: VisitObjCMessageExpr(cast(S), Pred, Dst, false); break; case Stmt::ObjCAtThrowStmtClass: { // FIXME: This is not complete. We basically treat @throw as // an abort. SaveAndRestore OldSink(Builder->BuildSinks); Builder->BuildSinks = true; MakeNode(Dst, S, Pred, GetState(Pred)); break; } case Stmt::ParenExprClass: Visit(cast(S)->getSubExpr()->IgnoreParens(), Pred, Dst); break; case Stmt::ReturnStmtClass: VisitReturnStmt(cast(S), Pred, Dst); break; case Stmt::SizeOfAlignOfExprClass: VisitSizeOfAlignOfExpr(cast(S), Pred, Dst); break; case Stmt::StmtExprClass: { StmtExpr* SE = cast(S); if (SE->getSubStmt()->body_empty()) { // Empty statement expression. assert(SE->getType() == getContext().VoidTy && "Empty statement expression must have void type."); Dst.Add(Pred); break; } if (Expr* LastExpr = dyn_cast(*SE->getSubStmt()->body_rbegin())) { const GRState* state = GetState(Pred); MakeNode(Dst, SE, Pred, state->BindExpr(SE, state->getSVal(LastExpr))); } else Dst.Add(Pred); break; } case Stmt::StringLiteralClass: VisitLValue(cast(S), Pred, Dst); break; case Stmt::SwitchStmtClass: // This case isn't for branch processing, but for handling the // initialization of a condition variable. VisitCondInit(cast(S)->getConditionVariable(), S, Pred, Dst); break; case Stmt::UnaryOperatorClass: { UnaryOperator *U = cast(S); if (AMgr.shouldEagerlyAssume()&&(U->getOpcode() == UnaryOperator::LNot)) { ExplodedNodeSet Tmp; VisitUnaryOperator(U, Pred, Tmp, false); EvalEagerlyAssume(Dst, Tmp, U); } else VisitUnaryOperator(U, Pred, Dst, false); break; } case Stmt::WhileStmtClass: // This case isn't for branch processing, but for handling the // initialization of a condition variable. VisitCondInit(cast(S)->getConditionVariable(), S, Pred, Dst); break; } } void GRExprEngine::VisitLValue(Expr* Ex, ExplodedNode* Pred, ExplodedNodeSet& Dst) { PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), Ex->getLocStart(), "Error evaluating statement"); Ex = Ex->IgnoreParens(); if (Ex != CurrentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(Ex)){ Dst.Add(Pred); return; } switch (Ex->getStmtClass()) { // C++ stuff we don't support yet. case Stmt::CXXExprWithTemporariesClass: case Stmt::CXXMemberCallExprClass: case Stmt::CXXZeroInitValueExprClass: { SaveAndRestore OldSink(Builder->BuildSinks); Builder->BuildSinks = true; MakeNode(Dst, Ex, Pred, GetState(Pred)); break; } case Stmt::ArraySubscriptExprClass: VisitArraySubscriptExpr(cast(Ex), Pred, Dst, true); return; case Stmt::BinaryOperatorClass: case Stmt::CompoundAssignOperatorClass: VisitBinaryOperator(cast(Ex), Pred, Dst, true); return; case Stmt::BlockDeclRefExprClass: VisitBlockDeclRefExpr(cast(Ex), Pred, Dst, true); return; case Stmt::CallExprClass: case Stmt::CXXOperatorCallExprClass: { CallExpr *C = cast(Ex); assert(CalleeReturnsReferenceOrRecord(C)); VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst, true); break; } case Stmt::CompoundLiteralExprClass: VisitCompoundLiteralExpr(cast(Ex), Pred, Dst, true); return; case Stmt::DeclRefExprClass: VisitDeclRefExpr(cast(Ex), Pred, Dst, true); return; case Stmt::ImplicitCastExprClass: case Stmt::CStyleCastExprClass: { CastExpr *C = cast(Ex); QualType T = Ex->getType(); VisitCast(C, C->getSubExpr(), Pred, Dst, true); break; } case Stmt::MemberExprClass: VisitMemberExpr(cast(Ex), Pred, Dst, true); return; case Stmt::ObjCIvarRefExprClass: VisitObjCIvarRefExpr(cast(Ex), Pred, Dst, true); return; case Stmt::ObjCMessageExprClass: { ObjCMessageExpr *ME = cast(Ex); assert(ReceiverReturnsReferenceOrRecord(ME)); VisitObjCMessageExpr(ME, Pred, Dst, true); return; } case Stmt::ObjCPropertyRefExprClass: case Stmt::ObjCImplicitSetterGetterRefExprClass: // FIXME: Property assignments are lvalues, but not really "locations". // e.g.: self.x = something; // Here the "self.x" really can translate to a method call (setter) when // the assignment is made. Moreover, the entire assignment expression // evaluate to whatever "something" is, not calling the "getter" for // the property (which would make sense since it can have side effects). // We'll probably treat this as a location, but not one that we can // take the address of. Perhaps we need a new SVal class for cases // like thsis? // Note that we have a similar problem for bitfields, since they don't // have "locations" in the sense that we can take their address. Dst.Add(Pred); return; case Stmt::StringLiteralClass: { const GRState* state = GetState(Pred); SVal V = state->getLValue(cast(Ex)); MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V)); return; } case Stmt::UnaryOperatorClass: VisitUnaryOperator(cast(Ex), Pred, Dst, true); return; // In C++, binding an rvalue to a reference requires to create an object. case Stmt::IntegerLiteralClass: CreateCXXTemporaryObject(Ex, Pred, Dst); return; default: // Arbitrary subexpressions can return aggregate temporaries that // can be used in a lvalue context. We need to enhance our support // of such temporaries in both the environment and the store, so right // now we just do a regular visit. assert ((Ex->getType()->isAggregateType()) && "Other kinds of expressions with non-aggregate/union types do" " not have lvalues."); Visit(Ex, Pred, Dst); } } //===----------------------------------------------------------------------===// // Block entrance. (Update counters). //===----------------------------------------------------------------------===// bool GRExprEngine::ProcessBlockEntrance(CFGBlock* B, const GRState*, GRBlockCounter BC) { return BC.getNumVisited(B->getBlockID()) < 3; } //===----------------------------------------------------------------------===// // Generic node creation. //===----------------------------------------------------------------------===// ExplodedNode* GRExprEngine::MakeNode(ExplodedNodeSet& Dst, Stmt* S, ExplodedNode* Pred, const GRState* St, ProgramPoint::Kind K, const void *tag) { assert (Builder && "GRStmtNodeBuilder not present."); SaveAndRestore OldTag(Builder->Tag); Builder->Tag = tag; return Builder->MakeNode(Dst, S, Pred, St, K); } //===----------------------------------------------------------------------===// // Branch processing. //===----------------------------------------------------------------------===// const GRState* GRExprEngine::MarkBranch(const GRState* state, Stmt* Terminator, bool branchTaken) { switch (Terminator->getStmtClass()) { default: return state; case Stmt::BinaryOperatorClass: { // '&&' and '||' BinaryOperator* B = cast(Terminator); BinaryOperator::Opcode Op = B->getOpcode(); assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr); // For &&, if we take the true branch, then the value of the whole // expression is that of the RHS expression. // // For ||, if we take the false branch, then the value of the whole // expression is that of the RHS expression. Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) || (Op == BinaryOperator::LOr && !branchTaken) ? B->getRHS() : B->getLHS(); return state->BindExpr(B, UndefinedVal(Ex)); } case Stmt::ConditionalOperatorClass: { // ?: ConditionalOperator* C = cast(Terminator); // For ?, if branchTaken == true then the value is either the LHS or // the condition itself. (GNU extension). Expr* Ex; if (branchTaken) Ex = C->getLHS() ? C->getLHS() : C->getCond(); else Ex = C->getRHS(); return state->BindExpr(C, UndefinedVal(Ex)); } case Stmt::ChooseExprClass: { // ?: ChooseExpr* C = cast(Terminator); Expr* Ex = branchTaken ? C->getLHS() : C->getRHS(); return state->BindExpr(C, UndefinedVal(Ex)); } } } /// RecoverCastedSymbol - A helper function for ProcessBranch that is used /// to try to recover some path-sensitivity for casts of symbolic /// integers that promote their values (which are currently not tracked well). /// This function returns the SVal bound to Condition->IgnoreCasts if all the // cast(s) did was sign-extend the original value. static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state, Stmt* Condition, ASTContext& Ctx) { Expr *Ex = dyn_cast(Condition); if (!Ex) return UnknownVal(); uint64_t bits = 0; bool bitsInit = false; while (CastExpr *CE = dyn_cast(Ex)) { QualType T = CE->getType(); if (!T->isIntegerType()) return UnknownVal(); uint64_t newBits = Ctx.getTypeSize(T); if (!bitsInit || newBits < bits) { bitsInit = true; bits = newBits; } Ex = CE->getSubExpr(); } // We reached a non-cast. Is it a symbolic value? QualType T = Ex->getType(); if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits) return UnknownVal(); return state->getSVal(Ex); } void GRExprEngine::ProcessBranch(Stmt* Condition, Stmt* Term, GRBranchNodeBuilder& builder) { // Check for NULL conditions; e.g. "for(;;)" if (!Condition) { builder.markInfeasible(false); return; } PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), Condition->getLocStart(), "Error evaluating branch"); for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) { void *tag = I->first; Checker *checker = I->second; checker->VisitBranchCondition(builder, *this, Condition, tag); } // If the branch condition is undefined, return; if (!builder.isFeasible(true) && !builder.isFeasible(false)) return; const