//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a basic region store model. In this model, we do have field // sensitivity. But we assume nothing about the heap shape. So recursive data // structures are largely ignored. Basically we do 1-limiting analysis. // Parameter pointers are assumed with no aliasing. Pointee objects of // parameters are created lazily. // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathSensitive/MemRegion.h" #include "clang/Analysis/PathSensitive/AnalysisContext.h" #include "clang/Analysis/PathSensitive/GRState.h" #include "clang/Analysis/PathSensitive/GRStateTrait.h" #include "clang/Analysis/Analyses/LiveVariables.h" #include "clang/Analysis/Support/Optional.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/ImmutableList.h" #include "llvm/Support/raw_ostream.h" using namespace clang; #define HEAP_UNDEFINED 0 #define USE_EXPLICIT_COMPOUND 0 namespace { class BindingVal { public: enum BindingKind { Direct, Default }; private: SVal Value; BindingKind Kind; public: BindingVal(SVal V, BindingKind K) : Value(V), Kind(K) {} bool isDefault() const { return Kind == Default; } const SVal *getValue() const { return &Value; } const SVal *getDirectValue() const { return isDefault() ? 0 : &Value; } const SVal *getDefaultValue() const { return isDefault() ? &Value : 0; } void Profile(llvm::FoldingSetNodeID& ID) const { Value.Profile(ID); ID.AddInteger(Kind); } inline bool operator==(const BindingVal& R) const { return Value == R.Value && Kind == R.Kind; } inline bool operator!=(const BindingVal& R) const { return !(*this == R); } }; } namespace llvm { static inline llvm::raw_ostream& operator<<(llvm::raw_ostream& os, BindingVal V) { if (V.isDefault()) os << "(default) "; else os << "(direct) "; os << *V.getValue(); return os; } } // end llvm namespace // Actual Store type. typedef llvm::ImmutableMap RegionBindings; //===----------------------------------------------------------------------===// // Fine-grained control of RegionStoreManager. //===----------------------------------------------------------------------===// namespace { struct minimal_features_tag {}; struct maximal_features_tag {}; class RegionStoreFeatures { bool SupportsFields; bool SupportsRemaining; public: RegionStoreFeatures(minimal_features_tag) : SupportsFields(false), SupportsRemaining(false) {} RegionStoreFeatures(maximal_features_tag) : SupportsFields(true), SupportsRemaining(false) {} void enableFields(bool t) { SupportsFields = t; } bool supportsFields() const { return SupportsFields; } bool supportsRemaining() const { return SupportsRemaining; } }; } //===----------------------------------------------------------------------===// // Region "Extents" //===----------------------------------------------------------------------===// // // MemRegions represent chunks of memory with a size (their "extent"). This // GDM entry tracks the extents for regions. Extents are in bytes. // namespace { class RegionExtents {}; } static int RegionExtentsIndex = 0; namespace clang { template<> struct GRStateTrait : public GRStatePartialTrait > { static void* GDMIndex() { return &RegionExtentsIndex; } }; } //===----------------------------------------------------------------------===// // Utility functions. //===----------------------------------------------------------------------===// static bool IsAnyPointerOrIntptr(QualType ty, ASTContext &Ctx) { if (ty->isAnyPointerType()) return true; return ty->isIntegerType() && ty->isScalarType() && Ctx.getTypeSize(ty) == Ctx.getTypeSize(Ctx.VoidPtrTy); } //===----------------------------------------------------------------------===// // Main RegionStore logic. //===----------------------------------------------------------------------===// namespace { class RegionStoreSubRegionMap : public SubRegionMap { typedef llvm::ImmutableSet SetTy; typedef llvm::DenseMap Map; SetTy::Factory F; Map M; public: bool add(const MemRegion* Parent, const MemRegion* SubRegion) { Map::iterator I = M.find(Parent); if (I == M.end()) { M.insert(std::make_pair(Parent, F.Add(F.GetEmptySet(), SubRegion))); return true; } I->second = F.Add(I->second, SubRegion); return false; } void process(llvm::SmallVectorImpl &WL, const SubRegion *R); ~RegionStoreSubRegionMap() {} bool iterSubRegions(const MemRegion* Parent, Visitor& V) const { Map::const_iterator I = M.find(Parent); if (I == M.end()) return true; llvm::ImmutableSet S = I->second; for (llvm::ImmutableSet::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) { if (!V.Visit(Parent, *SI)) return false; } return true; } typedef SetTy::iterator iterator; std::pair begin_end(const MemRegion *R) { Map::iterator I = M.find(R); SetTy S = I == M.end() ? F.GetEmptySet() : I->second; return std::make_pair(S.begin(), S.end()); } }; class RegionStoreManager : public StoreManager { const RegionStoreFeatures Features; RegionBindings::Factory RBFactory; typedef llvm::DenseMap SMCache; SMCache SC; public: RegionStoreManager(GRStateManager& mgr, const RegionStoreFeatures &f) : StoreManager(mgr), Features(f), RBFactory(mgr.getAllocator()) {} virtual ~RegionStoreManager() { for (SMCache::iterator I = SC.begin(), E = SC.end(); I != E; ++I) delete (*I).second; } SubRegionMap *getSubRegionMap(const GRState *state); RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store); Optional getBinding(RegionBindings B, const MemRegion *R); Optional getDirectBinding(RegionBindings B, const MemRegion *R); /// getDefaultBinding - Returns an SVal* representing an optional default /// binding associated with a region and its subregions. Optional getDefaultBinding(RegionBindings B, const MemRegion *R); /// setImplicitDefaultValue - Set the default binding for the provided /// MemRegion to the value implicitly defined for compound literals when /// the value is not specified. const GRState *setImplicitDefaultValue(const GRState *state, const MemRegion *R, QualType T); /// getLValueString - Returns an SVal representing the lvalue of a /// StringLiteral. Within RegionStore a StringLiteral has an /// associated StringRegion, and the lvalue of a StringLiteral is /// the lvalue of that region. SVal getLValueString(const StringLiteral* S); /// getLValueCompoundLiteral - Returns an SVal representing the /// lvalue of a compound literal. Within RegionStore a compound /// literal has an associated region, and the lvalue of the /// compound literal is the lvalue of that region. SVal getLValueCompoundLiteral(const CompoundLiteralExpr*); /// getLValueVar - Returns an SVal that represents the lvalue of a /// variable. Within RegionStore a variable has an associated /// VarRegion, and the lvalue of the variable