//=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a meta-engine for path-sensitive dataflow analysis that // is built on GREngine, but provides the boilerplate to execute transfer // functions and build the ExplodedGraph at the expression level. // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathSensitive/GRExprEngine.h" #include "clang/Analysis/PathSensitive/GRExprEngineBuilders.h" #include "clang/Analysis/PathSensitive/BugReporter.h" #include "clang/AST/ParentMap.h" #include "clang/AST/StmtObjC.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/PrettyStackTrace.h" #include "llvm/Support/Streams.h" #include "llvm/ADT/ImmutableList.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/raw_ostream.h" #ifndef NDEBUG #include "llvm/Support/GraphWriter.h" #include #endif using namespace clang; using llvm::dyn_cast; using llvm::cast; using llvm::APSInt; //===----------------------------------------------------------------------===// // Engine construction and deletion. //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN MappedBatchAuditor : public GRSimpleAPICheck { typedef llvm::ImmutableList Checks; typedef llvm::DenseMap MapTy; MapTy M; Checks::Factory F; Checks AllStmts; public: MappedBatchAuditor(llvm::BumpPtrAllocator& Alloc) : F(Alloc), AllStmts(F.GetEmptyList()) {} virtual ~MappedBatchAuditor() { llvm::DenseSet AlreadyVisited; for (MapTy::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI) for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E;++I){ GRSimpleAPICheck* check = *I; if (AlreadyVisited.count(check)) continue; AlreadyVisited.insert(check); delete check; } } void AddCheck(GRSimpleAPICheck *A, Stmt::StmtClass C) { assert (A && "Check cannot be null."); void* key = reinterpret_cast((uintptr_t) C); MapTy::iterator I = M.find(key); M[key] = F.Concat(A, I == M.end() ? F.GetEmptyList() : I->second); } void AddCheck(GRSimpleAPICheck *A) { assert (A && "Check cannot be null."); AllStmts = F.Concat(A, AllStmts); } virtual bool Audit(NodeTy* N, GRStateManager& VMgr) { // First handle the auditors that accept all statements. bool isSink = false; for (Checks::iterator I = AllStmts.begin(), E = AllStmts.end(); I!=E; ++I) isSink |= (*I)->Audit(N, VMgr); // Next handle the auditors that accept only specific statements. Stmt* S = cast(N->getLocation()).getStmt(); void* key = reinterpret_cast((uintptr_t) S->getStmtClass()); MapTy::iterator MI = M.find(key); if (MI != M.end()) { for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E; ++I) isSink |= (*I)->Audit(N, VMgr); } return isSink; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Engine construction and deletion. //===----------------------------------------------------------------------===// static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) { IdentifierInfo* II = &Ctx.Idents.get(name); return Ctx.Selectors.getSelector(0, &II); } GRExprEngine::GRExprEngine(CFG& cfg, Decl& CD, ASTContext& Ctx, LiveVariables& L, BugReporterData& BRD, bool purgeDead, bool eagerlyAssume, StoreManagerCreator SMC, ConstraintManagerCreator CMC) : CoreEngine(cfg, CD, Ctx, *this), G(CoreEngine.getGraph()), Liveness(L), Builder(NULL), StateMgr(G.getContext(), SMC, CMC, G.getAllocator(), cfg, CD, L), SymMgr(StateMgr.getSymbolManager()), ValMgr(StateMgr.getValueManager()), CurrentStmt(NULL), NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL), RaiseSel(GetNullarySelector("raise", G.getContext())), PurgeDead(purgeDead), BR(BRD, *this), EagerlyAssume(eagerlyAssume) {} GRExprEngine::~GRExprEngine() { BR.FlushReports(); delete [] NSExceptionInstanceRaiseSelectors; } //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// void GRExprEngine::setTransferFunctions(GRTransferFuncs* tf) { StateMgr.TF = tf; tf->RegisterChecks(getBugReporter()); tf->RegisterPrinters(getStateManager().Printers); } void GRExprEngine::AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C) { if (!BatchAuditor) BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator())); ((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A, C); } void GRExprEngine::AddCheck(GRSimpleAPICheck *A) { if (!BatchAuditor) BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator())); ((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A); } const GRState* GRExprEngine::getInitialState() { const GRState *state = StateMgr.getInitialState(); // Precondition: the first argument of 'main' is an integer guaranteed // to be > 0. // FIXME: It would be nice if we had a more general mechanism to add // such preconditions. Some day. if (const FunctionDecl *FD = dyn_cast(&StateMgr.getCodeDecl())) if (strcmp(FD->getIdentifier()->getName(), "main") == 0 && FD->getNumParams() > 0) { const ParmVarDecl *PD = FD->getParamDecl(0); QualType T = PD->getType(); if (T->isIntegerType()) if (const MemRegion *R = StateMgr.getRegion(PD)) { SVal V = GetSVal(state, loc::MemRegionVal(R)); SVal Constraint = EvalBinOp(state, BinaryOperator::GT, V, ValMgr.makeZeroVal(T), getContext().IntTy); bool isFeasible = false; const GRState *newState = Assume(state, Constraint, true, isFeasible); if (newState) state = newState; } } return state; } //===----------------------------------------------------------------------===// // Top-level transfer function logic (Dispatcher). //===----------------------------------------------------------------------===// void GRExprEngine::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) { PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), S->getLocStart(), "Error evaluating statement"); Builder = &builder; EntryNode = builder.getLastNode(); // FIXME: Consolidate. CurrentStmt = S; StateMgr.CurrentStmt = S; // Set up our simple checks. if (BatchAuditor) Builder->setAuditor(BatchAuditor.get()); // Create the cleaned state. SymbolReaper SymReaper(Liveness, SymMgr); CleanedState = PurgeDead ? StateMgr.RemoveDeadBindings(EntryNode->getState(), CurrentStmt, SymReaper) : EntryNode->getState(); // Process any special transfer function for dead symbols. NodeSet Tmp; if (!SymReaper.hasDeadSymbols()) Tmp.Add(EntryNode); else { SaveAndRestore OldSink(Builder->BuildSinks); SaveOr OldHasGen(Builder->HasGeneratedNode); SaveAndRestore OldPurgeDeadSymbols(Builder->PurgingDeadSymbols); Builder->PurgingDeadSymbols = true; getTF().EvalDeadSymbols(Tmp, *this, *Builder, EntryNode, S, CleanedState, SymReaper); if (!Builder->BuildSinks && !Builder->HasGeneratedNode) Tmp.Add(EntryNode); } bool HasAutoGenerated = false; for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { NodeSet Dst; // Set the cleaned state. Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I)); // Visit the statement. Visit(S, *I, Dst); // Do we need to auto-generate a node? We only need to do this to generate // a node with a "cleaned" state; GRCoreEngine will actually handle // auto-transitions for other cases. if (Dst.size() == 1 && *Dst.begin() == EntryNode && !Builder->HasGeneratedNode && !HasAutoGenerated) { HasAutoGenerated = true; builder.generateNode(S, GetState(EntryNode), *I); } } // NULL out these variables to cleanup. CleanedState = NULL; EntryNode = NULL; // FIXME: Consolidate. StateMgr.CurrentStmt = 0; CurrentStmt = 0; Builder = NULL; } void GRExprEngine::Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst) { PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), S->getLocStart(), "Error evaluating statement"); // FIXME: add metadata to the CFG so that we can disable // this check when we KNOW that there is no block-level subexpression. // The motivation is that this check requires a hashtable lookup. if (S != CurrentStmt && getCFG().isBlkExpr(S)) { Dst.Add(Pred); return; } switch (S->getStmtClass()) { default: // Cases we intentionally have "default" handle: // AddrLabelExpr, IntegerLiteral, CharacterLiteral Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. break; case Stmt::ArraySubscriptExprClass: VisitArraySubscriptExpr(cast(S), Pred, Dst, false); break; case Stmt::AsmStmtClass: VisitAsmStmt(cast(S), Pred, Dst); break; case Stmt::BinaryOperatorClass: { BinaryOperator* B = cast(S); if (B->isLogicalOp()) { VisitLogicalExpr(B, Pred, Dst); break; } else if (B->getOpcode() == BinaryOperator::Comma) { const GRState* state = GetState(Pred); MakeNode(Dst, B, Pred, BindExpr(state, B, GetSVal(state, B->getRHS()))); break; } if (EagerlyAssume && (B->isRelationalOp() || B->isEqualityOp())) { NodeSet Tmp; VisitBinaryOperator(cast(S), Pred, Tmp); EvalEagerlyAssume(Dst, Tmp, cast(S)); } else VisitBinaryOperator(cast(S), Pred, Dst); break; } case Stmt::CallExprClass: case Stmt::CXXOperatorCallExprClass: { CallExpr* C = cast(S); VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst); break; } // FIXME: ChooseExpr is really a constant. We need to fix // the CFG do not model them as explicit control-flow. case Stmt::ChooseExprClass: { // __builtin_choose_expr ChooseExpr* C = cast(S); VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); break; } case Stmt::CompoundAssignOperatorClass: VisitBinaryOperator(cast(S), Pred, Dst); break; case Stmt::CompoundLiteralExprClass: VisitCompoundLiteralExpr(cast(S), Pred, Dst, false); break; case Stmt::ConditionalOperatorClass: { // '?' operator ConditionalOperator* C = cast(S); VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); break; } case Stmt::DeclRefExprClass: case Stmt::QualifiedDeclRefExprClass: VisitDeclRefExpr(cast(S), Pred, Dst, false); break; case Stmt::DeclStmtClass: VisitDeclStmt(cast(S), Pred, Dst); break; case Stmt::ImplicitCastExprClass: case Stmt::CStyleCastExprClass: { CastExpr* C = cast(S); VisitCast(C, C->getSubExpr(), Pred, Dst); break; } case Stmt::InitListExprClass: VisitInitListExpr(cast(S), Pred, Dst); break; case Stmt::MemberExprClass: VisitMemberExpr(cast(S), Pred, Dst, false); break; case Stmt::ObjCIvarRefExprClass: VisitObjCIvarRefExpr(cast(S), Pred, Dst, false); break; case Stmt::ObjCForCollectionStmtClass: VisitObjCForCollectionStmt(cast(S), Pred, Dst); break; case Stmt::ObjCMessageExprClass: { VisitObjCMessageExpr(cast(S), Pred, Dst); break; } case Stmt::ObjCAtThrowStmtClass: { // FIXME: This is not complete. We basically treat @throw as // an abort. SaveAndRestore OldSink(Builder->BuildSinks); Builder->BuildSinks = true; MakeNode(Dst, S, Pred, GetState(Pred)); break; } case Stmt::ParenExprClass: Visit(cast(S)->getSubExpr()->IgnoreParens(), Pred, Dst); break; case Stmt::ReturnStmtClass: VisitReturnStmt(cast(S), Pred, Dst); break; case Stmt::SizeOfAlignOfExprClass: VisitSizeOfAlignOfExpr(cast(S), Pred, Dst); break; case Stmt::StmtExprClass: { StmtExpr* SE = cast(S); if (SE->getSubStmt()->body_empty()) { // Empty statement expression. assert(SE->getType() == getContext().VoidTy && "Empty statement expression must have void type."); Dst.Add(Pred); break; } if (Expr* LastExpr = dyn_cast(*SE->getSubStmt()->body_rbegin())) { const GRState* state = GetState(Pred); MakeNode(Dst, SE, Pred, BindExpr(state, SE, GetSVal(state, LastExpr))); } else Dst.Add(Pred); break; } case Stmt::StringLiteralClass: VisitLValue(cast(S), Pred, Dst); break; case Stmt::UnaryOperatorClass: { UnaryOperator *U = cast(S); if (EagerlyAssume && (U->getOpcode() == UnaryOperator::LNot)) { NodeSet