GRState* PrevState = builder.getState(); SVal X = PrevState->getSVal(Condition); if (X.isUnknown()) { // Give it a chance to recover from unknown. if (const Expr *Ex = dyn_cast(Condition)) { if (Ex->getType()->isIntegerType()) { // Try to recover some path-sensitivity. Right now casts of symbolic // integers that promote their values are currently not tracked well. // If 'Condition' is such an expression, try and recover the // underlying value and use that instead. SVal recovered = RecoverCastedSymbol(getStateManager(), builder.getState(), Condition, getContext()); if (!recovered.isUnknown()) { X = recovered; } } } // If the condition is still unknown, give up. if (X.isUnknown()) { builder.generateNode(MarkBranch(PrevState, Term, true), true); builder.generateNode(MarkBranch(PrevState, Term, false), false); return; } } DefinedSVal V = cast(X); // Process the true branch. if (builder.isFeasible(true)) { if (const GRState *state = PrevState->Assume(V, true)) builder.generateNode(MarkBranch(state, Term, true), true); else builder.markInfeasible(true); } // Process the false branch. if (builder.isFeasible(false)) { if (const GRState *state = PrevState->Assume(V, false)) builder.generateNode(MarkBranch(state, Term, false), false); else builder.markInfeasible(false); } } /// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a computed goto jump. void GRExprEngine::ProcessIndirectGoto(GRIndirectGotoNodeBuilder& builder) { const GRState *state = builder.getState(); SVal V = state->getSVal(builder.getTarget()); // Three possibilities: // // (1) We know the computed label. // (2) The label is NULL (or some other constant), or Undefined. // (3) We have no clue about the label. Dispatch to all targets. // typedef GRIndirectGotoNodeBuilder::iterator iterator; if (isa(V)) { LabelStmt* L = cast(V).getLabel(); for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) { if (I.getLabel() == L) { builder.generateNode(I, state); return; } } assert (false && "No block with label."); return; } if (isa(V) || isa(V)) { // Dispatch to the first target and mark it as a sink. //ExplodedNode* N = builder.generateNode(builder.begin(), state, true); // FIXME: add checker visit. // UndefBranches.insert(N); return; } // This is really a catch-all. We don't support symbolics yet. // FIXME: Implement dispatch for symbolic pointers. for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) builder.generateNode(I, state); } void GRExprEngine::VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R, ExplodedNode* Pred, ExplodedNodeSet& Dst) { assert(Ex == CurrentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(Ex)); const GRState* state = GetState(Pred); SVal X = state->getSVal(Ex); assert (X.isUndef()); Expr *SE = (Expr*) cast(X).getData(); assert(SE); X = state->getSVal(SE); // Make sure that we invalidate the previous binding. MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, X, true)); } /// ProcessEndPath - Called by GRCoreEngine. Used to generate end-of-path /// nodes when the control reaches the end of a function. void GRExprEngine::ProcessEndPath(GREndPathNodeBuilder& builder) { getTF().EvalEndPath(*this, builder); StateMgr.EndPath(builder.getState()); for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E;++I){ void *tag = I->first; Checker *checker = I->second; checker->EvalEndPath(builder, tag, *this); } } /// ProcessSwitch - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a switch statement. void GRExprEngine::ProcessSwitch(GRSwitchNodeBuilder& builder) { typedef GRSwitchNodeBuilder::iterator iterator; const GRState* state = builder.getState(); Expr* CondE = builder.getCondition(); SVal CondV_untested = state->getSVal(CondE); if (CondV_untested.isUndef()) { //ExplodedNode* N = builder.generateDefaultCaseNode(state, true); // FIXME: add checker //UndefBranches.insert(N); return; } DefinedOrUnknownSVal CondV = cast(CondV_untested); const GRState *DefaultSt = state; bool defaultIsFeasible = false; for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) { CaseStmt* Case = cast(I.getCase()); // Evaluate the LHS of the case value. Expr::EvalResult V1; bool b = Case->getLHS()->Evaluate(V1, getContext()); // Sanity checks. These go away in Release builds. assert(b && V1.Val.isInt() && !V1.HasSideEffects && "Case condition must evaluate to an integer constant."); b = b; // silence unused variable warning assert(V1.Val.getInt().getBitWidth() == getContext().getTypeSize(CondE->getType())); // Get the RHS of the case, if it exists. Expr::EvalResult V2; if (Expr* E = Case->getRHS()) { b = E->Evaluate(V2, getContext()); assert(b && V2.Val.isInt() && !V2.HasSideEffects && "Case condition must evaluate to an integer constant."); b = b; // silence unused variable warning } else V2 = V1; // FIXME: Eventually we should replace the logic below with a range // comparison, rather than concretize the values within the range. // This should be easy once we have "ranges" for NonLVals. do { nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt())); DefinedOrUnknownSVal Res = SVator.EvalEQ(DefaultSt ? DefaultSt : state, CondV, CaseVal); // Now "assume" that the case matches. if (const GRState* stateNew = state->Assume(Res, true)) { builder.generateCaseStmtNode(I, stateNew); // If CondV evaluates to a constant, then we know that this // is the *only* case that we can take, so stop evaluating the // others. if (isa(CondV)) return; } // Now "assume" that the case doesn't match. Add this state // to the default state (if it is feasible). if (DefaultSt) { if (const GRState *stateNew = DefaultSt->Assume(Res, false)) { defaultIsFeasible = true; DefaultSt = stateNew; } else { defaultIsFeasible = false; DefaultSt = NULL; } } // Concretize the next value in the range. if (V1.Val.getInt() == V2.Val.getInt()) break; ++V1.Val.getInt(); assert (V1.Val.getInt() <= V2.Val.getInt()); } while (true); } // If we reach here, than we know that the default branch is // possible. if (defaultIsFeasible) builder.generateDefaultCaseNode(DefaultSt); } void GRExprEngine::ProcessCallEnter(GRCallEnterNodeBuilder &B) { const FunctionDecl *FD = B.getCallee(); const StackFrameContext *LocCtx = AMgr.getStackFrame(FD, B.getLocationContext(), B.getCallExpr(), B.getBlock(), B.getIndex()); const GRState *state = B.getState(); state = getStoreManager().EnterStackFrame(state, LocCtx); B.GenerateNode(state, LocCtx); } void GRExprEngine::ProcessCallExit(GRCallExitNodeBuilder &B) { const GRState *state = B.getState(); const ExplodedNode *Pred = B.getPredecessor(); const StackFrameContext *LocCtx = cast(Pred->getLocationContext()); const Stmt *CE = LocCtx->getCallSite(); // If the callee returns an expression, bind its value to CallExpr. const Stmt *ReturnedExpr = state->get(); if (ReturnedExpr) { SVal RetVal = state->getSVal(ReturnedExpr); state = state->BindExpr(CE, RetVal); } B.GenerateNode(state); } //===----------------------------------------------------------------------===// // Transfer functions: logical operations ('&&', '||'). //===----------------------------------------------------------------------===// void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, ExplodedNode* Pred, ExplodedNodeSet& Dst) { assert(B->getOpcode() == BinaryOperator::LAnd || B->getOpcode() == BinaryOperator::LOr); assert(B==CurrentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(B)); const GRState* state = GetState(Pred); SVal X = state->getSVal(B); assert(X.isUndef()); const Expr *Ex = (const Expr*) cast(X).getData(); assert(Ex); if (Ex == B->getRHS()) { X = state->getSVal(Ex); // Handle undefined values. if (X.isUndef()) { MakeNode(Dst, B, Pred, state->BindExpr(B, X)); return; } DefinedOrUnknownSVal XD = cast(X); // We took the RHS. Because the value of the '&&' or '||' expression must // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0 // or 1. Alternatively, we could take a lazy approach, and calculate this // value later when necessary. We don't have the machinery in place for // this right now, and since most logical expressions are used for branches, // the payoff is not likely to be large. Instead, we do eager evaluation. if (const GRState *newState = state->Assume(XD, true)) MakeNode(Dst, B, Pred, newState->BindExpr(B, ValMgr.makeIntVal(1U, B->getType()))); if (const GRState *newState = state->Assume(XD, false)) MakeNode(Dst, B, Pred, newState->BindExpr(B, ValMgr.makeIntVal(0U, B->getType()))); } else { // We took the LHS expression. Depending on whether we are '&&' or // '||' we know what the value of the expression is via properties of // the short-circuiting. X = ValMgr.makeIntVal(B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U, B->getType()); MakeNode(Dst, B, Pred, state->BindExpr(B, X)); } } //===----------------------------------------------------------------------===// // Transfer functions: Loads and stores. //===----------------------------------------------------------------------===// void GRExprEngine::VisitBlockExpr(BlockExpr *BE, ExplodedNode *Pred, ExplodedNodeSet &Dst) { ExplodedNodeSet Tmp; CanQualType T = getContext().getCanonicalType(BE->getType()); SVal V = ValMgr.getBlockPointer(BE->getBlockDecl(), T, Pred->getLocationContext()); MakeNode(Tmp, BE, Pred, GetState(Pred)->BindExpr(BE, V), ProgramPoint::PostLValueKind); // Post-visit the BlockExpr. CheckerVisit(BE, Dst, Tmp, false); } void GRExprEngine::VisitDeclRefExpr(DeclRefExpr *Ex, ExplodedNode *Pred, ExplodedNodeSet &Dst, bool asLValue) { VisitCommonDeclRefExpr(Ex, Ex->getDecl(), Pred, Dst, asLValue); } void GRExprEngine::VisitBlockDeclRefExpr(BlockDeclRefExpr *Ex, ExplodedNode *Pred, ExplodedNodeSet &Dst, bool asLValue) { VisitCommonDeclRefExpr(Ex, Ex->getDecl(), Pred, Dst, asLValue); } void GRExprEngine::VisitCommonDeclRefExpr(Expr *Ex, const NamedDecl *D, ExplodedNode *Pred, ExplodedNodeSet &Dst, bool asLValue) { const GRState *state = GetState(Pred); if (const VarDecl* VD = dyn_cast(D)) { SVal V = state->getLValue(VD, Pred->getLocationContext()); if (asLValue) { // For references, the 'lvalue' is the pointer address stored in the // reference region. if (VD->getType()->isReferenceType()) { if (const MemRegion *R = V.getAsRegion()) V = state->getSVal(R); else V = UnknownVal(); } MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), ProgramPoint::PostLValueKind); } else EvalLoad(Dst, Ex, Pred, state, V); return; } else if (const EnumConstantDecl* ED = dyn_cast(D)) { assert(!asLValue && "EnumConstantDecl does not have lvalue."); SVal V = ValMgr.makeIntVal(ED->getInitVal()); MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V)); return; } else if (const FunctionDecl* FD = dyn_cast(D)) { // This code is valid regardless of the value of 'isLValue'. SVal V = ValMgr.getFunctionPointer(FD); MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), ProgramPoint::PostLValueKind); return; } assert (false && "ValueDecl support for this ValueDecl not implemented."); } /// VisitArraySubscriptExpr - Transfer function for array accesses void GRExprEngine::VisitArraySubscriptExpr(ArraySubscriptExpr* A, ExplodedNode* Pred, ExplodedNodeSet& Dst, bool asLValue){ Expr* Base = A->getBase()->IgnoreParens(); Expr* Idx = A->getIdx()->IgnoreParens(); ExplodedNodeSet Tmp; if (Base->getType()->isVectorType()) { // For vector types get its lvalue. // FIXME: This may not be correct. Is the rvalue of a vector its location? // In fact, I think this is just a hack. We need to get the right // semantics. VisitLValue(Base, Pred, Tmp); } else Visit(Base, Pred, Tmp); // Get Base's rvalue, which should be an LocVal. for (ExplodedNodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) { ExplodedNodeSet Tmp2; Visit(Idx, *I1, Tmp2); // Evaluate the index. ExplodedNodeSet Tmp3; CheckerVisit(A, Tmp3, Tmp2, true); for (ExplodedNodeSet::iterator I2=Tmp3.begin(),E2=Tmp3.end();I2!=E2; ++I2) { const GRState* state = GetState(*I2); SVal V = state->getLValue(A->getType(), state->getSVal(Idx), state->getSVal(Base)); if (asLValue) MakeNode(Dst, A, *I2, state->BindExpr(A, V), ProgramPoint::PostLValueKind); else EvalLoad(Dst, A, *I2, state, V); } } } /// VisitMemberExpr - Transfer function for member expressions. void GRExprEngine::VisitMemberExpr(MemberExpr* M, ExplodedNode* Pred, ExplodedNodeSet& Dst, bool asLValue) { Expr* Base = M->getBase()->IgnoreParens(); ExplodedNodeSet Tmp; if (M->isArrow()) Visit(Base, Pred, Tmp); // p->f = ... or ... = p->f else VisitLValue(Base, Pred, Tmp); // x.f = ... or ... = x.f FieldDecl *Field = dyn_cast(M->getMemberDecl()); if (!Field) // FIXME: skipping member expressions for non-fields return; for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) { const GRState* state = GetState(*I); // FIXME: Should we insert some assumption logic in here to determine // if "Base" is a valid piece of memory? Before we put this assumption // later when using FieldOffset lvals (which we no longer have). SVal L = state->getLValue(Field, state->getSVal(Base)); if (asLValue) MakeNode(Dst, M, *I, state->BindExpr(M, L), ProgramPoint::PostLValueKind); else EvalLoad(Dst, M, *I, state, L); } } /// EvalBind - Handle the semantics of binding a value to a specific location. /// This method is used by EvalStore and (soon) VisitDeclStmt, and others. void GRExprEngine::EvalBind(ExplodedNodeSet& Dst, Stmt *AssignE, Stmt* StoreE, ExplodedNode* Pred, const GRState* state, SVal location, SVal Val, bool atDeclInit) { // Do a previsit of the bind. ExplodedNodeSet CheckedSet, Src; Src.Add(Pred); CheckerVisitBind(AssignE, StoreE, CheckedSet, Src, location, Val, true); for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); I!=E; ++I) { if (Pred != *I) state = GetState(*I); const GRState* newState = 0; if (atDeclInit) { const VarRegion *VR = cast(cast(location).getRegion()); newState = state->bindDecl(VR, Val); } else { if (location.isUnknown()) { // We know that the new state will be the same as the old state since // the location of the binding is "unknown". Consequently, there // is no reason to just create a new node. newState = state; } else { // We are binding to a value other than 'unknown'. Perform the binding // using the StoreManager. newState = state->bindLoc(cast(location), Val); } } // The next thing to do is check if the GRTransferFuncs object wants to // update the state based on the new binding. If the GRTransferFunc object // doesn't do anything, just auto-propagate the current state. GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, newState, StoreE, newState != state); getTF().EvalBind(BuilderRef, location, Val); } } /// EvalStore - Handle the semantics of a store via an assignment. /// @param Dst The node set to store generated state nodes /// @param Ex The expression representing the location of the store /// @param state The current simulation state /// @param location The location to store the value /// @param Val The value to be stored void GRExprEngine::EvalStore(ExplodedNodeSet& Dst, Expr *AssignE, Expr* StoreE, ExplodedNode* Pred, const GRState* state, SVal location, SVal Val, const void *tag) { assert(Builder && "GRStmtNodeBuilder must be defined."); // Evaluate the location (checks for bad dereferences). ExplodedNodeSet Tmp; EvalLocation(Tmp, StoreE, Pred, state, location, tag, false); if (Tmp.empty()) return; assert(!location.isUndef()); SaveAndRestore OldSPointKind(Builder->PointKind, ProgramPoint::PostStoreKind); SaveAndRestore OldTag(Builder->Tag, tag); // Proceed with the store. for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) EvalBind(Dst, AssignE, StoreE, *NI, GetState(*NI), location, Val); } void GRExprEngine::EvalLoad(ExplodedNodeSet& Dst, Expr *Ex, ExplodedNode* Pred, const GRState* state, SVal location, const void *tag, QualType LoadTy) { // Are we loading from a region? This actually results in two loads; one // to fetch the address of the referenced value and one to fetch the // referenced value. if (const TypedRegion *TR = dyn_cast_or_null(location.getAsRegion())) { QualType ValTy = TR->getValueType(getContext()); if (const ReferenceType *RT = ValTy->getAs()) { static int loadReferenceTag = 0; ExplodedNodeSet Tmp; EvalLoadCommon(Tmp, Ex, Pred, state, location, &loadReferenceTag, getContext().getPointerType(RT->getPointeeType())); // Perform the load from the referenced value. for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) { state = GetState(*I); location = state->getSVal(Ex); EvalLoadCommon(Dst, Ex, *I, state, location, tag, LoadTy); } return; } } EvalLoadCommon(Dst, Ex, Pred, state, location, tag, LoadTy); } void GRExprEngine::EvalLoadCommon(ExplodedNodeSet& Dst, Expr *Ex, ExplodedNode* Pred, const GRState* state, SVal location, const void *tag, QualType LoadTy) { // Evaluate the location (checks for bad dereferences). ExplodedNodeSet Tmp; EvalLocation(Tmp, Ex, Pred, state, location, tag, true); if (Tmp.empty()) return; assert(!location.isUndef()); SaveAndRestore OldSPointKind(Builder->PointKind); SaveAndRestore OldTag(Builder->Tag); // Proceed with the load. for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { state = GetState(*NI); if (location.isUnknown()) { // This is important. We must nuke the old binding. MakeNode(Dst, Ex, *NI, state->BindExpr(Ex, UnknownVal()), ProgramPoint::PostLoadKind, tag); } else { SVal V = state->getSVal(cast(location), LoadTy.isNull() ? Ex->getType() : LoadTy); MakeNode(Dst, Ex, *NI, state->BindExpr(Ex, V), ProgramPoint::PostLoadKind, tag); } } } void GRExprEngine::EvalLocation(ExplodedNodeSet &Dst, Stmt *S, ExplodedNode* Pred, const GRState* state, SVal location, const void *tag, bool isLoad) { // Early checks for performance reason. if (location.isUnknown() || Checkers.empty()) { Dst.Add(Pred); return; } ExplodedNodeSet Src, Tmp; Src.Add(Pred); ExplodedNodeSet *PrevSet = &Src; for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E; ++I) { ExplodedNodeSet *CurrSet = 0; if (I+1 == E) CurrSet = &Dst; else { CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp; CurrSet->clear(); } void *tag = I->first; Checker *checker = I->second; for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end(); NI != NE; ++NI) { // Use the 'state' argument only when the predecessor node is the // same as Pred. This allows