//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ASTContext interface. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTContext.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExternalASTSource.h" #include "clang/AST/RecordLayout.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBuffer.h" using namespace clang; enum FloatingRank { FloatRank, DoubleRank, LongDoubleRank }; ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t, IdentifierTable &idents, SelectorTable &sels, bool FreeMem, unsigned size_reserve, bool InitializeBuiltins) : GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0), ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts), FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels), ExternalSource(0) { if (size_reserve > 0) Types.reserve(size_reserve); InitBuiltinTypes(); TUDecl = TranslationUnitDecl::Create(*this); BuiltinInfo.InitializeTargetBuiltins(Target); if (InitializeBuiltins) this->InitializeBuiltins(idents); PrintingPolicy.CPlusPlus = LangOpts.CPlusPlus; } ASTContext::~ASTContext() { // Deallocate all the types. while (!Types.empty()) { Types.back()->Destroy(*this); Types.pop_back(); } { llvm::DenseMap::iterator I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); while (I != E) { ASTRecordLayout *R = const_cast((I++)->second); delete R; } } { llvm::DenseMap::iterator I = ObjCLayouts.begin(), E = ObjCLayouts.end(); while (I != E) { ASTRecordLayout *R = const_cast((I++)->second); delete R; } } // Destroy nested-name-specifiers. for (llvm::FoldingSet::iterator NNS = NestedNameSpecifiers.begin(), NNSEnd = NestedNameSpecifiers.end(); NNS != NNSEnd; /* Increment in loop */) (*NNS++).Destroy(*this); if (GlobalNestedNameSpecifier) GlobalNestedNameSpecifier->Destroy(*this); TUDecl->Destroy(*this); } void ASTContext::InitializeBuiltins(IdentifierTable &idents) { BuiltinInfo.InitializeBuiltins(idents, LangOpts.NoBuiltin); } void ASTContext::setExternalSource(llvm::OwningPtr &Source) { ExternalSource.reset(Source.take()); } void ASTContext::PrintStats() const { fprintf(stderr, "*** AST Context Stats:\n"); fprintf(stderr, " %d types total.\n", (int)Types.size()); unsigned counts[] = { #define TYPE(Name, Parent) 0, #define ABSTRACT_TYPE(Name, Parent) #include "clang/AST/TypeNodes.def" 0 // Extra }; for (unsigned i = 0, e = Types.size(); i != e; ++i) { Type *T = Types[i]; counts[(unsigned)T->getTypeClass()]++; } unsigned Idx = 0; unsigned TotalBytes = 0; #define TYPE(Name, Parent) \ if (counts[Idx]) \ fprintf(stderr, " %d %s types\n", (int)counts[Idx], #Name); \ TotalBytes += counts[Idx] * sizeof(Name##Type); \ ++Idx; #define ABSTRACT_TYPE(Name, Parent) #include "clang/AST/TypeNodes.def" fprintf(stderr, "Total bytes = %d\n", int(TotalBytes)); if (ExternalSource.get()) { fprintf(stderr, "\n"); ExternalSource->PrintStats(); } } void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) { Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr()); } void ASTContext::InitBuiltinTypes() { assert(VoidTy.isNull() && "Context reinitialized?"); // C99 6.2.5p19. InitBuiltinType(VoidTy, BuiltinType::Void); // C99 6.2.5p2. InitBuiltinType(BoolTy, BuiltinType::Bool); // C99 6.2.5p3. if (Target.isCharSigned()) InitBuiltinType(CharTy, BuiltinType::Char_S); else InitBuiltinType(CharTy, BuiltinType::Char_U); // C99 6.2.5p4. InitBuiltinType(SignedCharTy, BuiltinType::SChar); InitBuiltinType(ShortTy, BuiltinType::Short); InitBuiltinType(IntTy, BuiltinType::Int); InitBuiltinType(LongTy, BuiltinType::Long); InitBuiltinType(LongLongTy, BuiltinType::LongLong); // C99 6.2.5p6. InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); // C99 6.2.5p10. InitBuiltinType(FloatTy, BuiltinType::Float); InitBuiltinType(DoubleTy, BuiltinType::Double); InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); // GNU extension, 128-bit integers. InitBuiltinType(Int128Ty, BuiltinType::Int128); InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128); if (LangOpts.CPlusPlus) // C++ 3.9.1p5 InitBuiltinType(WCharTy, BuiltinType::WChar); else // C99 WCharTy = getFromTargetType(Target.getWCharType()); // Placeholder type for functions. InitBuiltinType(OverloadTy, BuiltinType::Overload); // Placeholder type for type-dependent expressions whose type is // completely unknown. No code should ever check a type against // DependentTy and users should never see it; however, it is here to // help diagnose failures to properly check for type-dependent // expressions. InitBuiltinType(DependentTy, BuiltinType::Dependent); // C99 6.2.5p11. FloatComplexTy = getComplexType(FloatTy); DoubleComplexTy = getComplexType(DoubleTy); LongDoubleComplexTy = getComplexType(LongDoubleTy); BuiltinVaListType = QualType(); ObjCIdType = QualType(); IdStructType = 0; ObjCClassType = QualType(); ClassStructType = 0; ObjCConstantStringType = QualType(); // void * type VoidPtrTy = getPointerType(VoidTy); // nullptr type (C++0x 2.14.7) InitBuiltinType(NullPtrTy, BuiltinType::NullPtr); } //===----------------------------------------------------------------------===// // Type Sizing and Analysis //===----------------------------------------------------------------------===// /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified /// scalar floating point type. const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { const BuiltinType *BT = T->getAsBuiltinType(); assert(BT && "Not a floating point type!"); switch (BT->getKind()) { default: assert(0 && "Not a floating point type!"); case BuiltinType::Float: return Target.getFloatFormat(); case BuiltinType::Double: return Target.getDoubleFormat(); case BuiltinType::LongDouble: return Target.getLongDoubleFormat(); } } /// getDeclAlign - Return a conservative estimate of the alignment of the /// specified decl. Note that bitfields do not have a valid alignment, so /// this method will assert on them. unsigned ASTContext::getDeclAlignInBytes(const Decl *D) { unsigned Align = Target.getCharWidth(); if (const AlignedAttr* AA = D->getAttr()) Align = std::max(Align, AA->getAlignment()); if (const ValueDecl *VD = dyn_cast(D)) { QualType T = VD->getType(); if (const ReferenceType* RT = T->getAsReferenceType()) { unsigned AS = RT->getPointeeType().getAddressSpace(); Align = Target.getPointerAlign(AS); } else if (!T->isIncompleteType() && !T->isFunctionType()) { // Incomplete or function types default to 1. while (isa(T) || isa(T)) T = cast(T)->getElementType(); Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); } } return Align / Target.getCharWidth(); } /// getTypeSize - Return the size of the specified type, in bits. This method /// does not work on incomplete types. std::pair ASTContext::getTypeInfo(const Type *T) { uint64_t Width=0; unsigned Align=8; switch (T->getTypeClass()) { #define TYPE(Class, Base) #define ABSTRACT_TYPE(Class, Base) #define NON_CANONICAL_TYPE(Class, Base) #define DEPENDENT_TYPE(Class, Base) case Type::Class: #include "clang/AST/TypeNodes.def" assert(false && "Should not see dependent types"); break; case Type::FunctionNoProto: case Type::FunctionProto: // GCC extension: alignof(function) = 32 bits Width = 0; Align = 32; break; case Type::IncompleteArray: case Type::VariableArray: Width = 0; Align = getTypeAlign(cast(T)->getElementType()); break; case Type::ConstantArray: { const ConstantArrayType *CAT = cast(T); std::pair EltInfo = getTypeInfo(CAT->getElementType()); Width = EltInfo.first*CAT->getSize().getZExtValue(); Align = EltInfo.second; break; } case Type::ExtVector: case Type::Vector: { std::pair EltInfo = getTypeInfo(cast(T)->getElementType()); Width = EltInfo.first*cast(T)->getNumElements(); Align = Width; // If the alignment is not a power of 2, round up to the next power of 2. // This happens for non-power-of-2 length vectors. // FIXME: this should probably be a target property. Align = 1 << llvm::Log2_32_Ceil(Align); break; } case Type::Builtin: switch (cast(T)->getKind()) { default: assert(0 && "Unknown builtin type!"); case BuiltinType::Void: // GCC extension: alignof(void) = 8 bits. Width = 0; Align = 8; break; case BuiltinType::Bool: Width = Target.getBoolWidth(); Align = Target.getBoolAlign(); break; case BuiltinType::Char_S: case BuiltinType::Char_U: case BuiltinType::UChar: case BuiltinType::SChar: Width = Target.getCharWidth(); Align = Target.getCharAlign(); break; case BuiltinType::WChar: Width = Target.getWCharWidth(); Align = Target.getWCharAlign(); break; case BuiltinType::UShort: case BuiltinType::Short: Width = Target.getShortWidth(); Align = Target.getShortAlign(); break; case BuiltinType::UInt: case BuiltinType::Int: Width = Target.getIntWidth(); Align = Target.getIntAlign(); break; case BuiltinType::ULong: case BuiltinType::Long: Width = Target.getLongWidth(); Align = Target.getLongAlign(); break; case BuiltinType::ULongLong: case BuiltinType::LongLong: Width = Target.getLongLongWidth(); Align = Target.getLongLongAlign(); break; case BuiltinType::Int128: case BuiltinType::UInt128: Width = 128; Align = 128; // int128_t is 128-bit aligned on all targets. break; case BuiltinType::Float: Width = Target.getFloatWidth(); Align = Target.getFloatAlign(); break; case BuiltinType::Double: Width = Target.getDoubleWidth(); Align = Target.getDoubleAlign(); break; case BuiltinType::LongDouble: Width = Target.getLongDoubleWidth(); Align = Target.getLongDoubleAlign(); break; case BuiltinType::NullPtr: Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t) Align = Target.getPointerAlign(0); // == sizeof(void*) break; } break; case Type::FixedWidthInt: // FIXME: This isn't precisely correct; the width/alignment should depend // on the available types for the target Width = cast(T)->getWidth(); Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8); Align = Width; break; case Type::ExtQual: // FIXME: Pointers into different addr spaces could have different sizes and // alignment requirements: getPointerInfo should take an AddrSpace. return getTypeInfo(QualType(cast(T)->getBaseType(), 0)); case Type::ObjCQualifiedId: case Type::ObjCQualifiedInterface: Width = Target.getPointerWidth(0); Align = Target.getPointerAlign(0); break; case Type::BlockPointer: { unsigned AS = cast(T)->getPointeeType().getAddressSpace(); Width = Target.getPointerWidth(AS); Align = Target.getPointerAlign(AS); break; } case Type::Pointer: { unsigned AS = cast(T)->getPointeeType().getAddressSpace(); Width = Target.getPointerWidth(AS); Align = Target.getPointerAlign(AS); break; } case Type::LValueReference: case Type::RValueReference: // "When applied to a reference or a reference type, the result is the size // of the referenced type." C++98 5.3.3p2: expr.sizeof. // FIXME: This is wrong for struct layout: a reference in a struct has // pointer size. return getTypeInfo(cast(T)->getPointeeType()); case Type::MemberPointer: { // FIXME: This is ABI dependent. We use the Itanium C++ ABI. // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers // If we ever want to support other ABIs this needs to be abstracted. QualType Pointee = cast(T)->getPointeeType(); std::pair PtrDiffInfo = getTypeInfo(getPointerDiffType()); Width = PtrDiffInfo.first; if (Pointee->isFunctionType()) Width *= 2; Align = PtrDiffInfo.second; break; } case Type::Complex: { // Complex types have the same alignment as their elements, but twice the // size. std::pair EltInfo = getTypeInfo(cast(T)->getElementType()); Width = EltInfo.first*2; Align = EltInfo.second; break; } case Type::ObjCInterface: { const ObjCInterfaceType *ObjCI = cast(T); const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); Width = Layout.getSize(); Align = Layout.getAlignment(); break; } case Type::Record: case Type::Enum: { const TagType *TT = cast(T); if (TT->getDecl()->isInvalidDecl()) { Width = 1; Align = 1; break; } if (const EnumType *ET = dyn_cast(TT)) return getTypeInfo(ET->getDecl()->getIntegerType()); const RecordType *RT = cast(TT); const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl()); Width = Layout.getSize(); Align = Layout.getAlignment(); break; } case Type::Typedef: { const TypedefDecl *Typedef = cast(T)->getDecl(); if (const AlignedAttr *Aligned = Typedef->getAttr()) { Align = Aligned->getAlignment(); Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr()); } else return getTypeInfo(Typedef->getUnderlyingType().getTypePtr()); break; } case Type::TypeOfExpr: return getTypeInfo(cast(T)->getUnderlyingExpr()->getType() .getTypePtr()); case Type::TypeOf: return getTypeInfo(cast(T)->getUnderlyingType().getTypePtr()); case Type::QualifiedName: return getTypeInfo(cast(T)->getNamedType().getTypePtr()); case Type::TemplateSpecialization: assert(getCanonicalType(T) != T && "Cannot request the size of a dependent type"); // FIXME: this is likely to be wrong once we support template // aliases, since a template alias could refer to a typedef that // has an __aligned__ attribute on it. return getTypeInfo(getCanonicalType(T)); } assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2"); return std::make_pair(Width, Align); } /// getPreferredTypeAlign - Return the "preferred" alignment of the specified /// type for the current target in bits. This can be different than the ABI /// alignment in cases where it is beneficial for performance to overalign /// a data type. unsigned ASTContext::getPreferredTypeAlign(const Type *T) { unsigned ABIAlign = getTypeAlign(T); // Double and long long should be naturally aligned if possible. if (const ComplexType* CT = T->getAsComplexType()) T = CT->getElementType().getTypePtr(); if (T->isSpecificBuiltinType(BuiltinType::Double) || T->isSpecificBuiltinType(BuiltinType::LongLong)) return std::max(ABIAlign, (unsigned)getTypeSize(T)); return ABIAlign; } /// LayoutField - Field layout. void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo, bool IsUnion, unsigned StructPacking, ASTContext &Context) { unsigned FieldPacking = StructPacking; uint64_t FieldOffset = IsUnion ? 0 : Size; uint64_t FieldSize; unsigned FieldAlign; // FIXME: Should this override struct packing? Probably we want to // take the minimum? if (const PackedAttr *PA = FD->getAttr()) FieldPacking = PA->getAlignment(); if (const Expr *BitWidthExpr = FD->getBitWidth()) { // TODO: Need to check this algorithm on other targets! // (tested on Linux-X86) FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue(); std::pair FieldInfo = Context.getTypeInfo(FD->getType()); uint64_t TypeSize = FieldInfo.first; // Determine the alignment of this bitfield. The packing // attributes define a maximum and the alignment attribute defines // a minimum. // FIXME: What is the right behavior when the specified alignment // is smaller than the specified packing? FieldAlign = FieldInfo.second; if (FieldPacking) FieldAlign = std::min(FieldAlign, FieldPacking); if (const AlignedAttr *AA = FD->getAttr()) FieldAlign = std::max(FieldAlign, AA->getAlignment()); // Check if we need to add padding to give the field the correct // alignment. if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize) FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1); // Padding members don't affect overall alignment if (!FD->getIdentifier()) FieldAlign = 1; } else { if (FD->getType()->isIncompleteArrayType()) { // This is a flexible array member; we can't directly // query getTypeInfo about these, so we figure it out here. // Flexible array members don't have any size, but they // have to be aligned appropriately for their element type. FieldSize = 0; const ArrayType* ATy = Context.getAsArrayType(FD->getType()); FieldAlign = Context.getTypeAlign(ATy->getElementType()); } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) { unsigned AS = RT->getPointeeType().getAddressSpace(); FieldSize = Context.Target.getPointerWidth(AS); FieldAlign = Context.Target.getPointerAlign(AS); } else { std::pair FieldInfo = Context.getTypeInfo(FD->getType()); FieldSize = FieldInfo.first; FieldAlign = FieldInfo.second; } // Determine the alignment of this bitfield. The packing // attributes define a maximum and the alignment attribute defines // a minimum. Additionally, the packing alignment must be at least // a byte for non-bitfields. // // FIXME: What is the right behavior when the specified alignment // is smaller than the specified packing? if (FieldPacking) FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking)); if (const AlignedAttr *AA = FD->getAttr()) FieldAlign = std::max(FieldAlign, AA->getAlignment()); // Round up the current record size to the field's alignment boundary. FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1); } // Place this field at the current location. FieldOffsets[FieldNo] = FieldOffset; // Reserve space for this field. if (IsUnion) { Size = std::max(Size, FieldSize); } else { Size = FieldOffset + FieldSize; } // Remember the next available offset. NextOffset = Size; // Remember max struct/class alignment. Alignment = std::max(Alignment, FieldAlign); } static void CollectLocalObjCIvars(ASTContext *Ctx, const ObjCInterfaceDecl *OI, llvm::SmallVectorImpl &Fields) { for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(), E = OI->ivar_end(); I != E; ++I) { ObjCIvarDecl *IVDecl = *I; if (!IVDecl->isInvalidDecl()) Fields.push_back(cast(IVDecl)); } } void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI, llvm::SmallVectorImpl &Fields) { if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) CollectObjCIvars(SuperClass, Fields); CollectLocalObjCIvars(this, OI, Fields); } void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD, llvm::SmallVectorImpl &Ivars) { for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(*this), E = PD->prop_end(*this); I != E; ++I) if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl()) Ivars.push_back(Ivar); // Also look into nested protocols. for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(), E = PD->protocol_end(); P != E; ++P) CollectProtocolSynthesizedIvars(*P, Ivars); } /// CollectSynthesizedIvars - /// This routine collect synthesized ivars for the designated class. /// void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI, llvm::SmallVectorImpl &Ivars) { for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this), E = OI->prop_end(*this); I != E; ++I) { if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl()) Ivars.push_back(Ivar); } // Also look into interface's protocol list for properties declared // in the protocol and whose ivars are synthesized. for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(), PE = OI->protocol_end(); P != PE; ++P) { ObjCProtocolDecl *PD = (*P); CollectProtocolSynthesizedIvars(PD, Ivars); } } /// getInterfaceLayoutImpl - Get or compute information about the /// layout of the given interface. /// /// \param Impl - If given, also include the layout of the interface's /// implementation. This may differ by including synthesized ivars. const ASTRecordLayout & ASTContext::getObjCLayout(const ObjCInterfaceDecl *D, const ObjCImplementationDecl *Impl) { assert(!D->isForwardDecl() && "Invalid interface decl!"); // Look up this layout, if already laid out, return what we have. ObjCContainerDecl *Key = Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D; if (const ASTRecordLayout *Entry = ObjCLayouts[Key]) return *Entry; unsigned FieldCount = D->ivar_size(); // Add in synthesized ivar count if laying out an implementation. if (Impl) { llvm::SmallVector Ivars; CollectSynthesizedIvars(D, Ivars); FieldCount += Ivars.size(); // If there aren't any sythesized ivars then reuse the interface // entry. Note we can't cache this because we simply free all // entries later; however we shouldn't look up implementations // frequently. if (FieldCount == D->ivar_size()) return getObjCLayout(D, 0); } ASTRecordLayout *NewEntry = NULL; if (ObjCInterfaceDecl *SD = D->getSuperClass()) { const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD); unsigned Alignment = SL.getAlignment(); // We start laying out ivars not at the end of the superclass // structure, but at the next byte following the last field. uint64_t Size = llvm::RoundUpToAlignment(SL.NextOffset, 8); ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(Size, Alignment); NewEntry->InitializeLayout(FieldCount); } else { ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(); NewEntry->InitializeLayout(FieldCount); } unsigned StructPacking = 0; if (const PackedAttr *PA = D->getAttr()) StructPacking = PA->getAlignment(); if (const AlignedAttr *AA = D->getAttr()) NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), AA->getAlignment())); // Layout each ivar sequentially. unsigned i = 0; for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(), IVE = D->ivar_end(); IVI != IVE; ++IVI) { const ObjCIvarDecl* Ivar = (*IVI); NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this); } // And synthesized ivars, if this is an implementation. if (Impl) { // FIXME. Do we need to colltect twice? llvm::SmallVector Ivars; CollectSynthesizedIvars(D, Ivars); for (unsigned k = 0, e = Ivars.size(); k != e; ++k) NewEntry->LayoutField(Ivars[k], i++, false, StructPacking, *this); } // Finally, round the size of the total struct up to the alignment of the // struct itself. NewEntry->FinalizeLayout(); return *NewEntry; } const ASTRecordLayout & ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) { return getObjCLayout(D, 0); } const ASTRecordLayout & ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) { return getObjCLayout(D->getClassInterface(), D); } /// getASTRecordLayout - Get or compute information about the layout of the /// specified record (struct/union/class), which indicates its size and field /// position information. const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) { D = D->getDefinition(*this); assert(D && "Cannot get layout of forward declarations!"); // Look up this layout, if already laid out, return what we have. const ASTRecordLayout *&Entry = ASTRecordLayouts[D]; if (Entry) return *Entry; // Allocate and assign into ASTRecordLayouts here. The "Entry" reference can // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into. ASTRecordLayout *NewEntry = new ASTRecordLayout(); Entry = NewEntry; // FIXME: Avoid linear walk through the fields, if possible. NewEntry->InitializeLayout(std::distance(D->field_begin(*this), D->field_end(*this))); bool IsUnion = D->isUnion(); unsigned StructPacking = 0; if (const PackedAttr *PA = D->getAttr()) StructPacking = PA->getAlignment(); if (const AlignedAttr *AA = D->getAttr()) NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), AA->getAlignment())); // Layout each field, for now, just sequentially, respecting alignment. In // the future, this will need to be tweakable by targets. unsigned FieldIdx = 0; for (RecordDecl::field_iterator Field = D->field_begin(*this), FieldEnd = D->field_end(*this); Field != FieldEnd; (void)++Field, ++FieldIdx) NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this); // Finally, round the size of the total struct up to the alignment of the // struct itself. NewEntry->FinalizeLayout(getLangOptions().CPlusPlus); return *NewEntry; } //===----------------------------------------------------------------------===// // Type creation/memoization methods //===----------------------------------------------------------------------===// QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) { QualType CanT = getCanonicalType(T); if (CanT.getAddressSpace() == AddressSpace) return T; // If we are composing extended qualifiers together, merge together into one // ExtQualType node. unsigned CVRQuals = T.getCVRQualifiers(); QualType::GCAttrTypes GCAttr = QualType::GCNone; Type *TypeNode = T.getTypePtr(); if (ExtQualType *EQT = dyn_cast(TypeNode)) { // If this type already has an address space specified, it cannot get // another one. assert(EQT->getAddressSpace() == 0 && "Type cannot be in multiple addr spaces!"); GCAttr = EQT->getObjCGCAttr(); TypeNode = EQT->getBaseType(); } // Check if we've already instantiated this type. llvm::FoldingSetNodeID ID; ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr); void *InsertPos = 0; if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(EXTQy, CVRQuals); // If the base type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!TypeNode->isCanonical()) { Canonical = getAddrSpaceQualType(CanT, AddressSpace); // Update InsertPos, the previous call could have invalidated it. ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } ExtQualType *New = new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr); ExtQualTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, CVRQuals); } QualType ASTContext::getObjCGCQualType(QualType T, QualType::GCAttrTypes GCAttr) { QualType CanT = getCanonicalType(T); if (CanT.getObjCGCAttr() == GCAttr) return T; // If we are composing extended qualifiers together, merge together into one // ExtQualType node. unsigned CVRQuals = T.getCVRQualifiers(); Type *TypeNode = T.getTypePtr(); unsigned AddressSpace = 0; if (ExtQualType *EQT = dyn_cast(TypeNode)) { // If this type already has an address space specified, it cannot get // another one. assert(EQT->getObjCGCAttr() == QualType::GCNone && "Type cannot be in multiple addr spaces!"); AddressSpace = EQT->getAddressSpace(); TypeNode = EQT->getBaseType(); } // Check if we've already instantiated an gc qual'd type of this type. llvm::FoldingSetNodeID ID; ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr); void *InsertPos = 0; if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(EXTQy, CVRQuals); // If the base type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. // FIXME: Isn't this also not canonical if the base type is a array // or pointer type? I can't find any documentation for objc_gc, though... QualType Canonical; if (!T->isCanonical()) { Canonical = getObjCGCQualType(CanT, GCAttr); // Update InsertPos, the previous call could have invalidated it. ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } ExtQualType *New = new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr); ExtQualTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, CVRQuals); } /// getComplexType - Return the uniqued reference to the type for a complex /// number with the specified element type. QualType ASTContext::getComplexType(QualType T) { // Unique pointers, to guarantee there is only one pointer of a particular // structure. llvm::FoldingSetNodeID ID; ComplexType::Profile(ID, T); void *InsertPos = 0; if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(CT, 0); // If the pointee type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getComplexType(getCanonicalType(T)); // Get the new insert position for the node we care about. ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } ComplexType *New = new (*this,8) ComplexType(T, Canonical); Types.push_back(New); ComplexTypes.InsertNode(New, InsertPos); return QualType(New, 0); } QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) { llvm::DenseMap &Map = Signed ? SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes; FixedWidthIntType *&Entry = Map[Width]; if (!Entry) Entry = new FixedWidthIntType(Width, Signed); return QualType(Entry, 0); } /// getPointerType - Return the uniqued reference to the type for a pointer to /// the specified type. QualType ASTContext::getPointerType(QualType T) { // Unique pointers, to guarantee there is only one pointer of a particular // structure. llvm::FoldingSetNodeID ID; PointerType::Profile(ID, T); void *InsertPos = 0; if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(PT, 0); // If the pointee type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getPointerType(getCanonicalType(T)); // Get the new insert position for the node we care about. PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } PointerType *New = new (*this,8) PointerType(T, Canonical); Types.push_back(New); PointerTypes.InsertNode(New, InsertPos); return QualType(New, 0); } /// getBlockPointerType - Return the uniqued reference to the type for /// a pointer to the specified block. QualType ASTContext::getBlockPointerType(QualType T) { assert(T->isFunctionType() && "block of function types only"); // Unique pointers, to guarantee there is only one block of a particular // structure. llvm::FoldingSetNodeID ID; BlockPointerType::Profile(ID, T); void *InsertPos = 0; if (BlockPointerType *PT = BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(PT, 0); // If the block pointee type isn't canonical, this won't be a canonical // type either so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getBlockPointerType(getCanonicalType(T)); // Get the new insert position for the node we care about. BlockPointerType *NewIP = BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical); Types.push_back(New); BlockPointerTypes.InsertNode(New, InsertPos); return QualType(New, 0); } /// getLValueReferenceType - Return the uniqued reference to the type for an /// lvalue reference to the specified type. QualType ASTContext::getLValueReferenceType(QualType T) { // Unique pointers, to guarantee there is only one pointer of a particular // structure. llvm::FoldingSetNodeID ID; ReferenceType::Profile(ID, T); void *InsertPos = 0; if (LValueReferenceType *RT = LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(RT, 0); // If the referencee type isn't canonical, this won't be a canonical type // either, so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getLValueReferenceType(getCanonicalType(T)); // Get the new insert position for the node we care about. LValueReferenceType *NewIP = LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical); Types.push_back(New); LValueReferenceTypes.InsertNode(New, InsertPos); return QualType(New, 0); } /// getRValueReferenceType - Return the uniqued reference to the type for an /// rvalue reference to the specified type. QualType ASTContext::getRValueReferenceType(QualType T) { // Unique pointers, to guarantee there is only one pointer of a particular // structure. llvm::FoldingSetNodeID ID; ReferenceType::Profile(ID, T); void *InsertPos = 0; if (RValueReferenceType *RT = RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(RT, 0); // If the referencee type isn't canonical, this won't be a canonical type // either, so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getRValueReferenceType(getCanonicalType(T)); // Get the new insert position for the node we care about. RValueReferenceType *NewIP = RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical); Types.push_back(New); RValueReferenceTypes.InsertNode(New, InsertPos); return QualType(New, 0); } /// getMemberPointerType - Return the uniqued reference to the type for a /// member pointer to the specified type, in the specified class. QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) { // Unique pointers, to guarantee there is only one pointer of a particular // structure. llvm::FoldingSetNodeID ID; MemberPointerType::Profile(ID, T, Cls); void *InsertPos = 0; if (MemberPointerType *PT = MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(PT, 0); // If the pointee or class type isn't canonical, this won't be a canonical // type either, so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); // Get the new insert position for the node we care about. MemberPointerType *NewIP = MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical); Types.push_back(New); MemberPointerTypes.InsertNode(New, InsertPos); return QualType(New, 0); } /// getConstantArrayType - Return the unique reference to the type for an /// array of the specified element type. QualType ASTContext::getConstantArrayType(QualType EltTy, const llvm::APInt &ArySizeIn, ArrayType::ArraySizeModifier ASM, unsigned EltTypeQuals) { assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) && "Constant array of VLAs is illegal!"); // Convert the array size into a canonical width matching the pointer size for // the target. llvm::APInt ArySize(ArySizeIn); ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace())); llvm::FoldingSetNodeID ID; ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals); void *InsertPos = 0; if (ConstantArrayType *ATP = ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(ATP, 0); // If the element type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!EltTy->isCanonical()) { Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize, ASM, EltTypeQuals); // Get the new insert position for the node we care about. ConstantArrayType *NewIP = ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } ConstantArrayType *New = new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals); ConstantArrayTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, 0); } /// getVariableArrayType - Returns a non-unique reference to the type for a /// variable array of the specified element type. QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts, ArrayType::ArraySizeModifier ASM, unsigned EltTypeQuals) { // Since we don't unique expressions, it isn't possible to unique VLA's // that have an expression provided for their size. VariableArrayType *New = new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals); VariableArrayTypes.push_back(New); Types.push_back(New); return QualType(New, 0); } /// getDependentSizedArrayType - Returns a non-unique reference to /// the type for a dependently-sized array of the specified element /// type. FIXME: We will need these to be uniqued, or at least /// comparable, at some point. QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts, ArrayType::ArraySizeModifier ASM, unsigned EltTypeQuals) { assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) && "Size must be type- or value-dependent!"); // Since we don't unique expressions, it isn't possible to unique // dependently-sized array types. DependentSizedArrayType *New = new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals); DependentSizedArrayTypes.push_back(New); Types.push_back(New); return QualType(New, 0); } QualType ASTContext::getIncompleteArrayType(QualType EltTy, ArrayType::ArraySizeModifier ASM, unsigned EltTypeQuals) { llvm::FoldingSetNodeID ID; IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals); void *InsertPos = 0; if (IncompleteArrayType *ATP = IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(ATP, 0); // If the element type isn't canonical, this won't be a canonical type // either, so fill in the canonical type field. QualType Canonical; if (!EltTy->isCanonical()) { Canonical = getIncompleteArrayType(getCanonicalType(EltTy), ASM, EltTypeQuals); // Get the new insert position for the node we care about. IncompleteArrayType *NewIP = IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals); IncompleteArrayTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, 0); } /// getVectorType - Return the unique reference to a vector type of /// the specified element type and size. VectorType must be a built-in type. QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) { BuiltinType *baseType; baseType = dyn_cast(getCanonicalType(vecType).getTypePtr()); assert(baseType != 0 && "getVectorType(): Expecting a built-in