is the lvalue of that region. SVal getLValueVar(const VarDecl *VD, const LocationContext *LC); SVal getLValueIvar(const ObjCIvarDecl* D, SVal Base); SVal getLValueField(const FieldDecl* D, SVal Base); SVal getLValueFieldOrIvar(const Decl* D, SVal Base); SVal getLValueElement(QualType elementType, SVal Offset, SVal Base); /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by GRExprEngine when evaluating /// casts from arrays to pointers. SVal ArrayToPointer(Loc Array); SVal EvalBinOp(const GRState *state, BinaryOperator::Opcode Op,Loc L, NonLoc R, QualType resultTy); Store getInitialStore(const LocationContext *InitLoc) { return RBFactory.GetEmptyMap().getRoot(); } //===-------------------------------------------------------------------===// // Binding values to regions. //===-------------------------------------------------------------------===// const GRState *InvalidateRegion(const GRState *state, const MemRegion *R, const Expr *E, unsigned Count, InvalidatedSymbols *IS); private: void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R, RegionStoreSubRegionMap &M); public: const GRState *Bind(const GRState *state, Loc LV, SVal V); const GRState *BindCompoundLiteral(const GRState *state, const CompoundLiteralExpr* CL, SVal V); const GRState *BindDecl(const GRState *ST, const VarRegion *VR, SVal InitVal); const GRState *BindDeclWithNoInit(const GRState *state, const VarRegion *) { return state; } /// BindStruct - Bind a compound value to a structure. const GRState *BindStruct(const GRState *, const TypedRegion* R, SVal V); const GRState *BindArray(const GRState *state, const TypedRegion* R, SVal V); /// KillStruct - Set the entire struct to unknown. Store KillStruct(Store store, const TypedRegion* R); Store Remove(Store store, Loc LV); //===------------------------------------------------------------------===// // Loading values from regions. //===------------------------------------------------------------------===// /// The high level logic for this method is this: /// Retrieve (L) /// if L has binding /// return L's binding /// else if L is in killset /// return unknown /// else /// if L is on stack or heap /// return undefined /// else /// return symbolic SValuator::CastResult Retrieve(const GRState *state, Loc L, QualType T = QualType()); SVal RetrieveElement(const GRState *state, const ElementRegion *R); SVal RetrieveField(const GRState *state, const FieldRegion *R); SVal RetrieveObjCIvar(const GRState *state, const ObjCIvarRegion *R); SVal RetrieveVar(const GRState *state, const VarRegion *R); SVal RetrieveLazySymbol(const GRState *state, const TypedRegion *R); SVal RetrieveFieldOrElementCommon(const GRState *state, const TypedRegion *R, QualType Ty, const MemRegion *superR); /// Retrieve the values in a struct and return a CompoundVal, used when doing /// struct copy: /// struct s x, y; /// x = y; /// y's value is retrieved by this method. SVal RetrieveStruct(const GRState *St, const TypedRegion* R); SVal RetrieveArray(const GRState *St, const TypedRegion* R); std::pair GetLazyBinding(RegionBindings B, const MemRegion *R); const GRState* CopyLazyBindings(nonloc::LazyCompoundVal V, const GRState *state, const TypedRegion *R); const ElementRegion *GetElementZeroRegion(const SymbolicRegion *SR, QualType T); //===------------------------------------------------------------------===// // State pruning. //===------------------------------------------------------------------===// /// RemoveDeadBindings - Scans the RegionStore of 'state' for dead values. /// It returns a new Store with these values removed. void RemoveDeadBindings(GRState &state, Stmt* Loc, SymbolReaper& SymReaper, llvm::SmallVectorImpl& RegionRoots); const GRState *EnterStackFrame(const GRState *state, const StackFrameContext *frame); //===------------------------------------------------------------------===// // Region "extents". //===------------------------------------------------------------------===// const GRState *setExtent(const GRState *state, const MemRegion* R, SVal Extent); DefinedOrUnknownSVal getSizeInElements(const GRState *state, const MemRegion* R); //===------------------------------------------------------------------===// // Utility methods. //===------------------------------------------------------------------===// static inline RegionBindings GetRegionBindings(Store store) { return RegionBindings(static_cast(store)); } void print(Store store, llvm::raw_ostream& Out, const char* nl, const char *sep); void iterBindings(Store store, BindingsHandler& f) { // FIXME: Implement. } // FIXME: Remove. BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); } // FIXME: Remove. ASTContext& getContext() { return StateMgr.getContext(); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // RegionStore creation. //===----------------------------------------------------------------------===// StoreManager *clang::CreateRegionStoreManager(GRStateManager& StMgr) { RegionStoreFeatures F = maximal_features_tag(); return new RegionStoreManager(StMgr, F); } StoreManager *clang::CreateFieldsOnlyRegionStoreManager(GRStateManager &StMgr) { RegionStoreFeatures F = minimal_features_tag(); F.enableFields(true); return new RegionStoreManager(StMgr, F); } void RegionStoreSubRegionMap::process(llvm::SmallVectorImpl &WL, const SubRegion *R) { const MemRegion *superR = R->getSuperRegion(); if (add(superR, R)) if (const SubRegion *sr = dyn_cast(superR)) WL.push_back(sr); } RegionStoreSubRegionMap* RegionStoreManager::getRegionStoreSubRegionMap(Store store) { RegionBindings B = GetRegionBindings(store); RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap(); llvm::SmallVector WL; for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) if (const SubRegion *R = dyn_cast(I.getKey())) M->process(WL, R); // We also need to record in the subregion map "intermediate" regions that // don't have direct bindings but are super regions of those that do. while (!WL.empty()) { const SubRegion *R = WL.back(); WL.pop_back(); M->process(WL, R); } return M; } SubRegionMap *RegionStoreManager::getSubRegionMap(const GRState *state) { return getRegionStoreSubRegionMap(state->getStore()); } //===----------------------------------------------------------------------===// // Binding invalidation. //===----------------------------------------------------------------------===// void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R, RegionStoreSubRegionMap &M) { RegionStoreSubRegionMap::iterator I, E; for (llvm::tie(I, E) = M.begin_end(R); I != E; ++I) RemoveSubRegionBindings(B, *I, M); B = RBFactory.Remove(B, R); } const GRState *RegionStoreManager::InvalidateRegion(const GRState *state, const MemRegion *R, const Expr *Ex, unsigned Count, InvalidatedSymbols *IS) { ASTContext& Ctx = StateMgr.getContext(); // Strip away casts. R = R->StripCasts(); // Get the mapping of regions -> subregions. llvm::OwningPtr SubRegions(getRegionStoreSubRegionMap(state->getStore())); RegionBindings B = GetRegionBindings(state->getStore()); llvm::DenseMap Visited; llvm::SmallVector WorkList; WorkList.push_back(R); while (!WorkList.empty()) { R = WorkList.back(); WorkList.pop_back(); // Have we visited this region before? unsigned &visited = Visited[R]; if (visited) continue; visited = 1; // Add subregions to work list. RegionStoreSubRegionMap::iterator I, E; for (llvm::tie(I, E) = SubRegions->begin_end(R); I!