//===--- Decl.cpp - Declaration AST Node Implementation -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Decl subclasses. // //===----------------------------------------------------------------------===// #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/ASTContext.h" #include "clang/AST/TypeLoc.h" #include "clang/AST/Stmt.h" #include "clang/AST/Expr.h" #include "clang/AST/PrettyPrinter.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Parse/DeclSpec.h" #include "llvm/Support/ErrorHandling.h" #include using namespace clang; void Attr::Destroy(ASTContext &C) { if (Next) { Next->Destroy(C); Next = 0; } this->~Attr(); C.Deallocate((void*)this); } /// \brief Return the TypeLoc wrapper for the type source info. TypeLoc DeclaratorInfo::getTypeLoc() const { return TypeLoc(Ty, (void*)(this + 1)); } //===----------------------------------------------------------------------===// // Decl Allocation/Deallocation Method Implementations //===----------------------------------------------------------------------===// TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { return new (C) TranslationUnitDecl(C); } NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id) { return new (C) NamespaceDecl(DC, L, Id); } void NamespaceDecl::Destroy(ASTContext& C) { // NamespaceDecl uses "NextDeclarator" to chain namespace declarations // together. They are all top-level Decls. this->~NamespaceDecl(); C.Deallocate((void *)this); } ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T) { return new (C) ImplicitParamDecl(ImplicitParam, DC, L, Id, T); } const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { switch (SC) { case VarDecl::None: break; case VarDecl::Auto: return "auto"; break; case VarDecl::Extern: return "extern"; break; case VarDecl::PrivateExtern: return "__private_extern__"; break; case VarDecl::Register: return "register"; break; case VarDecl::Static: return "static"; break; } assert(0 && "Invalid storage class"); return 0; } ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, DeclaratorInfo *DInfo, StorageClass S, Expr *DefArg) { return new (C) ParmVarDecl(ParmVar, DC, L, Id, T, DInfo, S, DefArg); } SourceRange ParmVarDecl::getDefaultArgRange() const { if (const Expr *E = getInit()) return E->getSourceRange(); if (const Expr *E = getUninstantiatedDefaultArg()) return E->getSourceRange(); return SourceRange(); } void VarDecl::setInit(ASTContext &C, Expr *I) { if (EvaluatedStmt *Eval = Init.dyn_cast()) { Eval->~EvaluatedStmt(); C.Deallocate(Eval); } Init = I; } bool VarDecl::isExternC() const { ASTContext &Context = getASTContext(); if (!Context.getLangOptions().CPlusPlus) return (getDeclContext()->isTranslationUnit() && getStorageClass() != Static) || (getDeclContext()->isFunctionOrMethod() && hasExternalStorage()); for (const DeclContext *DC = getDeclContext(); !DC->isTranslationUnit(); DC = DC->getParent()) { if (const LinkageSpecDecl *Linkage = dyn_cast(DC)) { if (Linkage->getLanguage() == LinkageSpecDecl::lang_c) return getStorageClass() != Static; break; } if (DC->isFunctionOrMethod()) return false; } return false; } FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName N, QualType T, DeclaratorInfo *DInfo, StorageClass S, bool isInline, bool hasWrittenPrototype) { FunctionDecl *New = new (C) FunctionDecl(Function, DC, L, N, T, DInfo, S, isInline); New->HasWrittenPrototype = hasWrittenPrototype; return New; } BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { return new (C) BlockDecl(DC, L); } FieldDecl *FieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, DeclaratorInfo *DInfo, Expr *BW, bool Mutable) { return new (C) FieldDecl(Decl::Field, DC, L, Id, T, DInfo, BW, Mutable); } bool FieldDecl::isAnonymousStructOrUnion() const { if (!isImplicit() || getDeclName()) return false; if (const RecordType *Record = getType()->getAs()) return Record->getDecl()->isAnonymousStructOrUnion(); return false; } EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V) { return new (C) EnumConstantDecl(CD, L, Id, T, E, V); } void EnumConstantDecl::Destroy(ASTContext& C) { if (Init) Init->Destroy(C); Decl::Destroy(C); } TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, DeclaratorInfo *DInfo) { return new (C) TypedefDecl(DC, L, Id, DInfo); } EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, SourceLocation TKL, EnumDecl *PrevDecl) { EnumDecl *Enum = new (C) EnumDecl(DC, L, Id, PrevDecl, TKL); C.getTypeDeclType(Enum, PrevDecl); return Enum; } void EnumDecl::Destroy(ASTContext& C) { Decl::Destroy(C); } void EnumDecl::completeDefinition(ASTContext &C, QualType NewType) { assert(!isDefinition() && "Cannot redefine enums!"); IntegerType = NewType; TagDecl::completeDefinition(); } FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, StringLiteral *Str) { return new (C) FileScopeAsmDecl(DC, L, Str); } //===----------------------------------------------------------------------===// // NamedDecl Implementation //===----------------------------------------------------------------------===// std::string NamedDecl::getQualifiedNameAsString() const { return getQualifiedNameAsString(getASTContext().getLangOptions()); } std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const { // FIXME: Collect contexts, then accumulate names to avoid unnecessary // std::string thrashing. std::vector Names; std::string QualName; const DeclContext *Ctx = getDeclContext(); if (Ctx->isFunctionOrMethod()) return getNameAsString(); while (Ctx) { if (Ctx->isFunctionOrMethod()) // FIXME: That probably will happen, when D was member of local // scope class/struct/union. How do we handle this case? break; if (const ClassTemplateSpecializationDecl *Spec = dyn_cast(Ctx)) { const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); std::string TemplateArgsStr = TemplateSpecializationType::PrintTemplateArgumentList( TemplateArgs.getFlatArgumentList(), TemplateArgs.flat_size(), P); Names.push_back(Spec->getIdentifier()->getNameStart() + TemplateArgsStr); } else if (const NamedDecl *ND = dyn_cast(Ctx)) Names.push_back(ND->getNameAsString()); else break; Ctx = Ctx->getParent(); } std::vector::reverse_iterator I = Names.rbegin(), End = Names.rend(); for (; I!=End; ++I) QualName += *I + "::"; QualName += getNameAsString(); return QualName; } bool NamedDecl::declarationReplaces(NamedDecl *OldD) const { assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); // UsingDirectiveDecl's are not really NamedDecl's, and all have same name. // We want to keep it, unless it nominates same namespace. if (getKind() == Decl::UsingDirective) { return cast(this)->getNominatedNamespace() == cast(OldD)->getNominatedNamespace(); } if (const FunctionDecl *FD = dyn_cast(this)) // For function declarations, we keep track of redeclarations. return FD->getPreviousDeclaration() == OldD; // For function templates, the underlying function declarations are linked. if (const FunctionTemplateDecl *FunctionTemplate = dyn_cast(this)) if (const FunctionTemplateDecl *OldFunctionTemplate = dyn_cast(OldD)) return FunctionTemplate->getTemplatedDecl() ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl()); // For method declarations, we keep track of redeclarations. if (isa(this)) return false; if (isa(this) && isa(OldD)) return true; if (isa(this) && isa(OldD)) return cast(this)->getTargetDecl() == cast(OldD)->getTargetDecl(); // For non-function declarations, if the declarations are of the // same kind then this must be a redeclaration, or semantic analysis // would not have given us the new declaration. return this->getKind() == OldD->getKind(); } bool NamedDecl::hasLinkage() const { if (const VarDecl *VD = dyn_cast(this)) return VD->hasExternalStorage() || VD->isFileVarDecl(); if (isa(this) && !isa(this)) return true; return false; } NamedDecl *NamedDecl::getUnderlyingDecl() { NamedDecl *ND = this; while (true) { if (UsingShadowDecl *UD = dyn_cast(ND)) ND = UD->getTargetDecl(); else if (ObjCCompatibleAliasDecl *AD = dyn_cast(ND)) return AD->getClassInterface(); else return ND; } } //===----------------------------------------------------------------------===// // DeclaratorDecl Implementation //===----------------------------------------------------------------------===// SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { if (DeclInfo) { TypeLoc TL = DeclInfo->getTypeLoc(); while (true) { TypeLoc NextTL = TL.getNextTypeLoc(); if (!NextTL) return TL.getSourceRange().getBegin(); TL = NextTL; } } return