us to catch updates to the state. checker->GR_VisitLocation(*CurrSet, *Builder, *this, S, *NI, *NI == Pred ? state : GetState(*NI), location, tag, isLoad); } // Update which NodeSet is the current one. PrevSet = CurrSet; } } //===----------------------------------------------------------------------===// // Transfer function: Function calls. //===----------------------------------------------------------------------===// namespace { class CallExprWLItem { public: CallExpr::arg_iterator I; ExplodedNode *N; CallExprWLItem(const CallExpr::arg_iterator &i, ExplodedNode *n) : I(i), N(n) {} }; } // end anonymous namespace void GRExprEngine::VisitCall(CallExpr* CE, ExplodedNode* Pred, CallExpr::arg_iterator AI, CallExpr::arg_iterator AE, ExplodedNodeSet& Dst, bool asLValue) { // Determine the type of function we're calling (if available). const FunctionProtoType *Proto = NULL; QualType FnType = CE->getCallee()->IgnoreParens()->getType(); if (const PointerType *FnTypePtr = FnType->getAs()) Proto = FnTypePtr->getPointeeType()->getAs(); // Create a worklist to process the arguments. llvm::SmallVector WorkList; WorkList.reserve(AE - AI); WorkList.push_back(CallExprWLItem(AI, Pred)); ExplodedNodeSet ArgsEvaluated; while (!WorkList.empty()) { CallExprWLItem Item = WorkList.back(); WorkList.pop_back(); if (Item.I == AE) { ArgsEvaluated.insert(Item.N); continue; } // Evaluate the argument. ExplodedNodeSet Tmp; const unsigned ParamIdx = Item.I - AI; bool VisitAsLvalue = false; if (Proto && ParamIdx < Proto->getNumArgs()) VisitAsLvalue = Proto->getArgType(ParamIdx)->isReferenceType(); if (VisitAsLvalue) VisitLValue(*Item.I, Item.N, Tmp); else Visit(*Item.I, Item.N, Tmp); // Enqueue evaluating the next argument on the worklist. ++(Item.I); for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) WorkList.push_back(CallExprWLItem(Item.I, *NI)); } // Now process the call itself. ExplodedNodeSet DstTmp; Expr* Callee = CE->getCallee()->IgnoreParens(); for (ExplodedNodeSet::iterator NI=ArgsEvaluated.begin(), NE=ArgsEvaluated.end(); NI != NE; ++NI) { // Evaluate the callee. ExplodedNodeSet DstTmp2; Visit(Callee, *NI, DstTmp2); // Perform the previsit of the CallExpr, storing the results in DstTmp. CheckerVisit(CE, DstTmp, DstTmp2, true); } // Finally, evaluate the function call. We try each of the checkers // to see if the can evaluate the function call. ExplodedNodeSet DstTmp3; for (ExplodedNodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); DI != DE; ++DI) { const GRState* state = GetState(*DI); SVal L = state->getSVal(Callee); // FIXME: Add support for symbolic function calls (calls involving // function pointer values that are symbolic). SaveAndRestore OldSink(Builder->BuildSinks); ExplodedNodeSet DstChecker; // If the callee is processed by a checker, skip the rest logic. if (CheckerEvalCall(CE, DstChecker, *DI)) DstTmp3.insert(DstChecker); else { for (ExplodedNodeSet::iterator DI_Checker = DstChecker.begin(), DE_Checker = DstChecker.end(); DI_Checker != DE_Checker; ++DI_Checker) { // Dispatch to the plug-in transfer function. unsigned OldSize = DstTmp3.size(); SaveOr OldHasGen(Builder->HasGeneratedNode); Pred = *DI_Checker; // Dispatch to transfer function logic to handle the call itself. // FIXME: Allow us to chain together transfer functions. assert(Builder && "GRStmtNodeBuilder must be defined."); getTF().EvalCall(DstTmp3, *this, *Builder, CE, L, Pred); // Handle the case where no nodes where generated. Auto-generate that // contains the updated state if we aren't generating sinks. if (!Builder->BuildSinks && DstTmp3.size() == OldSize && !Builder->HasGeneratedNode) MakeNode(DstTmp3, CE, Pred, state); } } } // Finally, perform the post-condition check of the CallExpr and store // the created nodes in 'Dst'. if (!(!asLValue && CalleeReturnsReference(CE))) { CheckerVisit(CE, Dst, DstTmp3, false); return; } // Handle the case where the called function returns a reference but // we expect an rvalue. For such cases, convert the reference to // an rvalue. // FIXME: This conversion doesn't actually happen unless the result // of CallExpr is consumed by another expression. ExplodedNodeSet DstTmp4; CheckerVisit(CE, DstTmp4, DstTmp3, false); QualType LoadTy = CE->getType(); static int *ConvertToRvalueTag = 0; for (ExplodedNodeSet::iterator NI = DstTmp4.begin(), NE = DstTmp4.end(); NI!=NE; ++NI) { const GRState *state = GetState(*NI); EvalLoad(Dst, CE, *NI, state, state->getSVal(CE), &ConvertToRvalueTag, LoadTy); } } //===----------------------------------------------------------------------===// // Transfer function: Objective-C ivar references. //===----------------------------------------------------------------------===// static std::pair EagerlyAssumeTag = std::pair(&EagerlyAssumeTag,0); void GRExprEngine::EvalEagerlyAssume(ExplodedNodeSet &Dst, ExplodedNodeSet &Src, Expr *Ex) { for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) { ExplodedNode *Pred = *I; // Test if the previous node was as the same expression. This can happen // when the expression fails to evaluate to anything meaningful and // (as an optimization) we don't generate a node. ProgramPoint P = Pred->getLocation(); if (!isa(P) || cast(P).getStmt() != Ex) { Dst.Add(Pred); continue; } const GRState* state = Pred->getState(); SVal V = state->getSVal(Ex); if (nonloc::SymExprVal *SEV = dyn_cast(&V)) { // First assume that the condition is true. if (const GRState *stateTrue = state->Assume(*SEV, true)) { stateTrue = stateTrue->BindExpr(Ex, ValMgr.makeIntVal(1U, Ex->getType())); Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag, Pred->getLocationContext()), stateTrue, Pred)); } // Next, assume that the condition is false. if (const GRState *stateFalse = state->Assume(*SEV, false)) { stateFalse = stateFalse->BindExpr(Ex, ValMgr.makeIntVal(0U, Ex->getType())); Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag, Pred->getLocationContext()), stateFalse, Pred)); } } else Dst.Add(Pred); } } //===----------------------------------------------------------------------===// // Transfer function: Objective-C ivar references. //===----------------------------------------------------------------------===// void GRExprEngine::VisitObjCIvarRefExpr(ObjCIvarRefExpr* Ex, ExplodedNode* Pred, ExplodedNodeSet& Dst, bool asLValue) { Expr* Base = cast(Ex->getBase()); ExplodedNodeSet Tmp; Visit(Base, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); SVal BaseVal = state->getSVal(Base); SVal location = state->getLValue(Ex->getDecl(), BaseVal); if (asLValue) MakeNode(Dst, Ex, *I, state->BindExpr(Ex, location)); else EvalLoad(Dst, Ex, *I, state, location); } } //===----------------------------------------------------------------------===// // Transfer function: Objective-C fast enumeration 'for' statements. //===----------------------------------------------------------------------===// void GRExprEngine::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S, ExplodedNode* Pred, ExplodedNodeSet& Dst) { // ObjCForCollectionStmts are processed in two places. This method // handles the case where an ObjCForCollectionStmt* occurs as one of the // statements within a basic block. This transfer function does two things: // // (1) binds the next container value to 'element'. This creates a new // node in the ExplodedGraph. // // (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating // whether or not the container has any more elements. This value // will be tested in ProcessBranch. We need to explicitly bind // this value because a container can contain nil elements. // // FIXME: Eventually this logic should actually do dispatches to // 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration). // This will require simulating a temporary NSFastEnumerationState, either // through an SVal or through the use of MemRegions. This value can // be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop // terminates we reclaim the temporary (it goes out of scope) and we // we can test if the SVal is 0 or if the MemRegion is null (depending // on what approach we take). // // For now: simulate (1) by assigning either a symbol or nil if the // container is empty. Thus this transfer function will by default // result in state splitting. Stmt* elem = S->getElement(); SVal ElementV; if (DeclStmt* DS = dyn_cast(elem)) { VarDecl* ElemD = cast(DS->getSingleDecl()); assert (ElemD->getInit() == 0); ElementV = GetState(Pred)->getLValue(ElemD, Pred->getLocationContext()); VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV); return; } ExplodedNodeSet Tmp; VisitLValue(cast(elem), Pred, Tmp); for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); VisitObjCForCollectionStmtAux(S, *I, Dst, state->getSVal(elem)); } } void GRExprEngine::VisitObjCForCollectionStmtAux(ObjCForCollectionStmt* S, ExplodedNode* Pred, ExplodedNodeSet& Dst, SVal ElementV) { // Check if the location we are writing back to is a null pointer. Stmt* elem = S->getElement(); ExplodedNodeSet Tmp; EvalLocation(Tmp, elem, Pred, GetState(Pred), ElementV, NULL, false); if (Tmp.empty()) return; for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { Pred = *NI; const GRState *state = GetState(Pred); // Handle the case where the container still has elements. SVal TrueV = ValMgr.makeTruthVal(1); const GRState *hasElems = state->BindExpr(S, TrueV); // Handle the case where the container has no elements. SVal FalseV = ValMgr.makeTruthVal(0); const GRState *noElems = state->BindExpr(S, FalseV); if (loc::MemRegionVal* MV = dyn_cast(&ElementV)) if (const TypedRegion* R = dyn_cast(MV->getRegion())) { // FIXME: The proper thing to do is to really iterate over the // container. We will do this with dispatch logic to the store. // For now, just 'conjure' up a symbolic value. QualType T = R->getValueType(getContext()); assert(Loc::IsLocType(T)); unsigned Count = Builder->getCurrentBlockCount(); SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count); SVal V = ValMgr.makeLoc(Sym); hasElems = hasElems->bindLoc(ElementV, V); // Bind the location to 'nil' on the false branch. SVal nilV = ValMgr.makeIntVal(0, T); noElems = noElems->bindLoc(ElementV, nilV); } // Create the new nodes. MakeNode(Dst, S, Pred, hasElems); MakeNode(Dst, S, Pred, noElems); } } //===----------------------------------------------------------------------===// // Transfer function: Objective-C message expressions. //===----------------------------------------------------------------------===// namespace { class ObjCMsgWLItem { public: ObjCMessageExpr::arg_iterator I; ExplodedNode *N; ObjCMsgWLItem(const ObjCMessageExpr::arg_iterator &i, ExplodedNode *n) : I(i), N(n) {} }; } // end anonymous namespace void GRExprEngine::VisitObjCMessageExpr(ObjCMessageExpr* ME, ExplodedNode* Pred, ExplodedNodeSet& Dst, bool asLValue){ // Create a worklist to process both the arguments. llvm::SmallVector WL; // But first evaluate the receiver (if any). ObjCMessageExpr::arg_iterator AI = ME->arg_begin(), AE = ME->arg_end(); if (Expr *Receiver = ME->getReceiver()) { ExplodedNodeSet Tmp; Visit(Receiver, Pred, Tmp); if (Tmp.empty()) return; for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) WL.push_back(ObjCMsgWLItem(AI, *I)); } else WL.push_back(ObjCMsgWLItem(AI, Pred)); // Evaluate the arguments. ExplodedNodeSet ArgsEvaluated; while (!WL.empty()) { ObjCMsgWLItem Item = WL.back(); WL.pop_back(); if (Item.I == AE) { ArgsEvaluated.insert(Item.N); continue; } // Evaluate the subexpression. ExplodedNodeSet Tmp; // FIXME: [Objective-C++] handle arguments that are references Visit(*Item.I, Item.N, Tmp); // Enqueue evaluating the next argument on the worklist. ++(Item.I); for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) WL.push_back(ObjCMsgWLItem(Item.I, *NI)); } // Now that the arguments are processed, handle the previsits checks. ExplodedNodeSet DstPrevisit; CheckerVisit(ME, DstPrevisit, ArgsEvaluated, true); // Proceed with evaluate the message expression. ExplodedNodeSet DstEval; for (ExplodedNodeSet::iterator DI = DstPrevisit.begin(), DE = DstPrevisit.end(); DI != DE; ++DI) { Pred = *DI; bool RaisesException = false; unsigned OldSize = DstEval.size(); SaveAndRestore OldSink(Builder->BuildSinks); SaveOr OldHasGen(Builder->HasGeneratedNode); if (const Expr *Receiver = ME->getReceiver()) { const GRState *state = Pred->getState(); // Bifurcate the state into nil and non-nil ones. DefinedOrUnknownSVal receiverVal = cast(state->getSVal(Receiver)); const GRState *notNilState, *nilState; llvm::tie(notNilState, nilState) = state->Assume(receiverVal); // There are three cases: can be nil or non-nil, must be nil, must be // non-nil. We handle must be nil, and merge the rest two into non-nil. if (nilState && !notNilState) { CheckerEvalNilReceiver(ME, DstEval, nilState, Pred); continue; } // Check if the "raise" message was sent. assert(notNilState); if (ME->getSelector() == RaiseSel) RaisesException = true; // Check if we raise an exception. For now treat these as sinks. // Eventually we will want to handle exceptions properly. if (RaisesException) Builder->BuildSinks = true; // Dispatch to plug-in transfer function. EvalObjCMessageExpr(DstEval, ME, Pred, notNilState); } else { IdentifierInfo* ClsName = ME->getClassName(); Selector S = ME->getSelector(); // Check for special instance methods. if (!NSExceptionII) { ASTContext& Ctx = getContext(); NSExceptionII = &Ctx.Idents.get("NSException"); } if (ClsName == NSExceptionII) { enum { NUM_RAISE_SELECTORS = 2 }; // Lazily create a cache of the selectors. if (!NSExceptionInstanceRaiseSelectors) { ASTContext& Ctx = getContext(); NSExceptionInstanceRaiseSelectors = new Selector[NUM_RAISE_SELECTORS]; llvm::SmallVector II; unsigned idx = 0; // raise:format: II.push_back(&Ctx.Idents.get("raise")); II.push_back(&Ctx.Idents.get("format")); NSExceptionInstanceRaiseSelectors[idx++] = Ctx.Selectors.getSelector(II.size(), &II[0]); // raise:format::arguments: II.push_back(&Ctx.Idents.get("arguments")); NSExceptionInstanceRaiseSelectors[idx++] = Ctx.Selectors.getSelector(II.size(), &II[0]); } for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i) if (S == NSExceptionInstanceRaiseSelectors[i]) { RaisesException = true; break; } } // Check if we raise an exception. For now treat these as sinks. // Eventually we will want to handle exceptions properly. if (RaisesException) Builder->BuildSinks = true; // Dispatch to plug-in transfer function. EvalObjCMessageExpr(DstEval, ME, Pred, Builder->GetState(Pred)); } // Handle the case where no nodes where generated. Auto-generate that // contains the updated state if we aren't generating sinks. if (!Builder->BuildSinks && DstEval.size() == OldSize && !Builder->HasGeneratedNode) MakeNode(DstEval, ME, Pred, GetState(Pred)); } // Finally, perform the post-condition check of the ObjCMessageExpr and store // the created nodes in 'Dst'. if (!(!asLValue && ReceiverReturnsReference(ME))) { CheckerVisit(ME, Dst, DstEval, false); return; } // Handle the case where the message expression returns a reference but // we expect an rvalue. For such cases, convert the reference to // an rvalue. // FIXME: This conversion doesn't actually happen unless the result // of ObjCMessageExpr is consumed by another expression. ExplodedNodeSet DstRValueConvert; CheckerVisit(ME, DstRValueConvert, DstEval, false); QualType LoadTy = ME->getType(); static int *ConvertToRvalueTag = 0; for (ExplodedNodeSet::iterator NI = DstRValueConvert.begin(), NE = DstRValueConvert.end(); NI != NE; ++NI) { const GRState *state = GetState(*NI); EvalLoad(Dst, ME, *NI, state, state->getSVal(ME), &ConvertToRvalueTag, LoadTy); } } //===----------------------------------------------------------------------===// // Transfer functions: Miscellaneous statements. //===----------------------------------------------------------------------===// void GRExprEngine::VisitCast(CastExpr *CastE, Expr *Ex, ExplodedNode *Pred, ExplodedNodeSet &Dst, bool asLValue) { ExplodedNodeSet S1; QualType T = CastE->getType(); QualType ExTy = Ex->getType(); if (const ExplicitCastExpr *ExCast=dyn_cast_or_null(CastE)) T = ExCast->getTypeAsWritten(); if (ExTy->isArrayType() || ExTy->isFunctionType() || T->isReferenceType() || asLValue) VisitLValue(Ex, Pred, S1); else Visit(Ex, Pred, S1); ExplodedNodeSet S2; CheckerVisit(CastE, S2, S1, true); // If we are evaluating the cast in an lvalue context, we implicitly want // the cast to evaluate to a location. if (asLValue) { ASTContext &Ctx = getContext(); T = Ctx.getPointerType(Ctx.getCanonicalType(T)); ExTy = Ctx.getPointerType(Ctx.getCanonicalType(ExTy)); } switch (CastE->getCastKind()) { case CastExpr::CK_ToVoid: assert(!asLValue); for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) Dst.Add(*I); return; case CastExpr::CK_NoOp: case CastExpr::CK_FunctionToPointerDecay: for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) { // Copy the SVal of Ex to CastE. ExplodedNode *N = *I; const GRState *state = GetState(N); SVal V = state->getSVal(Ex); state = state->BindExpr(CastE, V); MakeNode(Dst, CastE, N, state); } return; case CastExpr::CK_Unknown: case CastExpr::CK_ArrayToPointerDecay: case CastExpr::CK_BitCast: case CastExpr::CK_IntegralCast: case CastExpr::CK_IntegralToPointer: case CastExpr::CK_PointerToIntegral: case CastExpr::CK_IntegralToFloating: case CastExpr::CK_FloatingToIntegral: case CastExpr::CK_FloatingCast: case CastExpr::CK_AnyPointerToObjCPointerCast: case CastExpr::CK_AnyPointerToBlockPointerCast: case CastExpr::CK_DerivedToBase: // Delegate to SValuator to process. for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) { ExplodedNode* N = *I; const GRState* state = GetState(N); SVal V = state->getSVal(Ex); V = SVator.EvalCast(V, T, ExTy); state = state->BindExpr(CastE, V); MakeNode(Dst, CastE, N, state); } return; default: llvm::errs() << "Cast kind " << CastE->getCastKind() << " not handled.