//= RValues.cpp - Abstract RValues for Path-Sens. Value Tracking -*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines SVal, Loc, and NonLoc, classes that represent // abstract r-values for use with path-sensitive value tracking. // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathSensitive/GRState.h" #include "clang/Basic/IdentifierTable.h" #include "llvm/Support/Streams.h" using namespace clang; using llvm::dyn_cast; using llvm::cast; using llvm::APSInt; //===----------------------------------------------------------------------===// // Symbol iteration within an SVal. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// bool SVal::hasConjuredSymbol() const { if (const nonloc::SymbolVal* SV = dyn_cast(this)) { SymbolRef sym = SV->getSymbol(); if (isa(sym)) return true; } if (const loc::MemRegionVal *RV = dyn_cast(this)) { const MemRegion *R = RV->getRegion(); if (const SymbolicRegion *SR = dyn_cast(R)) { SymbolRef sym = SR->getSymbol(); if (isa(sym)) return true; } else if (const CodeTextRegion *CTR = dyn_cast(R)) { if (CTR->isSymbolic()) { SymbolRef sym = CTR->getSymbol(); if (isa(sym)) return true; } } } return false; } const FunctionDecl* SVal::getAsFunctionDecl() const { if (const loc::MemRegionVal* X = dyn_cast(this)) { const MemRegion* R = X->getRegion(); if (const CodeTextRegion* CTR = R->getAs()) { if (CTR->isDeclared()) return CTR->getDecl(); } } return 0; } /// getAsLocSymbol - If this SVal is a location (subclasses Loc) and /// wraps a symbol, return that SymbolRef. Otherwise return 0. // FIXME: should we consider SymbolRef wrapped in CodeTextRegion? SymbolRef SVal::getAsLocSymbol() const { if (const loc::MemRegionVal *X = dyn_cast(this)) { const MemRegion *R = X->getRegion(); while (R) { // Blast through region views. if (const TypedViewRegion *View = dyn_cast(R)) { R = View->getSuperRegion(); continue; } if (const SymbolicRegion *SymR = dyn_cast(R)) return SymR->getSymbol(); break; } } return 0; } /// getAsSymbol - If this Sval wraps a symbol return that SymbolRef. /// Otherwise return 0. // FIXME: should we consider SymbolRef wrapped in CodeTextRegion? SymbolRef SVal::getAsSymbol() const { if (const nonloc::SymbolVal *X = dyn_cast(this)) return X->getSymbol(); if (const nonloc::SymExprVal *X = dyn_cast(this)) if (SymbolRef Y = dyn_cast(X->getSymbolicExpression())) return Y; return getAsLocSymbol(); } /// getAsSymbolicExpression - If this Sval wraps a symbolic expression then /// return that expression. Otherwise return NULL. const SymExpr *SVal::getAsSymbolicExpression() const { if (const nonloc::SymExprVal *X = dyn_cast(this)) return X->getSymbolicExpression(); return getAsSymbol(); } bool SVal::symbol_iterator::operator==(const symbol_iterator &X) const { return itr == X.itr; } bool SVal::symbol_iterator::operator!=(const symbol_iterator &X) const { return itr != X.itr; } SVal::symbol_iterator::symbol_iterator(const SymExpr *SE) { itr.push_back(SE); while (!isa(itr.back())) expand(); } SVal::symbol_iterator& SVal::symbol_iterator::operator++() { assert(!itr.empty() && "attempting to iterate on an 'end' iterator"); assert(isa(itr.back())); itr.pop_back(); if (!itr.empty()) while (!isa(itr.back())) expand(); return *this; } SymbolRef SVal::symbol_iterator::operator*() { assert(!itr.empty() && "attempting to dereference an 'end' iterator"); return cast(itr.back()); } void SVal::symbol_iterator::expand() { const SymExpr *SE = itr.back(); itr.pop_back(); if (const SymIntExpr *SIE = dyn_cast(SE)) { itr.push_back(SIE->getLHS()); return; } else if (const SymSymExpr *SSE = dyn_cast(SE)) { itr.push_back(SSE->getLHS()); itr.push_back(SSE->getRHS()); return; } assert(false && "unhandled expansion case"); } //===----------------------------------------------------------------------===// // Other Iterators. //===----------------------------------------------------------------------===// nonloc::CompoundVal::iterator nonloc::CompoundVal::begin() const { return getValue()->begin(); } nonloc::CompoundVal::iterator nonloc::CompoundVal::end() const { return getValue()->end(); } //===----------------------------------------------------------------------===// // Useful predicates. //===----------------------------------------------------------------------===// bool SVal::isZeroConstant() const { if (isa(*this)) return cast(*this).getValue() == 0; else if (isa(*this)) return