//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a basic region store model. In this model, we do have field // sensitivity. But we assume nothing about the heap shape. So recursive data // structures are largely ignored. Basically we do 1-limiting analysis. // Parameter pointers are assumed with no aliasing. Pointee objects of // parameters are created lazily. // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathSensitive/MemRegion.h" #include "clang/Analysis/PathSensitive/GRState.h" #include "clang/Analysis/PathSensitive/GRStateTrait.h" #include "clang/Analysis/Analyses/LiveVariables.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/ImmutableList.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Compiler.h" using namespace clang; // Actual Store type. typedef llvm::ImmutableMap RegionBindingsTy; //===----------------------------------------------------------------------===// // Region "Views" //===----------------------------------------------------------------------===// // // MemRegions can be layered on top of each other. This GDM entry tracks // what are the MemRegions that layer a given MemRegion. // typedef llvm::ImmutableSet RegionViews; namespace { class VISIBILITY_HIDDEN RegionViewMap {}; } static int RegionViewMapIndex = 0; namespace clang { template<> struct GRStateTrait : public GRStatePartialTrait > { static void* GDMIndex() { return &RegionViewMapIndex; } }; } // RegionCasts records the current cast type of a region. namespace { class VISIBILITY_HIDDEN RegionCasts {}; } static int RegionCastsIndex = 0; namespace clang { template<> struct GRStateTrait : public GRStatePartialTrait > { static void* GDMIndex() { return &RegionCastsIndex; } }; } //===----------------------------------------------------------------------===// // Region "Extents" //===----------------------------------------------------------------------===// // // MemRegions represent chunks of memory with a size (their "extent"). This // GDM entry tracks the extents for regions. Extents are in bytes. // namespace { class VISIBILITY_HIDDEN RegionExtents {}; } static int RegionExtentsIndex = 0; namespace clang { template<> struct GRStateTrait : public GRStatePartialTrait > { static void* GDMIndex() { return &RegionExtentsIndex; } }; } //===----------------------------------------------------------------------===// // Region "killsets". //===----------------------------------------------------------------------===// // // RegionStore lazily adds value bindings to regions when the analyzer handles // assignment statements. Killsets track which default values have been // killed, thus distinguishing between "unknown" values and default // values. Regions are added to killset only when they are assigned "unknown" // directly, otherwise we should have their value in the region bindings. // namespace { class VISIBILITY_HIDDEN RegionKills {}; } static int RegionKillsIndex = 0; namespace clang { template<> struct GRStateTrait : public GRStatePartialTrait< llvm::ImmutableSet > { static void* GDMIndex() { return &RegionKillsIndex; } }; } //===----------------------------------------------------------------------===// // Regions with default values. //===----------------------------------------------------------------------===// // // This GDM entry tracks what regions have a default value if they have no bound // value and have not been killed. // namespace { class VISIBILITY_HIDDEN RegionDefaultValue {}; } static int RegionDefaultValueIndex = 0; namespace clang { template<> struct GRStateTrait : public GRStatePartialTrait > { static void* GDMIndex() { return &RegionDefaultValueIndex; } }; } //===----------------------------------------------------------------------===// // Main RegionStore logic. //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN RegionStoreSubRegionMap : public SubRegionMap { typedef llvm::DenseMap > Map; llvm::ImmutableSet::Factory F; Map M; public: void add(const MemRegion* Parent, const MemRegion* SubRegion) { Map::iterator I = M.find(Parent); M.insert(std::make_pair(Parent, F.Add(I == M.end() ? F.GetEmptySet() : I->second, SubRegion))); } ~RegionStoreSubRegionMap() {} bool iterSubRegions(const MemRegion* Parent, Visitor& V) const { Map::iterator I = M.find(Parent); if (I == M.end()) return true; llvm::ImmutableSet S = I->second; for (llvm::ImmutableSet::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) { if (!V.Visit(Parent, *SI)) return false; } return true; } }; class VISIBILITY_HIDDEN RegionStoreManager : public StoreManager { RegionBindingsTy::Factory RBFactory; RegionViews::Factory RVFactory; const MemRegion* SelfRegion; const ImplicitParamDecl *SelfDecl; public: RegionStoreManager(GRStateManager& mgr) : StoreManager(mgr), RBFactory(mgr.getAllocator()), RVFactory(mgr.getAllocator()), SelfRegion(0), SelfDecl(0) { if (const ObjCMethodDecl* MD = dyn_cast(&StateMgr.getCodeDecl())) SelfDecl = MD->getSelfDecl(); } virtual ~RegionStoreManager() {} SubRegionMap* getSubRegionMap(const GRState *state); const GRState* BindCompoundLiteral(const GRState* St, const CompoundLiteralExpr* CL, SVal V); /// getLValueString - Returns an SVal representing the lvalue of a /// StringLiteral. Within RegionStore a StringLiteral has an /// associated StringRegion, and the lvalue of a StringLiteral is /// the lvalue of that region. SVal getLValueString(const GRState* St, const StringLiteral* S); /// getLValueCompoundLiteral - Returns an SVal representing the /// lvalue of a compound literal. Within RegionStore a compound /// literal has an associated region, and the lvalue of the /// compound literal is the lvalue of that region. SVal getLValueCompoundLiteral(const GRState* St, const CompoundLiteralExpr*); /// getLValueVar - Returns an SVal that represents the lvalue of a /// variable. Within RegionStore a variable has an associated /// VarRegion, and the lvalue of the variable is the lvalue of that region. SVal getLValueVar(const GRState* St, const VarDecl* VD); SVal getLValueIvar(const GRState* St, const ObjCIvarDecl* D, SVal Base); SVal getLValueField(const GRState* St, SVal Base, const FieldDecl* D); SVal getLValueFieldOrIvar(const GRState* St, SVal Base, const Decl* D); SVal getLValueElement(const GRState* St, QualType elementType, SVal Base, SVal Offset); SVal getSizeInElements(const GRState* St, const MemRegion* R); /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by GRExprEngine when evaluating /// casts from arrays to pointers. SVal ArrayToPointer(Loc Array); CastResult CastRegion(const GRState* state, const MemRegion* R, QualType CastToTy); SVal EvalBinOp(const GRState *state,BinaryOperator::Opcode Op,Loc L,NonLoc R); /// The high level logic for this method is this: /// Retrieve (L) /// if L has binding /// return L's binding /// else if L is in killset /// return unknown /// else /// if L is on stack or heap /// return undefined /// else /// return symbolic SVal Retrieve(const GRState* state, Loc L, QualType T = QualType()); const GRState* Bind(const GRState* St, Loc LV, SVal V); Store Remove(Store store, Loc LV); Store getInitialStore() { return RBFactory.GetEmptyMap().getRoot(); } /// getSelfRegion - Returns the region for the 'self' (Objective-C) or /// 'this' object (C++). When used when analyzing a normal function this /// method returns NULL. const MemRegion* getSelfRegion(Store) { if (!SelfDecl) return 0; if (!SelfRegion) { const ObjCMethodDecl *MD = cast(&StateMgr.getCodeDecl()); SelfRegion = MRMgr.getObjCObjectRegion(MD->getClassInterface(), MRMgr.getHeapRegion()); } return SelfRegion; } /// RemoveDeadBindings - Scans the RegionStore of 'state' for dead values. /// It returns a new Store with these values removed, and populates LSymbols // and DSymbols with the known set of live and dead symbols respectively. Store RemoveDeadBindings(const GRState* state, Stmt* Loc, SymbolReaper& SymReaper, llvm::SmallVectorImpl& RegionRoots); const GRState* BindDecl(const GRState* St, const VarDecl* VD, SVal InitVal); const GRState* BindDeclWithNoInit(const GRState* St, const VarDecl* VD) { return St; } const GRState* setExtent(const GRState* St, const MemRegion* R, SVal Extent); const GRState* setCastType(const GRState* St, const MemRegion* R, QualType T); static inline RegionBindingsTy GetRegionBindings(Store store) { return RegionBindingsTy(static_cast(store)); } void print(Store store, std::ostream& Out, const char* nl, const char *sep); void iterBindings(Store store, BindingsHandler& f) { // FIXME: Implement. } const GRState* setDefaultValue(const GRState* St, const MemRegion* R, SVal V); private: const GRState* BindArray(const GRState* St, const TypedRegion* R, SVal V); /// Retrieve the values in a struct and return a CompoundVal, used when doing /// struct copy: /// struct s x, y; /// x = y; /// y's value is retrieved by this method. SVal RetrieveStruct(const GRState* St, const TypedRegion* R); SVal RetrieveArray(const GRState* St, const TypedRegion* R); const GRState* BindStruct(const GRState* St, const TypedRegion* R, SVal V); /// KillStruct - Set the entire struct to unknown. const GRState* KillStruct(const GRState* St, const TypedRegion* R); // Utility methods. BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); } ASTContext& getContext() { return StateMgr.getContext(); } SymbolManager& getSymbolManager() { return StateMgr.getSymbolManager(); } const GRState* AddRegionView(const GRState* St, const MemRegion* View, const MemRegion* Base); const GRState* RemoveRegionView(const GRState* St, const MemRegion* View, const MemRegion* Base); }; } // end anonymous namespace StoreManager* clang::CreateRegionStoreManager(GRStateManager& StMgr) { return new RegionStoreManager(StMgr); } SubRegionMap* RegionStoreManager::getSubRegionMap(const GRState *state) { RegionBindingsTy B = GetRegionBindings(state->getStore()); RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap(); for (RegionBindingsTy::iterator I=B.begin(), E=B.end(); I!