type"); // Check if we've already instantiated a vector of this type. llvm::FoldingSetNodeID ID; VectorType::Profile(ID, vecType, NumElts, Type::Vector); void *InsertPos = 0; if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(VTP, 0); // If the element type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!vecType->isCanonical()) { Canonical = getVectorType(getCanonicalType(vecType), NumElts); // Get the new insert position for the node we care about. VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical); VectorTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, 0); } /// getExtVectorType - Return the unique reference to an extended vector type of /// the specified element type and size. VectorType must be a built-in type. QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) { BuiltinType *baseType; baseType = dyn_cast(getCanonicalType(vecType).getTypePtr()); assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type"); // Check if we've already instantiated a vector of this type. llvm::FoldingSetNodeID ID; VectorType::Profile(ID, vecType, NumElts, Type::ExtVector); void *InsertPos = 0; if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(VTP, 0); // If the element type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!vecType->isCanonical()) { Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); // Get the new insert position for the node we care about. VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical); VectorTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, 0); } /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. /// QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) { // Unique functions, to guarantee there is only one function of a particular // structure. llvm::FoldingSetNodeID ID; FunctionNoProtoType::Profile(ID, ResultTy); void *InsertPos = 0; if (FunctionNoProtoType *FT = FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(FT, 0); QualType Canonical; if (!ResultTy->isCanonical()) { Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy)); // Get the new insert position for the node we care about. FunctionNoProtoType *NewIP = FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical); Types.push_back(New); FunctionNoProtoTypes.InsertNode(New, InsertPos); return QualType(New, 0); } /// getFunctionType - Return a normal function type with a typed argument /// list. isVariadic indicates whether the argument list includes '...'. QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray, unsigned NumArgs, bool isVariadic, unsigned TypeQuals, bool hasExceptionSpec, bool hasAnyExceptionSpec, unsigned NumExs, const QualType *ExArray) { // Unique functions, to guarantee there is only one function of a particular // structure. llvm::FoldingSetNodeID ID; FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic, TypeQuals, hasExceptionSpec, hasAnyExceptionSpec, NumExs, ExArray); void *InsertPos = 0; if (FunctionProtoType *FTP = FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(FTP, 0); // Determine whether the type being created is already canonical or not. bool isCanonical = ResultTy->isCanonical(); if (hasExceptionSpec) isCanonical = false; for (unsigned i = 0; i != NumArgs && isCanonical; ++i) if (!ArgArray[i]->isCanonical()) isCanonical = false; // If this type isn't canonical, get the canonical version of it. // The exception spec is not part of the canonical type. QualType Canonical; if (!isCanonical) { llvm::SmallVector CanonicalArgs; CanonicalArgs.reserve(NumArgs); for (unsigned i = 0; i != NumArgs; ++i) CanonicalArgs.push_back(getCanonicalType(ArgArray[i])); Canonical = getFunctionType(getCanonicalType(ResultTy), CanonicalArgs.data(), NumArgs, isVariadic, TypeQuals); // Get the new insert position for the node we care about. FunctionProtoType *NewIP = FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } // FunctionProtoType objects are allocated with extra bytes after them // for two variable size arrays (for parameter and exception types) at the // end of them. FunctionProtoType *FTP = (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) + NumArgs*sizeof(QualType) + NumExs*sizeof(QualType), 8); new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic, TypeQuals, hasExceptionSpec, hasAnyExceptionSpec, ExArray, NumExs, Canonical); Types.push_back(FTP); FunctionProtoTypes.InsertNode(FTP, InsertPos); return QualType(FTP, 0); } /// getTypeDeclType - Return the unique reference to the type for the /// specified type declaration. QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) { assert(Decl && "Passed null for Decl param"); if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); if (TypedefDecl *Typedef = dyn_cast(Decl)) return getTypedefType(Typedef); else if (isa(Decl)) { assert(false && "Template type parameter types are always available."); } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast(Decl)) return getObjCInterfaceType(ObjCInterface); if (RecordDecl *Record = dyn_cast(Decl)) { if (PrevDecl) Decl->TypeForDecl = PrevDecl->TypeForDecl; else Decl->TypeForDecl = new (*this,8) RecordType(Record); } else if (EnumDecl *Enum = dyn_cast(Decl)) { if (PrevDecl) Decl->TypeForDecl = PrevDecl->TypeForDecl; else Decl->TypeForDecl = new (*this,8) EnumType(Enum); } else assert(false && "TypeDecl without a type?"); if (!PrevDecl) Types.push_back(Decl->TypeForDecl); return QualType(Decl->TypeForDecl, 0); } /// getTypedefType - Return the unique reference to the type for the /// specified typename decl. QualType ASTContext::getTypedefType(TypedefDecl *Decl) { if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); QualType Canonical = getCanonicalType(Decl->getUnderlyingType()); Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical); Types.push_back(Decl->TypeForDecl); return QualType(Decl->TypeForDecl, 0); } /// getObjCInterfaceType - Return the unique reference to the type for the /// specified ObjC interface decl. QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) { if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); ObjCInterfaceDecl *OID = const_cast(Decl); Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, OID); Types.push_back(Decl->TypeForDecl); return QualType(Decl->TypeForDecl, 0); } /// \brief Retrieve the template type parameter type for a template /// parameter with the given depth, index, and (optionally) name. QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, IdentifierInfo *Name) { llvm::FoldingSetNodeID ID; TemplateTypeParmType::Profile(ID, Depth, Index, Name); void *InsertPos = 0; TemplateTypeParmType *TypeParm = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); if (TypeParm) return QualType(TypeParm, 0); if (Name) TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name, getTemplateTypeParmType(Depth, Index)); else TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index); Types.push_back(TypeParm); TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); return QualType(TypeParm, 0); } QualType ASTContext::getTemplateSpecializationType(TemplateName Template, const TemplateArgument *Args, unsigned NumArgs, QualType Canon) { if (!Canon.isNull()) Canon = getCanonicalType(Canon); llvm::FoldingSetNodeID ID; TemplateSpecializationType::Profile(ID, Template, Args, NumArgs); void *InsertPos = 0; TemplateSpecializationType *Spec = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); if (Spec) return QualType(Spec, 0); void *Mem = Allocate((sizeof(TemplateSpecializationType) + sizeof(TemplateArgument) * NumArgs), 8); Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon); Types.push_back(Spec); TemplateSpecializationTypes.InsertNode(Spec, InsertPos); return QualType(Spec, 0); } QualType ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType) { llvm::FoldingSetNodeID ID; QualifiedNameType::Profile(ID, NNS, NamedType); void *InsertPos = 0; QualifiedNameType *T = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos); if (T) return QualType(T, 0); T = new (*this) QualifiedNameType(NNS, NamedType, getCanonicalType(NamedType)); Types.push_back(T); QualifiedNameTypes.InsertNode(T, InsertPos); return QualType(T, 0); } QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name, QualType Canon) { assert(NNS->isDependent() && "nested-name-specifier must be dependent"); if (Canon.isNull()) { NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); if (CanonNNS != NNS) Canon = getTypenameType(CanonNNS, Name); } llvm::FoldingSetNodeID ID; TypenameType::Profile(ID, NNS, Name); void *InsertPos = 0; TypenameType *T = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos); if (T) return QualType(T, 0); T = new (*this) TypenameType(NNS, Name, Canon); Types.push_back(T); TypenameTypes.InsertNode(T, InsertPos); return QualType(T, 0); } QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *TemplateId, QualType Canon) { assert(NNS->isDependent() && "nested-name-specifier must be dependent"); if (Canon.isNull()) { NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); QualType CanonType = getCanonicalType(QualType(TemplateId, 0)); if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) { const TemplateSpecializationType *CanonTemplateId = CanonType->getAsTemplateSpecializationType(); assert(CanonTemplateId && "Canonical type must also be a template specialization type"); Canon = getTypenameType(CanonNNS, CanonTemplateId); } } llvm::FoldingSetNodeID ID; TypenameType::Profile(ID, NNS, TemplateId); void *InsertPos = 0; TypenameType *T = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos); if (T) return QualType(T, 0); T = new (*this) TypenameType(NNS, TemplateId, Canon); Types.push_back(T); TypenameTypes.InsertNode(T, InsertPos); return QualType(T, 0); } /// CmpProtocolNames - Comparison predicate for sorting protocols /// alphabetically. static bool CmpProtocolNames(const ObjCProtocolDecl *LHS, const ObjCProtocolDecl *RHS) { return LHS->getDeclName() < RHS->getDeclName(); } static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols, unsigned &NumProtocols) { ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols; // Sort protocols, keyed by name. std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames); // Remove duplicates. ProtocolsEnd = std::unique(Protocols, ProtocolsEnd); NumProtocols = ProtocolsEnd-Protocols; } /// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for /// the given interface decl and the conforming protocol list. QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl, ObjCProtocolDecl **Protocols, unsigned NumProtocols) { // Sort the protocol list alphabetically to canonicalize it. SortAndUniqueProtocols(Protocols, NumProtocols); llvm::FoldingSetNodeID ID; ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols); void *InsertPos = 0; if (ObjCQualifiedInterfaceType *QT = ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(QT, 0); // No Match; ObjCQualifiedInterfaceType *QType = new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols); Types.push_back(QType); ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos); return QualType(QType, 0); } /// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl /// and the conforming protocol list. QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols, unsigned NumProtocols) { // Sort the protocol list alphabetically to canonicalize it. SortAndUniqueProtocols(Protocols, NumProtocols); llvm::FoldingSetNodeID ID; ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols); void *InsertPos = 0; if (ObjCQualifiedIdType *QT = ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(QT, 0); // No Match; ObjCQualifiedIdType *QType = new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols); Types.push_back(QType); ObjCQualifiedIdTypes.InsertNode(QType, InsertPos); return