=E; ++I) WorkList.push_back(*I); // Get the old binding. Is it a region? If so, add it to the worklist. if (Optional V = getDirectBinding(B, R)) { if (const MemRegion *RV = V->getAsRegion()) WorkList.push_back(RV); // A symbol? Mark it touched by the invalidation. if (IS) { if (SymbolRef Sym = V->getAsSymbol()) IS->insert(Sym); } } // Symbolic region? Mark that symbol touched by the invalidation. if (IS) { if (const SymbolicRegion *SR = dyn_cast(R)) IS->insert(SR->getSymbol()); } // Handle the region itself. if (isa(R) || isa(R) || isa(R)) { // Invalidate the region by setting its default value to // conjured symbol. The type of the symbol is irrelavant. DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(R, Ex, Ctx.IntTy, Count); B = RBFactory.Add(B, R, BindingVal(V, BindingVal::Default)); continue; } if (!R->isBoundable()) continue; const TypedRegion *TR = cast(R); QualType T = TR->getValueType(Ctx); if (const RecordType *RT = T->getAsStructureType()) { const RecordDecl *RD = RT->getDecl()->getDefinition(Ctx); // No record definition. There is nothing we can do. if (!RD) continue; // Invalidate the region by setting its default value to // conjured symbol. The type of the symbol is irrelavant. DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(R, Ex, Ctx.IntTy, Count); B = RBFactory.Add(B, R, BindingVal(V, BindingVal::Default)); continue; } if (const ArrayType *AT = Ctx.getAsArrayType(T)) { // Set the default value of the array to conjured symbol. DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(R, Ex, AT->getElementType(), Count); B = RBFactory.Add(B, R, BindingVal(V, BindingVal::Default)); continue; } if ((isa(R)||isa(R)||isa(R)) && Visited[cast(R)->getSuperRegion()]) { // For fields and elements whose super region has also been invalidated, // only remove the old binding. The super region will get set with a // default value from which we can lazily derive a new symbolic value. B = RBFactory.Remove(B, R); continue; } // Invalidate the binding. DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(R, Ex, T, Count); assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); B = RBFactory.Add(B, R, BindingVal(V, BindingVal::Direct)); } // Create a new state with the updated bindings. return state->makeWithStore(B.getRoot()); } //===----------------------------------------------------------------------===// // getLValueXXX methods. //===----------------------------------------------------------------------===// /// getLValueString - Returns an SVal representing the lvalue of a /// StringLiteral. Within RegionStore a StringLiteral has an /// associated StringRegion, and the lvalue of a StringLiteral is the /// lvalue of that region. SVal RegionStoreManager::getLValueString(const StringLiteral* S) { return loc::MemRegionVal(MRMgr.getStringRegion(S)); } /// getLValueVar - Returns an SVal that represents the lvalue of a /// variable. Within RegionStore a variable has an associated /// VarRegion, and the lvalue of the variable is the lvalue of that region. SVal RegionStoreManager::getLValueVar(const VarDecl *VD, const LocationContext *LC) { return loc::MemRegionVal(MRMgr.getVarRegion(VD, LC)); } /// getLValueCompoundLiteral - Returns an SVal representing the lvalue /// of a compound literal. Within RegionStore a compound literal /// has an associated region, and the lvalue of the compound literal /// is the lvalue of that region. SVal RegionStoreManager::getLValueCompoundLiteral(const CompoundLiteralExpr* CL) { return loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL)); } SVal RegionStoreManager::getLValueIvar(const ObjCIvarDecl* D, SVal Base) { return getLValueFieldOrIvar(D, Base); } SVal RegionStoreManager::getLValueField(const FieldDecl* D, SVal Base) { return getLValueFieldOrIvar(D, Base); } SVal RegionStoreManager::getLValueFieldOrIvar(const Decl* D, SVal Base) { if (Base.isUnknownOrUndef()) return Base; Loc BaseL = cast(Base); const MemRegion* BaseR = 0; switch (BaseL.getSubKind()) { case loc::MemRegionKind: BaseR = cast(BaseL).getRegion(); break; case loc::GotoLabelKind: // These are anormal cases. Flag an undefined value. return UndefinedVal(); case loc::ConcreteIntKind: // While these seem funny, this can happen through casts. // FIXME: What we should return is the field offset. For example, // add the field offset to the integer value. That way funny things // like this work properly: &(((struct foo *) 0xa)->f) return Base; default: assert(0 && "Unhandled Base."); return Base; } // NOTE: We must have this check first because ObjCIvarDecl is a subclass // of FieldDecl. if (const ObjCIvarDecl *ID = dyn_cast(D)) return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR)); return loc::MemRegionVal(MRMgr.getFieldRegion(cast(D), BaseR)); } SVal RegionStoreManager::getLValueElement(QualType elementType, SVal Offset, SVal Base) { // If the base is an unknown or undefined value, just return it back. // FIXME: For absolute pointer addresses, we just return that value back as // well, although in reality we should return the offset added to that // value. if (Base.isUnknownOrUndef() || isa(Base)) return Base; // Only handle integer offsets... for now. if (!isa(Offset)) return UnknownVal(); const MemRegion* BaseRegion = cast(Base).getRegion(); // Pointer of any type can be cast and used as array base. const ElementRegion *ElemR = dyn_cast(BaseRegion); // Convert the offset to the appropriate size and signedness. Offset = ValMgr.convertToArrayIndex(Offset); if (!ElemR) { // // If the base region is not an ElementRegion, create one. // This can happen in the following example: // // char *p = __builtin_alloc(10); // p[1] = 8; // // Observe that 'p' binds to an AllocaRegion. // return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset, BaseRegion, getContext())); } SVal BaseIdx = ElemR->getIndex(); if (!isa(BaseIdx)) return UnknownVal(); const llvm::APSInt& BaseIdxI = cast(BaseIdx).getValue(); const llvm::APSInt& OffI = cast(Offset).getValue(); assert(BaseIdxI.isSigned()); // Compute the new index. SVal NewIdx = nonloc::ConcreteInt(getBasicVals().getValue(BaseIdxI + OffI)); // Construct the new ElementRegion. const MemRegion *ArrayR = ElemR->getSuperRegion(); return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR, getContext())); } //===----------------------------------------------------------------------===// // Extents for regions. //===----------------------------------------------------------------------===// DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const GRState *state, const MemRegion *R) { switch (R->getKind()) { case MemRegion::MemSpaceRegionKind: assert(0 && "Cannot index into a MemSpace"); return UnknownVal(); case MemRegion::FunctionTextRegionKind: case MemRegion::BlockTextRegionKind: case MemRegion::BlockDataRegionKind: // Technically this can happen if people do funny things with casts. return UnknownVal(); // Not yet handled. case MemRegion::AllocaRegionKind: case MemRegion::CompoundLiteralRegionKind: case MemRegion::ElementRegionKind: case MemRegion::FieldRegionKind: case MemRegion::ObjCIvarRegionKind: case MemRegion::ObjCObjectRegionKind: case MemRegion::SymbolicRegionKind: return UnknownVal(); case MemRegion::StringRegionKind: { const StringLiteral* Str = cast(R)->getStringLiteral(); // We intentionally made the size value signed because it participates in // operations with signed indices. return ValMgr.makeIntVal(Str->getByteLength()+1, false); } case MemRegion::VarRegionKind: { const VarRegion* VR = cast(R); // Get the type of the variable. QualType T = VR->getDesugaredValueType(getContext()); // FIXME: Handle variable-length arrays. if (isa(T)) return UnknownVal(); if (const ConstantArrayType* CAT = dyn_cast(T)) { // return the size as signed integer. return ValMgr.makeIntVal(CAT->getSize(), false); } // Clients can use ordinary variables as if they were arrays. These // essentially are arrays of size 1. return ValMgr.makeIntVal(1, false); } case MemRegion::BEG_DECL_REGIONS: case MemRegion::END_DECL_REGIONS: case MemRegion::BEG_TYPED_REGIONS: case MemRegion::END_TYPED_REGIONS: assert(0 && "Infeasible region"); return UnknownVal(); } assert(0 && "Unreachable"); return UnknownVal(); } const GRState *RegionStoreManager::setExtent(const GRState *state, const MemRegion *region, SVal extent) { return state->set(region, extent); } //===----------------------------------------------------------------------===// // Location and region casting. //===----------------------------------------------------------------------===// /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by GRExprEngine when evaluating casts /// from arrays to pointers. SVal RegionStoreManager::ArrayToPointer(Loc Array) { if (!isa(Array)) return UnknownVal(); const MemRegion* R = cast(&Array)->getRegion(); const TypedRegion* ArrayR = dyn_cast(R); if (!ArrayR) return UnknownVal(); // Strip off typedefs from the ArrayRegion's ValueType. QualType T = ArrayR->getValueType(getContext()).getDesugaredType(); ArrayType *AT = cast(T); T = AT->getElementType(); SVal ZeroIdx = ValMgr.makeZeroArrayIndex(); ElementRegion* ER = MRMgr.getElementRegion(T, ZeroIdx, ArrayR, getContext()); return loc::MemRegionVal(ER); } //===----------------------------------------------------------------------===// // Pointer arithmetic. //===----------------------------------------------------------------------===// SVal RegionStoreManager::EvalBinOp(const GRState *state, BinaryOperator::Opcode Op, Loc L, NonLoc R, QualType resultTy) { // Assume the base location is MemRegionVal. if (!isa(L)) return UnknownVal(); const MemRegion* MR = cast(L).getRegion(); const ElementRegion *ER = 0; switch (MR->getKind()) { case MemRegion::SymbolicRegionKind: { const SymbolicRegion *SR = cast(MR); SymbolRef Sym = SR->getSymbol(); QualType T = Sym->getType(getContext()); QualType EleTy; if (const PointerType *PT = T->getAs()) EleTy = PT->getPointeeType(); else EleTy = T->getAs()->getPointeeType(); SVal ZeroIdx = ValMgr.makeZeroArrayIndex(); ER = MRMgr.getElementRegion(EleTy, ZeroIdx, SR, getContext()); break; } case MemRegion::AllocaRegionKind: { const AllocaRegion *AR = cast(MR); QualType T = getContext().CharTy; // Create an ElementRegion of bytes. QualType EleTy = T->getAs()->getPointeeType(); SVal ZeroIdx = ValMgr.makeZeroArrayIndex(); ER = MRMgr.getElementRegion(EleTy, ZeroIdx, AR, getContext()); break; } case MemRegion::ElementRegionKind: { ER = cast(MR); break; } // Not yet handled. case MemRegion::VarRegionKind: case MemRegion::StringRegionKind: { } // Fall-through. case MemRegion::CompoundLiteralRegionKind: case MemRegion::FieldRegionKind: case MemRegion::ObjCObjectRegionKind: case MemRegion::ObjCIvarRegionKind: return UnknownVal(); case MemRegion::FunctionTextRegionKind: case MemRegion::BlockTextRegionKind: case MemRegion::BlockDataRegionKind: // Technically this can happen if people do funny things with casts. return UnknownVal(); case MemRegion::MemSpaceRegionKind: assert(0 && "Cannot perform pointer arithmetic on a MemSpace"); return UnknownVal(); case MemRegion::BEG_DECL_REGIONS: case MemRegion::END_DECL_REGIONS: case MemRegion::BEG_TYPED_REGIONS: case MemRegion::END_TYPED_REGIONS: assert(0 && "Infeasible region"); return UnknownVal(); } SVal Idx = ER->getIndex(); nonloc::ConcreteInt* Base = dyn_cast(&Idx); // For now, only support: // (a) concrete integer indices that can easily be resolved // (b) 0 + symbolic index if (Base) { if (nonloc::ConcreteInt *Offset = dyn_cast(&R)) { // FIXME: Should use SValuator here. SVal NewIdx = Base->evalBinOp(ValMgr, Op, cast(ValMgr.convertToArrayIndex(*Offset))); const MemRegion* NewER = MRMgr.getElementRegion(ER->getElementType(), NewIdx, ER->getSuperRegion(), getContext()); return ValMgr.makeLoc(NewER); } if (0 == Base->getValue()) { const MemRegion* NewER = MRMgr.getElementRegion(ER->getElementType(), R, ER->getSuperRegion(), getContext()); return ValMgr.makeLoc(NewER); } } return UnknownVal(); } //===----------------------------------------------------------------------===// // Loading values from regions. //===----------------------------------------------------------------------===// Optional RegionStoreManager::getDirectBinding(RegionBindings B, const MemRegion *R) { if (const BindingVal *BV = B.lookup(R)) return Optional::create(BV->getDirectValue()); return Optional(); } Optional RegionStoreManager::getDefaultBinding(RegionBindings B, const MemRegion *R) { if (R->isBoundable()) if (const TypedRegion *TR = dyn_cast(R)) if (TR->getValueType(getContext())->isUnionType()) return