Tmp; VisitUnaryOperator(U, Pred, Tmp, false); EvalEagerlyAssume(Dst, Tmp, U); } else VisitUnaryOperator(U, Pred, Dst, false); break; } } } void GRExprEngine::VisitLValue(Expr* Ex, NodeTy* Pred, NodeSet& Dst) { Ex = Ex->IgnoreParens(); if (Ex != CurrentStmt && getCFG().isBlkExpr(Ex)) { Dst.Add(Pred); return; } switch (Ex->getStmtClass()) { case Stmt::ArraySubscriptExprClass: VisitArraySubscriptExpr(cast(Ex), Pred, Dst, true); return; case Stmt::DeclRefExprClass: case Stmt::QualifiedDeclRefExprClass: VisitDeclRefExpr(cast(Ex), Pred, Dst, true); return; case Stmt::ObjCIvarRefExprClass: VisitObjCIvarRefExpr(cast(Ex), Pred, Dst, true); return; case Stmt::UnaryOperatorClass: VisitUnaryOperator(cast(Ex), Pred, Dst, true); return; case Stmt::MemberExprClass: VisitMemberExpr(cast(Ex), Pred, Dst, true); return; case Stmt::CompoundLiteralExprClass: VisitCompoundLiteralExpr(cast(Ex), Pred, Dst, true); return; case Stmt::ObjCPropertyRefExprClass: case Stmt::ObjCKVCRefExprClass: // FIXME: Property assignments are lvalues, but not really "locations". // e.g.: self.x = something; // Here the "self.x" really can translate to a method call (setter) when // the assignment is made. Moreover, the entire assignment expression // evaluate to whatever "something" is, not calling the "getter" for // the property (which would make sense since it can have side effects). // We'll probably treat this as a location, but not one that we can // take the address of. Perhaps we need a new SVal class for cases // like thsis? // Note that we have a similar problem for bitfields, since they don't // have "locations" in the sense that we can take their address. Dst.Add(Pred); return; case Stmt::StringLiteralClass: { const GRState* state = GetState(Pred); SVal V = StateMgr.GetLValue(state, cast(Ex)); MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V)); return; } default: // Arbitrary subexpressions can return aggregate temporaries that // can be used in a lvalue context. We need to enhance our support // of such temporaries in both the environment and the store, so right // now we just do a regular visit. assert ((Ex->getType()->isAggregateType()) && "Other kinds of expressions with non-aggregate/union types do" " not have lvalues."); Visit(Ex, Pred, Dst); } } //===----------------------------------------------------------------------===// // Block entrance. (Update counters). //===----------------------------------------------------------------------===// bool GRExprEngine::ProcessBlockEntrance(CFGBlock* B, const GRState*, GRBlockCounter BC) { return BC.getNumVisited(B->getBlockID()) < 3; } //===----------------------------------------------------------------------===// // Generic node creation. //===----------------------------------------------------------------------===// GRExprEngine::NodeTy* GRExprEngine::MakeNode(NodeSet& Dst, Stmt* S, NodeTy* Pred, const GRState* St, ProgramPoint::Kind K, const void *tag) { assert (Builder && "GRStmtNodeBuilder not present."); SaveAndRestore OldTag(Builder->Tag); Builder->Tag = tag; return Builder->MakeNode(Dst, S, Pred, St, K); } //===----------------------------------------------------------------------===// // Branch processing. //===----------------------------------------------------------------------===// const GRState* GRExprEngine::MarkBranch(const GRState* state, Stmt* Terminator, bool branchTaken) { switch (Terminator->getStmtClass()) { default: return state; case Stmt::BinaryOperatorClass: { // '&&' and '||' BinaryOperator* B = cast(Terminator); BinaryOperator::Opcode Op = B->getOpcode(); assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr); // For &&, if we take the true branch, then the value of the whole // expression is that of the RHS expression. // // For ||, if we take the false branch, then the value of the whole // expression is that of the RHS expression. Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) || (Op == BinaryOperator::LOr && !branchTaken) ? B->getRHS() : B->getLHS(); return BindBlkExpr(state, B, UndefinedVal(Ex)); } case Stmt::ConditionalOperatorClass: { // ?: ConditionalOperator* C = cast(Terminator); // For ?, if branchTaken == true then the value is either the LHS or // the condition itself. (GNU extension). Expr* Ex; if (branchTaken) Ex = C->getLHS() ? C->getLHS() : C->getCond(); else Ex = C->getRHS(); return BindBlkExpr(state, C, UndefinedVal(Ex)); } case Stmt::ChooseExprClass: { // ?: ChooseExpr* C = cast(Terminator); Expr* Ex = branchTaken ? C->getLHS() : C->getRHS(); return BindBlkExpr(state, C, UndefinedVal(Ex)); } } } /// RecoverCastedSymbol - A helper function for ProcessBranch that is used /// to try to recover some path-sensitivity for casts of symbolic /// integers that promote their values (which are currently not tracked well). /// This function returns the SVal bound to Condition->IgnoreCasts if all the // cast(s) did was sign-extend the original value. static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state, Stmt* Condition, ASTContext& Ctx) { Expr *Ex = dyn_cast(Condition); if (!Ex) return UnknownVal(); uint64_t bits = 0; bool bitsInit = false; while (CastExpr *CE = dyn_cast(Ex)) { QualType T = CE->getType(); if (!T->isIntegerType()) return UnknownVal(); uint64_t newBits = Ctx.getTypeSize(T); if (!bitsInit || newBits < bits) { bitsInit = true; bits = newBits; } Ex = CE->getSubExpr(); } // We reached a non-cast. Is it a symbolic value? QualType T = Ex->getType(); if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits) return UnknownVal(); return StateMgr.GetSVal(state, Ex); } void GRExprEngine::ProcessBranch(Stmt* Condition, Stmt* Term, BranchNodeBuilder& builder) { // Remove old bindings for subexpressions. const GRState* PrevState = StateMgr.RemoveSubExprBindings(builder.getState()); // Check for NULL conditions; e.g. "for(;;)" if (!Condition) { builder.markInfeasible(false); return; } PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), Condition->getLocStart(), "Error evaluating branch"); SVal V = GetSVal(PrevState, Condition); switch (V.getBaseKind()) { default: break; case SVal::UnknownKind: { if (Expr *Ex = dyn_cast(Condition)) { if (Ex->getType()->isIntegerType()) { // Try to recover some path-sensitivity. Right now casts of symbolic // integers that promote their values are currently not tracked well. // If 'Condition' is such an expression, try and recover the // underlying value and use that instead. SVal recovered = RecoverCastedSymbol(getStateManager(), builder.getState(), Condition, getContext()); if (!recovered.isUnknown()) { V = recovered; break; } } } builder.generateNode(MarkBranch(PrevState, Term, true), true); builder.generateNode(MarkBranch(PrevState, Term, false), false); return; } case SVal::UndefinedKind: { NodeTy* N = builder.generateNode(PrevState, true); if (N) { N->markAsSink(); UndefBranches.insert(N); } builder.markInfeasible(false); return; } } // Process the true branch. bool isFeasible = false; const GRState* state = Assume(PrevState, V, true, isFeasible); if (isFeasible) builder.generateNode(MarkBranch(state, Term, true), true); else builder.markInfeasible(true); // Process the false branch. isFeasible = false; state = Assume(PrevState, V, false, isFeasible); if (isFeasible) builder.generateNode(MarkBranch(state, Term, false), false); else builder.markInfeasible(false); } /// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a computed goto jump. void GRExprEngine::ProcessIndirectGoto(IndirectGotoNodeBuilder& builder) { const GRState* state = builder.getState(); SVal V = GetSVal(state, builder.getTarget()); // Three possibilities: // // (1) We know the computed label. // (2) The label is NULL (or some other constant), or Undefined. // (3) We have no clue about the label. Dispatch to all targets. // typedef IndirectGotoNodeBuilder::iterator iterator; if (isa(V)) { LabelStmt* L = cast(V).getLabel(); for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) { if (I.getLabel() == L) { builder.generateNode(I, state); return; } } assert (false && "No block with label."); return; } if (isa(V) || isa(V)) { // Dispatch to the first target and mark it as a sink. NodeTy* N = builder.generateNode(builder.begin(), state, true); UndefBranches.insert(N); return; } // This is really a catch-all. We don't support symbolics yet. // FIXME: Implement dispatch for symbolic pointers. for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) builder.generateNode(I, state); } void GRExprEngine::VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R, NodeTy* Pred, NodeSet& Dst) { assert (Ex == CurrentStmt && getCFG().isBlkExpr(Ex)); const GRState* state = GetState(Pred); SVal X = GetBlkExprSVal(state, Ex); assert (X.isUndef()); Expr* SE = (Expr*) cast(X).getData(); assert (SE); X = GetBlkExprSVal(state, SE); // Make sure that we invalidate the previous binding. MakeNode(Dst, Ex, Pred, StateMgr.BindExpr(state, Ex, X, true, true)); } /// ProcessSwitch - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a switch statement. void GRExprEngine::ProcessSwitch(SwitchNodeBuilder& builder) { typedef SwitchNodeBuilder::iterator iterator; const GRState* state = builder.getState(); Expr* CondE = builder.getCondition(); SVal CondV = GetSVal(state, CondE); if (CondV.isUndef()) { NodeTy* N = builder.generateDefaultCaseNode(state, true); UndefBranches.insert(N); return; } const GRState* DefaultSt = state; bool DefaultFeasible = false; for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) { CaseStmt* Case = cast(I.getCase()); // Evaluate the LHS of the case value. Expr::EvalResult V1; bool b = Case->getLHS()->Evaluate(V1, getContext()); // Sanity checks. These go away in Release builds. assert(b && V1.Val.isInt() && !V1.HasSideEffects && "Case condition must evaluate to an integer constant."); b = b; // silence unused variable warning assert(V1.Val.getInt().getBitWidth() == getContext().getTypeSize(CondE->getType())); // Get the RHS of the case, if it exists. Expr::EvalResult V2; if (Expr* E = Case->getRHS()) { b = E->Evaluate(V2, getContext()); assert(b && V2.Val.isInt() && !V2.HasSideEffects && "Case condition must evaluate to an integer constant."); b = b; // silence unused variable warning } else V2 = V1; // FIXME: Eventually we should replace the logic below with a range // comparison, rather than concretize the values within the range. // This should be easy once we have "ranges" for NonLVals. do { nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt())); SVal Res = EvalBinOp(DefaultSt, BinaryOperator::EQ, CondV, CaseVal, getContext().IntTy); // Now "assume" that the case matches. bool isFeasible = false; const GRState* StNew = Assume(state, Res, true, isFeasible); if (isFeasible) { builder.generateCaseStmtNode(I, StNew); // If CondV evaluates to a constant, then we know that this // is the *only* case that we can take, so stop evaluating the // others. if (isa(CondV)) return; } // Now "assume" that the case doesn't match. Add this state // to the default state (if it is feasible). isFeasible = false; StNew = Assume(DefaultSt, Res, false, isFeasible); if (isFeasible) { DefaultFeasible = true; DefaultSt = StNew; } // Concretize the