QualType(QType, 0); } /// getTypeOfExprType - Unlike many "get" functions, we can't unique /// TypeOfExprType AST's (since expression's are never shared). For example, /// multiple declarations that refer to "typeof(x)" all contain different /// DeclRefExpr's. This doesn't effect the type checker, since it operates /// on canonical type's (which are always unique). QualType ASTContext::getTypeOfExprType(Expr *tofExpr) { QualType Canonical = getCanonicalType(tofExpr->getType()); TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical); Types.push_back(toe); return QualType(toe, 0); } /// getTypeOfType - Unlike many "get" functions, we don't unique /// TypeOfType AST's. The only motivation to unique these nodes would be /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be /// an issue. This doesn't effect the type checker, since it operates /// on canonical type's (which are always unique). QualType ASTContext::getTypeOfType(QualType tofType) { QualType Canonical = getCanonicalType(tofType); TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical); Types.push_back(tot); return QualType(tot, 0); } /// getTagDeclType - Return the unique reference to the type for the /// specified TagDecl (struct/union/class/enum) decl. QualType ASTContext::getTagDeclType(TagDecl *Decl) { assert (Decl); return getTypeDeclType(Decl); } /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and /// needs to agree with the definition in . QualType ASTContext::getSizeType() const { return getFromTargetType(Target.getSizeType()); } /// getSignedWCharType - Return the type of "signed wchar_t". /// Used when in C++, as a GCC extension. QualType ASTContext::getSignedWCharType() const { // FIXME: derive from "Target" ? return WCharTy; } /// getUnsignedWCharType - Return the type of "unsigned wchar_t". /// Used when in C++, as a GCC extension. QualType ASTContext::getUnsignedWCharType() const { // FIXME: derive from "Target" ? return UnsignedIntTy; } /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?) /// defined in . Pointer - pointer requires this (C99 6.5.6p9). QualType ASTContext::getPointerDiffType() const { return getFromTargetType(Target.getPtrDiffType(0)); } //===----------------------------------------------------------------------===// // Type Operators //===----------------------------------------------------------------------===// /// getCanonicalType - Return the canonical (structural) type corresponding to /// the specified potentially non-canonical type. The non-canonical version /// of a type may have many "decorated" versions of types. Decorators can /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed /// to be free of any of these, allowing two canonical types to be compared /// for exact equality with a simple pointer comparison. QualType ASTContext::getCanonicalType(QualType T) { QualType CanType = T.getTypePtr()->getCanonicalTypeInternal(); // If the result has type qualifiers, make sure to canonicalize them as well. unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers(); if (TypeQuals == 0) return CanType; // If the type qualifiers are on an array type, get the canonical type of the // array with the qualifiers applied to the element type. ArrayType *AT = dyn_cast(CanType); if (!AT) return CanType.getQualifiedType(TypeQuals); // Get the canonical version of the element with the extra qualifiers on it. // This can recursively sink qualifiers through multiple levels of arrays. QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals); NewEltTy = getCanonicalType(NewEltTy); if (ConstantArrayType *CAT = dyn_cast(AT)) return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(), CAT->getIndexTypeQualifier()); if (IncompleteArrayType *IAT = dyn_cast(AT)) return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(), IAT->getIndexTypeQualifier()); if (DependentSizedArrayType *DSAT = dyn_cast(AT)) return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(), DSAT->getSizeModifier(), DSAT->getIndexTypeQualifier()); VariableArrayType *VAT = cast(AT); return getVariableArrayType(NewEltTy, VAT->getSizeExpr(), VAT->getSizeModifier(), VAT->getIndexTypeQualifier()); } Decl *ASTContext::getCanonicalDecl(Decl *D) { if (!D) return 0; if (TagDecl *Tag = dyn_cast(D)) { QualType T = getTagDeclType(Tag); return cast(cast(T.getTypePtr()->CanonicalType) ->getDecl()); } if (ClassTemplateDecl *Template = dyn_cast(D)) { while (Template->getPreviousDeclaration()) Template = Template->getPreviousDeclaration(); return Template; } if (const FunctionDecl *Function = dyn_cast(D)) { while (Function->getPreviousDeclaration()) Function = Function->getPreviousDeclaration(); return const_cast(Function); } if (const VarDecl *Var = dyn_cast(D)) { while (Var->getPreviousDeclaration()) Var = Var->getPreviousDeclaration(); return const_cast(Var); } return D; } TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) { // If this template name refers to a template, the canonical // template name merely stores the template itself. if (TemplateDecl *Template = Name.getAsTemplateDecl()) return TemplateName(cast(getCanonicalDecl(Template))); DependentTemplateName *DTN = Name.getAsDependentTemplateName(); assert(DTN && "Non-dependent template names must refer to template decls."); return DTN->CanonicalTemplateName; } NestedNameSpecifier * ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) { if (!NNS) return 0; switch (NNS->getKind()) { case NestedNameSpecifier::Identifier: // Canonicalize the prefix but keep the identifier the same. return NestedNameSpecifier::Create(*this, getCanonicalNestedNameSpecifier(NNS->getPrefix()), NNS->getAsIdentifier()); case NestedNameSpecifier::Namespace: // A namespace is canonical; build a nested-name-specifier with // this namespace and no prefix. return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace()); case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: { QualType T = getCanonicalType(QualType(NNS->getAsType(), 0)); NestedNameSpecifier *Prefix = 0; // FIXME: This isn't the right check! if (T->isDependentType()) Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix()); return NestedNameSpecifier::Create(*this, Prefix, NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate, T.getTypePtr()); } case NestedNameSpecifier::Global: // The global specifier is canonical and unique. return NNS; } // Required to silence a GCC warning return 0; } const ArrayType *ASTContext::getAsArrayType(QualType T) { // Handle the non-qualified case efficiently. if (T.getCVRQualifiers() == 0) { // Handle the common positive case fast. if (const ArrayType *AT = dyn_cast(T)) return AT; } // Handle the common negative case fast, ignoring CVR qualifiers. QualType CType = T->getCanonicalTypeInternal(); // Make sure to look through type qualifiers (like ExtQuals) for the negative // test. if (!isa(CType) && !isa(CType.getUnqualifiedType())) return 0; // Apply any CVR qualifiers from the array type to the element type. This // implements C99 6.7.3p8: "If the specification of an array type includes // any type qualifiers, the element type is so qualified, not the array type." // If we get here, we either have type qualifiers on the type, or we have // sugar such as a typedef in the way. If we have type qualifiers on the type // we must propagate them down into the elemeng type. unsigned CVRQuals = T.getCVRQualifiers(); unsigned AddrSpace = 0; Type *Ty = T.getTypePtr(); // Rip through ExtQualType's and typedefs to get to a concrete type. while (1) { if (const ExtQualType *EXTQT = dyn_cast(Ty)) { AddrSpace = EXTQT->getAddressSpace(); Ty = EXTQT->getBaseType(); } else { T = Ty->getDesugaredType(); if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0) break; CVRQuals |= T.getCVRQualifiers(); Ty = T.getTypePtr(); } } // If we have a simple case, just return now. const ArrayType *ATy = dyn_cast(Ty); if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0)) return ATy; // Otherwise, we have an array and we have qualifiers on it. Push the // qualifiers into the array element type and return a new array type. // Get the canonical version of the element with the extra qualifiers on it. // This can recursively sink qualifiers through multiple levels of arrays. QualType NewEltTy = ATy->getElementType(); if (AddrSpace) NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace); NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals); if (const ConstantArrayType *CAT = dyn_cast(ATy)) return cast(getConstantArrayType(NewEltTy, CAT->getSize(), CAT->getSizeModifier(), CAT->getIndexTypeQualifier())); if (const IncompleteArrayType *IAT = dyn_cast(ATy)) return cast(getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(), IAT->getIndexTypeQualifier())); if (const DependentSizedArrayType *DSAT = dyn_cast(ATy)) return cast( getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(), DSAT->getSizeModifier(), DSAT->getIndexTypeQualifier())); const VariableArrayType *VAT = cast(ATy); return cast(getVariableArrayType(NewEltTy, VAT->getSizeExpr(), VAT->getSizeModifier(), VAT->getIndexTypeQualifier())); } /// getArrayDecayedType - Return the properly qualified result of decaying the /// specified array type to a pointer. This operation is non-trivial when /// handling typedefs etc. The canonical type of "T" must be an array type, /// this returns a pointer to a properly qualified element of the array. /// /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. QualType ASTContext::getArrayDecayedType(QualType Ty) { // Get the element type with 'getAsArrayType' so that we don't lose any // typedefs in the element type of the array. This also handles propagation // of type qualifiers from the array type into the element type if present // (C99 6.7.3p8). const ArrayType *PrettyArrayType = getAsArrayType(Ty); assert(PrettyArrayType && "Not an array type!"); QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); // int x[restrict 4] -> int *restrict return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier()); } QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) { QualType ElemTy = VAT->getElementType(); if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy)) return getBaseElementType(VAT); return ElemTy; } /// getFloatingRank - Return a relative rank for floating point types. /// This routine will assert if passed a built-in type that isn't a float. static FloatingRank getFloatingRank(QualType T) { if (const ComplexType *CT = T->getAsComplexType()) return getFloatingRank(CT->getElementType()); assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type"); switch (T->getAsBuiltinType()->getKind()) { default: assert(0 && "getFloatingRank(): not a floating type"); case BuiltinType::Float: return FloatRank; case BuiltinType::Double: return DoubleRank; case BuiltinType::LongDouble: return LongDoubleRank; } } /// getFloatingTypeOfSizeWithinDomain - Returns a real floating /// point or a complex type (based on typeDomain/typeSize). /// 'typeDomain' is a real floating point or complex type. /// 'typeSize' is a real floating point or complex type. QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, QualType Domain) const { FloatingRank EltRank = getFloatingRank(Size); if (Domain->isComplexType()) { switch (EltRank) { default: assert(0 && "getFloatingRank(): illegal value for rank"); case FloatRank: return FloatComplexTy; case DoubleRank: return DoubleComplexTy; case LongDoubleRank: return LongDoubleComplexTy; } } assert(Domain->isRealFloatingType() && "Unknown domain!"); switch (EltRank) { default: assert(0 && "getFloatingRank(): illegal value for rank"); case FloatRank: return FloatTy; case DoubleRank: return DoubleTy; case LongDoubleRank: return LongDoubleTy; } } /// getFloatingTypeOrder - Compare the rank of the two specified floating /// point types, ignoring the domain of the type (i.e. 