UnknownVal(); if (BindingVal const *V = B.lookup(R)) return Optional::create(V->getDefaultValue()); return Optional(); } Optional RegionStoreManager::getBinding(RegionBindings B, const MemRegion *R) { if (const BindingVal *BV = B.lookup(R)) return Optional::create(BV->getValue()); return Optional(); } static bool IsReinterpreted(QualType RTy, QualType UsedTy, ASTContext &Ctx) { RTy = Ctx.getCanonicalType(RTy); UsedTy = Ctx.getCanonicalType(UsedTy); if (RTy == UsedTy) return false; // Recursively check the types. We basically want to see if a pointer value // is ever reinterpreted as a non-pointer, e.g. void** and intptr_t* // represents a reinterpretation. if (Loc::IsLocType(RTy) && Loc::IsLocType(UsedTy)) { const PointerType *PRTy = RTy->getAs(); const PointerType *PUsedTy = UsedTy->getAs(); return PUsedTy && PRTy && IsReinterpreted(PRTy->getPointeeType(), PUsedTy->getPointeeType(), Ctx); } return true; } const ElementRegion * RegionStoreManager::GetElementZeroRegion(const SymbolicRegion *SR, QualType T) { ASTContext &Ctx = getContext(); SVal idx = ValMgr.makeZeroArrayIndex(); assert(!T.isNull()); return MRMgr.getElementRegion(T, idx, SR, Ctx); } SValuator::CastResult RegionStoreManager::Retrieve(const GRState *state, Loc L, QualType T) { assert(!isa(L) && "location unknown"); assert(!isa(L) && "location undefined"); // FIXME: Is this even possible? Shouldn't this be treated as a null // dereference at a higher level? if (isa(L)) return SValuator::CastResult(state, UndefinedVal()); const MemRegion *MR = cast(L).getRegion(); // FIXME: return symbolic value for these cases. // Example: // void f(int* p) { int x = *p; } // char* p = alloca(); // read(p); // c = *p; if (isa(MR)) return SValuator::CastResult(state, UnknownVal()); if (const SymbolicRegion *SR = dyn_cast(MR)) MR = GetElementZeroRegion(SR, T); if (isa(MR)) return SValuator::CastResult(state, UnknownVal()); // FIXME: Perhaps this method should just take a 'const MemRegion*' argument // instead of 'Loc', and have the other Loc cases handled at a higher level. const TypedRegion *R = cast(MR); QualType RTy = R->getValueType(getContext()); // FIXME: We should eventually handle funny addressing. e.g.: // // int x = ...; // int *p = &x; // char *q = (char*) p; // char c = *q; // returns the first byte of 'x'. // // Such funny addressing will occur due to layering of regions. #if 0 ASTContext &Ctx = getContext(); if (!T.isNull() && IsReinterpreted(RTy, T, Ctx)) { SVal ZeroIdx = ValMgr.makeZeroArrayIndex(); R = MRMgr.getElementRegion(T, ZeroIdx, R, Ctx); RTy = T; assert(Ctx.getCanonicalType(RTy) == Ctx.getCanonicalType(R->getValueType(Ctx))); } #endif if (RTy->isStructureType()) return SValuator::CastResult(state, RetrieveStruct(state, R)); // FIXME: Handle unions. if (RTy->isUnionType()) return SValuator::CastResult(state, UnknownVal()); if (RTy->isArrayType()) return SValuator::CastResult(state, RetrieveArray(state, R)); // FIXME: handle Vector types. if (RTy->isVectorType()) return SValuator::CastResult(state, UnknownVal()); if (const FieldRegion* FR = dyn_cast(R)) return SValuator::CastResult(state, CastRetrievedVal(RetrieveField(state, FR), FR, T)); if (const ElementRegion* ER = dyn_cast(R)) return SValuator::CastResult(state, CastRetrievedVal(RetrieveElement(state, ER), ER, T)); if (const ObjCIvarRegion *IVR = dyn_cast(R)) return SValuator::CastResult(state, CastRetrievedVal(RetrieveObjCIvar(state, IVR), IVR, T)); if (const VarRegion *VR = dyn_cast(R)) return SValuator::CastResult(state, CastRetrievedVal(RetrieveVar(state, VR), VR, T)); RegionBindings B = GetRegionBindings(state->getStore()); RegionBindings::data_type* V = B.lookup(R); // Check if the region has a binding. if (V) if (SVal const *SV = V->getValue()) return SValuator::CastResult(state, *SV); // The location does not have a bound value. This means that it has // the value it had upon its creation and/or entry to the analyzed // function/method. These are either symbolic values or 'undefined'. #if HEAP_UNDEFINED if (R->hasHeapOrStackStorage()) { #else if (R->hasStackStorage()) { #endif // All stack variables are considered to have undefined values // upon creation. All heap allocated blocks are considered to // have undefined values as well unless they are explicitly bound // to specific values. return SValuator::CastResult(state, UndefinedVal()); } // All other values are symbolic. return SValuator::CastResult(state, ValMgr.getRegionValueSymbolValOrUnknown(R, RTy)); } std::pair RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R) { if (Optional OV = getDirectBinding(B, R)) if (const nonloc::LazyCompoundVal *V = dyn_cast(OV.getPointer())) return std::make_pair(V->getState(), V->getRegion()); if (const ElementRegion *ER = dyn_cast(R)) { const std::pair &X = GetLazyBinding(B, ER->getSuperRegion()); if (X.first) return std::make_pair(X.first, MRMgr.getElementRegionWithSuper(ER, X.second)); } else if (const FieldRegion *FR = dyn_cast(R)) { const std::pair &X = GetLazyBinding(B, FR->getSuperRegion()); if (X.first) return std::make_pair(X.first, MRMgr.getFieldRegionWithSuper(FR, X.second)); } return std::make_pair((const GRState*) 0, (const MemRegion *) 0); } SVal RegionStoreManager::RetrieveElement(const GRState* state, const ElementRegion* R) { // Check if the region has a binding. RegionBindings B = GetRegionBindings(state->getStore()); if (Optional V = getDirectBinding(B, R)) return *V; const MemRegion* superR = R->getSuperRegion(); // Check if the region is an element region of a string literal. if (const StringRegion *StrR=dyn_cast(superR)) { // FIXME: Handle loads from strings where the literal is treated as // an integer, e.g., *((unsigned int*)"hello") ASTContext &Ctx = getContext(); QualType T = Ctx.getAsArrayType(StrR->getValueType(Ctx))->getElementType(); if (T != Ctx.getCanonicalType(R->getElementType())) return UnknownVal(); const StringLiteral *Str = StrR->getStringLiteral(); SVal Idx = R->getIndex(); if (nonloc::ConcreteInt *CI = dyn_cast(&Idx)) { int64_t i = CI->getValue().getSExtValue(); int64_t byteLength = Str->getByteLength(); if (i > byteLength) { // Buffer overflow checking in GRExprEngine should handle this case, // but we shouldn't rely on it to not overflow here if that checking // is disabled. return UnknownVal(); } char c = (i == byteLength) ? '\0' : Str->getStrData()[i]; return ValMgr.makeIntVal(c, T); } } // Check if the immediate super region has a direct binding. if (Optional V = getDirectBinding(B, superR)) { if (SymbolRef parentSym = V->getAsSymbol()) return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R); if (V->isUnknownOrUndef()) return *V; // Handle