next value in the range. if (V1.Val.getInt() == V2.Val.getInt()) break; ++V1.Val.getInt(); assert (V1.Val.getInt() <= V2.Val.getInt()); } while (true); } // If we reach here, than we know that the default branch is // possible. if (DefaultFeasible) builder.generateDefaultCaseNode(DefaultSt); } //===----------------------------------------------------------------------===// // Transfer functions: logical operations ('&&', '||'). //===----------------------------------------------------------------------===// void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst) { assert (B->getOpcode() == BinaryOperator::LAnd || B->getOpcode() == BinaryOperator::LOr); assert (B == CurrentStmt && getCFG().isBlkExpr(B)); const GRState* state = GetState(Pred); SVal X = GetBlkExprSVal(state, B); assert (X.isUndef()); Expr* Ex = (Expr*) cast(X).getData(); assert (Ex); if (Ex == B->getRHS()) { X = GetBlkExprSVal(state, Ex); // Handle undefined values. if (X.isUndef()) { MakeNode(Dst, B, Pred, BindBlkExpr(state, B, X)); return; } // We took the RHS. Because the value of the '&&' or '||' expression must // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0 // or 1. Alternatively, we could take a lazy approach, and calculate this // value later when necessary. We don't have the machinery in place for // this right now, and since most logical expressions are used for branches, // the payoff is not likely to be large. Instead, we do eager evaluation. bool isFeasible = false; const GRState* NewState = Assume(state, X, true, isFeasible); if (isFeasible) MakeNode(Dst, B, Pred, BindBlkExpr(NewState, B, MakeConstantVal(1U, B))); isFeasible = false; NewState = Assume(state, X, false, isFeasible); if (isFeasible) MakeNode(Dst, B, Pred, BindBlkExpr(NewState, B, MakeConstantVal(0U, B))); } else { // We took the LHS expression. Depending on whether we are '&&' or // '||' we know what the value of the expression is via properties of // the short-circuiting. X = MakeConstantVal( B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U, B); MakeNode(Dst, B, Pred, BindBlkExpr(state, B, X)); } } //===----------------------------------------------------------------------===// // Transfer functions: Loads and stores. //===----------------------------------------------------------------------===// void GRExprEngine::VisitDeclRefExpr(DeclRefExpr* Ex, NodeTy* Pred, NodeSet& Dst, bool asLValue) { const GRState* state = GetState(Pred); const NamedDecl* D = Ex->getDecl(); if (const VarDecl* VD = dyn_cast(D)) { SVal V = StateMgr.GetLValue(state, VD); if (asLValue) MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V), ProgramPoint::PostLValueKind); else EvalLoad(Dst, Ex, Pred, state, V); return; } else if (const EnumConstantDecl* ED = dyn_cast(D)) { assert(!asLValue && "EnumConstantDecl does not have lvalue."); BasicValueFactory& BasicVals = StateMgr.getBasicVals(); SVal V = nonloc::ConcreteInt(BasicVals.getValue(ED->getInitVal())); MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V)); return; } else if (const FunctionDecl* FD = dyn_cast(D)) { assert(asLValue); SVal V = ValMgr.getFunctionPointer(FD); MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V), ProgramPoint::PostLValueKind); return; } assert (false && "ValueDecl support for this ValueDecl not implemented."); } /// VisitArraySubscriptExpr - Transfer function for array accesses void GRExprEngine::VisitArraySubscriptExpr(ArraySubscriptExpr* A, NodeTy* Pred, NodeSet& Dst, bool asLValue) { Expr* Base = A->getBase()->IgnoreParens(); Expr* Idx = A->getIdx()->IgnoreParens(); NodeSet Tmp; if (Base->getType()->isVectorType()) { // For vector types get its lvalue. // FIXME: This may not be correct. Is the rvalue of a vector its location? // In fact, I think this is just a hack. We need to get the right // semantics. VisitLValue(Base, Pred, Tmp); } else Visit(Base, Pred, Tmp); // Get Base's rvalue, which should be an LocVal. for (NodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) { NodeSet Tmp2; Visit(Idx, *I1, Tmp2); // Evaluate the index. for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2!=E2; ++I2) { const GRState* state = GetState(*I2); SVal V = StateMgr.GetLValue(state, A->getType(), GetSVal(state, Base), GetSVal(state, Idx)); if (asLValue) MakeNode(Dst, A, *I2, BindExpr(state, A, V), ProgramPoint::PostLValueKind); else EvalLoad(Dst, A, *I2, state, V); } } } /// VisitMemberExpr - Transfer function for member expressions. void GRExprEngine::VisitMemberExpr(MemberExpr* M, NodeTy* Pred, NodeSet& Dst, bool asLValue) { Expr* Base = M->getBase()->IgnoreParens(); NodeSet Tmp; if (M->isArrow()) Visit(Base, Pred, Tmp); // p->f = ... or ... = p->f else VisitLValue(Base, Pred, Tmp); // x.f = ... or ... = x.f FieldDecl *Field = dyn_cast(M->getMemberDecl()); if (!Field) // FIXME: skipping member expressions for non-fields return; for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) { const GRState* state = GetState(*I); // FIXME: Should we insert some assumption logic in here to determine // if "Base" is a valid piece of memory? Before we put this assumption // later when using FieldOffset lvals (which we no longer have). SVal L = StateMgr.GetLValue(state, GetSVal(state, Base), Field); if (asLValue) MakeNode(Dst, M, *I, BindExpr(state, M, L), ProgramPoint::PostLValueKind); else EvalLoad(Dst, M, *I, state, L); } } /// EvalBind - Handle the semantics of binding a value to a specific location. /// This method is used by EvalStore and (soon) VisitDeclStmt, and others. void GRExprEngine::EvalBind(NodeSet& Dst, Expr* Ex, NodeTy* Pred, const GRState* state, SVal location, SVal Val) { const GRState* newState = 0; if (location.isUnknown()) { // We know that the new state will be the same as the old state since // the location of the binding is "unknown". Consequently, there // is no reason to just create a new node. newState = state; } else { // We are binding to a value other than 'unknown'. Perform the binding // using the StoreManager. newState = StateMgr.BindLoc(state, cast(location), Val); } // The next thing to do is check if the GRTransferFuncs object wants to // update the state based on the new binding. If the GRTransferFunc object // doesn't do anything, just auto-propagate the current state. GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, Pred, newState, Ex, newState != state); getTF().EvalBind(BuilderRef, location, Val); } /// EvalStore - Handle the semantics of a store via an assignment. /// @param Dst The node set to store generated state nodes /// @param Ex The expression representing the location of the store /// @param state The current simulation state /// @param location The location to store the value /// @param Val The value to be stored void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, NodeTy* Pred, const GRState* state, SVal location, SVal Val, const void *tag) { assert (Builder && "GRStmtNodeBuilder must be defined."); // Evaluate the location (checks for bad dereferences). Pred = EvalLocation(Ex, Pred, state, location, tag); if (!Pred) return; assert (!location.isUndef()); state = GetState(Pred); // Proceed with the store. SaveAndRestore OldSPointKind(Builder->PointKind); SaveAndRestore OldTag(Builder->Tag); Builder->PointKind = ProgramPoint::PostStoreKind; Builder->Tag = tag; EvalBind(Dst, Ex, Pred, state, location, Val); } void GRExprEngine::EvalLoad(NodeSet& Dst, Expr* Ex, NodeTy* Pred, const GRState* state, SVal location, const void *tag) { // Evaluate the location (checks for bad dereferences). Pred = EvalLocation(Ex, Pred, state, location, tag); if (!Pred) return; state = GetState(Pred); // Proceed with the load. ProgramPoint::Kind K = ProgramPoint::PostLoadKind; // FIXME: Currently symbolic analysis "generates" new symbols // for the contents of values. We need a better approach. if (location.isUnknown()) { // This is important. We must nuke the old binding. MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, UnknownVal()), K, tag); } else { SVal V = GetSVal(state, cast(location), Ex->getType()); MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V), K, tag); } } void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, Expr* StoreE, NodeTy* Pred, const GRState* state, SVal location, SVal Val, const void *tag) { NodeSet TmpDst; EvalStore(TmpDst, StoreE, Pred, state, location, Val, tag); for (NodeSet::iterator I=TmpDst.begin(), E=TmpDst.end(); I!=E; ++I) MakeNode(Dst, Ex, *I, (*I)->getState(), ProgramPoint::PostStmtKind, tag); } GRExprEngine::NodeTy* GRExprEngine::EvalLocation(Stmt* Ex, NodeTy* Pred, const GRState* state, SVal location, const void *tag) { SaveAndRestore OldTag(Builder->Tag); Builder->Tag = tag; // Check for loads/stores from/to undefined values. if (location.isUndef()) { NodeTy* N = Builder->generateNode(Ex, state, Pred, ProgramPoint::PostUndefLocationCheckFailedKind); if (N) { N->markAsSink(); UndefDeref.insert(N); } return 0; } // Check for loads/stores from/to unknown locations. Treat as No-Ops. if (location.isUnknown()) return Pred; // During a load, one of two possible situations arise: // (1) A crash, because the location (pointer) was NULL. // (2) The location (pointer) is not NULL, and the dereference works. // // We add these assumptions. Loc LV = cast(location); // "Assume" that the pointer is not NULL. bool isFeasibleNotNull = false; const GRState* StNotNull = Assume(state, LV, true, isFeasibleNotNull); // "Assume" that the pointer is NULL. bool isFeasibleNull = false; GRStateRef StNull = GRStateRef(Assume(state, LV, false, isFeasibleNull), getStateManager()); if (isFeasibleNull) { // Use the Generic Data Map to mark in the state what lval was null. const SVal* PersistentLV = getBasicVals().getPersistentSVal(LV); StNull = StNull.set(PersistentLV); // We don't use "MakeNode" here because the node will be a sink // and we have no intention of processing it later. NodeTy* NullNode = Builder->generateNode(Ex, StNull, Pred, ProgramPoint::PostNullCheckFailedKind); if (NullNode) { NullNode->markAsSink(); if (isFeasibleNotNull) ImplicitNullDeref.insert(NullNode); else ExplicitNullDeref.insert(NullNode); } } if (!isFeasibleNotNull) return 0; // Check for out-of-bound array access. if (isa(LV)) { const MemRegion* R = cast(LV).getRegion(); if (const ElementRegion* ER = dyn_cast(R)) { // Get the index of the accessed element. SVal Idx = ER->getIndex(); // Get the extent of the array. SVal NumElements = getStoreManager().getSizeInElements(StNotNull, ER->getSuperRegion()); bool isFeasibleInBound = false; const GRState* StInBound = AssumeInBound(StNotNull, Idx, NumElements, true, isFeasibleInBound); bool isFeasibleOutBound = false; const GRState* StOutBound = AssumeInBound(StNotNull, Idx, NumElements, false, isFeasibleOutBound); if (isFeasibleOutBound) { // Report warning. Make sink node manually. NodeTy* OOBNode = Builder->generateNode(Ex, StOutBound, Pred, ProgramPoint::PostOutOfBoundsCheckFailedKind); if (OOBNode) { OOBNode->markAsSink(); if (isFeasibleInBound) ImplicitOOBMemAccesses.insert(OOBNode); else ExplicitOOBMemAccesses.insert(OOBNode); } } if (!isFeasibleInBound) return 0; StNotNull = StInBound; } } // Generate a new node indicating