\n"; assert(0); } } void GRExprEngine::VisitCompoundLiteralExpr(CompoundLiteralExpr* CL, ExplodedNode* Pred, ExplodedNodeSet& Dst, bool asLValue) { InitListExpr* ILE = cast(CL->getInitializer()->IgnoreParens()); ExplodedNodeSet Tmp; Visit(ILE, Pred, Tmp); for (ExplodedNodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) { const GRState* state = GetState(*I); SVal ILV = state->getSVal(ILE); const LocationContext *LC = (*I)->getLocationContext(); state = state->bindCompoundLiteral(CL, LC, ILV); if (asLValue) { MakeNode(Dst, CL, *I, state->BindExpr(CL, state->getLValue(CL, LC))); } else MakeNode(Dst, CL, *I, state->BindExpr(CL, ILV)); } } void GRExprEngine::VisitDeclStmt(DeclStmt *DS, ExplodedNode *Pred, ExplodedNodeSet& Dst) { // The CFG has one DeclStmt per Decl. Decl* D = *DS->decl_begin(); if (!D || !isa(D)) return; const VarDecl* VD = dyn_cast(D); Expr* InitEx = const_cast(VD->getInit()); // FIXME: static variables may have an initializer, but the second // time a function is called those values may not be current. ExplodedNodeSet Tmp; if (InitEx) { if (VD->getType()->isReferenceType()) VisitLValue(InitEx, Pred, Tmp); else Visit(InitEx, Pred, Tmp); } else Tmp.Add(Pred); ExplodedNodeSet Tmp2; CheckerVisit(DS, Tmp2, Tmp, true); for (ExplodedNodeSet::iterator I=Tmp2.begin(), E=Tmp2.end(); I!=E; ++I) { ExplodedNode *N = *I; const GRState *state = GetState(N); // Decls without InitExpr are not initialized explicitly. const LocationContext *LC = N->getLocationContext(); if (InitEx) { SVal InitVal = state->getSVal(InitEx); // Recover some path-sensitivity if a scalar value evaluated to // UnknownVal. if ((InitVal.isUnknown() || !getConstraintManager().canReasonAbout(InitVal)) && !VD->getType()->isReferenceType()) { InitVal = ValMgr.getConjuredSymbolVal(NULL, InitEx, Builder->getCurrentBlockCount()); } EvalBind(Dst, DS, DS, *I, state, loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true); } else { state = state->bindDeclWithNoInit(state->getRegion(VD, LC)); MakeNode(Dst, DS, *I, state); } } } void GRExprEngine::VisitCondInit(VarDecl *VD, Stmt *S, ExplodedNode *Pred, ExplodedNodeSet& Dst) { Expr* InitEx = VD->getInit(); ExplodedNodeSet Tmp; Visit(InitEx, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { ExplodedNode *N = *I; const GRState *state = GetState(N); const LocationContext *LC = N->getLocationContext(); SVal InitVal = state->getSVal(InitEx); // Recover some path-sensitivity if a scalar value evaluated to // UnknownVal. if (InitVal.isUnknown() || !getConstraintManager().canReasonAbout(InitVal)) { InitVal = ValMgr.getConjuredSymbolVal(NULL, InitEx, Builder->getCurrentBlockCount()); } EvalBind(Dst, S, S, N, state, loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true); } } namespace { // This class is used by VisitInitListExpr as an item in a worklist // for processing the values contained in an InitListExpr. class InitListWLItem { public: llvm::ImmutableList Vals; ExplodedNode* N; InitListExpr::reverse_iterator Itr; InitListWLItem(ExplodedNode* n, llvm::ImmutableList vals, InitListExpr::reverse_iterator itr) : Vals(vals), N(n), Itr(itr) {} }; } void GRExprEngine::VisitInitListExpr(InitListExpr* E, ExplodedNode* Pred, ExplodedNodeSet& Dst) { const GRState* state = GetState(Pred); QualType T = getContext().getCanonicalType(E->getType()); unsigned NumInitElements = E->getNumInits(); if (T->isArrayType() || T->isStructureType() || T->isUnionType() || T->isVectorType()) { llvm::ImmutableList StartVals = getBasicVals().getEmptySValList(); // Handle base case where the initializer has no elements. // e.g: static int* myArray[] = {}; if (NumInitElements == 0) { SVal V = ValMgr.makeCompoundVal(T, StartVals); MakeNode(Dst, E, Pred, state->BindExpr(E, V)); return; } // Create a worklist to process the initializers. llvm::SmallVector WorkList; WorkList.reserve(NumInitElements); WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin())); InitListExpr::reverse_iterator ItrEnd = E->rend(); assert(!(E->rbegin() == E->rend())); // Process the worklist until it is empty. while (!WorkList.empty()) { InitListWLItem X = WorkList.back(); WorkList.pop_back(); ExplodedNodeSet Tmp; Visit(*X.Itr, X.N, Tmp); InitListExpr::reverse_iterator NewItr = X.Itr + 1; for (ExplodedNodeSet::iterator NI=Tmp.begin(),NE=Tmp.end();NI!=NE;++NI) { // Get the last initializer value. state = GetState(*NI); SVal InitV = state->getSVal(cast(*X.Itr)); // Construct the new list of values by prepending the new value to // the already constructed list. llvm::ImmutableList NewVals = getBasicVals().consVals(InitV, X.Vals); if (NewItr == ItrEnd) { // Now we have a list holding all init values. Make CompoundValData. SVal V = ValMgr.makeCompoundVal(T, NewVals); // Make final state and node. MakeNode(Dst, E, *NI, state->BindExpr(E, V)); } else { // Still some initializer values to go. Push them onto the worklist. WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr)); } } } return; } if (Loc::IsLocType(T) || T->isIntegerType()) { assert (E->getNumInits() == 1); ExplodedNodeSet Tmp; Expr* Init = E->getInit(0); Visit(Init, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), EI=Tmp.end(); I != EI; ++I) { state = GetState(*I); MakeNode(Dst, E, *I, state->BindExpr(E, state->getSVal(Init))); } return; } assert(0 && "unprocessed InitListExpr type"); } /// VisitSizeOfAlignOfExpr - Transfer function for sizeof(type). void GRExprEngine::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr* Ex, ExplodedNode* Pred, ExplodedNodeSet& Dst) { QualType T = Ex->getTypeOfArgument(); CharUnits amt; if (Ex->isSizeOf()) { if (T == getContext().VoidTy) { // sizeof(void) == 1 byte. amt = CharUnits::One(); } else if (!T.getTypePtr()->isConstantSizeType()) { // FIXME: Add support for VLAs. Dst.Add(Pred); return; } else if (T->isObjCInterfaceType()) { // Some code tries to take the sizeof an ObjCInterfaceType, relying that // the compiler has laid out its representation. Just report Unknown // for these. Dst.Add(Pred); return; } else { // All other cases. amt = getContext().getTypeSizeInChars(T); } } else // Get alignment of the type. amt = getContext().getTypeAlignInChars(T); MakeNode(Dst, Ex, Pred, GetState(Pred)->BindExpr(Ex, ValMgr.makeIntVal(amt.getQuantity(), Ex->getType()))); } void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, ExplodedNode* Pred, ExplodedNodeSet& Dst, bool asLValue) { switch (U->getOpcode()) { default: break; case UnaryOperator::Deref: { Expr* Ex = U->getSubExpr()->IgnoreParens(); ExplodedNodeSet Tmp; Visit(Ex, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); SVal location = state->getSVal(Ex); if (asLValue) MakeNode(Dst, U, *I, state->BindExpr(U, location), ProgramPoint::PostLValueKind); else EvalLoad(Dst, U, *I, state, location); } return; } case UnaryOperator::Real: { Expr* Ex = U->getSubExpr()->IgnoreParens(); ExplodedNodeSet Tmp; Visit(Ex, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { // FIXME: We don't have complex SValues yet. if (Ex->getType()->isAnyComplexType()) { // Just report "Unknown." Dst.Add(*I); continue; } // For all other types, UnaryOperator::Real is an identity operation. assert (U->getType() == Ex->getType()); const GRState* state = GetState(*I); MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex))); } return; } case UnaryOperator::Imag: { Expr* Ex = U->getSubExpr()->IgnoreParens(); ExplodedNodeSet Tmp; Visit(Ex, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { // FIXME: We don't have complex SValues yet. if (Ex->getType()->isAnyComplexType()) { // Just report "Unknown." Dst.Add(*I); continue; } // For all other types, UnaryOperator::Float returns 0. assert (Ex->getType()->isIntegerType()); const GRState* state = GetState(*I); SVal X = ValMgr.makeZeroVal(Ex->getType()); MakeNode(Dst, U, *I, state->BindExpr(U, X)); } return; } case UnaryOperator::OffsetOf: { Expr::EvalResult Res; if (U->Evaluate(Res, getContext()) && Res.Val.isInt()) { const APSInt &IV = Res.Val.getInt(); assert(IV.getBitWidth() == getContext().getTypeSize(U->getType())); assert(U->getType()->isIntegerType()); assert(IV.isSigned() == U->getType()->isSignedIntegerType()); SVal X = ValMgr.makeIntVal(IV); MakeNode(Dst, U, Pred, GetState(Pred)->BindExpr(U, X)); return; } // FIXME: Handle the case where __builtin_offsetof is not a constant. Dst.Add(Pred); return; } case UnaryOperator::Plus: assert (!asLValue); // FALL-THROUGH. case UnaryOperator::Extension: { // Unary "+" is a no-op, similar to a parentheses. We still have places // where it may be a block-level expression, so we need to // generate an extra node that just propagates the value of the // subexpression. Expr* Ex = U->getSubExpr()->IgnoreParens(); ExplodedNodeSet Tmp; Visit(Ex, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex))); } return; } case UnaryOperator::AddrOf: { assert(!asLValue); Expr* Ex = U->getSubExpr()->IgnoreParens(); ExplodedNodeSet Tmp; VisitLValue(Ex, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); SVal V = state->getSVal(Ex); state = state->BindExpr(U, V); MakeNode(Dst, U, *I, state); } return; } case UnaryOperator::LNot: case UnaryOperator::Minus: case UnaryOperator::Not: { assert (!asLValue); Expr* Ex = U->getSubExpr()->IgnoreParens(); ExplodedNodeSet Tmp; Visit(Ex, Pred, Tmp); for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); // Get the value of the subexpression. SVal V = state->getSVal(Ex); if (V.isUnknownOrUndef()) { MakeNode(Dst, U, *I, state->BindExpr(U, V)); continue; } // QualType DstT = getContext().getCanonicalType(U->getType()); // QualType SrcT = getContext().getCanonicalType(Ex->getType()); // // if (DstT != SrcT) // Perform promotions. // V = EvalCast(V, DstT); // // if (V.isUnknownOrUndef()) { // MakeNode(Dst, U, *I, BindExpr(St, U, V)); // continue; // } switch (U->getOpcode()) { default: assert(false && "Invalid Opcode."); break; case UnaryOperator::Not: // FIXME: Do we need to handle promotions? state = state->BindExpr(U, EvalComplement(cast(V))); break; case UnaryOperator::Minus: // FIXME: Do we need to handle promotions? state = state->BindExpr(U, EvalMinus(cast(V))); break; case UnaryOperator::LNot: // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." // // Note: technically we do "E == 0", but this is the same in the // transfer functions as "0 == E". SVal Result; if (isa(V)) { Loc X = ValMgr.makeNull(); Result = EvalBinOp(state, BinaryOperator::EQ, cast(V), X, U->getType()); } else { nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); Result = EvalBinOp(state, BinaryOperator::EQ, cast(V), X, U->getType()); } state = state->BindExpr(U, Result); break; } MakeNode(Dst, U, *I, state); } return; } } // Handle ++ and -- (both pre- and post-increment). assert (U->isIncrementDecrementOp()); ExplodedNodeSet Tmp; Expr* Ex = U->getSubExpr()->IgnoreParens(); VisitLValue(Ex, Pred, Tmp); for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); SVal V1 = state->getSVal(Ex); // Perform a load. ExplodedNodeSet Tmp2; EvalLoad(Tmp2, Ex, *I, state, V1); for (ExplodedNodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end();I2!=E2;++I2) { state = GetState(*I2); SVal V2_untested = state->getSVal(Ex); // Propagate unknown and undefined values. if (V2_untested.isUnknownOrUndef()) { MakeNode(Dst, U, *I2, state->BindExpr(U, V2_untested)); continue; } DefinedSVal V2 = cast(V2_untested); // Handle all other values. BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add : BinaryOperator::Sub; // If the UnaryOperator has non-location type, use its type to create the // constant value. If the UnaryOperator has location type, create the // constant with int type and pointer width. SVal RHS; if (U->getType()->isAnyPointerType()) RHS = ValMgr.makeIntValWithPtrWidth(1, false); else RHS = ValMgr.makeIntVal(1, U->getType()); SVal Result = EvalBinOp(state, Op, V2, RHS, U->getType()); // Conjure a new symbol if necessary to recover precision. if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){ DefinedOrUnknownSVal SymVal = ValMgr.getConjuredSymbolVal(NULL, Ex, Builder->getCurrentBlockCount()); Result = SymVal; // If the value is a location, ++/-- should always preserve // non-nullness. Check if the original value was non-null, and if so // propagate that constraint. if (Loc::IsLocType(U->getType())) { DefinedOrUnknownSVal Constraint = SVator.EvalEQ(state, V2, ValMgr.makeZeroVal(U->getType())); if (!state->Assume(Constraint, true)) { // It isn't feasible for the original value to be null. // Propagate this constraint. Constraint = SVator.EvalEQ(state, SymVal, ValMgr.makeZeroVal(U->getType())); state = state->Assume(Constraint, false); assert(state); } } } state = state->BindExpr(U, U->isPostfix() ? V2 : Result); // Perform the store. EvalStore(Dst, NULL, U, *I2, state, V1, Result); } } } void GRExprEngine::VisitCXXThisExpr(CXXThisExpr *TE, ExplodedNode *Pred, ExplodedNodeSet & Dst) { // Get the this object region from StoreManager. const MemRegion *R = ValMgr.getRegionManager().getCXXThisRegion(TE->getType(), Pred->getLocationContext()); const GRState *state = GetState(Pred); SVal V = state->getSVal(loc::MemRegionVal(R)); MakeNode(Dst, TE, Pred, state->BindExpr(TE, V)); } void GRExprEngine::VisitAsmStmt(AsmStmt* A, ExplodedNode* Pred, ExplodedNodeSet& Dst) { VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst); } void GRExprEngine::VisitAsmStmtHelperOutputs(AsmStmt* A, AsmStmt::outputs_iterator I, AsmStmt::outputs_iterator E, ExplodedNode* Pred, ExplodedNodeSet& Dst) { if (I == E) { VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst); return; } ExplodedNodeSet Tmp; VisitLValue(*I, Pred, Tmp); ++I; for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end();NI != NE;++NI) VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst); } void GRExprEngine::VisitAsmStmtHelperInputs(AsmStmt* A, AsmStmt::inputs_iterator I, AsmStmt::inputs_iterator E, ExplodedNode* Pred, ExplodedNodeSet& Dst) { if (I == E) { // We have processed both the inputs and the outputs. All of the outputs // should evaluate to Locs. Nuke all of their values. // FIXME: Some day in the future it would be nice to allow a "plug-in" // which interprets the inline asm and stores proper results in the // outputs. const GRState* state = GetState(Pred); for (AsmStmt::outputs_iterator OI = A->begin_outputs(), OE = A->end_outputs(); OI != OE; ++OI) { SVal X = state->getSVal(*OI); assert (!isa(X)); // Should be an Lval, or unknown, undef. if (isa(X)) state = state->bindLoc(cast(X), UnknownVal()); } MakeNode(Dst, A, Pred, state); return; } ExplodedNodeSet Tmp; Visit(*I, Pred, Tmp); ++I; for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI!=NE; ++NI) VisitAsmStmtHelperInputs(A, I, E, *NI, Dst); } void GRExprEngine::VisitReturnStmt(ReturnStmt *RS, ExplodedNode *Pred, ExplodedNodeSet &Dst) { ExplodedNodeSet Src; if (Expr *RetE = RS->getRetValue()) { // Record the returned expression in the state. { static int Tag = 0; SaveAndRestore OldTag(Builder->Tag, &Tag); const GRState *state = GetState(Pred); state = state->set(RetE); Pred = Builder->generateNode(RetE, state, Pred); } // We may get a NULL Pred because we generated a cached node. if (Pred) Visit(RetE, Pred, Src); } else { Src.Add(Pred); } ExplodedNodeSet CheckedSet; CheckerVisit(RS, CheckedSet, Src, true); for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); I != E; ++I) { assert(Builder && "GRStmtNodeBuilder must be defined."); Pred = *I; unsigned size = Dst.size(); SaveAndRestore OldSink(Builder->BuildSinks); SaveOr OldHasGen(Builder->HasGeneratedNode); getTF().EvalReturn(Dst, *this, *Builder, RS, Pred); // Handle the case where no nodes where generated. if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode) MakeNode(Dst, RS, Pred, GetState(Pred)); } } //===----------------------------------------------------------------------===// // Transfer functions: Binary operators. //===----------------------------------------------------------------------===// void GRExprEngine::VisitBinaryOperator(BinaryOperator* B, ExplodedNode* Pred, ExplodedNodeSet& Dst, bool asLValue) { ExplodedNodeSet Tmp1; Expr* LHS = B->getLHS()->IgnoreParens(); Expr* RHS = B->getRHS()->IgnoreParens(); // FIXME: Add proper support for ObjCImplicitSetterGetterRefExpr. if (isa(LHS)) { Visit(RHS, Pred, Dst); return; } if (B->isAssignmentOp()) VisitLValue(LHS, Pred, Tmp1); else Visit(LHS, Pred, Tmp1); ExplodedNodeSet Tmp3; for (ExplodedNodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1!=E1; ++I1) { SVal LeftV = (*I1)->getState()->getSVal(LHS); ExplodedNodeSet Tmp2; Visit(RHS, *I1, Tmp2); ExplodedNodeSet CheckedSet; CheckerVisit(B, CheckedSet, Tmp2, true); // With both the LHS and RHS evaluated, process the operation itself. for (ExplodedNodeSet::iterator I2=CheckedSet.begin(), E2=CheckedSet.end(); I2 != E2; ++I2) { const GRState *state = GetState(*I2); const GRState *OldSt = state; SVal RightV = state->getSVal(RHS); BinaryOperator::Opcode Op = B->getOpcode(); if (Op == BinaryOperator::Assign) { // EXPERIMENTAL: "Conjured" symbols. // FIXME: Handle structs. QualType T = RHS->getType(); if ((RightV.isUnknown()||!getConstraintManager().canReasonAbout(RightV)) && (Loc::IsLocType(T) || (T->isScalarType()&&T->isIntegerType()))) { unsigned Count = Builder->getCurrentBlockCount(); RightV = ValMgr.getConjuredSymbolVal(NULL, B->getRHS(), Count); } SVal ExprVal = asLValue ? LeftV : RightV; // Simulate the effects of a "store": bind the value of the RHS // to the L-Value represented by the LHS. EvalStore(Tmp3, B, LHS, *I2, state->BindExpr(B, ExprVal), LeftV,RightV); continue; } if (!B->isAssignmentOp()) { // Process non-assignments except commas or short-circuited // logical expressions (LAnd and LOr). SVal Result = EvalBinOp(state, Op, LeftV, RightV, B->getType()); if (Result.isUnknown()) { if (OldSt != state) { // Generate a new node if we have already created a new state. MakeNode(Tmp3, B, *I2, state); } else Tmp3.Add(*I2); continue; } state = state->BindExpr(B, Result); MakeNode(Tmp3, B, *I2, state); continue; } assert (B->isCompoundAssignmentOp()); switch (Op) { default: assert(0 && "Invalid opcode for compound assignment."); case BinaryOperator::MulAssign: Op = BinaryOperator::Mul; break; case BinaryOperator::DivAssign: Op = BinaryOperator::Div; break; case BinaryOperator::RemAssign: Op = BinaryOperator::Rem; break; case BinaryOperator::AddAssign: Op = BinaryOperator::Add; break; case BinaryOperator::SubAssign: Op = BinaryOperator::Sub; break; case BinaryOperator::ShlAssign: Op = BinaryOperator::Shl; break; case BinaryOperator::ShrAssign: Op = BinaryOperator::Shr; break; case BinaryOperator::AndAssign: Op = BinaryOperator::And; break; case BinaryOperator::XorAssign: Op = BinaryOperator::Xor; break; case BinaryOperator::OrAssign: Op = BinaryOperator::Or; break; } // Perform a load (the LHS). This performs the checks for // null dereferences, and so on. ExplodedNodeSet Tmp4; SVal location = state->getSVal(LHS); EvalLoad(Tmp4, LHS, *I2, state, location); for (ExplodedNodeSet::iterator I4=Tmp4.begin(), E4=Tmp4.end(); I4!