LazyCompoundVals for the immediate super region. Other cases // are handled in 'RetrieveFieldOrElementCommon'. if (const nonloc::LazyCompoundVal *LCV = dyn_cast(V)) { R = MRMgr.getElementRegionWithSuper(R, LCV->getRegion()); return RetrieveElement(LCV->getState(), R); } // Other cases: give up. return UnknownVal(); } return RetrieveFieldOrElementCommon(state, R, R->getElementType(), superR); } SVal RegionStoreManager::RetrieveField(const GRState* state, const FieldRegion* R) { // Check if the region has a binding. RegionBindings B = GetRegionBindings(state->getStore()); if (Optional V = getDirectBinding(B, R)) return *V; QualType Ty = R->getValueType(getContext()); return RetrieveFieldOrElementCommon(state, R, Ty, R->getSuperRegion()); } SVal RegionStoreManager::RetrieveFieldOrElementCommon(const GRState *state, const TypedRegion *R, QualType Ty, const MemRegion *superR) { // At this point we have already checked in either RetrieveElement or // RetrieveField if 'R' has a direct binding. RegionBindings B = GetRegionBindings(state->getStore()); while (superR) { if (const Optional &D = getDefaultBinding(B, superR)) { if (SymbolRef parentSym = D->getAsSymbol()) return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R); if (D->isZeroConstant()) return ValMgr.makeZeroVal(Ty); if (D->isUnknown()) return *D; assert(0 && "Unknown default value"); } // If our super region is a field or element itself, walk up the region // hierarchy to see if there is a default value installed in an ancestor. if (isa(superR) || isa(superR)) { superR = cast(superR)->getSuperRegion(); continue; } break; } // Lazy binding? const GRState *lazyBindingState = NULL; const MemRegion *lazyBindingRegion = NULL; llvm::tie(lazyBindingState, lazyBindingRegion) = GetLazyBinding(B, R); if (lazyBindingState) { assert(lazyBindingRegion && "Lazy-binding region not set"); if (isa(R)) return RetrieveElement(lazyBindingState, cast(lazyBindingRegion)); return RetrieveField(lazyBindingState, cast(lazyBindingRegion)); } if (R->hasStackStorage() && !R->hasParametersStorage()) { if (isa(R)) { // Currently we don't reason specially about Clang-style vectors. Check // if superR is a vector and if so return Unknown. if (const TypedRegion *typedSuperR = dyn_cast(superR)) { if (typedSuperR->getValueType(getContext())->isVectorType()) return UnknownVal(); } } return UndefinedVal(); } // All other values are symbolic. return ValMgr.getRegionValueSymbolValOrUnknown(R, Ty); } SVal RegionStoreManager::RetrieveObjCIvar(const GRState* state, const ObjCIvarRegion* R) { // Check if the region has a binding. RegionBindings B = GetRegionBindings(state->getStore()); if (Optional V = getDirectBinding(B, R)) return *V; const MemRegion *superR = R->getSuperRegion(); // Check if the super region has a default binding. if (Optional V = getDefaultBinding(B, superR)) { if (SymbolRef parentSym = V->getAsSymbol()) return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R); // Other cases: give up. return UnknownVal(); } return RetrieveLazySymbol(state, R); } SVal RegionStoreManager::RetrieveVar(const GRState *state, const VarRegion *R) { // Check if the region has a binding. RegionBindings B = GetRegionBindings(state->getStore()); if (Optional V = getDirectBinding(B, R)) return *V; // Lazily derive a value for the VarRegion. const VarDecl *VD = R->getDecl(); if (R->hasGlobalsOrParametersStorage()) return ValMgr.getRegionValueSymbolValOrUnknown(R, VD->getType()); return UndefinedVal(); } SVal RegionStoreManager::RetrieveLazySymbol(const GRState *state, const TypedRegion *R) { QualType valTy = R->getValueType(getContext()); // All other values are symbolic. return ValMgr.getRegionValueSymbolValOrUnknown(R, valTy); } SVal RegionStoreManager::RetrieveStruct(const GRState *state, const TypedRegion* R) { QualType T = R->getValueType(getContext()); assert(T->isStructureType()); const RecordType* RT = T->getAsStructureType(); RecordDecl* RD = RT->getDecl(); assert(RD->isDefinition()); (void)RD; #if USE_EXPLICIT_COMPOUND llvm::ImmutableList StructVal = getBasicVals().getEmptySValList(); // FIXME: We shouldn't use a std::vector. If RecordDecl doesn't have a // reverse iterator, we should implement one. std::vector Fields(RD->field_begin(), RD->field_end()); for (std::vector::reverse_iterator Field = Fields.rbegin(), FieldEnd = Fields.rend(); Field != FieldEnd; ++Field) { FieldRegion* FR = MRMgr.getFieldRegion(*Field, R); QualType FTy = (*Field)->getType(); SVal FieldValue = Retrieve(state, loc::MemRegionVal(FR), FTy).getSVal(); StructVal = getBasicVals().consVals(FieldValue, StructVal); } return ValMgr.makeCompoundVal(T, StructVal); #else return ValMgr.makeLazyCompoundVal(state, R); #endif } SVal RegionStoreManager::RetrieveArray(const GRState *state, const TypedRegion * R) { #if USE_EXPLICIT_COMPOUND QualType T = R->getValueType(getContext()); ConstantArrayType* CAT = cast(T.getTypePtr()); llvm::ImmutableList ArrayVal = getBasicVals().getEmptySValList(); uint64_t size = CAT->getSize().getZExtValue(); for (uint64_t i = 0; i < size; ++i) { SVal Idx = ValMgr.makeArrayIndex(i); ElementRegion* ER = MRMgr.getElementRegion(CAT->getElementType(), Idx, R, getContext()); QualType ETy = ER->getElementType(); SVal ElementVal = Retrieve(state, loc::MemRegionVal(ER), ETy).getSVal(); ArrayVal = getBasicVals().consVals(ElementVal, ArrayVal); } return ValMgr.makeCompoundVal(T, ArrayVal); #else assert(isa(R->getValueType(getContext()))); return ValMgr.makeLazyCompoundVal(state, R); #endif } //===----------------------------------------------------------------------===// // Binding values to regions. //===----------------------------------------------------------------------===// Store RegionStoreManager::Remove(Store store, Loc L) { const MemRegion* R = 0; if (isa(L)) R = cast(L).getRegion(); if (R) { RegionBindings B = GetRegionBindings(store); return RBFactory.Remove(B, R).getRoot(); } return store; } const GRState *RegionStoreManager::Bind(const GRState *state, Loc L, SVal V) { if (isa(L)) return state; // If we get here, the location should be a region. const MemRegion *R = cast(L).getRegion(); // Check if the region is a struct region. if (const TypedRegion* TR = dyn_cast(R)) if (TR->getValueType(getContext())->isStructureType()) return BindStruct(state, TR, V); // Special case: the current region represents a cast and it and the super // region both have pointer types or intptr_t types. If so, perform the // bind to the super region. // This is needed to support OSAtomicCompareAndSwap and friends or other // loads that treat integers as pointers and vis versa. if (const ElementRegion *ER = dyn_cast(R)) { if (ER->getIndex().isZeroConstant()) { if (const TypedRegion *superR = dyn_cast(ER->getSuperRegion())) { ASTContext &Ctx = getContext(); QualType superTy = superR->getValueType(Ctx); QualType erTy = ER->getValueType(Ctx); if (IsAnyPointerOrIntptr(superTy, Ctx) && IsAnyPointerOrIntptr(erTy, Ctx)) { SValuator::CastResult cr = ValMgr.getSValuator().EvalCast(V, state, superTy, erTy); return Bind(cr.getState(), loc::MemRegionVal(superR), cr.getSVal()); } // For now, just invalidate the fields of the struct/union/class. // FIXME: Precisely handle the fields of the record. if (superTy->isRecordType()) return InvalidateRegion(state, superR, NULL, 0, NULL); } } } else if (const SymbolicRegion *SR = dyn_cast(R)) { // Binding directly to a symbolic region should be treated as binding // to element 0. QualType T = SR->getSymbol()->getType(getContext()); T = T->getAs()->getPointeeType(); R = GetElementZeroRegion(SR, T); } // Perform the binding. RegionBindings B = GetRegionBindings(state->getStore()); return state->makeWithStore( RBFactory.Add(B, R, BindingVal(V, BindingVal::Direct)).getRoot()); } const GRState *RegionStoreManager::BindDecl(const GRState *ST, const VarRegion *VR, SVal InitVal) { QualType T = VR->getDecl()->getType(); if (T->isArrayType()) return BindArray(ST, VR, InitVal); if (T->isStructureType()) return BindStruct(ST, VR, InitVal); return Bind(ST, ValMgr.makeLoc(VR), InitVal); } // FIXME: this method should be merged into Bind(). const GRState * RegionStoreManager::BindCompoundLiteral(const GRState *state, const CompoundLiteralExpr* CL, SVal V) { CompoundLiteralRegion* R = MRMgr.getCompoundLiteralRegion(CL); return Bind(state, loc::MemRegionVal(R), V); } const GRState *RegionStoreManager::setImplicitDefaultValue(const GRState *state, const MemRegion *R, QualType T) { Store store = state->getStore(); RegionBindings B = GetRegionBindings(store); SVal V; if (Loc::IsLocType(T)) V = ValMgr.makeNull(); else if (T->isIntegerType()) V = ValMgr.makeZeroVal(T); else if (T->isStructureType() || T->isArrayType()) { // Set the default value to a zero constant when it is a structure // or array. The type doesn't really matter. V = ValMgr.makeZeroVal(ValMgr.getContext().IntTy); } else { return state; } B = RBFactory.Add(B, R, BindingVal(V, BindingVal::Default)); return state->makeWithStore(B.getRoot()); } const GRState *RegionStoreManager::BindArray(const GRState *state, const TypedRegion* R, SVal Init) { QualType T = R->getValueType(getContext()); ConstantArrayType* CAT = cast(T.getTypePtr()); QualType ElementTy = CAT->getElementType(); uint64_t size = CAT->getSize().getZExtValue(); // Check if the init expr is a StringLiteral. if (isa(Init)) { const MemRegion* InitR = cast(Init).getRegion(); const StringLiteral* S = cast(InitR)->getStringLiteral(); const char* str = S->getStrData(); unsigned len = S->getByteLength(); unsigned j = 0; // Copy bytes from the string literal into the target array. Trailing bytes // in the array that are not covered by the string literal are initialized // to zero. for (uint64_t i = 0; i < size; ++i, ++j) { if (j >= len) break; SVal Idx = ValMgr.makeArrayIndex(i); ElementRegion* ER = MRMgr.getElementRegion(ElementTy, Idx, R, getContext()); SVal V = ValMgr.makeIntVal(str[j], sizeof(char)*8, true); state = Bind(state, loc::MemRegionVal(ER), V); } return state; } // Handle lazy compound values. if (nonloc::LazyCompoundVal *LCV = dyn_cast(&Init)) return CopyLazyBindings(*LCV, state, R); // Remaining case: explicit compound values. if (Init.isUnknown()) return setImplicitDefaultValue(state, R, ElementTy); nonloc::CompoundVal& CV = cast(Init); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); uint64_t i = 0; for (; i < size; ++i, ++VI) { // The init list might be shorter than the array length. if (VI == VE) break; SVal Idx = ValMgr.makeArrayIndex(i); ElementRegion* ER = MRMgr.getElementRegion(ElementTy, Idx, R, getContext()); if (CAT->getElementType()->isStructureType()) state = BindStruct(state, ER, *VI); else // FIXME: Do we need special handling of nested arrays? state = Bind(state, ValMgr.makeLoc(ER), *VI); } // If the init list is shorter than the array length, set the // array default value. if (i < size) state = setImplicitDefaultValue(state, R, ElementTy); return state; } const GRState * RegionStoreManager::BindStruct(const GRState *state, const TypedRegion* R, SVal V) { if (!Features.supportsFields()) return state; QualType T = R->getValueType(getContext()); assert(T->isStructureType()); const RecordType* RT = T->getAs(); RecordDecl* RD = RT->getDecl(); if (!RD->isDefinition()) return state; // Handle lazy compound values. if (const nonloc::LazyCompoundVal *LCV=dyn_cast(&V)) return CopyLazyBindings(*LCV, state, R); // We may get non-CompoundVal accidentally due to imprecise cast logic. // Ignore them and kill the field values. if (V.isUnknown() || !isa(V)) return state->makeWithStore(KillStruct(state->getStore(), R)); nonloc::CompoundVal& CV = cast(V); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); RecordDecl::field_iterator FI, FE; for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI, ++VI) { if (VI == VE) break; QualType FTy = (*FI)->getType(); const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); if (FTy->isArrayType()) state = BindArray(state, FR, *VI); else if (FTy->isStructureType()) state = BindStruct(state, FR, *VI); else state = Bind(state, ValMgr.makeLoc(FR), *VI); } // There may be fewer values in the initialize list than the fields of struct. if (FI != FE) { Store store = state->getStore(); RegionBindings B = GetRegionBindings(store); B = RBFactory.Add(B, R, BindingVal(ValMgr.makeIntVal(0, false), BindingVal::Default)); state = state->makeWithStore(B.getRoot()); } return state; } Store RegionStoreManager::KillStruct(Store store, const TypedRegion* R) { RegionBindings B = GetRegionBindings(store); llvm::OwningPtr SubRegions(getRegionStoreSubRegionMap(store)); RemoveSubRegionBindings(B, R, *SubRegions); // Set the default value of the struct region to "unknown". B = RBFactory.Add(B, R, BindingVal(UnknownVal(), BindingVal::Default)); return B.getRoot(); } const GRState* RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V, const GRState *state, const TypedRegion *R) { // Nuke the old bindings stemming from R. RegionBindings B = GetRegionBindings(state->getStore()); llvm::OwningPtr SubRegions(getRegionStoreSubRegionMap(state->getStore())); // B and DVM are updated after the call to RemoveSubRegionBindings. RemoveSubRegionBindings(B, R, *SubRegions.get()); // Now copy the bindings. This amounts to just binding 'V' to 'R'. This // results in a zero-copy