the checks succeed. return Builder->generateNode(Ex, StNotNull, Pred, ProgramPoint::PostLocationChecksSucceedKind); } //===----------------------------------------------------------------------===// // Transfer function: OSAtomics. // // FIXME: Eventually refactor into a more "plugin" infrastructure. //===----------------------------------------------------------------------===// // Mac OS X: // http://developer.apple.com/documentation/Darwin/Reference/Manpages/man3 // atomic.3.html // static bool EvalOSAtomicCompareAndSwap(ExplodedNodeSet& Dst, GRExprEngine& Engine, GRStmtNodeBuilder& Builder, CallExpr* CE, SVal L, ExplodedNode* Pred) { // Not enough arguments to match OSAtomicCompareAndSwap? if (CE->getNumArgs() != 3) return false; ASTContext &C = Engine.getContext(); Expr *oldValueExpr = CE->getArg(0); QualType oldValueType = C.getCanonicalType(oldValueExpr->getType()); Expr *newValueExpr = CE->getArg(1); QualType newValueType = C.getCanonicalType(newValueExpr->getType()); // Do the types of 'oldValue' and 'newValue' match? if (oldValueType != newValueType) return false; Expr *theValueExpr = CE->getArg(2); const PointerType *theValueType = theValueExpr->getType()->getAsPointerType(); // theValueType not a pointer? if (!theValueType) return false; QualType theValueTypePointee = C.getCanonicalType(theValueType->getPointeeType()).getUnqualifiedType(); // The pointee must match newValueType and oldValueType. if (theValueTypePointee != newValueType) return false; static unsigned magic_load = 0; static unsigned magic_store = 0; const void *OSAtomicLoadTag = &magic_load; const void *OSAtomicStoreTag = &magic_store; // Load 'theValue'. GRStateManager &StateMgr = Engine.getStateManager(); const GRState *state = Pred->getState(); ExplodedNodeSet Tmp; SVal location = StateMgr.GetSVal(state, theValueExpr); Engine.EvalLoad(Tmp, theValueExpr, Pred, state, location, OSAtomicLoadTag); for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) { ExplodedNode *N = *I; const GRState *stateLoad = N->getState(); SVal theValueVal = StateMgr.GetSVal(stateLoad, theValueExpr); SVal oldValueVal = StateMgr.GetSVal(stateLoad, oldValueExpr); // Perform the comparison. SVal Cmp = Engine.EvalBinOp(stateLoad, BinaryOperator::EQ, theValueVal, oldValueVal, Engine.getContext().IntTy); bool isFeasible = false; const GRState *stateEqual = StateMgr.Assume(stateLoad, Cmp, true, isFeasible); // Were they equal? if (isFeasible) { // Perform the store. ExplodedNodeSet TmpStore; Engine.EvalStore(TmpStore, theValueExpr, N, stateEqual, location, StateMgr.GetSVal(stateEqual, newValueExpr), OSAtomicStoreTag); // Now bind the result of the comparison. for (ExplodedNodeSet::iterator I2 = TmpStore.begin(), E2 = TmpStore.end(); I2 != E2; ++I2) { ExplodedNode *predNew = *I2; const GRState *stateNew = predNew->getState(); SVal Res = Engine.getValueManager().makeTruthVal(true, CE->getType()); Engine.MakeNode(Dst, CE, predNew, Engine.BindExpr(stateNew, CE, Res)); } } // Were they not equal? isFeasible = false; const GRState *stateNotEqual = StateMgr.Assume(stateLoad, Cmp, false, isFeasible); if (isFeasible) { SVal Res = Engine.getValueManager().makeTruthVal(false, CE->getType()); Engine.MakeNode(Dst, CE, N, Engine.BindExpr(stateNotEqual, CE, Res)); } } return true; } static bool EvalOSAtomic(ExplodedNodeSet& Dst, GRExprEngine& Engine, GRStmtNodeBuilder& Builder, CallExpr* CE, SVal L, ExplodedNode* Pred) { const FunctionDecl* FD = L.getAsFunctionDecl(); if (!FD) return false; const char *FName = FD->getNameAsCString(); // Check for compare and swap. if (strncmp(FName, "OSAtomicCompareAndSwap", 22) == 0 || strncmp(FName, "objc_atomicCompareAndSwap", 25) == 0) return EvalOSAtomicCompareAndSwap(Dst, Engine, Builder, CE, L, Pred); // FIXME: Other atomics. return false; } //===----------------------------------------------------------------------===// // Transfer function: Function calls. //===----------------------------------------------------------------------===// void GRExprEngine::EvalCall(NodeSet& Dst, CallExpr* CE, SVal L, NodeTy* Pred) { assert (Builder && "GRStmtNodeBuilder must be defined."); // FIXME: Allow us to chain together transfer functions. if (EvalOSAtomic(Dst, *this, *Builder, CE, L, Pred)) return; getTF().EvalCall(Dst, *this, *Builder, CE, L, Pred); } void GRExprEngine::VisitCall(CallExpr* CE, NodeTy* Pred, CallExpr::arg_iterator AI, CallExpr::arg_iterator AE, NodeSet& Dst) { // Determine the type of function we're calling (if available). const FunctionProtoType *Proto = NULL; QualType FnType = CE->getCallee()->IgnoreParens()->getType(); if (const PointerType *FnTypePtr = FnType->getAsPointerType()) Proto = FnTypePtr->getPointeeType()->getAsFunctionProtoType(); VisitCallRec(CE, Pred, AI, AE, Dst, Proto, /*ParamIdx=*/0); } void GRExprEngine::VisitCallRec(CallExpr* CE, NodeTy* Pred, CallExpr::arg_iterator AI, CallExpr::arg_iterator AE, NodeSet& Dst, const FunctionProtoType *Proto, unsigned ParamIdx) { // Process the arguments. if (AI != AE) { // If the call argument is being bound to a reference parameter, // visit it as an lvalue, not an rvalue. bool VisitAsLvalue = false; if (Proto && ParamIdx < Proto->getNumArgs()) VisitAsLvalue = Proto->getArgType(ParamIdx)->isReferenceType(); NodeSet DstTmp; if (VisitAsLvalue) VisitLValue(*AI, Pred, DstTmp); else Visit(*AI, Pred, DstTmp); ++AI; for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI != DE; ++DI) VisitCallRec(CE, *DI, AI, AE, Dst, Proto, ParamIdx + 1); return; } // If we reach here we have processed all of the arguments. Evaluate // the callee expression. NodeSet DstTmp; Expr* Callee = CE->getCallee()->IgnoreParens(); Visit(Callee, Pred, DstTmp); // Finally, evaluate the function call. for (NodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); DI!=DE; ++DI) { const GRState* state = GetState(*DI); SVal L = GetSVal(state, Callee); // FIXME: Add support for symbolic function calls (calls involving // function pointer values that are symbolic). // Check for undefined control-flow or calls to NULL. if (L.isUndef() || isa(L)) { NodeTy* N = Builder->generateNode(CE, state, *DI); if (N) { N->markAsSink(); BadCalls.insert(N); } continue; } // Check for the "noreturn" attribute. SaveAndRestore OldSink(Builder->BuildSinks); const FunctionDecl* FD = L.getAsFunctionDecl(); if (FD) { if (FD->getAttr() || FD->getAttr()) Builder->BuildSinks = true; else { // HACK: Some functions are not marked noreturn, and don't return. // Here are a few hardwired ones. If this takes too long, we can // potentially cache these results. const char* s = FD->getIdentifier()->getName(); unsigned n = strlen(s); switch (n) { default: break; case 4: if (!memcmp(s, "exit", 4)) Builder->BuildSinks = true; break; case 5: if (!memcmp(s, "panic", 5)) Builder->BuildSinks = true; else if (!memcmp(s, "error", 5)) { if (CE->getNumArgs() > 0) { SVal X = GetSVal(state, *CE->arg_begin()); // FIXME: use Assume to inspect the possible symbolic value of // X. Also check the specific signature of error(). nonloc::ConcreteInt* CI = dyn_cast(&X); if (CI && CI->getValue() != 0) Builder->BuildSinks = true; } } break; case 6: if (!memcmp(s, "Assert", 6)) { Builder->BuildSinks = true; break; } // FIXME: This is just a wrapper around throwing an exception. // Eventually inter-procedural analysis should handle this easily. if (!memcmp(s, "ziperr", 6)) Builder->BuildSinks = true; break; case 7: if (!memcmp(s, "assfail", 7)) Builder->BuildSinks = true; break; case 8: if (!memcmp(s ,"db_error", 8) || !memcmp(s, "__assert", 8)) Builder->BuildSinks = true; break; case 12: if (!memcmp(s, "__assert_rtn", 12)) Builder->BuildSinks = true; break; case 13: if (!memcmp(s, "__assert_fail", 13)) Builder->BuildSinks = true; break; case 14: if (!memcmp(s, "dtrace_assfail", 14) || !memcmp(s, "yy_fatal_error", 14)) Builder->BuildSinks = true; break; case 26: if (!memcmp(s, "_XCAssertionFailureHandler", 26) || !memcmp(s, "_DTAssertionFailureHandler", 26) || !memcmp(s, "_TSAssertionFailureHandler", 26)) Builder->BuildSinks = true; break; } } } // Evaluate the call. if (FD) { if (unsigned id = FD->getBuiltinID(getContext())) switch (id) { case Builtin::BI__builtin_expect: { // For __builtin_expect, just return the value of the subexpression. assert (CE->arg_begin() != CE->arg_end()); SVal X = GetSVal(state, *(CE->arg_begin())); MakeNode(Dst, CE, *DI, BindExpr(state, CE, X)); continue; } case Builtin::BI__builtin_alloca: { // FIXME: Refactor into StoreManager itself? MemRegionManager& RM = getStateManager().getRegionManager(); const MemRegion* R = RM.getAllocaRegion(CE, Builder->getCurrentBlockCount()); // Set the extent of the region in bytes. This enables us to use the // SVal of the argument directly. If we save the extent in bits, we // cannot represent values like symbol*8. SVal Extent = GetSVal(state, *(CE->arg_begin())); state = getStoreManager().setExtent(state, R, Extent); MakeNode(Dst, CE, *DI, BindExpr(state, CE, loc::MemRegionVal(R))); continue; } default: break; } } // Check any arguments passed-by-value against being undefined. bool badArg = false; for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); I != E; ++I) { if (GetSVal(GetState(*DI), *I).isUndef()) { NodeTy* N = Builder->generateNode(CE, GetState(*DI), *DI); if (N) { N->markAsSink(); UndefArgs[N] = *I; } badArg = true; break; } } if (badArg) continue; // Dispatch to the plug-in transfer function. unsigned size = Dst.size(); SaveOr OldHasGen(Builder->HasGeneratedNode); EvalCall(Dst, CE, L, *DI); // Handle the case where no nodes where generated. Auto-generate that // contains the updated state if we aren't generating sinks. if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode) MakeNode(Dst, CE, *DI, state); } } //===----------------------------------------------------------------------===// // Transfer function: Objective-C ivar references. //===----------------------------------------------------------------------===// static std::pair EagerlyAssumeTag = std::pair(&EagerlyAssumeTag,0); void GRExprEngine::EvalEagerlyAssume(NodeSet &Dst, NodeSet &Src, Expr *Ex) { for (NodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) { NodeTy *Pred = *I; // Test if the previous node was as the same expression. This can happen // when the expression fails to evaluate to anything meaningful and // (as an optimization) we don't generate a node. ProgramPoint P = Pred->getLocation(); if (!isa(P) || cast(P).getStmt() != Ex) { Dst.Add(Pred); continue; } const GRState* state = Pred->getState(); SVal V = GetSVal(state, Ex); if (isa(V)) { // First assume that the condition is true. bool isFeasible = false; const GRState *stateTrue = Assume(state, V, true, isFeasible); if (isFeasible) { stateTrue = BindExpr(stateTrue, Ex, MakeConstantVal(1U, Ex)); Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag), stateTrue, Pred)); } // Next, assume that the condition is false. isFeasible = false; const GRState *stateFalse = Assume(state, V, false, isFeasible); if (isFeasible) { stateFalse = BindExpr(stateFalse, Ex, MakeConstantVal(0U, Ex)); Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag), stateFalse, Pred)); } } else