SourceLocation(); } //===----------------------------------------------------------------------===// // VarDecl Implementation //===----------------------------------------------------------------------===// VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, DeclaratorInfo *DInfo, StorageClass S) { return new (C) VarDecl(Var, DC, L, Id, T, DInfo, S); } void VarDecl::Destroy(ASTContext& C) { Expr *Init = getInit(); if (Init) { Init->Destroy(C); if (EvaluatedStmt *Eval = this->Init.dyn_cast()) { Eval->~EvaluatedStmt(); C.Deallocate(Eval); } } this->~VarDecl(); C.Deallocate((void *)this); } VarDecl::~VarDecl() { } SourceRange VarDecl::getSourceRange() const { if (getInit()) return SourceRange(getLocation(), getInit()->getLocEnd()); return SourceRange(getLocation(), getLocation()); } bool VarDecl::isOutOfLine() const { if (!isStaticDataMember()) return false; if (Decl::isOutOfLine()) return true; // If this static data member was instantiated from a static data member of // a class template, check whether that static data member was defined // out-of-line. if (VarDecl *VD = getInstantiatedFromStaticDataMember()) return VD->isOutOfLine(); return false; } VarDecl *VarDecl::getOutOfLineDefinition() { if (!isStaticDataMember()) return 0; for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end(); RD != RDEnd; ++RD) { if (RD->getLexicalDeclContext()->isFileContext()) return *RD; } return 0; } VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) return cast(MSI->getInstantiatedFrom()); return 0; } TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { if (MemberSpecializationInfo *MSI = getASTContext().getInstantiatedFromStaticDataMember(this)) return MSI->getTemplateSpecializationKind(); return TSK_Undeclared; } MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { return getASTContext().getInstantiatedFromStaticDataMember(this); } void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation) { MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); assert(MSI && "Not an instantiated static data member?"); MSI->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && MSI->getPointOfInstantiation().isInvalid()) MSI->setPointOfInstantiation(PointOfInstantiation); } bool VarDecl::isTentativeDefinition(ASTContext &Context) const { if (!isFileVarDecl() || Context.getLangOptions().CPlusPlus) return false; const VarDecl *Def = 0; return (!getDefinition(Def) && (getStorageClass() == None || getStorageClass() == Static)); } const Expr *VarDecl::getDefinition(const VarDecl *&Def) const { redecl_iterator I = redecls_begin(), E = redecls_end(); while (I != E && !I->getInit()) ++I; if (I != E) { Def = *I; return I->getInit(); } return 0; } VarDecl *VarDecl::getCanonicalDecl() { return getFirstDeclaration(); } //===----------------------------------------------------------------------===// // FunctionDecl Implementation //===----------------------------------------------------------------------===// void FunctionDecl::Destroy(ASTContext& C) { if (Body && Body.isOffset()) Body.get(C.getExternalSource())->Destroy(C); for (param_iterator I=param_begin(), E=param_end(); I!=E; ++I) (*I)->Destroy(C); FunctionTemplateSpecializationInfo *FTSInfo = TemplateOrSpecialization.dyn_cast(); if (FTSInfo) C.Deallocate(FTSInfo); MemberSpecializationInfo *MSInfo = TemplateOrSpecialization.dyn_cast(); if (MSInfo) C.Deallocate(MSInfo); C.Deallocate(ParamInfo); Decl::Destroy(C); } void FunctionDecl::getNameForDiagnostic(std::string &S, const PrintingPolicy &Policy, bool Qualified) const { NamedDecl::getNameForDiagnostic(S, Policy, Qualified); const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); if (TemplateArgs) S += TemplateSpecializationType::PrintTemplateArgumentList( TemplateArgs->getFlatArgumentList(), TemplateArgs->flat_size(), Policy); } Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) { if (I->Body) { Definition = *I; return I->Body.get(getASTContext().getExternalSource()); } } return 0; } void FunctionDecl::setBody(Stmt *B) { Body = B; if (B) EndRangeLoc = B->getLocEnd(); } bool FunctionDecl::isMain() const { ASTContext &Context = getASTContext(); return !Context.getLangOptions().Freestanding && getDeclContext()->getLookupContext()->isTranslationUnit() && getIdentifier() && getIdentifier()->isStr("main"); } bool