algorithm. return state->makeWithStore( RBFactory.Add(B, R, BindingVal(V, BindingVal::Direct)).getRoot()); } //===----------------------------------------------------------------------===// // State pruning. //===----------------------------------------------------------------------===// void RegionStoreManager::RemoveDeadBindings(GRState &state, Stmt* Loc, SymbolReaper& SymReaper, llvm::SmallVectorImpl& RegionRoots) { typedef std::pair RBDNode; Store store = state.getStore(); RegionBindings B = GetRegionBindings(store); // The backmap from regions to subregions. llvm::OwningPtr SubRegions(getRegionStoreSubRegionMap(store)); // Do a pass over the regions in the store. For VarRegions we check if // the variable is still live and if so add it to the list of live roots. // For other regions we populate our region backmap. llvm::SmallVector IntermediateRoots; // Scan the direct bindings for "intermediate" roots. for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) { const MemRegion *R = I.getKey(); IntermediateRoots.push_back(R); } // Process the "intermediate" roots to find if they are referenced by // real roots. llvm::SmallVector WorkList; llvm::SmallVector Postponed; llvm::DenseSet IntermediateVisited; while (!IntermediateRoots.empty()) { const MemRegion* R = IntermediateRoots.back(); IntermediateRoots.pop_back(); if (IntermediateVisited.count(R)) continue; IntermediateVisited.insert(R); if (const VarRegion* VR = dyn_cast(R)) { if (SymReaper.isLive(Loc, VR->getDecl())) WorkList.push_back(std::make_pair(&state, VR)); continue; } if (const SymbolicRegion* SR = dyn_cast(R)) { llvm::SmallVectorImpl &Q = SymReaper.isLive(SR->getSymbol()) ? WorkList : Postponed; Q.push_back(std::make_pair(&state, SR)); continue; } // Add the super region for R to the worklist if it is a subregion. if (const SubRegion* superR = dyn_cast(cast(R)->getSuperRegion())) IntermediateRoots.push_back(superR); } // Enqueue the RegionRoots onto WorkList. for (llvm::SmallVectorImpl::iterator I=RegionRoots.begin(), E=RegionRoots.end(); I!=E; ++I) { WorkList.push_back(std::make_pair(&state, *I)); } RegionRoots.clear(); llvm::DenseSet Visited; tryAgain: while (!WorkList.empty()) { RBDNode N = WorkList.back(); WorkList.pop_back(); // Have we visited this node before? if (Visited.count(N)) continue; Visited.insert(N); const MemRegion *R = N.second; const GRState *state_N = N.first; // Enqueue subregions. RegionStoreSubRegionMap *M; if (&state == state_N) M = SubRegions.get(); else { RegionStoreSubRegionMap *& SM = SC[state_N]; if (!SM) SM = getRegionStoreSubRegionMap(state_N->getStore()); M = SM; } RegionStoreSubRegionMap::iterator I, E; for (llvm::tie(I, E) = M->begin_end(R); I != E; ++I) WorkList.push_back(std::make_pair(state_N, *I)); // Enqueue the super region. if (const SubRegion *SR = dyn_cast(R)) { const MemRegion *superR = SR->getSuperRegion(); if (!isa(superR)) { // If 'R' is a field or an element, we want to keep the bindings // for the other fields and elements around. The reason is that // pointer arithmetic can get us to the other fields or elements. assert(isa(R) || isa(R) || isa(R)); WorkList.push_back(std::make_pair(state_N, superR)); } } // Mark the symbol for any live SymbolicRegion as "live". This means we // should continue to track that symbol. if (const SymbolicRegion *SymR = dyn_cast(R)) SymReaper.markLive(SymR->getSymbol()); // For BlockDataRegions, enqueue all VarRegions for that are referenced // via BlockDeclRefExprs. if (const BlockDataRegion *BD = dyn_cast(R)) { for (BlockDataRegion::referenced_vars_iterator RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end(); RI != RE; ++RI) WorkList.push_back(std::make_pair(state_N, *RI)); // No possible data bindings on a BlockDataRegion. Continue to the // next region in the worklist. continue; } Store store_N = state_N->getStore(); RegionBindings B_N = GetRegionBindings(store_N); // Get the data binding for R (if any). Optional V = getBinding(B_N, R); if (V) { // Check for lazy bindings. if (const nonloc::LazyCompoundVal *LCV = dyn_cast(V.getPointer())) { const LazyCompoundValData *D = LCV->getCVData(); WorkList.push_back(std::make_pair(D->getState(), D->getRegion())); } else { // Update the set of live symbols. for (SVal::symbol_iterator SI=V->symbol_begin(), SE=V->symbol_end(); SI!=SE;++SI) SymReaper.markLive(*SI); // If V is a region, then add it to the worklist. if (const MemRegion *RX = V->getAsRegion()) WorkList.push_back(std::make_pair(state_N, RX)); } } } // See if any postponed SymbolicRegions are actually live now, after // having done a scan. for (llvm::SmallVectorImpl::iterator I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) { if (const SymbolicRegion *SR = cast_or_null(I->second)) { if (SymReaper.isLive(SR->getSymbol())) { WorkList.push_back(*I); I->second = NULL; } } } if (!WorkList.empty()) goto tryAgain; // We have now scanned the store, marking reachable regions and symbols // as live. We now remove all the regions that are dead from the store // as well as update DSymbols with the set symbols that are now dead. for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) { const MemRegion* R = I.getKey(); // If this region live? Is so, none of its symbols are dead. if (Visited.count(std::make_pair(&state, R))) continue; // Remove this dead region from the store. store = Remove(store, ValMgr.makeLoc(R)); // Mark all non-live symbols that this region references as dead. if (const SymbolicRegion* SymR = dyn_cast(R)) SymReaper.maybeDead(SymR->getSymbol()); SVal X = *I.getData().getValue(); SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end(); for (; SI != SE; ++SI) SymReaper.maybeDead(*SI); } // Write the store back. state.setStore(store); } GRState const *RegionStoreManager::EnterStackFrame(GRState const *state, StackFrameContext const *frame) { FunctionDecl const *FD = cast(frame->getDecl()); CallExpr const *CE = cast(frame->getCallSite()); FunctionDecl::param_const_iterator PI = FD->param_begin(); CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end(); // Copy the arg expression value to the arg variables. for (; AI != AE; ++AI, ++PI) { SVal ArgVal = state->getSVal(*AI); MemRegion *R = MRMgr.getVarRegion(*PI, frame); state = Bind(state, ValMgr.makeLoc(R), ArgVal); } return state; } //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// void RegionStoreManager::print(Store store, llvm::raw_ostream& OS, const char* nl, const char *sep) { RegionBindings B = GetRegionBindings(store); OS << "Store (direct and default bindings):" << nl; for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) OS << ' ' << I.getKey() << " : " << I.getData() << nl; }