Dst.Add(Pred); } } //===----------------------------------------------------------------------===// // Transfer function: Objective-C ivar references. //===----------------------------------------------------------------------===// void GRExprEngine::VisitObjCIvarRefExpr(ObjCIvarRefExpr* Ex, NodeTy* Pred, NodeSet& Dst, bool asLValue) { Expr* Base = cast(Ex->getBase()); NodeSet Tmp; Visit(Base, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); SVal BaseVal = GetSVal(state, Base); SVal location = StateMgr.GetLValue(state, Ex->getDecl(), BaseVal); if (asLValue) MakeNode(Dst, Ex, *I, BindExpr(state, Ex, location)); else EvalLoad(Dst, Ex, *I, state, location); } } //===----------------------------------------------------------------------===// // Transfer function: Objective-C fast enumeration 'for' statements. //===----------------------------------------------------------------------===// void GRExprEngine::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S, NodeTy* Pred, NodeSet& Dst) { // ObjCForCollectionStmts are processed in two places. This method // handles the case where an ObjCForCollectionStmt* occurs as one of the // statements within a basic block. This transfer function does two things: // // (1) binds the next container value to 'element'. This creates a new // node in the ExplodedGraph. // // (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating // whether or not the container has any more elements. This value // will be tested in ProcessBranch. We need to explicitly bind // this value because a container can contain nil elements. // // FIXME: Eventually this logic should actually do dispatches to // 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration). // This will require simulating a temporary NSFastEnumerationState, either // through an SVal or through the use of MemRegions. This value can // be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop // terminates we reclaim the temporary (it goes out of scope) and we // we can test if the SVal is 0 or if the MemRegion is null (depending // on what approach we take). // // For now: simulate (1) by assigning either a symbol or nil if the // container is empty. Thus this transfer function will by default // result in state splitting. Stmt* elem = S->getElement(); SVal ElementV; if (DeclStmt* DS = dyn_cast(elem)) { VarDecl* ElemD = cast(DS->getSingleDecl()); assert (ElemD->getInit() == 0); ElementV = getStateManager().GetLValue(GetState(Pred), ElemD); VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV); return; } NodeSet Tmp; VisitLValue(cast(elem), Pred, Tmp); for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); VisitObjCForCollectionStmtAux(S, *I, Dst, GetSVal(state, elem)); } } void GRExprEngine::VisitObjCForCollectionStmtAux(ObjCForCollectionStmt* S, NodeTy* Pred, NodeSet& Dst, SVal ElementV) { // Get the current state. Use 'EvalLocation' to determine if it is a null // pointer, etc. Stmt* elem = S->getElement(); Pred = EvalLocation(elem, Pred, GetState(Pred), ElementV); if (!Pred) return; GRStateRef state = GRStateRef(GetState(Pred), getStateManager()); // Handle the case where the container still has elements. QualType IntTy = getContext().IntTy; SVal TrueV = NonLoc::MakeVal(getBasicVals(), 1, IntTy); GRStateRef hasElems = state.BindExpr(S, TrueV); // Handle the case where the container has no elements. SVal FalseV = NonLoc::MakeVal(getBasicVals(), 0, IntTy); GRStateRef noElems = state.BindExpr(S, FalseV); if (loc::MemRegionVal* MV = dyn_cast(&ElementV)) if (const TypedRegion* R = dyn_cast(MV->getRegion())) { // FIXME: The proper thing to do is to really iterate over the // container. We will do this with dispatch logic to the store. // For now, just 'conjure' up a symbolic value. QualType T = R->getValueType(getContext()); assert (Loc::IsLocType(T)); unsigned Count = Builder->getCurrentBlockCount(); SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count); SVal V = Loc::MakeVal(getStoreManager().getRegionManager().getSymbolicRegion(Sym)); hasElems = hasElems.BindLoc(ElementV, V); // Bind the location to 'nil' on the false branch. SVal nilV = loc::ConcreteInt(getBasicVals().getValue(0, T)); noElems = noElems.BindLoc(ElementV, nilV); } // Create the new nodes. MakeNode(Dst, S, Pred, hasElems); MakeNode(Dst, S, Pred, noElems); } //===----------------------------------------------------------------------===// // Transfer function: Objective-C message expressions. //===----------------------------------------------------------------------===// void GRExprEngine::VisitObjCMessageExpr(ObjCMessageExpr* ME, NodeTy* Pred, NodeSet& Dst){ VisitObjCMessageExprArgHelper(ME, ME->arg_begin(), ME->arg_end(), Pred, Dst); } void GRExprEngine::VisitObjCMessageExprArgHelper(ObjCMessageExpr* ME, ObjCMessageExpr::arg_iterator AI, ObjCMessageExpr::arg_iterator AE, NodeTy* Pred, NodeSet& Dst) { if (AI == AE) { // Process the receiver. if (Expr* Receiver = ME->getReceiver()) { NodeSet Tmp; Visit(Receiver, Pred, Tmp); for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) VisitObjCMessageExprDispatchHelper(ME, *NI, Dst); return; } VisitObjCMessageExprDispatchHelper(ME, Pred, Dst); return; } NodeSet Tmp; Visit(*AI, Pred, Tmp); ++AI; for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) VisitObjCMessageExprArgHelper(ME, AI, AE, *NI, Dst); } void GRExprEngine::VisitObjCMessageExprDispatchHelper(ObjCMessageExpr* ME, NodeTy* Pred, NodeSet& Dst) { // FIXME: More logic for the processing the method call. const GRState* state = GetState(Pred); bool RaisesException = false; if (Expr* Receiver = ME->getReceiver()) { SVal L = GetSVal(state, Receiver); // Check for undefined control-flow. if (L.isUndef()) { NodeTy* N = Builder->generateNode(ME, state, Pred); if (N) { N->markAsSink(); UndefReceivers.insert(N); } return; } // "Assume" that the receiver is not NULL. bool isFeasibleNotNull = false; const GRState *StNotNull = Assume(state, L, true, isFeasibleNotNull); // "Assume" that the receiver is NULL. bool isFeasibleNull = false; const GRState *StNull = Assume(state, L, false, isFeasibleNull); if (isFeasibleNull) { QualType RetTy = ME->getType(); // Check if the receiver was nil and the return value a struct. if(RetTy->isRecordType()) { if (BR.getParentMap().isConsumedExpr(ME)) { // The [0 ...] expressions will return garbage. Flag either an // explicit or implicit error. Because of the structure of this // function we currently do not bifurfacte the state graph at // this point. // FIXME: We should bifurcate and fill the returned struct with // garbage. if (NodeTy* N = Builder->generateNode(ME, StNull, Pred)) { N->markAsSink(); if (isFeasibleNotNull) NilReceiverStructRetImplicit.insert(N); else NilReceiverStructRetExplicit.insert(N); } } } else { ASTContext& Ctx = getContext(); if (RetTy != Ctx.VoidTy) { if (BR.getParentMap().isConsumedExpr(ME)) { // sizeof(void *) const uint64_t voidPtrSize = Ctx.getTypeSize(Ctx.VoidPtrTy); // sizeof(return type) const uint64_t returnTypeSize = Ctx.getTypeSize(ME->getType()); if(voidPtrSize < returnTypeSize) { if (NodeTy* N = Builder->generateNode(ME, StNull, Pred)) { N->markAsSink(); if(isFeasibleNotNull) NilReceiverLargerThanVoidPtrRetImplicit.insert(N); else NilReceiverLargerThanVoidPtrRetExplicit.insert(N); } } else if (!isFeasibleNotNull) { // Handle the safe cases where the return value is 0 if the // receiver is nil. // // FIXME: For now take the conservative approach that we only // return null values if we *know* that the receiver is nil. // This is because we can have surprises like: // // ... = [[NSScreens screens] objectAtIndex:0]; // // What can happen is that [... screens] could return nil, but // it most likely isn't nil. We should assume the semantics // of this case unless we have *a lot* more knowledge. // SVal V = ValMgr.makeZeroVal(ME->getType()); MakeNode(Dst, ME, Pred, BindExpr(StNull, ME, V)); return; } } } } // We have handled the cases where the receiver is nil. The remainder // of this method should assume that the receiver is not nil. if (!StNotNull) return; state = StNotNull; } // Check if the "raise" message was sent. if (ME->getSelector() == RaiseSel) RaisesException = true; } else { IdentifierInfo* ClsName = ME->getClassName(); Selector S = ME->getSelector(); // Check for special instance methods. if (!NSExceptionII) { ASTContext& Ctx = getContext(); NSExceptionII = &Ctx.Idents.get("NSException"); } if (ClsName == NSExceptionII) { enum { NUM_RAISE_SELECTORS = 2 }; // Lazily create a cache of the selectors. if (!NSExceptionInstanceRaiseSelectors) { ASTContext& Ctx = getContext(); NSExceptionInstanceRaiseSelectors = new Selector[NUM_RAISE_SELECTORS]; llvm::SmallVector II; unsigned idx = 0; // raise:format: II.push_back(&Ctx.Idents.get("raise")); II.push_back(&Ctx.Idents.get("format")); NSExceptionInstanceRaiseSelectors[idx++] = Ctx.Selectors.getSelector(II.size(), &II[0]); // raise:format::arguments: II.push_back(&Ctx.Idents.get("arguments")); NSExceptionInstanceRaiseSelectors[idx++] = Ctx.Selectors.getSelector(II.size(), &II[0]); } for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i) if (S == NSExceptionInstanceRaiseSelectors[i]) { RaisesException = true; break; } } } // Check for any arguments that are uninitialized/undefined. for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end(); I != E; ++I) { if (GetSVal(state, *I).isUndef()) { // Generate an error node for passing an uninitialized/undefined value // as an argument to a message expression. This node is a sink. NodeTy* N = Builder->generateNode(ME, state, Pred); if (N) { N->markAsSink(); MsgExprUndefArgs[N] = *I; } return; } } // Check if we raise an exception. For now treat these as sinks. Eventually // we will want to handle exceptions properly. SaveAndRestore OldSink(Builder->BuildSinks); if (RaisesException) Builder->BuildSinks = true; // Dispatch to plug-in transfer function. unsigned size = Dst.size(); SaveOr OldHasGen(Builder->HasGeneratedNode); EvalObjCMessageExpr(Dst, ME, Pred); // Handle the case where no nodes where generated. Auto-generate that // contains the updated state if we aren't generating sinks. if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode) MakeNode(Dst, ME, Pred, state); } //===----------------------------------------------------------------------===// // Transfer functions: Miscellaneous statements. //===----------------------------------------------------------------------===// void GRExprEngine::VisitCastPointerToInteger(SVal V, const GRState* state, QualType PtrTy, Expr* CastE, NodeTy* Pred, NodeSet& Dst) { if (!V.isUnknownOrUndef()) { // FIXME: Determine if the number of bits of the target type is // equal or exceeds the number of bits to store the pointer value. // If not, flag an error. MakeNode(Dst, CastE, Pred, BindExpr(state, CastE, EvalCast(cast(V), CastE->getType()))); } else MakeNode(Dst, CastE, Pred, BindExpr(state, CastE, V)); } void GRExprEngine::VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst){ NodeSet S1; QualType T = CastE->getType(); QualType ExTy = Ex->getType(); if (const ExplicitCastExpr *ExCast=dyn_cast_or_null(CastE)) T = ExCast->getTypeAsWritten(); if (ExTy->isArrayType() || ExTy->isFunctionType() || T->isReferenceType()) VisitLValue(Ex, Pred, S1); else Visit(Ex, Pred, S1); // Check for casting to "void". if (T->isVoidType()) { for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) Dst.Add(*I1); return; } // FIXME: The rest of this should probably just go into EvalCall, and // let the transfer function object be responsible for constructing // nodes. for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) { NodeTy* N = *I1; const GRState* state = GetState(N); SVal V = GetSVal(state, Ex); ASTContext& C = getContext(); // Unknown? if (V.isUnknown()) { Dst.Add(N); continue; } // Undefined? if (V.isUndef()) goto PassThrough; // For const casts, just propagate the value. if (C.getCanonicalType(T).getUnqualifiedType() == C.getCanonicalType(ExTy).getUnqualifiedType()) goto PassThrough; // Check for casts from pointers to integers. if (T->isIntegerType() && Loc::IsLocType(ExTy)) { VisitCastPointerToInteger(V, state, ExTy, CastE, N, Dst); continue; } // Check for casts from integers to pointers. if (Loc::IsLocType(T) && ExTy->isIntegerType()) { if (nonloc::LocAsInteger *LV = dyn_cast(&V)) { // Just unpackage the lval and return it. V = LV->getLoc(); MakeNode(Dst, CastE, N, BindExpr(state, CastE, V)); continue; } goto DispatchCast; } // Just pass through function and block pointers. if (ExTy->isBlockPointerType() || ExTy->isFunctionPointerType()) { assert(Loc::IsLocType(T)); goto PassThrough; } // Check for casts from array type to another type. if (ExTy->isArrayType()) { // We will always decay to a pointer. V = StateMgr.ArrayToPointer(cast(V)); // Are we casting from an array to a pointer? If so just pass on // the decayed value. if (T->isPointerType()) goto PassThrough; // Are we casting from an array to an integer? If so, cast the decayed // pointer value to an integer. assert(T->isIntegerType()); QualType ElemTy = cast(ExTy)->getElementType(); QualType PointerTy = getContext().getPointerType(ElemTy); VisitCastPointerToInteger(V, state, PointerTy, CastE, N, Dst); continue; } // Check for casts from a region to a specific type. if (loc::MemRegionVal *RV = dyn_cast(&V)) { // FIXME: For TypedViewRegions, we should handle the case where the // underlying symbolic pointer is a function pointer or // block pointer. // FIXME: We should handle the case where we strip off view layers to get // to a desugared type. assert(Loc::IsLocType(T)); // We get a symbolic function pointer for a dereference of a function // pointer, but it is of function type. Example: // struct FPRec { // void (*my_func)(int * x); // }; // // int bar(int x); // // int f1_a(struct FPRec* foo) { // int x; // (*foo->my_func)(&x); // return bar(x)+1; // no-warning // } assert(Loc::IsLocType(ExTy) || ExTy->isFunctionType()); const MemRegion* R = RV->getRegion(); StoreManager& StoreMgr = getStoreManager(); // Delegate to store manager to get the result of casting a region // to a different type. const StoreManager::CastResult& Res = StoreMgr.CastRegion(state, R, T); // Inspect the result. If the MemRegion* returned is NULL, this // expression evaluates to UnknownVal. R = Res.getRegion(); if (R) { V = loc::MemRegionVal(R); } else { V = UnknownVal(); } // Generate the new node in the ExplodedGraph. MakeNode(Dst, CastE, N, BindExpr(Res.getState(), CastE, V)); continue; } // All other cases. DispatchCast: { MakeNode(Dst, CastE, N, BindExpr(state, CastE, EvalCast(V, CastE->getType()))); continue; } PassThrough: { MakeNode(Dst, CastE, N, BindExpr(state, CastE, V)); } } } void GRExprEngine::VisitCompoundLiteralExpr(CompoundLiteralExpr* CL, NodeTy* Pred, NodeSet& Dst, bool asLValue) { InitListExpr* ILE = cast(CL->getInitializer()->IgnoreParens()); NodeSet Tmp; Visit(ILE, Pred, Tmp); for (NodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) { const GRState* state = GetState(*I); SVal ILV = GetSVal(state, ILE); state = StateMgr.BindCompoundLiteral(state, CL, ILV); if (asLValue) MakeNode(Dst, CL, *I, BindExpr(state, CL, StateMgr.GetLValue(state, CL))); else MakeNode(Dst, CL, *I, BindExpr(state, CL, ILV)); } } void GRExprEngine::VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst) { // The CFG has one DeclStmt per Decl. Decl* D = *DS->decl_begin(); if (!D || !isa(D)) return; const VarDecl* VD = dyn_cast(D); Expr* InitEx = const_cast(VD->getInit()); // FIXME: static variables may have an initializer, but the second // time a function is called those values may not be current. NodeSet Tmp; if (InitEx) Visit(InitEx, Pred, Tmp); if (Tmp.empty()) Tmp.Add(Pred); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); unsigned Count = Builder->getCurrentBlockCount(); // Check if 'VD' is a VLA and if so check if has a non-zero size. QualType T = getContext().getCanonicalType(VD->getType()); if (VariableArrayType* VLA = dyn_cast(T)) { // FIXME: Handle multi-dimensional VLAs. Expr* SE = VLA->getSizeExpr(); SVal Size = GetSVal(state, SE); if (Size.isUndef()) { if (NodeTy* N = Builder->generateNode(DS, state, Pred)) { N->markAsSink(); ExplicitBadSizedVLA.insert(N); } continue; } bool isFeasibleZero = false; const GRState* ZeroSt = Assume(state, Size, false, isFeasibleZero); bool isFeasibleNotZero = false; state = Assume(state, Size, true, isFeasibleNotZero); if (isFeasibleZero) { if (NodeTy* N = Builder->generateNode(DS, ZeroSt, Pred)) { N->markAsSink(); if (isFeasibleNotZero) ImplicitBadSizedVLA.insert(N); else ExplicitBadSizedVLA.insert(N); } } if (!isFeasibleNotZero) continue; } // Decls without InitExpr are not initialized explicitly. if (InitEx) { SVal InitVal = GetSVal(state, InitEx); QualType T = VD->getType(); // Recover some path-sensitivity if a scalar value evaluated to // UnknownVal. if (InitVal.isUnknown() || !getConstraintManager().canReasonAbout(InitVal)) { InitVal = ValMgr.getConjuredSymbolVal(InitEx, Count); } state = StateMgr.BindDecl(state, VD, InitVal); // The next thing to do is check if the GRTransferFuncs object wants to // update the state based on the new binding. If the GRTransferFunc // object doesn't do anything, just auto-propagate the current state. GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, state, DS,true); getTF().EvalBind(BuilderRef, loc::MemRegionVal(StateMgr.getRegion(VD)), InitVal); } else { state = StateMgr.BindDeclWithNoInit(state, VD); MakeNode(Dst, DS, *I, state); } } } namespace { // This class is used by VisitInitListExpr as an item in a worklist // for processing the values contained in an InitListExpr. class VISIBILITY_HIDDEN InitListWLItem { public: llvm::ImmutableList Vals; GRExprEngine::NodeTy* N; InitListExpr::reverse_iterator Itr; InitListWLItem(GRExprEngine::NodeTy* n, llvm::ImmutableList vals, InitListExpr::reverse_iterator itr) : Vals(vals), N(n), Itr(itr) {} }; } void GRExprEngine::VisitInitListExpr(InitListExpr* E, NodeTy* Pred, NodeSet& Dst) { const GRState* state = GetState(Pred); QualType T = getContext().getCanonicalType(E->getType()); unsigned NumInitElements = E->getNumInits(); if (T->isArrayType() || T->isStructureType()) { llvm::ImmutableList StartVals = getBasicVals().getEmptySValList(); // Handle base case where the initializer has no elements. // e.g: static int* myArray[] = {}; if (NumInitElements == 0) { SVal V = NonLoc::MakeCompoundVal(T, StartVals, getBasicVals()); MakeNode(Dst, E, Pred, BindExpr(state, E, V)); return; } // Create a worklist to process the initializers. llvm::SmallVector WorkList; WorkList.reserve(NumInitElements); WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin())); InitListExpr::reverse_iterator ItrEnd = E->rend(); // Process the worklist until it is empty. while (!WorkList.empty()) { InitListWLItem X = WorkList.back(); WorkList.pop_back(); NodeSet Tmp; Visit(*X.Itr, X.N, Tmp); InitListExpr::reverse_iterator NewItr = X.Itr + 1; for (NodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { // Get the last initializer value. state = GetState(*NI); SVal InitV = GetSVal(state, cast(*X.Itr)); // Construct the new list of values by prepending the new value to // the already constructed list. llvm::ImmutableList NewVals = getBasicVals().consVals(InitV, X.Vals); if (NewItr == ItrEnd) { // Now we have a list holding all init values. Make CompoundValData. SVal V = NonLoc::MakeCompoundVal(T, NewVals, getBasicVals()); // Make final state and node. MakeNode(Dst, E, *NI, BindExpr(state, E, V)); } else { // Still some initializer values to go. Push them onto the worklist. WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr)); } } } return; } if (T->isUnionType() || T->isVectorType()) { // FIXME: to be implemented. // Note: That vectors can return true for T->isIntegerType() MakeNode(Dst, E, Pred, state); return; } if (Loc::IsLocType(T) || T->isIntegerType()) { assert (E->getNumInits() == 1); NodeSet Tmp; Expr* Init = E->getInit(0); Visit(Init, Pred, Tmp); for (NodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I != EI; ++I) { state = GetState(*I); MakeNode(Dst, E, *I, BindExpr(state, E, GetSVal(state, Init))); } return; } printf("InitListExpr type = %s\n", T.getAsString().c_str()); assert(0 && "unprocessed InitListExpr type"); } /// VisitSizeOfAlignOfExpr - Transfer function for sizeof(type). void GRExprEngine::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr* Ex, NodeTy* Pred, NodeSet& Dst) { QualType T = Ex->getTypeOfArgument(); uint64_t amt; if (Ex->isSizeOf()) { if (T == getContext().VoidTy) { // sizeof(void) == 1 byte. amt = 1; } else if (!T.getTypePtr()->isConstantSizeType()) { // FIXME: Add support for VLAs. return; } else if (T->isObjCInterfaceType()) { // Some code tries to take the sizeof an ObjCInterfaceType, relying that // the compiler has laid out its representation. Just report Unknown // for these. return; } else { // All other cases. amt = getContext().getTypeSize(T) / 8; } } else // Get alignment of the type. amt = getContext().getTypeAlign(T) / 8; MakeNode(Dst, Ex, Pred, BindExpr(GetState(Pred), Ex, NonLoc::MakeVal(getBasicVals(), amt, Ex->getType()))); } void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, NodeTy* Pred, NodeSet& Dst, bool asLValue) { switch (U->getOpcode()) { default: break; case UnaryOperator::Deref: { Expr* Ex = U->getSubExpr()->IgnoreParens(); NodeSet Tmp; Visit(Ex, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); SVal location = GetSVal(state, Ex); if (asLValue) MakeNode(Dst, U, *I, BindExpr(state, U, location), ProgramPoint::PostLValueKind); else EvalLoad(Dst, U, *I, state, location); } return; } case UnaryOperator::Real: { Expr* Ex = U->getSubExpr()->IgnoreParens(); NodeSet Tmp; Visit(Ex, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { // FIXME: We don't have complex SValues yet. if (Ex->getType()->isAnyComplexType()) { // Just report "Unknown." Dst.Add(*I); continue; } // For all other types, UnaryOperator::Real is an identity operation. assert (U->getType() == Ex->getType()); const GRState* state = GetState(*I); MakeNode(Dst, U, *I, BindExpr(state, U, GetSVal(state, Ex))); } return; } case UnaryOperator::Imag: { Expr* Ex = U->getSubExpr()->IgnoreParens(); NodeSet Tmp; Visit(Ex, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { // FIXME: We don't have complex SValues