=E; ++I) { if (const SubRegion* R = dyn_cast(I.getKey())) M->add(R->getSuperRegion(), R); } return M; } /// getLValueString - Returns an SVal representing the lvalue of a /// StringLiteral. Within RegionStore a StringLiteral has an /// associated StringRegion, and the lvalue of a StringLiteral is the /// lvalue of that region. SVal RegionStoreManager::getLValueString(const GRState* St, const StringLiteral* S) { return loc::MemRegionVal(MRMgr.getStringRegion(S)); } /// getLValueVar - Returns an SVal that represents the lvalue of a /// variable. Within RegionStore a variable has an associated /// VarRegion, and the lvalue of the variable is the lvalue of that region. SVal RegionStoreManager::getLValueVar(const GRState* St, const VarDecl* VD) { return loc::MemRegionVal(MRMgr.getVarRegion(VD)); } /// getLValueCompoundLiteral - Returns an SVal representing the lvalue /// of a compound literal. Within RegionStore a compound literal /// has an associated region, and the lvalue of the compound literal /// is the lvalue of that region. SVal RegionStoreManager::getLValueCompoundLiteral(const GRState* St, const CompoundLiteralExpr* CL) { return loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL)); } SVal RegionStoreManager::getLValueIvar(const GRState* St, const ObjCIvarDecl* D, SVal Base) { return getLValueFieldOrIvar(St, Base, D); } SVal RegionStoreManager::getLValueField(const GRState* St, SVal Base, const FieldDecl* D) { return getLValueFieldOrIvar(St, Base, D); } SVal RegionStoreManager::getLValueFieldOrIvar(const GRState* St, SVal Base, const Decl* D) { if (Base.isUnknownOrUndef()) return Base; Loc BaseL = cast(Base); const MemRegion* BaseR = 0; switch (BaseL.getSubKind()) { case loc::MemRegionKind: BaseR = cast(BaseL).getRegion(); break; case loc::GotoLabelKind: // These are anormal cases. Flag an undefined value. return UndefinedVal(); case loc::ConcreteIntKind: // While these seem funny, this can happen through casts. // FIXME: What we should return is the field offset. For example, // add the field offset to the integer value. That way funny things // like this work properly: &(((struct foo *) 0xa)->f) return Base; default: assert(0 && "Unhandled Base."); return Base; } // NOTE: We must have this check first because ObjCIvarDecl is a subclass // of FieldDecl. if (const ObjCIvarDecl *ID = dyn_cast(D)) return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR)); return loc::MemRegionVal(MRMgr.getFieldRegion(cast(D), BaseR)); } SVal RegionStoreManager::getLValueElement(const GRState* St, QualType elementType, SVal Base, SVal Offset) { // If the base is an unknown or undefined value, just return it back. // FIXME: For absolute pointer addresses, we just return that value back as // well, although in reality we should return the offset added to that // value. if (Base.isUnknownOrUndef() || isa(Base)) return Base; // Only handle integer offsets... for now. if (!isa(Offset)) return UnknownVal(); const MemRegion* BaseRegion = cast(Base).getRegion(); // Pointer of any type can be cast and used as array base. const ElementRegion *ElemR = dyn_cast(BaseRegion); if (!ElemR) { // // If the base region is not an ElementRegion, create one. // This can happen in the following example: // // char *p = __builtin_alloc(10); // p[1] = 8; // // Observe that 'p' binds to an AllocaRegion. // // Offset might be unsigned. We have to convert it to signed ConcreteInt. if (nonloc::ConcreteInt* CI = dyn_cast(&Offset)) { const llvm::APSInt& OffI = CI->getValue(); if (OffI.isUnsigned()) { llvm::APSInt Tmp = OffI; Tmp.setIsSigned(true); Offset = NonLoc::MakeVal(getBasicVals(), Tmp); } } return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset, BaseRegion)); } SVal BaseIdx = ElemR->getIndex(); if (!isa(BaseIdx)) return UnknownVal(); const llvm::APSInt& BaseIdxI = cast(BaseIdx).getValue(); const llvm::APSInt& OffI = cast(Offset).getValue(); assert(BaseIdxI.isSigned()); // FIXME: This appears to be the assumption of this code. We should review // whether or not BaseIdxI.getBitWidth() < OffI.getBitWidth(). If it // can't we need to put a comment here. If it can, we should handle it. assert(BaseIdxI.getBitWidth() >= OffI.getBitWidth()); const MemRegion *ArrayR = ElemR->getSuperRegion(); SVal NewIdx; if (OffI.isUnsigned() || OffI.getBitWidth() < BaseIdxI.getBitWidth()) { // 'Offset' might be unsigned. We have to convert it to signed and // possibly extend it. llvm::APSInt Tmp = OffI; if (OffI.getBitWidth() < BaseIdxI.getBitWidth()) Tmp.extend(BaseIdxI.getBitWidth()); Tmp.setIsSigned(true); Tmp += BaseIdxI; // Compute the new offset. NewIdx = NonLoc::MakeVal(getBasicVals(), Tmp); } else NewIdx = nonloc::ConcreteInt(getBasicVals().getValue(BaseIdxI + OffI)); return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR)); } SVal RegionStoreManager::getSizeInElements(const GRState* St, const MemRegion* R) { if (const VarRegion* VR = dyn_cast(R)) { // Get the type of the variable. QualType T = VR->getDesugaredValueType(getContext()); // FIXME: Handle variable-length arrays. if (isa(T)) return UnknownVal(); if (const ConstantArrayType* CAT = dyn_cast(T)) { // return the size as signed integer. return NonLoc::MakeVal(getBasicVals(), CAT->getSize(), false); } GRStateRef state(St, StateMgr); const QualType* CastTy = state.get(VR); // If the VarRegion is cast to other type, compute the size with respect to // that type. if (CastTy) { QualType EleTy =cast(CastTy->getTypePtr())->getPointeeType(); QualType VarTy = VR->getValueType(getContext()); uint64_t EleSize = getContext().getTypeSize(EleTy); uint64_t VarSize = getContext().getTypeSize(VarTy); return NonLoc::MakeIntVal(getBasicVals(), VarSize / EleSize, false); } // Clients can use ordinary variables as if they were arrays. These // essentially are arrays of size 1. return NonLoc::MakeIntVal(getBasicVals(), 1, false); } if (const StringRegion* SR = dyn_cast(R)) { const StringLiteral* Str = SR->getStringLiteral(); // We intentionally made the size value signed because it participates in // operations with signed indices. return NonLoc::MakeIntVal(getBasicVals(), Str->getByteLength()+1, false); } if (const FieldRegion* FR = dyn_cast(R)) { // FIXME: Unsupported yet. FR = 0; return UnknownVal(); } if (isa(R)) { return UnknownVal(); } if (isa(R)) { return UnknownVal(); } if (isa(R)) { return UnknownVal(); } assert(0 && "Other regions are not supported yet."); return UnknownVal(); } /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by GRExprEngine when evaluating casts /// from arrays to pointers. SVal RegionStoreManager::ArrayToPointer(Loc Array) { if (!isa(Array)) return UnknownVal(); const MemRegion* R = cast(&Array)->getRegion(); const TypedRegion* ArrayR = dyn_cast(R); if (!ArrayR) return UnknownVal(); // Strip off typedefs from the ArrayRegion's ValueType. QualType T = ArrayR->getValueType(getContext())->getDesugaredType(); ArrayType *AT = cast(T); T = AT->getElementType(); nonloc::ConcreteInt Idx(getBasicVals().getZeroWithPtrWidth(false)); ElementRegion* ER = MRMgr.getElementRegion(T, Idx, ArrayR); return loc::MemRegionVal(ER); } RegionStoreManager::CastResult RegionStoreManager::CastRegion(const GRState* state, const MemRegion* R, QualType CastToTy) { ASTContext& Ctx = StateMgr.getContext(); // We need to know the real type of CastToTy. QualType ToTy = Ctx.getCanonicalType(CastToTy); // Check cast to ObjCQualifiedID type. if (isa(ToTy)) { // FIXME: Record the type information aside. return CastResult(state, R); } // CodeTextRegion should be cast to only function pointer type. if (isa(R)) { assert(CastToTy->isFunctionPointerType() || CastToTy->isBlockPointerType()); return CastResult(state, R); } // Now assume we are casting from pointer to pointer. Other cases should // already be handled. QualType PointeeTy = cast(ToTy.getTypePtr())->getPointeeType(); // Process region cast according to the kind of the region being cast. // FIXME: Need to handle arbitrary downcasts. if (isa(R) || isa(R)) { state = setCastType(state, R, ToTy); return CastResult(state, R); } // VarRegion, ElementRegion, and FieldRegion has an inherent type. Normally // they should not be cast. We only layer an ElementRegion when the cast-to // pointee type is of smaller size. In other cases, we return the original // VarRegion. if (isa(R) || isa(R) || isa(R) || isa(R) || isa(R)) { // If the pointee type is incomplete, do not compute its size, and return // the original region. if (const RecordType *RT = dyn_cast(PointeeTy.getTypePtr())) { const RecordDecl *D = RT->getDecl(); if (!D->getDefinition(getContext())) return CastResult(state, R); } QualType ObjTy = cast(R)->getValueType(getContext()); uint64_t PointeeTySize = getContext().getTypeSize(PointeeTy); uint64_t ObjTySize = getContext().getTypeSize(ObjTy); if ((PointeeTySize > 0 && PointeeTySize < ObjTySize) || (ObjTy->isAggregateType() && PointeeTy->isScalarType())) { // Record the cast type of the region. state = setCastType(state, R, ToTy); SVal Idx = ValMgr.makeZeroArrayIndex(); ElementRegion* ER = MRMgr.getElementRegion(PointeeTy, Idx, R); return CastResult(state, ER); } else return CastResult(state, R); } if (isa(R)) { return CastResult(state, R); } assert(0 && "Unprocessed region."); return 0; } SVal RegionStoreManager::EvalBinOp(const GRState *state, BinaryOperator::Opcode Op, Loc L, NonLoc R) { // Assume the base location is MemRegionVal. if (!isa(L)) return UnknownVal(); const MemRegion* MR = cast(L).getRegion(); const ElementRegion *ER = 0; // If the operand is a symbolic or alloca region, create the first element // region on it. if (const SymbolicRegion *SR = dyn_cast(MR)) { // Get symbol's type. It should be a pointer type. SymbolRef Sym = SR->getSymbol(); QualType T = Sym->getType(getContext()); QualType EleTy = cast(T.getTypePtr())->getPointeeType(); SVal ZeroIdx = ValMgr.makeZeroArrayIndex(); ER = MRMgr.getElementRegion(EleTy, ZeroIdx, SR); } else if (const AllocaRegion *AR = dyn_cast(MR)) { // Get the alloca region's current cast type. GRStateRef StRef(state, StateMgr); GRStateTrait::lookup_type T = StRef.get(AR); assert(T && "alloca region has no type."); QualType EleTy = cast(T->getTypePtr())->getPointeeType(); SVal ZeroIdx = ValMgr.makeZeroArrayIndex(); ER = MRMgr.getElementRegion(EleTy, ZeroIdx, AR); } else ER = cast(MR); SVal Idx = ER->getIndex(); nonloc::ConcreteInt* Base = dyn_cast(&Idx); nonloc::ConcreteInt* Offset = dyn_cast(&R); // Only support concrete integer indexes for now. if (Base && Offset) { // FIXME: For now, convert the signedness and bitwidth of offset in case // they don't match. This can result from pointer arithmetic. In reality, // we should figure out what are the proper semantics and implement them. // // This addresses the test case test/Analysis/ptr-arith.c // nonloc::ConcreteInt OffConverted(getBasicVals().Convert(Base->getValue(), Offset->getValue())); SVal NewIdx = Base->EvalBinOp(getBasicVals(), Op, OffConverted); const MemRegion* NewER = MRMgr.getElementRegion(ER->getElementType(), NewIdx,ER->getSuperRegion()); return Loc::MakeVal(NewER); } return UnknownVal(); } SVal RegionStoreManager::Retrieve(const GRState* St, Loc L, QualType T) { assert(!isa(L) && "location unknown"); assert(!isa(L) && "location undefined"); // FIXME: Is this even possible? Shouldn't this be treated as a null // dereference at a higher level? if (isa(L)) return UndefinedVal(); const MemRegion* MR = cast(L).getRegion(); // FIXME: return symbolic value for these cases. // Example: // void f(int* p) { int x = *p; } // char* p = alloca(); // read(p); // c = *p; if (isa(MR) || isa(MR)) return UnknownVal(); // FIXME: Perhaps this method should just take a 'const MemRegion*' argument // instead of 'Loc', and have the other Loc cases handled at a higher level. const TypedRegion* R = cast(MR); assert(R && "bad region"); // FIXME: We should eventually handle funny addressing. e.g.: // // int x = ...; // int *p = &x; // char *q = (char*) p; // char c = *q; // returns the first byte of 'x'. // // Such funny addressing will occur due to layering of regions. QualType RTy = R->getValueType(getContext()); if (RTy->isStructureType()) return RetrieveStruct(St, R); if (RTy->isArrayType()) return RetrieveArray(St, R); // FIXME: handle Vector types. if (RTy->isVectorType()) return UnknownVal(); RegionBindingsTy B = GetRegionBindings(St->getStore()); RegionBindingsTy::data_type* V = B.lookup(R); // Check if the region has a binding. if (V) return *V; GRStateRef state(St, StateMgr); // Check if the region is in killset. if (state.contains(R)) return UnknownVal(); // Check if the region is an element region of a string literal. if (const ElementRegion *ER = dyn_cast(R)) { if (const StringRegion *StrR=dyn_cast(ER->getSuperRegion())) { const StringLiteral *Str = StrR->getStringLiteral(); SVal Idx = ER->getIndex(); if (nonloc::ConcreteInt *CI = dyn_cast(&Idx)) { int64_t i = CI->getValue().getSExtValue(); char c; if (i == Str->getByteLength()) c = '\0'; else c = Str->getStrData()[i]; const llvm::APSInt &V = getBasicVals().getValue(c, getContext().CharTy); return nonloc::ConcreteInt(V); } } } // If the region is an element or field, it may have a default value. if (isa(R) || isa(R)) { const MemRegion* SuperR = cast(R)->getSuperRegion(); GRStateTrait::lookup_type D = state.get(SuperR); if (D) { // If the default value is symbolic, we need to create a new symbol. if (D->hasConjuredSymbol()) return ValMgr.getRegionValueSymbolVal(R); else return *D; } } if (const ObjCIvarRegion *IVR = dyn_cast(R)) { const MemRegion *SR = IVR->getSuperRegion(); // If the super region is 'self' then return the symbol representing // the value of the ivar upon entry to the method. if (SR == SelfRegion) { // FIXME: Do we need to handle the