cast(*this).getValue() == 0; else return false; } //===----------------------------------------------------------------------===// // Transfer function dispatch for Non-Locs. //===----------------------------------------------------------------------===// SVal nonloc::ConcreteInt::EvalBinOp(BasicValueFactory& BasicVals, BinaryOperator::Opcode Op, const nonloc::ConcreteInt& R) const { const llvm::APSInt* X = BasicVals.EvaluateAPSInt(Op, getValue(), R.getValue()); if (X) return nonloc::ConcreteInt(*X); else return UndefinedVal(); } // Bitwise-Complement. nonloc::ConcreteInt nonloc::ConcreteInt::EvalComplement(BasicValueFactory& BasicVals) const { return BasicVals.getValue(~getValue()); } // Unary Minus. nonloc::ConcreteInt nonloc::ConcreteInt::EvalMinus(BasicValueFactory& BasicVals, UnaryOperator* U) const { assert (U->getType() == U->getSubExpr()->getType()); assert (U->getType()->isIntegerType()); return BasicVals.getValue(-getValue()); } //===----------------------------------------------------------------------===// // Transfer function dispatch for Locs. //===----------------------------------------------------------------------===// SVal loc::ConcreteInt::EvalBinOp(BasicValueFactory& BasicVals, BinaryOperator::Opcode Op, const loc::ConcreteInt& R) const { assert (Op == BinaryOperator::Add || Op == BinaryOperator::Sub || (Op >= BinaryOperator::LT && Op <= BinaryOperator::NE)); const llvm::APSInt* X = BasicVals.EvaluateAPSInt(Op, getValue(), R.getValue()); if (X) return loc::ConcreteInt(*X); else return UndefinedVal(); } //===----------------------------------------------------------------------===// // Utility methods for constructing SVals. //===----------------------------------------------------------------------===// SVal ValueManager::makeZeroVal(QualType T) { if (Loc::IsLocType(T)) return Loc::MakeNull(BasicVals); if (T->isIntegerType()) return NonLoc::MakeVal(BasicVals, 0, T); // FIXME: Handle floats. // FIXME: Handle structs. return UnknownVal(); } SVal ValueManager::makeZeroArrayIndex() { return nonloc::ConcreteInt(BasicVals.getZeroWithPtrWidth(false)); } //===----------------------------------------------------------------------===// // Utility methods for constructing Non-Locs. //===----------------------------------------------------------------------===// NonLoc ValueManager::makeNonLoc(SymbolRef sym) { return nonloc::SymbolVal(sym); } NonLoc ValueManager::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op, const APSInt& v, QualType T) { // The Environment ensures we always get a persistent APSInt in // BasicValueFactory, so we don't need to get the APSInt from // BasicValueFactory again. assert(!Loc::IsLocType(T)); return nonloc::SymExprVal(SymMgr.getSymIntExpr(lhs, op, v, T)); } NonLoc ValueManager::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op, const SymExpr *rhs, QualType T) { assert(SymMgr.getType(lhs) == SymMgr.getType(rhs)); assert(!Loc::IsLocType(T)); return nonloc::SymExprVal(SymMgr.getSymSymExpr(lhs, op, rhs, T)); } NonLoc NonLoc::MakeIntVal(BasicValueFactory& BasicVals, uint64_t X, bool isUnsigned) { return nonloc::ConcreteInt(BasicVals.getIntValue(X, isUnsigned)); } NonLoc NonLoc::MakeVal(BasicValueFactory& BasicVals, uint64_t X, unsigned BitWidth, bool isUnsigned) { return nonloc::ConcreteInt(BasicVals.getValue(X, BitWidth, isUnsigned)); } NonLoc NonLoc::MakeVal(BasicValueFactory& BasicVals, uint64_t X, QualType T) { return nonloc::ConcreteInt(BasicVals.getValue(X, T)); } NonLoc NonLoc::MakeVal(BasicValueFactory& BasicVals, IntegerLiteral* I) { return nonloc::ConcreteInt(BasicVals.getValue(APSInt(I->getValue(), I->getType()->isUnsignedIntegerType()))); } NonLoc NonLoc::MakeVal(BasicValueFactory& BasicVals, const llvm::APInt& I, bool isUnsigned) { return nonloc::ConcreteInt(BasicVals.getValue(I, isUnsigned)); } NonLoc NonLoc::MakeVal(BasicValueFactory& BasicVals, const llvm::APSInt& I) { return nonloc::ConcreteInt(BasicVals.getValue(I)); } NonLoc NonLoc::MakeIntTruthVal(BasicValueFactory& BasicVals, bool b) { return nonloc::ConcreteInt(BasicVals.getTruthValue(b)); } NonLoc ValueManager::makeTruthVal(bool b, QualType T) { return nonloc::ConcreteInt(BasicVals.getTruthValue(b, T)); } NonLoc NonLoc::MakeCompoundVal(QualType T, llvm::ImmutableList Vals, BasicValueFactory& BasicVals) { return nonloc::CompoundVal(BasicVals.getCompoundValData(T, Vals)); } SVal