//===--- ExprClassification.cpp - Expression AST Node Implementation ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements Expr::classify. // //===----------------------------------------------------------------------===// #include "llvm/Support/ErrorHandling.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclTemplate.h" using namespace clang; typedef Expr::Classification Cl; static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E); static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D); static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T); static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E); static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E); static Cl::Kinds ClassifyConditional(ASTContext &Ctx, const ConditionalOperator *E); static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E, Cl::Kinds Kind, SourceLocation &Loc); Cl Expr::ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const { assert(!TR->isReferenceType() && "Expressions can't have reference type."); Cl::Kinds kind = ClassifyInternal(Ctx, this); // C99 6.3.2.1: An lvalue is an expression with an object type or an // incomplete type other than void. if (!Ctx.getLangOptions().CPlusPlus) { // Thus, no functions. if (TR->isFunctionType() || TR == Ctx.OverloadTy) kind = Cl::CL_Function; // No void either, but qualified void is OK because it is "other than void". else if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers()) kind = Cl::CL_Void; } Cl::ModifiableType modifiable = Cl::CM_Untested; if (Loc) modifiable = IsModifiable(Ctx, this, kind, *Loc); return Classification(kind, modifiable); } static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E) { // This function takes the first stab at classifying expressions. const LangOptions &Lang = Ctx.getLangOptions(); switch (E->getStmtClass()) { // First come the expressions that are always lvalues, unconditionally. case Expr::ObjCIsaExprClass: // C++ [expr.prim.general]p1: A string literal is an lvalue. case Expr::StringLiteralClass: // @encode is equivalent to its string case Expr::ObjCEncodeExprClass: // __func__ and friends are too. case Expr::PredefinedExprClass: // Property references are lvalues case Expr::ObjCPropertyRefExprClass: case Expr::ObjCImplicitSetterGetterRefExprClass: // C++ [expr.typeid]p1: The result of a typeid expression is an lvalue of... case Expr::CXXTypeidExprClass: // Unresolved lookups get classified as lvalues. // FIXME: Is this wise? Should they get their own kind? case Expr::UnresolvedLookupExprClass: case Expr::UnresolvedMemberExprClass: // ObjC instance variables are lvalues // FIXME: ObjC++0x might have different rules case Expr::ObjCIvarRefExprClass: // C99 6.5.2.5p5 says that compound literals are lvalues. // FIXME: C++ might have a different opinion. case Expr::CompoundLiteralExprClass: return Cl::CL_LValue; // Next come the complicated cases. // C++ [expr.sub]p1: The result is an lvalue of type "T". // However, subscripting vector types is more like member access. case Expr::ArraySubscriptExprClass: if (cast(E)->getBase()->getType()->isVectorType()) return ClassifyInternal(Ctx, cast(E)->getBase()); return Cl::CL_LValue; // C++ [expr.prim.general]p3: The result is an lvalue if the entity is a // function or variable and a prvalue otherwise. case Expr::DeclRefExprClass: return ClassifyDecl(Ctx, cast(E)->getDecl()); // We deal with names referenced from blocks the same way. case Expr::BlockDeclRefExprClass: return ClassifyDecl(Ctx, cast(E)->getDecl()); // Member access is complex. case Expr::MemberExprClass: return ClassifyMemberExpr(Ctx, cast(E)); case Expr::UnaryOperatorClass: switch (cast(E)->getOpcode()) { // C++ [expr.unary.op]p1: The unary * operator performs indirection: // [...] the result is an lvalue referring to the object or function // to which the expression points. case UnaryOperator::Deref: return Cl::CL_LValue; // GNU extensions, simply look through them. case UnaryOperator::Real: case UnaryOperator::Imag: case UnaryOperator::Extension: return ClassifyInternal(Ctx, cast(E)->getSubExpr()); // C++ [expr.pre.incr]p1: The result is the updated operand; it is an // lvalue, [...] // Not so in C. case UnaryOperator::PreInc: case UnaryOperator::PreDec: return Lang.CPlusPlus ? Cl::CL_LValue : Cl::CL_PRValue; default: return Cl::CL_PRValue; } // Implicit casts are lvalues if they're lvalue casts. Other than that, we // only specifically record class temporaries. case Expr::ImplicitCastExprClass: if (cast(E)->isLvalueCast()) return Cl::CL_LValue; return Lang.CPlusPlus && E->getType()->isRecordType() ? Cl::CL_ClassTemporary : Cl::CL_PRValue; // C++ [expr.prim.general]p4: The presence of parentheses does not affect // whether the expression is an lvalue. case Expr::ParenExprClass: return ClassifyInternal(Ctx, cast(E)->getSubExpr()); case Expr::BinaryOperatorClass: case Expr::CompoundAssignOperatorClass: // C doesn't have any binary expressions that are lvalues. if (Lang.CPlusPlus) return ClassifyBinaryOp(Ctx, cast(E)); return Cl::CL_PRValue; case Expr::CallExprClass: case Expr::CXXOperatorCallExprClass: case Expr::CXXMemberCallExprClass: return ClassifyUnnamed(Ctx, cast(E)->getCallReturnType()); // __builtin_choose_expr is equivalent to the chosen expression. case Expr::ChooseExprClass: return ClassifyInternal(Ctx, cast(E)->getChosenSubExpr(Ctx)); // Extended vector element access is an lvalue unless there are duplicates // in the shuffle expression. case Expr::ExtVectorElementExprClass: return cast(E)->containsDuplicateElements() ? Cl::CL_DuplicateVectorComponents : Cl::CL_LValue; // Simply look at the actual default argument. case Expr::CXXDefaultArgExprClass: return ClassifyInternal(Ctx, cast(E)->getExpr()); // Same idea for temporary binding. case Expr::CXXBindTemporaryExprClass: return ClassifyInternal(Ctx, cast(E)->getSubExpr()); // And the temporary lifetime guard. case Expr::CXXExprWithTemporariesClass: return ClassifyInternal(Ctx, cast(E)->getSubExpr()); // Casts depend completely on the target type. All casts work the same. case Expr::CStyleCastExprClass: case Expr::CXXFunctionalCastExprClass: case Expr::CXXStaticCastExprClass: case Expr::CXXDynamicCastExprClass: case Expr::CXXReinterpretCastExprClass: case Expr::CXXConstCastExprClass: // Only in C++ can casts be interesting at all. if (!Lang.CPlusPlus) return Cl::CL_PRValue; return ClassifyUnnamed(Ctx, cast(E)->getTypeAsWritten()); case Expr::ConditionalOperatorClass: // Once again, only C++ is interesting. if (!Lang.CPlusPlus) return Cl::CL_PRValue; return ClassifyConditional(Ctx, cast(E)); // ObjC message sends are effectively function calls, if the target function // is known. case Expr::ObjCMessageExprClass: if (const ObjCMethodDecl *Method = cast(E)->getMethodDecl()) { return ClassifyUnnamed(Ctx, Method->getResultType()); } // Some C++ expressions are always class temporaries. case Expr::CXXConstructExprClass: case Expr::CXXTemporaryObjectExprClass: case Expr::CXXScalarValueInitExprClass: return Cl::CL_ClassTemporary; // Everything we haven't handled is a prvalue. default: return Cl::CL_PRValue; } } /// ClassifyDecl - Return the classification of an expression referencing the /// given declaration. static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D) { // C++ [expr.prim.general]p6: The result is an lvalue if the entity is a // function, variable, or data member and a prvalue otherwise. // In C, functions are not lvalues. // In addition, NonTypeTemplateParmDecl derives from VarDecl but isn't an // lvalue unless it's a reference type (C++ [temp.param]p6), so we need to // special-case this. bool islvalue; if (const NonTypeTemplateParmDecl *NTTParm = dyn_cast(D)) islvalue = NTTParm->getType()->isReferenceType(); else islvalue = isa(D) || isa(D) || (Ctx.getLangOptions().CPlusPlus && (isa(D) || isa(D))); return islvalue ? Cl::CL_LValue : Cl::CL_PRValue; } /// ClassifyUnnamed - Return the classification of an expression yielding an /// unnamed value of the given type. This applies in particular to function /// calls and casts. static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T) { // In C, function calls are always rvalues. if (!Ctx.getLangOptions().CPlusPlus) return Cl::CL_PRValue; // C++ [expr.call]p10: A function call is an lvalue if the result type is an // lvalue reference