case where the super region // has a view? We want to canonicalize the bindings. return ValMgr.getRegionValueSymbolVal(R); } // Otherwise, we need a new symbol. For now return Unknown. return UnknownVal(); } // The location does not have a bound value. This means that it has // the value it had upon its creation and/or entry to the analyzed // function/method. These are either symbolic values or 'undefined'. // We treat function parameters as symbolic values. if (const VarRegion* VR = dyn_cast(R)) { const VarDecl *VD = VR->getDecl(); if (VD == SelfDecl) return loc::MemRegionVal(getSelfRegion(0)); if (isa(VD) || isa(VD) || VD->hasGlobalStorage()) { QualType VTy = VD->getType(); if (Loc::IsLocType(VTy) || VTy->isIntegerType()) return ValMgr.getRegionValueSymbolVal(VR); else return UnknownVal(); } } if (MRMgr.onStack(R) || MRMgr.onHeap(R)) { // All stack variables are considered to have undefined values // upon creation. All heap allocated blocks are considered to // have undefined values as well unless they are explicitly bound // to specific values. return UndefinedVal(); } // All other integer values are symbolic. if (Loc::IsLocType(RTy) || RTy->isIntegerType()) return ValMgr.getRegionValueSymbolVal(R); else return UnknownVal(); } SVal RegionStoreManager::RetrieveStruct(const GRState* St,const TypedRegion* R){ QualType T = R->getValueType(getContext()); assert(T->isStructureType()); const RecordType* RT = cast(T.getTypePtr()); RecordDecl* RD = RT->getDecl(); assert(RD->isDefinition()); llvm::ImmutableList StructVal = getBasicVals().getEmptySValList(); std::vector Fields(RD->field_begin(getContext()), RD->field_end(getContext())); for (std::vector::reverse_iterator Field = Fields.rbegin(), FieldEnd = Fields.rend(); Field != FieldEnd; ++Field) { FieldRegion* FR = MRMgr.getFieldRegion(*Field, R); QualType FTy = (*Field)->getType(); SVal FieldValue = Retrieve(St, loc::MemRegionVal(FR), FTy); StructVal = getBasicVals().consVals(FieldValue, StructVal); } return NonLoc::MakeCompoundVal(T, StructVal, getBasicVals()); } SVal RegionStoreManager::RetrieveArray(const GRState* St, const TypedRegion* R){ QualType T = R->getValueType(getContext()); ConstantArrayType* CAT = cast(T.getTypePtr()); llvm::ImmutableList ArrayVal = getBasicVals().getEmptySValList(); llvm::APSInt Size(CAT->getSize(), false); llvm::APSInt i = getBasicVals().getZeroWithPtrWidth(false); for (; i < Size; ++i) { SVal Idx = NonLoc::MakeVal(getBasicVals(), i); ElementRegion* ER = MRMgr.getElementRegion(CAT->getElementType(), Idx, R); QualType ETy = ER->getElementType(); SVal ElementVal = Retrieve(St, loc::MemRegionVal(ER), ETy); ArrayVal = getBasicVals().consVals(ElementVal, ArrayVal); } return NonLoc::MakeCompoundVal(T, ArrayVal, getBasicVals()); } const GRState* RegionStoreManager::Bind(const GRState* St, Loc L, SVal V) { // If we get here, the location should be a region. const MemRegion* R = cast(L).getRegion(); assert(R); // Check if the region is a struct region. if (const TypedRegion* TR = dyn_cast(R)) if (TR->getValueType(getContext())->isStructureType()) return BindStruct(St, TR, V); Store store = St->getStore(); RegionBindingsTy B = GetRegionBindings(store); if (V.isUnknown()) { // Remove the binding. store = RBFactory.Remove(B, R).getRoot(); // Add the region to the killset. GRStateRef state(St, StateMgr); St = state.add(R); } else store = RBFactory.Add(B, R, V).getRoot(); return StateMgr.MakeStateWithStore(St, store); } Store RegionStoreManager::Remove(Store store, Loc L) { const MemRegion* R = 0; if (isa(L)) R = cast(L).getRegion(); if (R) { RegionBindingsTy B = GetRegionBindings(store); return RBFactory.Remove(B, R).getRoot(); } return store; } const GRState* RegionStoreManager::BindDecl(const GRState* St, const VarDecl* VD, SVal InitVal) { QualType T = VD->getType(); VarRegion* VR = MRMgr.getVarRegion(VD); if (T->isArrayType()) return BindArray(St, VR, InitVal); if (T->isStructureType()) return BindStruct(St, VR, InitVal); return Bind(St, Loc::MakeVal(VR), InitVal); } // FIXME: this method should be merged into Bind(). const GRState* RegionStoreManager::BindCompoundLiteral(const GRState* St, const CompoundLiteralExpr* CL, SVal V) { CompoundLiteralRegion* R = MRMgr.getCompoundLiteralRegion(CL); return Bind(St, loc::MemRegionVal(R), V); } const GRState* RegionStoreManager::setExtent(const GRState* St, const MemRegion* R, SVal Extent) { GRStateRef state(St, StateMgr); return state.set(R, Extent); } static void UpdateLiveSymbols(SVal X, SymbolReaper& SymReaper) { if (loc::MemRegionVal *XR = dyn_cast(&X)) { const MemRegion *R = XR->getRegion(); while (R) { if (const SymbolicRegion *SR = dyn_cast(R)) { SymReaper.markLive(SR->getSymbol()); return; } if (const SubRegion *SR = dyn_cast(R)) { R = SR->getSuperRegion(); continue; } break; } return; } for (SVal::symbol_iterator SI=X.symbol_begin(), SE=X.symbol_end();SI!