FunctionDecl::isExternC() const { ASTContext &Context = getASTContext(); // In C, any non-static, non-overloadable function has external // linkage. if (!Context.getLangOptions().CPlusPlus) return getStorageClass() != Static && !getAttr(); for (const DeclContext *DC = getDeclContext(); !DC->isTranslationUnit(); DC = DC->getParent()) { if (const LinkageSpecDecl *Linkage = dyn_cast(DC)) { if (Linkage->getLanguage() == LinkageSpecDecl::lang_c) return getStorageClass() != Static && !getAttr(); break; } } return false; } bool FunctionDecl::isGlobal() const { if (const CXXMethodDecl *Method = dyn_cast(this)) return Method->isStatic(); if (getStorageClass() == Static) return false; for (const DeclContext *DC = getDeclContext(); DC->isNamespace(); DC = DC->getParent()) { if (const NamespaceDecl *Namespace = cast(DC)) { if (!Namespace->getDeclName()) return false; break; } } return true; } /// \brief Returns a value indicating whether this function /// corresponds to a builtin function. /// /// The function corresponds to a built-in function if it is /// declared at translation scope or within an extern "C" block and /// its name matches with the name of a builtin. The returned value /// will be 0 for functions that do not correspond to a builtin, a /// value of type \c Builtin::ID if in the target-independent range /// \c [1,Builtin::First), or a target-specific builtin value. unsigned FunctionDecl::getBuiltinID() const { ASTContext &Context = getASTContext(); if (!getIdentifier() || !getIdentifier()->getBuiltinID()) return 0; unsigned BuiltinID = getIdentifier()->getBuiltinID(); if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) return BuiltinID; // This function has the name of a known C library // function. Determine whether it actually refers to the C library // function or whether it just has the same name. // If this is a static function, it's not a builtin. if (getStorageClass() == Static) return 0; // If this function is at translation-unit scope and we're not in // C++, it refers to the C library function. if (!Context.getLangOptions().CPlusPlus && getDeclContext()->isTranslationUnit()) return BuiltinID; // If the function is in an extern "C" linkage specification and is // not marked "overloadable", it's the real function. if (isa(getDeclContext()) && cast(getDeclContext())->getLanguage() == LinkageSpecDecl::lang_c && !getAttr()) return BuiltinID; // Not a builtin return 0; } /// getNumParams - Return the number of parameters this function must have /// based on its FunctionType. This is the length of the PararmInfo array /// after it has been created. unsigned FunctionDecl::getNumParams() const { const FunctionType *FT = getType()->getAs(); if (isa(FT)) return 0; return cast(FT)->getNumArgs(); } void FunctionDecl::setParams(ASTContext& C, ParmVarDecl **NewParamInfo, unsigned NumParams) { assert(ParamInfo == 0 && "Already has param info!"); assert(NumParams == getNumParams() && "Parameter count mismatch!"); // Zero params -> null pointer. if (NumParams) { void *Mem = C.Allocate(sizeof(ParmVarDecl*)*NumParams); ParamInfo = new (Mem) ParmVarDecl*[NumParams]; memcpy(ParamInfo, NewParamInfo, sizeof(ParmVarDecl*)*NumParams); // Update source range. The check below allows us to set EndRangeLoc before // setting the parameters. if (EndRangeLoc.isInvalid() || EndRangeLoc == getLocation()) EndRangeLoc = NewParamInfo[NumParams-1]->getLocEnd(); } } /// getMinRequiredArguments - Returns the minimum number of arguments /// needed to call this function. This may be fewer than the number of /// function parameters, if some of the parameters have default /// arguments (in C++). unsigned FunctionDecl::getMinRequiredArguments() const { unsigned NumRequiredArgs = getNumParams(); while (NumRequiredArgs > 0 && getParamDecl(NumRequiredArgs-1)->hasDefaultArg()) --NumRequiredArgs; return NumRequiredArgs; } bool FunctionDecl::isInlined() const { if (isInlineSpecified() || (isa(this) && !isOutOfLine())) return true; switch (getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitSpecialization: return false; case TSK_ImplicitInstantiation: case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitInstantiationDefinition: // Handle