'double' == /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If /// LHS < RHS, return -1. int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) { FloatingRank LHSR = getFloatingRank(LHS); FloatingRank RHSR = getFloatingRank(RHS); if (LHSR == RHSR) return 0; if (LHSR > RHSR) return 1; return -1; } /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This /// routine will assert if passed a built-in type that isn't an integer or enum, /// or if it is not canonicalized. unsigned ASTContext::getIntegerRank(Type *T) { assert(T->isCanonical() && "T should be canonicalized"); if (EnumType* ET = dyn_cast(T)) T = ET->getDecl()->getIntegerType().getTypePtr(); // There are two things which impact the integer rank: the width, and // the ordering of builtins. The builtin ordering is encoded in the // bottom three bits; the width is encoded in the bits above that. if (FixedWidthIntType* FWIT = dyn_cast(T)) { return FWIT->getWidth() << 3; } switch (cast(T)->getKind()) { default: assert(0 && "getIntegerRank(): not a built-in integer"); case BuiltinType::Bool: return 1 + (getIntWidth(BoolTy) << 3); case BuiltinType::Char_S: case BuiltinType::Char_U: case BuiltinType::SChar: case BuiltinType::UChar: return 2 + (getIntWidth(CharTy) << 3); case BuiltinType::Short: case BuiltinType::UShort: return 3 + (getIntWidth(ShortTy) << 3); case BuiltinType::Int: case BuiltinType::UInt: return 4 + (getIntWidth(IntTy) << 3); case BuiltinType::Long: case BuiltinType::ULong: return 5 + (getIntWidth(LongTy) << 3); case BuiltinType::LongLong: case BuiltinType::ULongLong: return 6 + (getIntWidth(LongLongTy) << 3); case BuiltinType::Int128: case BuiltinType::UInt128: return 7 + (getIntWidth(Int128Ty) << 3); } } /// getIntegerTypeOrder - Returns the highest ranked integer type: /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If /// LHS < RHS, return -1. int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) { Type *LHSC = getCanonicalType(LHS).getTypePtr(); Type *RHSC = getCanonicalType(RHS).getTypePtr(); if (LHSC == RHSC) return 0; bool LHSUnsigned = LHSC->isUnsignedIntegerType(); bool RHSUnsigned = RHSC->isUnsignedIntegerType(); unsigned LHSRank = getIntegerRank(LHSC); unsigned RHSRank = getIntegerRank(RHSC); if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. if (LHSRank == RHSRank) return 0; return LHSRank > RHSRank ? 1 : -1; } // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. if (LHSUnsigned) { // If the unsigned [LHS] type is larger, return it. if (LHSRank >= RHSRank) return 1; // If the signed type can represent all values of the unsigned type, it // wins. Because we are dealing with 2's complement and types that are // powers of two larger than each other, this is always safe. return -1; } // If the unsigned [RHS] type is larger, return it. if (RHSRank >= LHSRank) return -1; // If the signed type can represent all values of the unsigned type, it // wins. Because we are dealing with 2's complement and types that are // powers of two larger than each other, this is always safe. return 1; } // getCFConstantStringType - Return the type used for constant CFStrings. QualType ASTContext::getCFConstantStringType() { if (!CFConstantStringTypeDecl) { CFConstantStringTypeDecl = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(), &Idents.get("NSConstantString")); QualType FieldTypes[4]; // const int *isa; FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const)); // int flags; FieldTypes[1] = IntTy; // const char *str; FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const)); // long length; FieldTypes[3] = LongTy; // Create fields for (unsigned i = 0; i < 4; ++i) { FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl, SourceLocation(), 0, FieldTypes[i], /*BitWidth=*/0, /*Mutable=*/false); CFConstantStringTypeDecl->addDecl(*this, Field); } CFConstantStringTypeDecl->completeDefinition(*this); } return getTagDeclType(CFConstantStringTypeDecl); } void ASTContext::setCFConstantStringType(QualType T) { const RecordType *Rec = T->getAsRecordType(); assert(Rec && "Invalid CFConstantStringType"); CFConstantStringTypeDecl = Rec->getDecl(); } QualType ASTContext::getObjCFastEnumerationStateType() { if (!ObjCFastEnumerationStateTypeDecl) { ObjCFastEnumerationStateTypeDecl = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(), &Idents.get("__objcFastEnumerationState")); QualType FieldTypes[] = { UnsignedLongTy, getPointerType(ObjCIdType), getPointerType(UnsignedLongTy), getConstantArrayType(UnsignedLongTy, llvm::APInt(32, 5), ArrayType::Normal, 0) }; for (size_t i = 0; i < 4; ++i) { FieldDecl *Field = FieldDecl::Create(*this, ObjCFastEnumerationStateTypeDecl, SourceLocation(), 0, FieldTypes[i], /*BitWidth=*/0, /*Mutable=*/false); ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field); } ObjCFastEnumerationStateTypeDecl->completeDefinition(*this); } return getTagDeclType(ObjCFastEnumerationStateTypeDecl); } void ASTContext::setObjCFastEnumerationStateType(QualType T) { const RecordType *Rec = T->getAsRecordType(); assert(Rec && "Invalid ObjCFAstEnumerationStateType"); ObjCFastEnumerationStateTypeDecl = Rec->getDecl(); } // This returns true if a type has been typedefed to BOOL: // typedef BOOL; static bool isTypeTypedefedAsBOOL(QualType T) { if (const TypedefType *TT = dyn_cast(T)) if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) return II->isStr("BOOL"); return false; } /// getObjCEncodingTypeSize returns size of type for objective-c encoding /// purpose. int ASTContext::getObjCEncodingTypeSize(QualType type) { uint64_t sz = getTypeSize(type); // Make all integer and enum types at least as large as an int if (sz > 0 && type->isIntegralType()) sz = std::max(sz, getTypeSize(IntTy)); // Treat arrays as pointers, since that's how they're passed in. else if (type->isArrayType()) sz = getTypeSize(VoidPtrTy); return sz / getTypeSize(CharTy); } /// getObjCEncodingForMethodDecl - Return the encoded type for this method /// declaration. void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string& S) { // FIXME: This is not very efficient. // Encode type qualifer, 'in', 'inout', etc. for the return type. getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S); // Encode result type. getObjCEncodingForType(Decl->getResultType(), S); // Compute size of all parameters. // Start with computing size of a pointer in number of bytes. // FIXME: There might(should) be a better way of doing this computation! SourceLocation Loc; int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy); // The first two arguments (self and _cmd) are pointers; account for // their size. int ParmOffset = 2 * PtrSize; for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(), E = Decl->param_end(); PI != E; ++PI) { QualType PType = (*PI)->getType(); int sz = getObjCEncodingTypeSize(PType); assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type"); ParmOffset += sz; } S += llvm::utostr(ParmOffset); S += "@0:"; S += llvm::utostr(PtrSize); // Argument types. ParmOffset = 2 * PtrSize; for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(), E = Decl->param_end(); PI != E; ++PI) { ParmVarDecl *PVDecl = *PI; QualType PType = PVDecl->getOriginalType(); if (const ArrayType *AT = dyn_cast(PType->getCanonicalTypeInternal())) { // Use array's original type only if it has known number of // elements. if (!isa(AT)) PType = PVDecl->getType(); } else if (PType->isFunctionType()) PType = PVDecl->getType(); // Process argument qualifiers for user supplied arguments; such as, // 'in', 'inout', etc. getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S); getObjCEncodingForType(PType, S); S += llvm::utostr(ParmOffset); ParmOffset += getObjCEncodingTypeSize(PType); } } /// getObjCEncodingForPropertyDecl - Return the encoded type for this /// property declaration. If non-NULL, Container must be either an /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be /// NULL when getting encodings for protocol properties. /// Property attributes are stored as a comma-delimited C string. The simple /// attributes readonly and bycopy are encoded as single characters. The /// parametrized attributes, getter=name, setter=name, and ivar=name, are /// encoded as single characters, followed by an identifier. Property types /// are also encoded as a parametrized attribute. The characters used to encode /// these attributes are defined by the following enumeration: /// @code /// enum PropertyAttributes { /// kPropertyReadOnly = 'R', // property is read-only. /// kPropertyBycopy = 'C', // property is a copy of the value last assigned /// kPropertyByref = '&', // property is a reference to the value last assigned /// kPropertyDynamic = 'D', // property is dynamic /// kPropertyGetter = 'G', // followed by getter selector name /// kPropertySetter = 'S', // followed by setter selector name /// kPropertyInstanceVariable = 'V' // followed by instance variable name /// kPropertyType = 't' // followed by old-style type encoding. /// kPropertyWeak = 'W' // 'weak' property /// kPropertyStrong = 'P' // property GC'able /// kPropertyNonAtomic = 'N' // property non-atomic /// }; /// @endcode void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, const Decl *Container, std::string& S) { // Collect information from the property implementation decl(s). bool Dynamic = false; ObjCPropertyImplDecl *SynthesizePID = 0; // FIXME: Duplicated code due to poor abstraction. if (Container) { if (const ObjCCategoryImplDecl *CID = dyn_cast(Container)) { for (ObjCCategoryImplDecl::propimpl_iterator i = CID->propimpl_begin(*this), e = CID->propimpl_end(*this); i != e; ++i) { ObjCPropertyImplDecl *PID = *i; if (PID->getPropertyDecl() == PD) { if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) { Dynamic = true; } else { SynthesizePID = PID; } } } } else { const ObjCImplementationDecl *OID=cast(Container); for (ObjCCategoryImplDecl::propimpl_iterator i = OID->propimpl_begin(*this), e = OID->propimpl_end(*this); i != e; ++i) { ObjCPropertyImplDecl *PID = *i; if (PID->getPropertyDecl() == PD) { if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) { Dynamic = true; } else { SynthesizePID = PID; } } } } } // FIXME: This is not very efficient. S = "T"; // Encode result type. // GCC has some special rules regarding encoding of properties which // closely resembles encoding of ivars. getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0, true /* outermost type */, true /* encoding for property */); if (PD->isReadOnly()) { S += ",R"; } else { switch (PD->getSetterKind()) { case ObjCPropertyDecl::Assign: break; case ObjCPropertyDecl::Copy: S += ",C"; break; case ObjCPropertyDecl::Retain: S += ",&"; break; } } // It really isn't clear at all what this means, since properties // are "dynamic by default". if (Dynamic) S += ",D"; if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic) S += ",N"; if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) { S += ",G"; S += PD->getGetterName().getAsString(); } if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) { S += ",S"; S += PD->getSetterName().getAsString(); } if (SynthesizePID) { const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); S += ",V"; S += OID->getNameAsString(); } // FIXME: OBJCGC: weak & strong } /// getLegacyIntegralTypeEncoding - /// Another legacy compatibility encoding: 32-bit longs are encoded as /// 'l' or 'L' , but not always. For typedefs, we need to use /// 'i' or 'I' instead if encoding a struct field, or a