=SE;++SI) SymReaper.markLive(*SI); } Store RegionStoreManager::RemoveDeadBindings(const GRState* state, Stmt* Loc, SymbolReaper& SymReaper, llvm::SmallVectorImpl& RegionRoots) { Store store = state->getStore(); RegionBindingsTy B = GetRegionBindings(store); // Lazily constructed backmap from MemRegions to SubRegions. typedef llvm::ImmutableSet SubRegionsTy; typedef llvm::ImmutableMap SubRegionsMapTy; // FIXME: As a future optimization we can modifiy BumpPtrAllocator to have // the ability to reuse memory. This way we can keep TmpAlloc around as // an instance variable of RegionStoreManager (avoiding repeated malloc // overhead). llvm::BumpPtrAllocator TmpAlloc; // Factory objects. SubRegionsMapTy::Factory SubRegMapF(TmpAlloc); SubRegionsTy::Factory SubRegF(TmpAlloc); // The backmap from regions to subregions. SubRegionsMapTy SubRegMap = SubRegMapF.GetEmptyMap(); // Do a pass over the regions in the store. For VarRegions we check if // the variable is still live and if so add it to the list of live roots. // For other regions we populate our region backmap. llvm::SmallVector IntermediateRoots; for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { IntermediateRoots.push_back(I.getKey()); } while (!IntermediateRoots.empty()) { const MemRegion* R = IntermediateRoots.back(); IntermediateRoots.pop_back(); if (const VarRegion* VR = dyn_cast(R)) { if (SymReaper.isLive(Loc, VR->getDecl())) RegionRoots.push_back(VR); // This is a live "root". } else if (const SymbolicRegion* SR = dyn_cast(R)) { if (SymReaper.isLive(SR->getSymbol())) RegionRoots.push_back(SR); } else { // Get the super region for R. const MemRegion* SuperR = cast(R)->getSuperRegion(); // Get the current set of subregions for SuperR. const SubRegionsTy* SRptr = SubRegMap.lookup(SuperR); SubRegionsTy SRs = SRptr ? *SRptr : SubRegF.GetEmptySet(); // Add R to the subregions of SuperR. SubRegMap = SubRegMapF.Add(SubRegMap, SuperR, SubRegF.Add(SRs, R)); // Super region may be VarRegion or subregion of another VarRegion. Add it // to the work list. if (isa(SuperR)) IntermediateRoots.push_back(SuperR); } } // Process the worklist of RegionRoots. This performs a "mark-and-sweep" // of the store. We want to find all live symbols and dead regions. llvm::SmallPtrSet Marked; while (!RegionRoots.empty()) { // Dequeue the next region on the worklist. const MemRegion* R = RegionRoots.back(); RegionRoots.pop_back(); // Check if we have already processed this region. if (Marked.count(R)) continue; // Mark this region as processed. This is needed for termination in case // a region is referenced more than once. Marked.insert(R); // Mark the symbol for any live SymbolicRegion as "live". This means we // should continue to track that symbol. if (const SymbolicRegion* SymR = dyn_cast(R)) SymReaper.markLive(SymR->getSymbol()); // Get the data binding for R (if any). RegionBindingsTy::data_type* Xptr = B.lookup(R); if (Xptr) { SVal X = *Xptr; UpdateLiveSymbols(X, SymReaper); // Update the set of live symbols. // If X is a region, then add it the RegionRoots. if (loc::MemRegionVal* RegionX = dyn_cast(&X)) RegionRoots.push_back(RegionX->getRegion()); } // Get the subregions of R. These are RegionRoots as well since they // represent values that are also bound to R. const SubRegionsTy* SRptr = SubRegMap.lookup(R); if (!SRptr) continue; SubRegionsTy SR = *SRptr; for (SubRegionsTy::iterator I=SR.begin(), E=SR.end(); I!=E; ++I) RegionRoots.push_back(*I); } // We have now scanned the store, marking reachable regions and symbols // as live. We now remove all the regions that are dead from the store // as well as update DSymbols with the set symbols that are now dead. for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { const MemRegion* R = I.getKey(); // If this region live? Is so, none of its symbols are dead. if (Marked.count(R)) continue; // Remove this dead region from the store. store = Remove(store, Loc::MakeVal(R)); // Mark all non-live symbols that this region references as dead. if (const SymbolicRegion* SymR = dyn_cast(R)) SymReaper.maybeDead(SymR->getSymbol()); SVal X = I.getData(); SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end(); for (; SI != SE; ++SI) SymReaper.maybeDead(*SI); } return store; } void RegionStoreManager::print(Store store, std::ostream& Out, const char* nl, const char *sep) { llvm::raw_os_ostream OS(Out); RegionBindingsTy B = GetRegionBindings(store); OS << "Store:" << nl; for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { OS << ' '; I.getKey()->print(OS); OS << " : "; I.getData().print(OS); OS << nl; } } const