below. break; } const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); Stmt *Pattern = 0; if (PatternDecl) Pattern = PatternDecl->getBody(PatternDecl); if (Pattern && PatternDecl) return PatternDecl->isInlined(); return false; } /// \brief For an inline function definition in C or C++, determine whether the /// definition will be externally visible. /// /// Inline function definitions are always available for inlining optimizations. /// However, depending on the language dialect, declaration specifiers, and /// attributes, the definition of an inline function may or may not be /// "externally" visible to other translation units in the program. /// /// In C99, inline definitions are not externally visible by default. However, /// if even one of the globa-scope declarations is marked "extern inline", the /// inline definition becomes externally visible (C99 6.7.4p6). /// /// In GNU89 mode, or if the gnu_inline attribute is attached to the function /// definition, we use the GNU semantics for inline, which are nearly the /// opposite of C99 semantics. In particular, "inline" by itself will create /// an externally visible symbol, but "extern inline" will not create an /// externally visible symbol. bool FunctionDecl::isInlineDefinitionExternallyVisible() const { assert(isThisDeclarationADefinition() && "Must have the function definition"); assert(isInlined() && "Function must be inline"); ASTContext &Context = getASTContext(); if (!Context.getLangOptions().C99 || hasAttr()) { // GNU inline semantics. Based on a number of examples, we came up with the // following heuristic: if the "inline" keyword is present on a // declaration of the function but "extern" is not present on that // declaration, then the symbol is externally visible. Otherwise, the GNU // "extern inline" semantics applies and the symbol is not externally // visible. for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end(); Redecl != RedeclEnd; ++Redecl) { if (Redecl->isInlineSpecified() && Redecl->getStorageClass() != Extern) return true; } // GNU "extern inline" semantics; no externally visible symbol. return false; } // C99 6.7.4p6: // [...] If all of the file scope declarations for a function in a // translation unit include the inline function specifier without extern, // then the definition in that translation unit is an inline definition. for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end(); Redecl != RedeclEnd; ++Redecl) { // Only consider file-scope declarations in this test. if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) continue; if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == Extern) return true; // Not an inline definition } // C99 6.7.4p6: // An inline definition does not provide an external definition for the // function, and does not forbid an external definition in another // translation unit. return false; } void FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { redeclarable_base::setPreviousDeclaration(PrevDecl); if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { FunctionTemplateDecl *PrevFunTmpl = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0; assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); FunTmpl->setPreviousDeclaration(PrevFunTmpl); } } const FunctionDecl *FunctionDecl::getCanonicalDecl() const { return getFirstDeclaration(); } FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDeclaration(); } /// getOverloadedOperator - Which C++ overloaded operator this /// function represents, if any. OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) return getDeclName().getCXXOverloadedOperator(); else return OO_None; } FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) return cast(Info->getInstantiatedFrom()); return 0; } MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { return TemplateOrSpecialization.dyn_cast(); } void FunctionDecl::setInstantiationOfMemberFunction(FunctionDecl *FD, TemplateSpecializationKind TSK) { assert(TemplateOrSpecialization.isNull() && "Member function is already a specialization"); MemberSpecializationInfo *Info = new (getASTContext()) MemberSpecializationInfo(FD, TSK); TemplateOrSpecialization = Info; } bool FunctionDecl::isImplicitlyInstantiable() const { // If this function already has a