=E4; ++I4) { state = GetState(*I4); SVal V = state->getSVal(LHS); // Get the computation type. QualType CTy = cast(B)->getComputationResultType(); CTy = getContext().getCanonicalType(CTy); QualType CLHSTy = cast(B)->getComputationLHSType(); CLHSTy = getContext().getCanonicalType(CLHSTy); QualType LTy = getContext().getCanonicalType(LHS->getType()); QualType RTy = getContext().getCanonicalType(RHS->getType()); // Promote LHS. V = SVator.EvalCast(V, CLHSTy, LTy); // Compute the result of the operation. SVal Result = SVator.EvalCast(EvalBinOp(state, Op, V, RightV, CTy), B->getType(), CTy); // EXPERIMENTAL: "Conjured" symbols. // FIXME: Handle structs. SVal LHSVal; if ((Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)) && (Loc::IsLocType(CTy) || (CTy->isScalarType() && CTy->isIntegerType()))) { unsigned Count = Builder->getCurrentBlockCount(); // The symbolic value is actually for the type of the left-hand side // expression, not the computation type, as this is the value the // LValue on the LHS will bind to. LHSVal = ValMgr.getConjuredSymbolVal(NULL, B->getRHS(), LTy, Count); // However, we need to convert the symbol to the computation type. Result = SVator.EvalCast(LHSVal, CTy, LTy); } else { // The left-hand side may bind to a different value then the // computation type. LHSVal = SVator.EvalCast(Result, LTy, CTy); } EvalStore(Tmp3, B, LHS, *I4, state->BindExpr(B, Result), location, LHSVal); } } } CheckerVisit(B, Dst, Tmp3, false); } void GRExprEngine::CreateCXXTemporaryObject(Expr *Ex, ExplodedNode *Pred, ExplodedNodeSet &Dst) { ExplodedNodeSet Tmp; Visit(Ex, Pred, Tmp); for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) { const GRState *state = GetState(*I); // Bind the temporary object to the value of the expression. Then bind // the expression to the location of the object. SVal V = state->getSVal(Ex); const MemRegion *R = ValMgr.getRegionManager().getCXXObjectRegion(Ex, Pred->getLocationContext()); state = state->bindLoc(loc::MemRegionVal(R), V); MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, loc::MemRegionVal(R))); } } //===----------------------------------------------------------------------===// // Checker registration/lookup. //===----------------------------------------------------------------------===// Checker *GRExprEngine::lookupChecker(void *tag) const { CheckerMap::const_iterator I = CheckerM.find(tag); return (I == CheckerM.end()) ? NULL : Checkers[I->second].second; } //===----------------------------------------------------------------------===// // Visualization. //===----------------------------------------------------------------------===// #ifndef NDEBUG static GRExprEngine* GraphPrintCheckerState; static SourceManager* GraphPrintSourceManager; namespace llvm { template<> struct DOTGraphTraits : public DefaultDOTGraphTraits { DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} // FIXME: Since we do not cache error nodes in GRExprEngine now, this does not // work. static std::string getNodeAttributes(const ExplodedNode* N, void*) { #if 0 // FIXME: Replace with a general scheme to tell if the node is // an error node. if (GraphPrintCheckerState->isImplicitNullDeref(N) || GraphPrintCheckerState->isExplicitNullDeref(N) || GraphPrintCheckerState->isUndefDeref(N) || GraphPrintCheckerState->isUndefStore(N) || GraphPrintCheckerState->isUndefControlFlow(N) || GraphPrintCheckerState->isUndefResult(N) || GraphPrintCheckerState->isBadCall(N) || GraphPrintCheckerState->isUndefArg(N)) return "color=\"red\",style=\"filled\""; if (GraphPrintCheckerState->isNoReturnCall(N)) return "color=\"blue\",style=\"filled\""; #endif return ""; } static std::string getNodeLabel(const ExplodedNode* N, void*){ std::string sbuf; llvm::raw_string_ostream Out(sbuf); // Program Location. ProgramPoint Loc = N->getLocation(); switch (Loc.getKind()) { case ProgramPoint::BlockEntranceKind: Out << "Block Entrance: B" << cast(Loc).getBlock()->getBlockID(); break; case ProgramPoint::BlockExitKind: assert (false); break; case ProgramPoint::CallEnterKind: Out << "CallEnter"; break; case ProgramPoint::CallExitKind: Out << "CallExit"; break; default: { if (StmtPoint *L = dyn_cast(&Loc)) { const Stmt* S = L->getStmt(); SourceLocation SLoc = S->getLocStart(); Out << S->getStmtClassName() << ' ' << (void*) S << ' '; LangOptions LO; // FIXME. S->printPretty(Out, 0, PrintingPolicy(LO)); if (SLoc.isFileID()) { Out << "\\lline=" << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) << " col=" << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc) << "\\l"; } if (isa(Loc)) Out << "\\lPreStmt\\l;"; else if (isa(Loc)) Out << "\\lPostLoad\\l;"; else if (isa(Loc)) Out << "\\lPostStore\\l"; else if (isa(Loc)) Out << "\\lPostLValue\\l"; #if 0 // FIXME: Replace with a general scheme to determine // the name of the check. if (GraphPrintCheckerState->isImplicitNullDeref(N)) Out << "\\|Implicit-Null Dereference.\\l"; else if (GraphPrintCheckerState->isExplicitNullDeref(N)) Out << "\\|Explicit-Null Dereference.\\l"; else if (GraphPrintCheckerState->isUndefDeref(N)) Out << "\\|Dereference of undefialied value.\\l"; else if (GraphPrintCheckerState->isUndefStore(N)) Out << "\\|Store to Undefined Loc."; else if (GraphPrintCheckerState->isUndefResult(N)) Out << "\\|Result of operation is undefined."; else if (GraphPrintCheckerState->isNoReturnCall(N)) Out << "\\|Call to function marked \"noreturn\"."; else if (GraphPrintCheckerState->isBadCall(N)) Out << "\\|Call to NULL/Undefined."; else if (GraphPrintCheckerState->isUndefArg(N)) Out << "\\|Argument in call is undefined"; #endif break; } const BlockEdge& E = cast(Loc); Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" << E.getDst()->getBlockID() << ')'; if (Stmt* T = E.getSrc()->getTerminator()) { SourceLocation SLoc = T->getLocStart(); Out << "\\|Terminator: "; LangOptions LO; // FIXME. E.getSrc()->printTerminator(Out, LO); if (SLoc.isFileID()) { Out << "\\lline=" << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) << " col=" << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc); } if (isa(T)) { Stmt* Label = E.getDst()->getLabel(); if (Label) { if (CaseStmt* C = dyn_cast(Label)) { Out << "\\lcase "; LangOptions LO; // FIXME. C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO)); if (Stmt* RHS = C->getRHS()) { Out << " .. "; RHS->printPretty(Out, 0, PrintingPolicy(LO)); } Out << ":"; } else { assert (isa(Label)); Out << "\\ldefault:"; } } else Out << "\\l(implicit) default:"; } else if (isa(T)) { // FIXME } else { Out << "\\lCondition: "; if (*E.getSrc()->succ_begin() == E.getDst()) Out << "true"; else Out << "false"; } Out << "\\l"; } #if 0 // FIXME: Replace with a general scheme to determine // the name of the check. if (GraphPrintCheckerState->isUndefControlFlow(N)) { Out << "\\|Control-flow based on\\lUndefined value.\\l"; } #endif } } Out << "\\|StateID: " << (void*) N->getState() << "\\|"; const GRState *state = N->getState(); state->printDOT(Out, *N->getLocationContext()->getCFG()); Out << "\\l"; return Out.str(); } }; } // end llvm namespace #endif #ifndef NDEBUG template ExplodedNode* GetGraphNode(ITERATOR I) { return *I; } template <> ExplodedNode* GetGraphNode::iterator> (llvm::DenseMap::iterator I) { return I->first; } #endif void GRExprEngine::ViewGraph(bool trim) { #ifndef NDEBUG if (trim) { std::vector Src; // Flush any outstanding reports to make sure we cover all the nodes. // This does not cause them to get displayed. for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) const_cast(*I)->FlushReports(BR); // Iterate through the reports and get their nodes. for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) { for (BugType::const_iterator I2=(*I)->begin(), E2=(*I)->end(); I2!=E2; ++I2) { const BugReportEquivClass& EQ = *I2; const BugReport &R = **EQ.begin(); ExplodedNode *N = const_cast(R.getEndNode()); if (N) Src.push_back(N); } } ViewGraph(&Src[0], &Src[0]+Src.size()); } else { GraphPrintCheckerState = this; GraphPrintSourceManager = &getContext().getSourceManager(); llvm::ViewGraph(*G.roots_begin(), "GRExprEngine"); GraphPrintCheckerState = NULL; GraphPrintSourceManager = NULL; } #endif } void GRExprEngine::ViewGraph(ExplodedNode** Beg, ExplodedNode** End) { #ifndef NDEBUG GraphPrintCheckerState = this; GraphPrintSourceManager = &getContext().getSourceManager(); std::auto_ptr TrimmedG(G.Trim(Beg, End).first); if (!TrimmedG.get()) llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n"; else llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedGRExprEngine"); GraphPrintCheckerState = NULL; GraphPrintSourceManager = NULL; #endif }