yet. if (Ex->getType()->isAnyComplexType()) { // Just report "Unknown." Dst.Add(*I); continue; } // For all other types, UnaryOperator::Float returns 0. assert (Ex->getType()->isIntegerType()); const GRState* state = GetState(*I); SVal X = NonLoc::MakeVal(getBasicVals(), 0, Ex->getType()); MakeNode(Dst, U, *I, BindExpr(state, U, X)); } return; } // FIXME: Just report "Unknown" for OffsetOf. case UnaryOperator::OffsetOf: Dst.Add(Pred); return; case UnaryOperator::Plus: assert (!asLValue); // FALL-THROUGH. case UnaryOperator::Extension: { // Unary "+" is a no-op, similar to a parentheses. We still have places // where it may be a block-level expression, so we need to // generate an extra node that just propagates the value of the // subexpression. Expr* Ex = U->getSubExpr()->IgnoreParens(); NodeSet Tmp; Visit(Ex, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); MakeNode(Dst, U, *I, BindExpr(state, U, GetSVal(state, Ex))); } return; } case UnaryOperator::AddrOf: { assert(!asLValue); Expr* Ex = U->getSubExpr()->IgnoreParens(); NodeSet Tmp; VisitLValue(Ex, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); SVal V = GetSVal(state, Ex); state = BindExpr(state, U, V); MakeNode(Dst, U, *I, state); } return; } case UnaryOperator::LNot: case UnaryOperator::Minus: case UnaryOperator::Not: { assert (!asLValue); Expr* Ex = U->getSubExpr()->IgnoreParens(); NodeSet Tmp; Visit(Ex, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); // Get the value of the subexpression. SVal V = GetSVal(state, Ex); if (V.isUnknownOrUndef()) { MakeNode(Dst, U, *I, BindExpr(state, U, V)); continue; } // QualType DstT = getContext().getCanonicalType(U->getType()); // QualType SrcT = getContext().getCanonicalType(Ex->getType()); // // if (DstT != SrcT) // Perform promotions. // V = EvalCast(V, DstT); // // if (V.isUnknownOrUndef()) { // MakeNode(Dst, U, *I, BindExpr(St, U, V)); // continue; // } switch (U->getOpcode()) { default: assert(false && "Invalid Opcode."); break; case UnaryOperator::Not: // FIXME: Do we need to handle promotions? state = BindExpr(state, U, EvalComplement(cast(V))); break; case UnaryOperator::Minus: // FIXME: Do we need to handle promotions? state = BindExpr(state, U, EvalMinus(U, cast(V))); break; case UnaryOperator::LNot: // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." // // Note: technically we do "E == 0", but this is the same in the // transfer functions as "0 == E". if (isa(V)) { Loc X = Loc::MakeNull(getBasicVals()); SVal Result = EvalBinOp(state,BinaryOperator::EQ, cast(V), X, U->getType()); state = BindExpr(state, U, Result); } else { nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); #if 0 SVal Result = EvalBinOp(BinaryOperator::EQ, cast(V), X); state = SetSVal(state, U, Result); #else EvalBinOp(Dst, U, BinaryOperator::EQ, cast(V), X, *I, U->getType()); continue; #endif } break; } MakeNode(Dst, U, *I, state); } return; } } // Handle ++ and -- (both pre- and post-increment). assert (U->isIncrementDecrementOp()); NodeSet Tmp; Expr* Ex = U->getSubExpr()->IgnoreParens(); VisitLValue(Ex, Pred, Tmp); for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { const GRState* state = GetState(*I); SVal V1 = GetSVal(state, Ex); // Perform a load. NodeSet Tmp2; EvalLoad(Tmp2, Ex, *I, state, V1); for (NodeSet::iterator I2 = Tmp2.begin(), E2 = Tmp2.end(); I2!=E2; ++I2) { state = GetState(*I2); SVal V2 = GetSVal(state, Ex); // Propagate unknown and undefined values. if (V2.isUnknownOrUndef()) { MakeNode(Dst, U, *I2, BindExpr(state, U, V2)); continue; } // Handle all other values. BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add : BinaryOperator::Sub; SVal Result = EvalBinOp(state, Op, V2, MakeConstantVal(1U, U), U->getType()); // Conjure a new symbol if necessary to recover precision. if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){ Result = ValMgr.getConjuredSymbolVal(Ex, Builder->getCurrentBlockCount()); // If the value is a location, ++/-- should always preserve // non-nullness. Check if the original value was non-null, and if so propagate // that constraint. if (Loc::IsLocType(U->getType())) { SVal Constraint = EvalBinOp(state, BinaryOperator::EQ, V2, ValMgr.makeZeroVal(U->getType()), getContext().IntTy); bool isFeasible = false; Assume(state, Constraint, true, isFeasible); if (!isFeasible) { // It isn't feasible for the original value to be null. // Propagate this constraint. Constraint = EvalBinOp(state, BinaryOperator::EQ, Result, ValMgr.makeZeroVal(U->getType()), getContext().IntTy); bool isFeasible = false; state = Assume(state, Constraint, false, isFeasible); assert(isFeasible && state); } } } state = BindExpr(state, U, U->isPostfix() ? V2 : Result); // Perform the store. EvalStore(Dst, U, *I2, state, V1, Result); } } } void GRExprEngine::VisitAsmStmt(AsmStmt* A, NodeTy* Pred, NodeSet& Dst) { VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst); } void GRExprEngine::VisitAsmStmtHelperOutputs(AsmStmt* A, AsmStmt::outputs_iterator I, AsmStmt::outputs_iterator E, NodeTy* Pred, NodeSet& Dst) { if (I == E) { VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst); return; } NodeSet Tmp; VisitLValue(*I, Pred, Tmp); ++I; for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst); } void GRExprEngine::VisitAsmStmtHelperInputs(AsmStmt* A, AsmStmt::inputs_iterator I, AsmStmt::inputs_iterator E, NodeTy* Pred, NodeSet& Dst) { if (I == E) { // We have processed both the inputs and the outputs. All of the outputs // should evaluate to Locs. Nuke all of their values. // FIXME: Some day in the future it would be nice to allow a "plug-in" // which interprets the inline asm and stores proper results in the // outputs. const GRState* state = GetState(Pred); for (AsmStmt::outputs_iterator OI = A->begin_outputs(), OE = A->end_outputs(); OI != OE; ++OI) { SVal X = GetSVal(state, *OI); assert (!isa(X)); // Should be an Lval, or unknown, undef. if (isa(X)) state = BindLoc(state, cast(X), UnknownVal()); } MakeNode(Dst, A, Pred, state); return; } NodeSet Tmp; Visit(*I, Pred, Tmp); ++I; for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) VisitAsmStmtHelperInputs(A, I, E, *NI, Dst); } void GRExprEngine::EvalReturn(NodeSet& Dst, ReturnStmt* S, NodeTy* Pred) { assert (Builder && "GRStmtNodeBuilder must be defined."); unsigned size = Dst.size(); SaveAndRestore OldSink(Builder->BuildSinks); SaveOr OldHasGen(Builder->HasGeneratedNode); getTF().EvalReturn(Dst, *this, *Builder, S, Pred); // Handle the case where no nodes where generated. if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode) MakeNode(Dst, S, Pred, GetState(Pred)); } void GRExprEngine::VisitReturnStmt(ReturnStmt* S, NodeTy* Pred, NodeSet& Dst) { Expr* R = S->getRetValue(); if (!R) { EvalReturn(Dst, S, Pred); return; } NodeSet Tmp; Visit(R, Pred, Tmp); for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) { SVal X = GetSVal((*I)->getState(), R); // Check if we return the address of a stack variable. if (isa(X)) { // Determine if the value is on the stack. const MemRegion* R = cast(&X)->getRegion(); if (R && getStateManager().hasStackStorage(R)) { // Create a special node representing the error. if (NodeTy* N = Builder->generateNode(S, GetState(*I), *I)) { N->markAsSink(); RetsStackAddr.insert(N); } continue; } } // Check if we return an undefined value. else if (X.isUndef()) { if (NodeTy* N = Builder->generateNode(S, GetState(*I), *I)) { N->markAsSink(); RetsUndef.insert(N); } continue; } EvalReturn(Dst, S, *I); } } //===----------------------------------------------------------------------===// // Transfer functions: Binary operators. //===----------------------------------------------------------------------===// const GRState* GRExprEngine::CheckDivideZero(Expr* Ex, const GRState* state, NodeTy* Pred, SVal Denom) { // Divide by undefined? (potentially zero) if (Denom.isUndef()) { NodeTy* DivUndef = Builder->generateNode(Ex, state, Pred); if (DivUndef) { DivUndef->markAsSink(); ExplicitBadDivides.insert(DivUndef); } return 0; } // Check for divide/remainder-by-zero. // First, "assume" that the denominator is 0 or undefined. bool isFeasibleZero = false; const GRState* ZeroSt = Assume(state, Denom, false, isFeasibleZero); // Second, "assume" that the denominator cannot be 0. bool isFeasibleNotZero = false; state = Assume(state, Denom, true, isFeasibleNotZero); // Create the node for the divide-by-zero (if it occurred). if (isFeasibleZero) if (NodeTy* DivZeroNode = Builder->generateNode(Ex, ZeroSt, Pred)) { DivZeroNode->markAsSink(); if (isFeasibleNotZero) ImplicitBadDivides.insert(DivZeroNode); else ExplicitBadDivides.insert(DivZeroNode); } return isFeasibleNotZero ? state : 0; } void GRExprEngine::VisitBinaryOperator(BinaryOperator* B, GRExprEngine::NodeTy* Pred, GRExprEngine::NodeSet& Dst) { NodeSet Tmp1; Expr* LHS = B->getLHS()->IgnoreParens(); Expr* RHS = B->getRHS()->IgnoreParens(); // FIXME: Add proper support for ObjCKVCRefExpr. if (isa(LHS)) { Visit(RHS, Pred, Dst); return; } if (B->isAssignmentOp()) VisitLValue(LHS, Pred, Tmp1); else Visit(LHS, Pred, Tmp1); for (NodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1 != E1; ++I1) { SVal LeftV = GetSVal((*I1)->getState(), LHS); // Process the RHS. NodeSet Tmp2; Visit(RHS, *I1, Tmp2); // With both the LHS and RHS evaluated, process the operation itself. for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2 != E2; ++I2) { const GRState* state = GetState(*I2); const GRState* OldSt = state; SVal RightV = GetSVal(state, RHS); BinaryOperator::Opcode Op = B->getOpcode(); switch (Op) { case BinaryOperator::Assign: { // EXPERIMENTAL: "Conjured" symbols. // FIXME: Handle structs. QualType T = RHS->getType(); if ((RightV.isUnknown() || !getConstraintManager().canReasonAbout(RightV)) && (Loc::IsLocType(T) || (T->isScalarType() && T->isIntegerType()))) { unsigned Count = Builder->getCurrentBlockCount(); RightV = ValMgr.getConjuredSymbolVal(B->getRHS(), Count); } // Simulate the effects of a "store": bind the value of the RHS // to the L-Value represented by the LHS. EvalStore(Dst, B, LHS, *I2, BindExpr(state, B, RightV), LeftV, RightV); continue; } case BinaryOperator::Div: case BinaryOperator::Rem: // Special checking for integer denominators. if (RHS->getType()->isIntegerType() && RHS->getType()->isScalarType()) { state = CheckDivideZero(B, state, *I2, RightV); if (!state) continue; } // FALL-THROUGH. default: { if (B->isAssignmentOp()) break; // Process non-assignements except commas or short-circuited // logical expressions (LAnd and LOr). SVal Result = EvalBinOp(state, Op, LeftV, RightV, B->getType()); if (Result.isUnknown()) { if (OldSt != state) { // Generate a new node if we have already created a new state. MakeNode(Dst, B, *I2, state); } else Dst.Add(*I2); continue; } if (Result.isUndef() && !LeftV.isUndef() && !RightV.isUndef()) { // The operands were *not* undefined, but the result is undefined. // This is a special node that should be flagged as an error. if (NodeTy* UndefNode = Builder->generateNode(B, state, *I2)) { UndefNode->markAsSink(); UndefResults.insert(UndefNode); } continue; } // Otherwise, create a new node. MakeNode(Dst, B, *I2, BindExpr(state, B, Result)); continue; } } assert (B->isCompoundAssignmentOp()); switch (Op) { default: assert(0 && "Invalid opcode for compound assignment."); case BinaryOperator::MulAssign: Op = BinaryOperator::Mul; break; case BinaryOperator::DivAssign: Op = BinaryOperator::Div; break; case BinaryOperator::RemAssign: Op = BinaryOperator::Rem; break; case BinaryOperator::AddAssign: Op = BinaryOperator::Add; break; case BinaryOperator::SubAssign: Op = BinaryOperator::Sub; break; case BinaryOperator::ShlAssign: Op = BinaryOperator::Shl; break; case BinaryOperator::ShrAssign: Op = BinaryOperator::Shr; break; case BinaryOperator::AndAssign: Op = BinaryOperator::And; break; case BinaryOperator::XorAssign: Op = BinaryOperator::Xor; break; case BinaryOperator::OrAssign: Op = BinaryOperator::Or; break; } // Perform a load (the LHS). This performs the checks for // null dereferences, and so on. NodeSet Tmp3; SVal location = GetSVal(state, LHS); EvalLoad(Tmp3, LHS, *I2, state, location); for (NodeSet::iterator I3=Tmp3.begin(), E3=Tmp3.end(); I3!