pointer! /// void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { if (dyn_cast(PointeeTy.getTypePtr())) { if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) { if (BT->getKind() == BuiltinType::ULong && ((const_cast(this))->getIntWidth(PointeeTy) == 32)) PointeeTy = UnsignedIntTy; else if (BT->getKind() == BuiltinType::Long && ((const_cast(this))->getIntWidth(PointeeTy) == 32)) PointeeTy = IntTy; } } } void ASTContext::getObjCEncodingForType(QualType T, std::string& S, const FieldDecl *Field) { // We follow the behavior of gcc, expanding structures which are // directly pointed to, and expanding embedded structures. Note that // these rules are sufficient to prevent recursive encoding of the // same type. getObjCEncodingForTypeImpl(T, S, true, true, Field, true /* outermost type */); } static void EncodeBitField(const ASTContext *Context, std::string& S, const FieldDecl *FD) { const Expr *E = FD->getBitWidth(); assert(E && "bitfield width not there - getObjCEncodingForTypeImpl"); ASTContext *Ctx = const_cast(Context); unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue(); S += 'b'; S += llvm::utostr(N); } void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S, bool ExpandPointedToStructures, bool ExpandStructures, const FieldDecl *FD, bool OutermostType, bool EncodingProperty) { if (const BuiltinType *BT = T->getAsBuiltinType()) { if (FD && FD->isBitField()) { EncodeBitField(this, S, FD); } else { char encoding; switch (BT->getKind()) { default: assert(0 && "Unhandled builtin type kind"); case BuiltinType::Void: encoding = 'v'; break; case BuiltinType::Bool: encoding = 'B'; break; case BuiltinType::Char_U: case BuiltinType::UChar: encoding = 'C'; break; case BuiltinType::UShort: encoding = 'S'; break; case BuiltinType::UInt: encoding = 'I'; break; case BuiltinType::ULong: encoding = (const_cast(this))->getIntWidth(T) == 32 ? 'L' : 'Q'; break; case BuiltinType::UInt128: encoding = 'T'; break; case BuiltinType::ULongLong: encoding = 'Q'; break; case BuiltinType::Char_S: case BuiltinType::SChar: encoding = 'c'; break; case BuiltinType::Short: encoding = 's'; break; case BuiltinType::Int: encoding = 'i'; break; case BuiltinType::Long: encoding = (const_cast(this))->getIntWidth(T) == 32 ? 'l' : 'q'; break; case BuiltinType::LongLong: encoding = 'q'; break; case BuiltinType::Int128: encoding = 't'; break; case BuiltinType::Float: encoding = 'f'; break; case BuiltinType::Double: encoding = 'd'; break; case BuiltinType::LongDouble: encoding = 'd'; break; } S += encoding; } } else if (const ComplexType *CT = T->getAsComplexType()) { S += 'j'; getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false, false); } else if (T->isObjCQualifiedIdType()) { getObjCEncodingForTypeImpl(getObjCIdType(), S, ExpandPointedToStructures, ExpandStructures, FD); if (FD || EncodingProperty) { // Note that we do extended encoding of protocol qualifer list // Only when doing ivar or property encoding. const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType(); S += '"'; for (ObjCQualifiedIdType::qual_iterator I = QIDT->qual_begin(), E = QIDT->qual_end(); I != E; ++I) { S += '<'; S += (*I)->getNameAsString(); S += '>'; } S += '"'; } return; } else if (const PointerType *PT = T->getAsPointerType()) { QualType PointeeTy = PT->getPointeeType(); bool isReadOnly = false; // For historical/compatibility reasons, the read-only qualifier of the // pointee gets emitted _before_ the '^'. The read-only qualifier of // the pointer itself gets ignored, _unless_ we are looking at a typedef! // Also, do not emit the 'r' for anything but the outermost type! if (dyn_cast(T.getTypePtr())) { if (OutermostType && T.isConstQualified()) { isReadOnly = true; S += 'r'; } } else if (OutermostType) { QualType P = PointeeTy; while (P->getAsPointerType()) P = P->getAsPointerType()->getPointeeType(); if (P.isConstQualified()) { isReadOnly = true; S += 'r'; } } if (isReadOnly) { // Another legacy compatibility encoding. Some ObjC qualifier and type // combinations need to be rearranged. // Rewrite "in const" from "nr" to "rn" const char * s = S.c_str(); int len = S.length(); if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') { std::string replace = "rn"; S.replace(S.end()-2, S.end(), replace); } } if (isObjCIdStructType(PointeeTy)) { S += '@'; return; } else if (PointeeTy->isObjCInterfaceType()) { if (!EncodingProperty && isa(PointeeTy.getTypePtr())) { // Another historical/compatibility reason. // We encode the underlying type which comes out as // {...}; S += '^'; getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures, NULL); return; } S += '@'; if (FD || EncodingProperty) { const ObjCInterfaceType *OIT = PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType(); ObjCInterfaceDecl *OI = OIT->getDecl(); S += '"'; S += OI->getNameAsCString(); for (ObjCInterfaceType::qual_iterator I = OIT->qual_begin(), E = OIT->qual_end(); I != E; ++I) { S += '<'; S += (*I)->getNameAsString(); S += '>'; } S += '"'; } return; } else if (isObjCClassStructType(PointeeTy)) { S += '#'; return; } else if (isObjCSelType(PointeeTy)) { S += ':'; return; } if (PointeeTy->isCharType()) { // char pointer types should be encoded as '*' unless it is a // type that has been typedef'd to 'BOOL'. if (!isTypeTypedefedAsBOOL(PointeeTy)) { S += '*'; return; } } S += '^'; getLegacyIntegralTypeEncoding(PointeeTy); getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures, NULL); } else if (const ArrayType *AT = // Ignore type qualifiers etc. dyn_cast(T->getCanonicalTypeInternal())) { if (isa(AT)) { // Incomplete arrays are encoded as a pointer to the array element. S += '^'; getObjCEncodingForTypeImpl(AT->getElementType(), S, false, ExpandStructures, FD); } else { S += '['; if (const ConstantArrayType *CAT = dyn_cast(AT)) S += llvm::utostr(CAT->getSize().getZExtValue()); else { //Variable length arrays are encoded as a regular array with 0 elements. assert(isa(AT) && "Unknown array type!"); S += '0'; } getObjCEncodingForTypeImpl(AT->getElementType(), S, false, ExpandStructures, FD); S += ']'; } } else if (T->getAsFunctionType()) { S += '?'; } else if (const RecordType *RTy = T->getAsRecordType()) { RecordDecl *RDecl = RTy->getDecl(); S += RDecl->isUnion() ? '(' : '{'; // Anonymous structures print as '?' if (const IdentifierInfo *II = RDecl->getIdentifier()) { S += II->getName(); } else { S += '?'; } if (ExpandStructures) { S += '='; for (RecordDecl::field_iterator Field = RDecl->field_begin(*this), FieldEnd = RDecl->field_end(*this); Field != FieldEnd; ++Field) { if (FD) { S += '"'; S += Field->getNameAsString(); S += '"'; } // Special case bit-fields. if (Field->isBitField()) { getObjCEncodingForTypeImpl(Field->getType(), S, false, true, (*Field)); } else { QualType qt = Field->getType(); getLegacyIntegralTypeEncoding(qt); getObjCEncodingForTypeImpl(qt, S, false, true, FD); } } } S += RDecl->isUnion() ? ')' : '}'; } else if (T->isEnumeralType()) { if (FD && FD->isBitField()) EncodeBitField(this, S, FD); else S += 'i'; } else if (T->isBlockPointerType()) { S += "@?"; // Unlike a pointer-to-function, which is "^?". } else if (T->isObjCInterfaceType()) { // @encode(class_name) ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl(); S += '{'; const IdentifierInfo *II = OI->getIdentifier(); S += II->getName(); S += '='; llvm::SmallVector RecFields; CollectObjCIvars(OI, RecFields); for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { if (RecFields[i]->isBitField()) getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true, RecFields[i]); else getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true, FD); } S += '}'; } else assert(0 && "@encode for type not implemented!"); } void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, std::string& S) const { if (QT & Decl::OBJC_TQ_In) S += 'n'; if (QT & Decl::OBJC_TQ_Inout) S += 'N'; if (QT & Decl::OBJC_TQ_Out) S += 'o'; if (QT & Decl::OBJC_TQ_Bycopy) S += 'O'; if (QT & Decl::OBJC_TQ_Byref) S += 'R'; if (QT & Decl::OBJC_TQ_Oneway) S += 'V'; } void ASTContext::setBuiltinVaListType(QualType T) { assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!"); BuiltinVaListType = T; } void ASTContext::setObjCIdType(QualType T) { ObjCIdType = T; const TypedefType *TT = T->getAsTypedefType(); if (!TT) return; TypedefDecl *TD = TT->getDecl(); // typedef struct objc_object *id; const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); // User error - caller will issue diagnostics. if (!ptr) return; const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); // User error - caller will issue diagnostics. if (!rec) return; IdStructType = rec; } void ASTContext::setObjCSelType(QualType T) { ObjCSelType = T; const TypedefType *TT = T->getAsTypedefType(); if (!TT) return; TypedefDecl *TD = TT->getDecl(); // typedef struct objc_selector *SEL; const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); if (!ptr) return; const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); if (!rec) return; SelStructType = rec; } void ASTContext::setObjCProtoType(QualType QT) { ObjCProtoType = QT; } void ASTContext::setObjCClassType(QualType T) { ObjCClassType = T; const TypedefType *TT = T->getAsTypedefType(); if (!TT) return; TypedefDecl *TD = TT->getDecl(); // typedef struct objc_class *Class; const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); assert(ptr && "'Class' incorrectly typed"); const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); assert(rec && "'Class' incorrectly typed"); ClassStructType = rec; } void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { assert(ObjCConstantStringType.isNull() && "'NSConstantString' type already set!"); ObjCConstantStringType = getObjCInterfaceType(Decl); } /// \brief Retrieve the template name that represents a qualified /// template name such as \c std::vector. TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, bool TemplateKeyword, TemplateDecl *Template) { llvm::FoldingSetNodeID ID; QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); void *InsertPos = 0; QualifiedTemplateName *QTN = QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); if (!QTN) { QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template); QualifiedTemplateNames.InsertNode(QTN, InsertPos); } return TemplateName(QTN); } /// \brief Retrieve the template name that represents a dependent /// template name such as \c MetaFun::template apply. TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, const IdentifierInfo *Name) { assert(NNS->isDependent() && "Nested name specifier must be dependent"); llvm::FoldingSetNodeID ID; DependentTemplateName::Profile(ID, NNS, Name); void *InsertPos = 0; DependentTemplateName *QTN = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); if (QTN) return TemplateName(QTN); NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); if (CanonNNS == NNS) { QTN = new (*this,4) DependentTemplateName(NNS, Name); } else { TemplateName Canon = getDependentTemplateName(CanonNNS, Name); QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon); } DependentTemplateNames.InsertNode(QTN, InsertPos); return TemplateName(QTN); } /// getFromTargetType - Given one of the integer types provided by /// TargetInfo, produce the corresponding type. The unsigned @p Type /// is actually a value of type @c TargetInfo::IntType. QualType ASTContext::getFromTargetType(unsigned Type) const { switch (Type) { case TargetInfo::NoInt: return QualType(); case TargetInfo::SignedShort: return ShortTy; case TargetInfo::UnsignedShort: return UnsignedShortTy; case TargetInfo::SignedInt: return IntTy; case TargetInfo::UnsignedInt: return UnsignedIntTy; case TargetInfo::SignedLong: return LongTy; case TargetInfo::UnsignedLong: return UnsignedLongTy; case TargetInfo::SignedLongLong: return LongLongTy; case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; } assert(false && "Unhandled TargetInfo::IntType value"); return QualType(); } //===----------------------------------------------------------------------===// // Type Predicates. //===----------------------------------------------------------------------===// /// isObjCNSObjectType - Return true if this is an NSObject object using /// NSObject attribute on a c-style pointer type. /// FIXME - Make it work directly on types. /// bool ASTContext::isObjCNSObjectType(QualType Ty) const { if (TypedefType *TDT = dyn_cast(Ty)) { if (TypedefDecl *TD = TDT->getDecl()) if (TD->getAttr()) return true; } return false; } /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer /// to an object type. This includes "id" and "Class" (two 'special' pointers /// to struct), Interface* (pointer to ObjCInterfaceType) and id