definition or is invalid, it can't be // implicitly instantiated. if (isInvalidDecl() || getBody()) return false; switch (getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitSpecialization: case TSK_ExplicitInstantiationDefinition: return false; case TSK_ImplicitInstantiation: return true; case TSK_ExplicitInstantiationDeclaration: // Handled below. break; } // Find the actual template from which we will instantiate. const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); Stmt *Pattern = 0; if (PatternDecl) Pattern = PatternDecl->getBody(PatternDecl); // C++0x [temp.explicit]p9: // Except for inline functions, other explicit instantiation declarations // have the effect of suppressing the implicit instantiation of the entity // to which they refer. if (!Pattern || !PatternDecl) return true; return PatternDecl->isInlined(); } FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const { if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { while (Primary->getInstantiatedFromMemberTemplate()) { // If we have hit a point where the user provided a specialization of // this template, we're done looking. if (Primary->isMemberSpecialization()) break; Primary = Primary->getInstantiatedFromMemberTemplate(); } return Primary->getTemplatedDecl(); } return getInstantiatedFromMemberFunction(); } FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { if (FunctionTemplateSpecializationInfo *Info = TemplateOrSpecialization .dyn_cast()) { return Info->Template.getPointer(); } return 0; } const TemplateArgumentList * FunctionDecl::getTemplateSpecializationArgs() const { if (FunctionTemplateSpecializationInfo *Info = TemplateOrSpecialization .dyn_cast()) { return Info->TemplateArguments; } return 0; } void FunctionDecl::setFunctionTemplateSpecialization(ASTContext &Context, FunctionTemplateDecl *Template, const TemplateArgumentList *TemplateArgs, void *InsertPos, TemplateSpecializationKind TSK) { assert(TSK != TSK_Undeclared && "Must specify the type of function template specialization"); FunctionTemplateSpecializationInfo *Info = TemplateOrSpecialization.dyn_cast(); if (!Info) Info = new (Context) FunctionTemplateSpecializationInfo; Info->Function = this; Info->Template.setPointer(Template); Info->Template.setInt(TSK - 1); Info->TemplateArguments = TemplateArgs; TemplateOrSpecialization = Info; // Insert this function template specialization into the set of known // function template specializations. if (InsertPos) Template->getSpecializations().InsertNode(Info, InsertPos); else { // Try to insert the new node. If there is an existing node, remove it // first. FunctionTemplateSpecializationInfo *Existing = Template->getSpecializations().GetOrInsertNode(Info); if (Existing) { Template->getSpecializations().RemoveNode(Existing); Template->getSpecializations().GetOrInsertNode(Info); } } } TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { // For a function template specialization, query the specialization // information object. FunctionTemplateSpecializationInfo *FTSInfo = TemplateOrSpecialization.dyn_cast(); if (FTSInfo) return FTSInfo->getTemplateSpecializationKind(); MemberSpecializationInfo *MSInfo = TemplateOrSpecialization.dyn_cast(); if (MSInfo) return MSInfo->getTemplateSpecializationKind(); return TSK_Undeclared; } void FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation) { if (FunctionTemplateSpecializationInfo *FTSInfo = TemplateOrSpecialization.dyn_cast< FunctionTemplateSpecializationInfo*>()) { FTSInfo->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && FTSInfo->getPointOfInstantiation().isInvalid()) FTSInfo->setPointOfInstantiation(PointOfInstantiation); } else if (MemberSpecializationInfo *MSInfo = TemplateOrSpecialization.dyn_cast()) { MSInfo->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && MSInfo->getPointOfInstantiation().isInvalid()) MSInfo->setPointOfInstantiation(PointOfInstantiation); } else assert(false && "Function cannot have a template specialization kind"); } SourceLocation FunctionDecl::getPointOfInstantiation() const { if (FunctionTemplateSpecializationInfo *FTSInfo = TemplateOrSpecialization.dyn_cast< FunctionTemplateSpecializationInfo*>()) return FTSInfo->getPointOfInstantiation(); else if (MemberSpecializationInfo *MSInfo = TemplateOrSpecialization.dyn_cast()) return MSInfo->getPointOfInstantiation(); return SourceLocation(); } bool FunctionDecl::isOutOfLine() const { if (Decl::isOutOfLine()) return true; // If this function was instantiated from a member function of a // class template, check whether that member function was defined out-of-line. if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { const FunctionDecl *Definition; if (FD->getBody(Definition)) return Definition->isOutOfLine(); } // If this function was instantiated from a function template, // check whether that function template was defined out-of-line. if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { const FunctionDecl *Definition; if (FunTmpl->getTemplatedDecl()->getBody(Definition)) return Definition->isOutOfLine(); } return false; } //===----------------------------------------------------------------------===// // TagDecl Implementation //===----------------------------------------------------------------------===// SourceRange TagDecl::getSourceRange() const { SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); return SourceRange(TagKeywordLoc, E); } TagDecl* TagDecl::getCanonicalDecl() { return getFirstDeclaration(); } void TagDecl::startDefinition() { if (TagType *TagT = const_cast(TypeForDecl->getAs())) { TagT->decl.setPointer(this); TagT->decl.setInt(1); } } void TagDecl::completeDefinition() { IsDefinition = true; if (TagType *TagT = const_cast(TypeForDecl->getAs())) { assert(TagT->decl.getPointer() == this && "Attempt to redefine a tag definition?"); TagT->decl.setInt(0); } } TagDecl* TagDecl::getDefinition(ASTContext& C) const { if (isDefinition()) return const_cast(this); for (redecl_iterator R = redecls_begin(), REnd = redecls_end(); R != REnd; ++R) if (R->isDefinition()) return *R; return 0; } TagDecl::TagKind TagDecl::getTagKindForTypeSpec(unsigned TypeSpec) { switch (TypeSpec) { default: llvm::llvm_unreachable("unexpected type specifier"); case DeclSpec::TST_struct: return TK_struct; case DeclSpec::TST_class: return TK_class; case DeclSpec::TST_union: return TK_union; case DeclSpec::TST_enum: return TK_enum; } } //===----------------------------------------------------------------------===// // RecordDecl Implementation //===----------------------------------------------------------------------===// RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, RecordDecl *PrevDecl, SourceLocation TKL) : TagDecl(DK, TK, DC, L, Id, PrevDecl, TKL) { HasFlexibleArrayMember = false; AnonymousStructOrUnion = false; HasObjectMember = false; assert(classof(static_cast(this)) && "Invalid Kind!"); } RecordDecl *RecordDecl::Create(ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, SourceLocation TKL, RecordDecl* PrevDecl) { RecordDecl* R = new (C) RecordDecl(Record, TK, DC, L, Id, PrevDecl, TKL); C.getTypeDeclType(R, PrevDecl); return R; } RecordDecl::~RecordDecl() { } void RecordDecl::Destroy(ASTContext& C) { TagDecl::Destroy(C); } bool RecordDecl::isInjectedClassName() const { return isImplicit() && getDeclName() && getDeclContext()->isRecord() && cast(getDeclContext())->getDeclName() == getDeclName(); } /// completeDefinition - Notes that the definition of this type is now /// complete. void RecordDecl::completeDefinition(ASTContext& C) { assert(!isDefinition() && "Cannot redefine record!"); TagDecl::completeDefinition(); } //===----------------------------------------------------------------------===// // BlockDecl Implementation //===----------------------------------------------------------------------===// BlockDecl::~BlockDecl() { } void BlockDecl::Destroy(ASTContext& C) { if (Body) Body->Destroy(C); for (param_iterator I=param_begin(), E=param_end(); I!=E; ++I) (*I)->Destroy(C); C.Deallocate(ParamInfo); Decl::Destroy(C); } void BlockDecl::setParams(ASTContext& C, ParmVarDecl **NewParamInfo, unsigned NParms) { assert(ParamInfo == 0 && "Already has param info!"); // Zero params -> null pointer. if (NParms) { NumParams = NParms; void *Mem = C.Allocate(sizeof(ParmVarDecl*)*NumParams); ParamInfo = new (Mem) ParmVarDecl*[NumParams]; memcpy(ParamInfo, NewParamInfo, sizeof(ParmVarDecl*)*NumParams); } } unsigned BlockDecl::getNumParams() const { return NumParams; }