=E3; ++I3) { state = GetState(*I3); SVal V = GetSVal(state, LHS); // Check for divide-by-zero. if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem) && RHS->getType()->isIntegerType() && RHS->getType()->isScalarType()) { // CheckDivideZero returns a new state where the denominator // is assumed to be non-zero. state = CheckDivideZero(B, state, *I3, RightV); if (!state) continue; } // Propagate undefined values (left-side). if (V.isUndef()) { EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, V), location, V); continue; } // Propagate unknown values (left and right-side). if (RightV.isUnknown() || V.isUnknown()) { EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, UnknownVal()), location, UnknownVal()); continue; } // At this point: // // The LHS is not Undef/Unknown. // The RHS is not Unknown. // Get the computation type. QualType CTy = cast(B)->getComputationResultType(); CTy = getContext().getCanonicalType(CTy); QualType CLHSTy = cast(B)->getComputationLHSType(); CLHSTy = getContext().getCanonicalType(CTy); QualType LTy = getContext().getCanonicalType(LHS->getType()); QualType RTy = getContext().getCanonicalType(RHS->getType()); // Promote LHS. V = EvalCast(V, CLHSTy); // Evaluate operands and promote to result type. if (RightV.isUndef()) { // Propagate undefined values (right-side). EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, RightV), location, RightV); continue; } // Compute the result of the operation. SVal Result = EvalCast(EvalBinOp(state, Op, V, RightV, CTy), B->getType()); if (Result.isUndef()) { // The operands were not undefined, but the result is undefined. if (NodeTy* UndefNode = Builder->generateNode(B, state, *I3)) { UndefNode->markAsSink(); UndefResults.insert(UndefNode); } continue; } // EXPERIMENTAL: "Conjured" symbols. // FIXME: Handle structs. SVal LHSVal; if ((Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)) && (Loc::IsLocType(CTy) || (CTy->isScalarType() && CTy->isIntegerType()))) { unsigned Count = Builder->getCurrentBlockCount(); // The symbolic value is actually for the type of the left-hand side // expression, not the computation type, as this is the value the // LValue on the LHS will bind to. LHSVal = ValMgr.getConjuredSymbolVal(B->getRHS(), LTy, Count); // However, we need to convert the symbol to the computation type. Result = (LTy == CTy) ? LHSVal : EvalCast(LHSVal,CTy); } else { // The left-hand side may bind to a different value then the // computation type. LHSVal = (LTy == CTy) ? Result : EvalCast(Result,LTy); } EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, Result), location, LHSVal); } } } } //===----------------------------------------------------------------------===// // Transfer-function Helpers. //===----------------------------------------------------------------------===// void GRExprEngine::EvalBinOp(ExplodedNodeSet& Dst, Expr* Ex, BinaryOperator::Opcode Op, NonLoc L, NonLoc R, ExplodedNode* Pred, QualType T) { GRStateSet OStates; EvalBinOp(OStates, GetState(Pred), Ex, Op, L, R, T); for (GRStateSet::iterator I=OStates.begin(), E=OStates.end(); I!=E; ++I) MakeNode(Dst, Ex, Pred, *I); } void GRExprEngine::EvalBinOp(GRStateSet& OStates, const GRState* state, Expr* Ex, BinaryOperator::Opcode Op, NonLoc L, NonLoc R, QualType T) { GRStateSet::AutoPopulate AP(OStates, state); if (R.isValid()) getTF().EvalBinOpNN(OStates, *this, state, Ex, Op, L, R, T); } SVal GRExprEngine::EvalBinOp(const GRState* state, BinaryOperator::Opcode Op, SVal L, SVal R, QualType T) { if (L.isUndef() || R.isUndef()) return UndefinedVal(); if (L.isUnknown() || R.isUnknown()) return UnknownVal(); if (isa(L)) { if (isa(R)) return getTF().EvalBinOp(*this, Op, cast(L), cast(R)); else return getTF().EvalBinOp(*this, state, Op, cast(L), cast(R)); } if (isa(R)) { // Support pointer arithmetic where the increment/decrement operand // is on the left and the pointer on the right. assert (Op == BinaryOperator::Add || Op == BinaryOperator::Sub); // Commute the operands. return getTF().EvalBinOp(*this, state, Op, cast(R), cast(L)); } else return getTF().DetermEvalBinOpNN(*this, Op, cast(L), cast(R), T); } //===----------------------------------------------------------------------===// // Visualization. //===----------------------------------------------------------------------===// #ifndef NDEBUG static GRExprEngine* GraphPrintCheckerState; static SourceManager* GraphPrintSourceManager; namespace llvm { template<> struct VISIBILITY_HIDDEN DOTGraphTraits : public DefaultDOTGraphTraits { static std::string getNodeAttributes(const GRExprEngine::NodeTy* N, void*) { if (GraphPrintCheckerState->isImplicitNullDeref(N) || GraphPrintCheckerState->isExplicitNullDeref(N) || GraphPrintCheckerState->isUndefDeref(N) || GraphPrintCheckerState->isUndefStore(N) || GraphPrintCheckerState->isUndefControlFlow(N) || GraphPrintCheckerState->isExplicitBadDivide(N) || GraphPrintCheckerState->isImplicitBadDivide(N) || GraphPrintCheckerState->isUndefResult(N) || GraphPrintCheckerState->isBadCall(N) || GraphPrintCheckerState->isUndefArg(N)) return "color=\"red\",style=\"filled\""; if (GraphPrintCheckerState->isNoReturnCall(N)) return "color=\"blue\",style=\"filled\""; return ""; } static std::string getNodeLabel(const GRExprEngine::NodeTy* N, void*) { std::ostringstream Out; // Program Location. ProgramPoint Loc = N->getLocation(); switch (Loc.getKind()) { case ProgramPoint::BlockEntranceKind: Out << "Block Entrance: B" << cast(Loc).getBlock()->getBlockID(); break; case ProgramPoint::BlockExitKind: assert (false); break; default: { if (isa(Loc)) { const PostStmt& L = cast(Loc); Stmt* S = L.getStmt(); SourceLocation SLoc = S->getLocStart(); Out << S->getStmtClassName() << ' ' << (void*) S << ' '; llvm::raw_os_ostream OutS(Out); S->printPretty(OutS); OutS.flush(); if (SLoc.isFileID()) { Out << "\\lline=" << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) << " col=" << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc) << "\\l"; } if (isa(Loc)) Out << "\\lPostLoad\\l;"; else if (isa(Loc)) Out << "\\lPostStore\\l"; else if (isa(Loc)) Out << "\\lPostLValue\\l"; else if (isa(Loc)) Out << "\\lPostLocationChecksSucceed\\l"; else if (isa(Loc)) Out << "\\lPostNullCheckFailed\\l"; if (GraphPrintCheckerState->isImplicitNullDeref(N)) Out << "\\|Implicit-Null Dereference.\\l"; else if (GraphPrintCheckerState->isExplicitNullDeref(N)) Out << "\\|Explicit-Null Dereference.\\l"; else if (GraphPrintCheckerState->isUndefDeref(N)) Out << "\\|Dereference of undefialied value.\\l"; else if (GraphPrintCheckerState->isUndefStore(N)) Out << "\\|Store to Undefined Loc."; else if (GraphPrintCheckerState->isExplicitBadDivide(N)) Out << "\\|Explicit divide-by zero or undefined value."; else if (GraphPrintCheckerState->isImplicitBadDivide(N)) Out << "\\|Implicit divide-by zero or undefined value."; else if (GraphPrintCheckerState->isUndefResult(N)) Out << "\\|Result of operation is undefined."; else if (GraphPrintCheckerState->isNoReturnCall(N)) Out << "\\|Call to function marked \"noreturn\"."; else if (GraphPrintCheckerState->isBadCall(N)) Out << "\\|Call to NULL/Undefined."; else if (GraphPrintCheckerState->isUndefArg(N)) Out << "\\|Argument in call is undefined"; break; } const BlockEdge& E = cast(Loc); Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" << E.getDst()->getBlockID() << ')'; if (Stmt* T = E.getSrc()->getTerminator()) { SourceLocation SLoc = T->getLocStart(); Out << "\\|Terminator: "; llvm::raw_os_ostream OutS(Out); E.getSrc()->printTerminator(OutS); OutS.flush(); if (SLoc.isFileID()) { Out << "\\lline=" << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) << " col=" << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc); } if (isa(T)) { Stmt* Label = E.getDst()->getLabel(); if (Label) { if (CaseStmt* C = dyn_cast(Label)) { Out << "\\lcase "; llvm::raw_os_ostream OutS(Out); C->getLHS()->printPretty(OutS); OutS.flush(); if (Stmt* RHS = C->getRHS()) { Out << " .. "; RHS->printPretty(OutS); OutS.flush(); } Out << ":"; } else { assert (isa(Label)); Out << "\\ldefault:"; } } else Out << "\\l(implicit) default:"; } else if (isa(T)) { // FIXME } else { Out << "\\lCondition: "; if (*E.getSrc()->succ_begin() == E.getDst()) Out << "true"; else Out << "false"; } Out << "\\l"; } if (GraphPrintCheckerState->isUndefControlFlow(N)) { Out << "\\|Control-flow based on\\lUndefined value.\\l"; } } } Out << "\\|StateID: " << (void*) N->getState() << "\\|"; GRStateRef state(N->getState(), GraphPrintCheckerState->getStateManager()); state.printDOT(Out); Out << "\\l"; return Out.str(); } }; } // end llvm namespace #endif #ifndef NDEBUG template GRExprEngine::NodeTy* GetGraphNode(ITERATOR I) { return *I; } template <> GRExprEngine::NodeTy* GetGraphNode::iterator> (llvm::DenseMap::iterator I) { return I->first; } #endif void GRExprEngine::ViewGraph(bool trim) { #ifndef NDEBUG if (trim) { std::vector Src; // Flush any outstanding reports to make sure we cover all the nodes. // This does not cause them to get displayed. for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) const_cast(*I)->FlushReports(BR); // Iterate through the reports and get their nodes. for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) { for (BugType::const_iterator I2=(*I)->begin(), E2=(*I)->end(); I2!=E2; ++I2) { const BugReportEquivClass& EQ = *I2; const BugReport &R = **EQ.begin(); NodeTy *N = const_cast(R.getEndNode()); if (N) Src.push_back(N); } } ViewGraph(&Src[0], &Src[0]+Src.size()); } else { GraphPrintCheckerState = this; GraphPrintSourceManager = &getContext().getSourceManager(); llvm::ViewGraph(*G.roots_begin(), "GRExprEngine"); GraphPrintCheckerState = NULL; GraphPrintSourceManager = NULL; } #endif } void GRExprEngine::ViewGraph(NodeTy** Beg, NodeTy** End) { #ifndef NDEBUG GraphPrintCheckerState = this; GraphPrintSourceManager = &getContext().getSourceManager(); std::auto_ptr TrimmedG(G.Trim(Beg, End).first); if (!TrimmedG.get()) llvm::cerr << "warning: Trimmed ExplodedGraph is empty.\n"; else llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedGRExprEngine"); GraphPrintCheckerState = NULL; GraphPrintSourceManager = NULL; #endif }