GRState* RegionStoreManager::BindArray(const GRState* St, const TypedRegion* R, SVal Init) { QualType T = R->getValueType(getContext()); assert(T->isArrayType()); // When we are binding the whole array, it always has default value 0. GRStateRef state(St, StateMgr); St = state.set(R, NonLoc::MakeIntVal(getBasicVals(), 0, false)); ConstantArrayType* CAT = cast(T.getTypePtr()); llvm::APSInt Size(CAT->getSize(), false); llvm::APSInt i = getBasicVals().getValue(0, Size.getBitWidth(), Size.isUnsigned()); // Check if the init expr is a StringLiteral. if (isa(Init)) { const MemRegion* InitR = cast(Init).getRegion(); const StringLiteral* S = cast(InitR)->getStringLiteral(); const char* str = S->getStrData(); unsigned len = S->getByteLength(); unsigned j = 0; // Copy bytes from the string literal into the target array. Trailing bytes // in the array that are not covered by the string literal are initialized // to zero. for (; i < Size; ++i, ++j) { if (j >= len) break; SVal Idx = NonLoc::MakeVal(getBasicVals(), i); ElementRegion* ER = MRMgr.getElementRegion(cast(T)->getElementType(), Idx, R); SVal V = NonLoc::MakeVal(getBasicVals(), str[j], sizeof(char)*8, true); St = Bind(St, loc::MemRegionVal(ER), V); } return St; } nonloc::CompoundVal& CV = cast(Init); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); for (; i < Size; ++i, ++VI) { // The init list might be shorter than the array decl. if (VI == VE) break; SVal Idx = NonLoc::MakeVal(getBasicVals(), i); ElementRegion* ER = MRMgr.getElementRegion(cast(T)->getElementType(), Idx, R); if (CAT->getElementType()->isStructureType()) St = BindStruct(St, ER, *VI); else St = Bind(St, Loc::MakeVal(ER), *VI); } return St; } const GRState* RegionStoreManager::BindStruct(const GRState* St, const TypedRegion* R, SVal V){ QualType T = R->getValueType(getContext()); assert(T->isStructureType()); const RecordType* RT = T->getAsRecordType(); RecordDecl* RD = RT->getDecl(); if (!RD->isDefinition()) return St; if (V.isUnknown()) return KillStruct(St, R); nonloc::CompoundVal& CV = cast(V); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); RecordDecl::field_iterator FI = RD->field_begin(getContext()), FE = RD->field_end(getContext()); for (; FI != FE; ++FI, ++VI) { // There may be fewer values than fields only when we are initializing a // struct decl. In this case, mark the region as having default value. if (VI == VE) { GRStateRef state(St, StateMgr); const NonLoc& Idx = NonLoc::MakeIntVal(getBasicVals(), 0, false); St = state.set(R, Idx); break; } QualType FTy = (*FI)->getType(); FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); if (Loc::IsLocType(FTy) || FTy->isIntegerType()) St = Bind(St, Loc::MakeVal(FR), *VI); else if (FTy->isArrayType()) St = BindArray(St, FR, *VI); else if (FTy->isStructureType()) St = BindStruct(St, FR, *VI); } return St; } const GRState* RegionStoreManager::KillStruct(const GRState* St, const TypedRegion* R){ GRStateRef state(St, StateMgr); // Kill the struct region because it is assigned "unknown". St = state.add(R); // Set the default value of the struct region to "unknown". St = state.set(R, UnknownVal()); Store store = St->getStore(); RegionBindingsTy B = GetRegionBindings(store); // Remove all bindings for the subregions of the struct. for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { const MemRegion* r = I.getKey(); if (const SubRegion* sr = dyn_cast(r)) if (sr->isSubRegionOf(R)) store = Remove(store, Loc::MakeVal(sr)); // FIXME: Maybe we should also remove the bindings for the "views" of the // subregions. } return StateMgr.MakeStateWithStore(St, store); } const GRState* RegionStoreManager::AddRegionView(const GRState* St, const MemRegion* View, const MemRegion* Base) { GRStateRef state(St, StateMgr); // First, retrieve the region view of the base region. const RegionViews* d = state.get(Base); RegionViews L = d ? *d : RVFactory.GetEmptySet(); // Now add View to the region view. L = RVFactory.Add(L, View); // Create a new state with the new region view. return state.set(Base, L); } const GRState* RegionStoreManager::RemoveRegionView(const GRState* St, const MemRegion* View, const MemRegion* Base) { GRStateRef state(St, StateMgr); // Retrieve the region view of the base region. const RegionViews* d = state.get(Base); // If the base region has no view, return. if (!d) return St; // Remove the view. RegionViews V = *d; V = RVFactory.Remove(V, View); return state.set(Base, V); } const GRState* RegionStoreManager::setCastType(const GRState* St, const MemRegion* R, QualType T) { GRStateRef state(St, StateMgr); return state.set(R, T); } const GRState* RegionStoreManager::setDefaultValue(const GRState* St, const MemRegion* R, SVal V) { GRStateRef state(St, StateMgr); return state.set(R, V); }