ValueManager::getRegionValueSymbolVal(const MemRegion* R) { SymbolRef sym = SymMgr.getRegionValueSymbol(R); if (const TypedRegion* TR = dyn_cast(R)) { QualType T = TR->getValueType(SymMgr.getContext()); // If T is of function pointer type, create a CodeTextRegion wrapping a // symbol. if (T->isFunctionPointerType()) { return Loc::MakeVal(MemMgr.getCodeTextRegion(sym, T)); } if (Loc::IsLocType(T)) return Loc::MakeVal(MemMgr.getSymbolicRegion(sym)); // Only handle integers for now. if (T->isIntegerType() && T->isScalarType()) return makeNonLoc(sym); } return UnknownVal(); } SVal ValueManager::getConjuredSymbolVal(const Expr* E, unsigned Count) { QualType T = E->getType(); SymbolRef sym = SymMgr.getConjuredSymbol(E, Count); // If T is of function pointer type, create a CodeTextRegion wrapping a // symbol. if (T->isFunctionPointerType()) { return Loc::MakeVal(MemMgr.getCodeTextRegion(sym, T)); } if (Loc::IsLocType(T)) return Loc::MakeVal(MemMgr.getSymbolicRegion(sym)); if (T->isIntegerType() && T->isScalarType()) return makeNonLoc(sym); return UnknownVal(); } SVal ValueManager::getConjuredSymbolVal(const Expr* E, QualType T, unsigned Count) { SymbolRef sym = SymMgr.getConjuredSymbol(E, T, Count); // If T is of function pointer type, create a CodeTextRegion wrapping a // symbol. if (T->isFunctionPointerType()) { return Loc::MakeVal(MemMgr.getCodeTextRegion(sym, T)); } if (Loc::IsLocType(T)) return Loc::MakeVal(MemMgr.getSymbolicRegion(sym)); if (T->isIntegerType() && T->isScalarType()) return makeNonLoc(sym); return UnknownVal(); } SVal ValueManager::getFunctionPointer(const FunctionDecl* FD) { CodeTextRegion* R = MemMgr.getCodeTextRegion(FD, Context.getPointerType(FD->getType())); return loc::MemRegionVal(R); } nonloc::LocAsInteger nonloc::LocAsInteger::Make(BasicValueFactory& Vals, Loc V, unsigned Bits) { return LocAsInteger(Vals.getPersistentSValWithData(V, Bits)); } //===----------------------------------------------------------------------===// // Utility methods for constructing Locs. //===----------------------------------------------------------------------===// Loc Loc::MakeVal(const MemRegion* R) { return loc::MemRegionVal(R); } Loc Loc::MakeVal(AddrLabelExpr* E) { return loc::GotoLabel(E->getLabel()); } Loc Loc::MakeNull(BasicValueFactory &BasicVals) { return loc::ConcreteInt(BasicVals.getZeroWithPtrWidth()); } //===----------------------------------------------------------------------===// // Pretty-Printing. //===----------------------------------------------------------------------===// void SVal::printStdErr() const { print(llvm::errs()); } void SVal::print(std::ostream& Out) const { llvm::raw_os_ostream out(Out); print(out); } void SVal::print(llvm::raw_ostream& Out) const { switch (getBaseKind()) { case UnknownKind: Out << "Invalid"; break; case NonLocKind: cast(this)->print(Out); break; case LocKind: cast(this)->print(Out); break; case UndefinedKind: Out << "Undefined"; break; default: assert (false && "Invalid SVal."); } } void NonLoc::print(llvm::raw_ostream& Out) const { switch (getSubKind()) { case nonloc::ConcreteIntKind: Out << cast(this)->getValue().getZExtValue(); if (cast(this)->getValue().isUnsigned()) Out << 'U'; break; case nonloc::SymbolValKind: Out << '$' << cast(this)->getSymbol(); break; case nonloc::SymExprValKind: { const nonloc::SymExprVal& C = *cast(this); const SymExpr *SE = C.getSymbolicExpression(); Out << SE; break; } case nonloc::LocAsIntegerKind: { const nonloc::LocAsInteger& C = *cast(this); C.getLoc().print(Out); Out << " [as " << C.getNumBits() << " bit integer]"; break; } case nonloc::CompoundValKind: { const nonloc::CompoundVal& C = *cast(this); Out << " {"; bool first = true; for (nonloc::CompoundVal::iterator I=C.begin(), E=C.end(); I!=E; ++I) { if (first) { Out << ' '; first = false; } else Out << ", "; (*I).print(Out); } Out << " }"; break; } default: assert (false && "Pretty-printed not implemented for this NonLoc."); break; } } void Loc::print(llvm::raw_ostream& Out) const { switch (getSubKind()) { case loc::ConcreteIntKind: Out << cast(this)->getValue().getZExtValue() << " (Loc)"; break; case loc::GotoLabelKind: Out << "&&" << cast(this)->getLabel()->getID()->getName(); break; case loc::MemRegionKind: Out << '&' << cast(this)->getRegion()->getString(); break; default: assert (false && "Pretty-printing not implemented for this Loc."); break; } }