type or an rvalue reference to function type, an xvalue // if the result type is an rvalue refernence to object type, and a prvalue // otherwise. if (T->isLValueReferenceType()) return Cl::CL_LValue; const RValueReferenceType *RV = T->getAs(); if (!RV) // Could still be a class temporary, though. return T->isRecordType() ? Cl::CL_ClassTemporary : Cl::CL_PRValue; return RV->getPointeeType()->isFunctionType() ? Cl::CL_LValue : Cl::CL_XValue; } static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E) { // Handle C first, it's easier. if (!Ctx.getLangOptions().CPlusPlus) { // C99 6.5.2.3p3 // For dot access, the expression is an lvalue if the first part is. For // arrow access, it always is an lvalue. if (E->isArrow()) return Cl::CL_LValue; // ObjC property accesses are not lvalues, but get special treatment. Expr *Base = E->getBase(); if (isa(Base) || isa(Base)) return Cl::CL_SubObjCPropertySetting; return ClassifyInternal(Ctx, Base); } NamedDecl *Member = E->getMemberDecl(); // C++ [expr.ref]p3: E1->E2 is converted to the equivalent form (*(E1)).E2. // C++ [expr.ref]p4: If E2 is declared to have type "reference to T", then // E1.E2 is an lvalue. if (ValueDecl *Value = dyn_cast(Member)) if (Value->getType()->isReferenceType()) return Cl::CL_LValue; // Otherwise, one of the following rules applies. // -- If E2 is a static member [...] then E1.E2 is an lvalue. if (isa(Member) && Member->getDeclContext()->isRecord()) return Cl::CL_LValue; // -- If E2 is a non-static data member [...]. If E1 is an lvalue, then // E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue; // otherwise, it is a prvalue. if (isa(Member)) { // *E1 is an lvalue if (E->isArrow()) return Cl::CL_LValue; return ClassifyInternal(Ctx, E->getBase()); } // -- If E2 is a [...] member function, [...] // -- If it refers to a static member function [...], then E1.E2 is an // lvalue; [...] // -- Otherwise [...] E1.E2 is a prvalue. if (CXXMethodDecl *Method = dyn_cast(Member)) return Method->isStatic() ? Cl::CL_LValue : Cl::CL_MemberFunction; // -- If E2 is a member enumerator [...], the expression E1.E2 is a prvalue. // So is everything else we haven't handled yet. return Cl::CL_PRValue; } static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E) { assert(Ctx.getLangOptions().CPlusPlus && "This is only relevant for C++."); // C++ [expr.ass]p1: All [...] return an lvalue referring to the left operand. if (E->isAssignmentOp()) return Cl::CL_LValue; // C++ [expr.comma]p1: the result is of the same value category as its right // operand, [...]. if (E->getOpcode() == BinaryOperator::Comma) return ClassifyInternal(Ctx, E->getRHS()); // C++ [expr.mptr.oper]p6: The result of a .* expression whose second operand // is a pointer to a data member is of the same value category as its first // operand. if (E->getOpcode() == BinaryOperator::PtrMemD) return E->getType()->isFunctionType() ? Cl::CL_MemberFunction : ClassifyInternal(Ctx, E->getLHS()); // C++ [expr.mptr.oper]p6: The result of an ->* expression is an lvalue if its // second operand is a pointer to data member and a prvalue otherwise. if (E->getOpcode() == BinaryOperator::PtrMemI) return E->getType()->isFunctionType() ? Cl::CL_MemberFunction : Cl::CL_LValue; // All other binary operations are prvalues. return Cl::CL_PRValue; } static Cl::Kinds ClassifyConditional(ASTContext &Ctx, const ConditionalOperator *E) { assert(Ctx.getLangOptions().CPlusPlus && "This is only relevant for C++."); Expr *True = E->getTrueExpr(); Expr *False = E->getFalseExpr(); // C++ [expr.cond]p2 // If either the second or the third operand has type (cv) void, [...] // the result [...] is a prvalue. if (True->getType()->isVoidType() || False->getType()->isVoidType()) return Cl::CL_PRValue; // Note that at this point, we have already performed all conversions // according to [expr.cond]p3. // C++ [expr.cond]p4: If the second and third operands are glvalues of the // same value category [...], the result is of that [...] value category. // C++ [expr.cond]p5: Otherwise, the result is a prvalue. Cl::Kinds LCl = ClassifyInternal(Ctx, True), RCl = ClassifyInternal(Ctx, False); return LCl == RCl ? LCl : Cl::CL_PRValue; } static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E, Cl::Kinds Kind, SourceLocation &Loc) { // As a general rule, we only care about lvalues. But there are some rvalues // for which we want to generate special results. if (Kind == Cl::CL_PRValue) { // For the sake of better diagnostics, we want to specifically recognize // use of the GCC cast-as-lvalue extension. if (const CStyleCastExpr *CE = dyn_cast(E->IgnoreParens())){ if (CE->getSubExpr()->Classify(Ctx).isLValue()) { Loc = CE->getLParenLoc(); return Cl::CM_LValueCast; } } } if (Kind != Cl::CL_LValue) return Cl::CM_RValue; // This is the lvalue case. // Functions are lvalues in C++, but not modifiable. (C++ [basic.lval]p6) if (Ctx.getLangOptions().CPlusPlus && E->getType()->isFunctionType()) return Cl::CM_Function; // You cannot assign to a variable outside a block from within the block if // it is not marked __block, e.g. // void takeclosure(void (^C)(void)); // void func() { int x = 1; takeclosure(^{ x = 7; }); } if (const BlockDeclRefExpr *BDR = dyn_cast(E)) { if (!BDR->isByRef() && isa(BDR->getDecl())) return Cl::CM_NotBlockQualified; } // Assignment to a property in ObjC is an implicit setter access. But a // setter might not exist. if (const ObjCImplicitSetterGetterRefExpr *Expr = dyn_cast(E)) { if (Expr->getSetterMethod() == 0) return Cl::CM_NoSetterProperty; } CanQualType CT = Ctx.getCanonicalType(E->getType()); // Const stuff is obviously not modifiable. if (CT.isConstQualified()) return Cl::CM_ConstQualified; // Arrays are not modifiable, only their elements are. if (CT->isArrayType()) return Cl::CM_ArrayType; // Incomplete types are not modifiable. if (CT->isIncompleteType()) return Cl::CM_IncompleteType; // Records with any const fields (recursively) are not modifiable. if (const RecordType *R = CT->getAs()) { assert(!Ctx.getLangOptions().CPlusPlus && "C++ struct assignment should be resolved by the " "copy assignment operator."); if (R->hasConstFields()) return Cl::CM_ConstQualified; } return Cl::CM_Modifiable; } Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const { Classification VC = Classify(Ctx); switch (VC.getKind()) { case Cl::CL_LValue: return LV_Valid; case Cl::CL_XValue: return LV_InvalidExpression; case Cl::CL_Function: return LV_NotObjectType; case Cl::CL_Void: return LV_IncompleteVoidType; case Cl::CL_DuplicateVectorComponents: return LV_DuplicateVectorComponents; case Cl::CL_MemberFunction: return LV_MemberFunction; case Cl::CL_SubObjCPropertySetting: return LV_SubObjCPropertySetting; case Cl::CL_ClassTemporary: return LV_ClassTemporary; case Cl::CL_PRValue: return LV_InvalidExpression; } llvm_unreachable("Unhandled kind"); } Expr::isModifiableLvalueResult Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const { SourceLocation dummy; Classification VC = ClassifyModifiable(Ctx, Loc ? *Loc : dummy); switch (VC.getKind()) { case Cl::CL_LValue: break; case Cl::CL_XValue: return MLV_InvalidExpression; case Cl::CL_Function: return MLV_NotObjectType; case Cl::CL_Void: return MLV_IncompleteVoidType; case Cl::CL_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; case Cl::CL_MemberFunction: return MLV_MemberFunction; case Cl::CL_SubObjCPropertySetting: return MLV_SubObjCPropertySetting; case Cl::CL_ClassTemporary: return MLV_ClassTemporary; case Cl::CL_PRValue: return VC.getModifiable() == Cl::CM_LValueCast ? MLV_LValueCast : MLV_InvalidExpression; } assert(VC.getKind() == Cl::CL_LValue && "Unhandled kind"); switch (VC.getModifiable()) { case Cl::CM_Untested: llvm_unreachable("Did not test modifiability"); case Cl::CM_Modifiable: return MLV_Valid; case Cl::CM_RValue: llvm_unreachable("CM_RValue and CL_LValue don't match"); case Cl::CM_Function: return MLV_NotObjectType; case Cl::CM_LValueCast: llvm_unreachable("CM_LValueCast and CL_LValue don't match"); case Cl::CM_NotBlockQualified: return MLV_NotBlockQualified; case Cl::CM_NoSetterProperty: return MLV_NoSetterProperty; case Cl::CM_ConstQualified: return MLV_ConstQualified; case Cl::CM_ArrayType: return MLV_ArrayType; case Cl::CM_IncompleteType: return MLV_IncompleteType; } llvm_unreachable("Unhandled modifiable type"); }