(qualified /// ID type). bool ASTContext::isObjCObjectPointerType(QualType Ty) const { if (Ty->isObjCQualifiedIdType()) return true; // Blocks are objects. if (Ty->isBlockPointerType()) return true; // All other object types are pointers. const PointerType *PT = Ty->getAsPointerType(); if (PT == 0) return false; // If this a pointer to an interface (e.g. NSString*), it is ok. if (PT->getPointeeType()->isObjCInterfaceType() || // If is has NSObject attribute, OK as well. isObjCNSObjectType(Ty)) return true; // Check to see if this is 'id' or 'Class', both of which are typedefs for // pointer types. This looks for the typedef specifically, not for the // underlying type. Iteratively strip off typedefs so that we can handle // typedefs of typedefs. while (TypedefType *TDT = dyn_cast(Ty)) { if (Ty.getUnqualifiedType() == getObjCIdType() || Ty.getUnqualifiedType() == getObjCClassType()) return true; Ty = TDT->getDecl()->getUnderlyingType(); } return false; } /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's /// garbage collection attribute. /// QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const { QualType::GCAttrTypes GCAttrs = QualType::GCNone; if (getLangOptions().ObjC1 && getLangOptions().getGCMode() != LangOptions::NonGC) { GCAttrs = Ty.getObjCGCAttr(); // Default behavious under objective-c's gc is for objective-c pointers // (or pointers to them) be treated as though they were declared // as __strong. if (GCAttrs == QualType::GCNone) { if (isObjCObjectPointerType(Ty)) GCAttrs = QualType::Strong; else if (Ty->isPointerType()) return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType()); } // Non-pointers have none gc'able attribute regardless of the attribute // set on them. else if (!isObjCObjectPointerType(Ty) && !Ty->isPointerType()) return QualType::GCNone; } return GCAttrs; } //===----------------------------------------------------------------------===// // Type Compatibility Testing //===----------------------------------------------------------------------===// /// typesAreBlockCompatible - This routine is called when comparing two /// block types. Types must be strictly compatible here. For example, /// C unfortunately doesn't produce an error for the following: /// /// int (*emptyArgFunc)(); /// int (*intArgList)(int) = emptyArgFunc; /// /// For blocks, we will produce an error for the following (similar to C++): /// /// int (^emptyArgBlock)(); /// int (^intArgBlock)(int) = emptyArgBlock; /// /// FIXME: When the dust settles on this integration, fold this into mergeTypes. /// bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) { const FunctionType *lbase = lhs->getAsFunctionType(); const FunctionType *rbase = rhs->getAsFunctionType(); const FunctionProtoType *lproto = dyn_cast(lbase); const FunctionProtoType *rproto = dyn_cast(rbase); if (lproto && rproto == 0) return false; return !mergeTypes(lhs, rhs).isNull(); } /// areCompatVectorTypes - Return true if the two specified vector types are /// compatible. static bool areCompatVectorTypes(const VectorType *LHS, const VectorType *RHS) { assert(LHS->isCanonical() && RHS->isCanonical()); return LHS->getElementType() == RHS->getElementType() && LHS->getNumElements() == RHS->getNumElements(); } /// canAssignObjCInterfaces - Return true if the two interface types are /// compatible for assignment from RHS to LHS. This handles validation of any /// protocol qualifiers on the LHS or RHS. /// bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS, const ObjCInterfaceType *RHS) { // Verify that the base decls are compatible: the RHS must be a subclass of // the LHS. if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl())) return false; // RHS must have a superset of the protocols in the LHS. If the LHS is not // protocol qualified at all, then we are good. if (!isa(LHS)) return true; // Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, then it // isn't a superset. if (!isa(RHS)) return true; // FIXME: should return false! // Finally, we must have two protocol-qualified interfaces. const ObjCQualifiedInterfaceType *LHSP =cast(LHS); const ObjCQualifiedInterfaceType *RHSP =cast(RHS); // All LHS protocols must have a presence on the RHS. assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?"); for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(), LHSPE = LHSP->qual_end(); LHSPI != LHSPE; LHSPI++) { bool RHSImplementsProtocol = false; // If the RHS doesn't implement the protocol on the left, the types // are incompatible. for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(), RHSPE = RHSP->qual_end(); !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) { if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) RHSImplementsProtocol = true; } // FIXME: For better diagnostics, consider passing back the protocol name. if (!RHSImplementsProtocol) return false; } // The RHS implements all protocols listed on the LHS. return true; } bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { // get the "pointed to" types const PointerType *LHSPT = LHS->getAsPointerType(); const PointerType *RHSPT = RHS->getAsPointerType(); if (!LHSPT || !RHSPT) return false; QualType lhptee = LHSPT->getPointeeType(); QualType rhptee = RHSPT->getPointeeType(); const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType(); const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType(); // ID acts sort of like void* for ObjC interfaces if (LHSIface && isObjCIdStructType(rhptee)) return true; if (RHSIface && isObjCIdStructType(lhptee)) return true; if (!LHSIface || !RHSIface) return false; return canAssignObjCInterfaces(LHSIface, RHSIface) || canAssignObjCInterfaces(RHSIface, LHSIface); } /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, /// both shall have the identically qualified version of a compatible type. /// C99 6.2.7p1: Two types have compatible types if their types are the /// same. See 6.7.[2,3,5] for additional rules. bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) { return !mergeTypes(LHS, RHS).isNull(); } QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) { const FunctionType *lbase = lhs->getAsFunctionType(); const FunctionType *rbase = rhs->getAsFunctionType(); const FunctionProtoType *lproto = dyn_cast(lbase); const FunctionProtoType *rproto = dyn_cast(rbase); bool allLTypes = true; bool allRTypes = true; // Check return type QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType()); if (retType.isNull()) return QualType(); if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType())) allLTypes = false; if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType())) allRTypes = false; if (lproto && rproto) { // two C99 style function prototypes assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() && "C++ shouldn't be here"); unsigned lproto_nargs = lproto->getNumArgs(); unsigned rproto_nargs = rproto->getNumArgs(); // Compatible functions must have the same number of arguments if (lproto_nargs != rproto_nargs) return QualType(); // Variadic and non-variadic functions aren't compatible if (lproto->isVariadic() != rproto->isVariadic()) return QualType(); if (lproto->getTypeQuals() != rproto->getTypeQuals()) return QualType(); // Check argument compatibility llvm::SmallVector types; for (unsigned i = 0; i < lproto_nargs; i++) { QualType largtype = lproto->getArgType(i).getUnqualifiedType(); QualType rargtype = rproto->getArgType(i).getUnqualifiedType(); QualType argtype = mergeTypes(largtype, rargtype); if (argtype.isNull()) return QualType(); types.push_back(argtype); if (getCanonicalType(argtype) != getCanonicalType(largtype)) allLTypes = false; if (getCanonicalType(argtype) != getCanonicalType(rargtype)) allRTypes = false; } if (allLTypes) return lhs; if (allRTypes) return rhs; return getFunctionType(retType, types.begin(), types.size(), lproto->isVariadic(), lproto->getTypeQuals()); } if (lproto) allRTypes = false; if (rproto) allLTypes = false; const FunctionProtoType *proto = lproto ? lproto : rproto; if (proto) { assert(!proto->hasExceptionSpec() && "C++ shouldn't be here"); if (proto->isVariadic()) return QualType(); // Check that the types are compatible with the types that // would result from default argument promotions (C99 6.7.5.3p15). // The only types actually affected are promotable integer // types and floats, which would be passed as a different // type depending on whether the prototype is visible. unsigned proto_nargs = proto->getNumArgs(); for (unsigned i = 0; i < proto_nargs; ++i) { QualType argTy = proto->getArgType(i); if (argTy->isPromotableIntegerType() || getCanonicalType(argTy).getUnqualifiedType() == FloatTy) return QualType(); } if (allLTypes) return lhs; if (allRTypes) return rhs; return getFunctionType(retType, proto->arg_type_begin(), proto->getNumArgs(), lproto->isVariadic(), lproto->getTypeQuals()); } if (allLTypes) return lhs; if (allRTypes) return rhs; return getFunctionNoProtoType(retType); } QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) { // C++ [expr]: If an expression initially has the type "reference to T", the // type is adjusted to "T" prior to any further analysis, the expression // designates the object or function denoted by the reference, and the // expression is an lvalue unless the reference is an rvalue reference and // the expression is a function call (possibly inside parentheses). // FIXME: C++ shouldn't be going through here! The rules are different // enough that they should be handled separately. // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really* // shouldn't be going through here! if (const ReferenceType *RT = LHS->getAsReferenceType()) LHS = RT->getPointeeType(); if (const ReferenceType *RT = RHS->getAsReferenceType()) RHS = RT->getPointeeType(); QualType LHSCan = getCanonicalType(LHS), RHSCan = getCanonicalType(RHS); // If two types are identical, they are compatible. if (LHSCan == RHSCan) return LHS; // If the qualifiers are different, the types aren't compatible // Note that we handle extended qualifiers later, in the // case for ExtQualType. if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers()) return QualType(); Type::TypeClass LHSClass = LHSCan->getTypeClass(); Type::TypeClass RHSClass = RHSCan->getTypeClass(); // We want to consider the two function types to be the same for these // comparisons, just force one to the other. if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; // Strip off objc_gc attributes off the top level so they can be merged. // This is a complete mess, but the attribute itself doesn't make much sense. if (RHSClass == Type::ExtQual) { QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr(); if (GCAttr != QualType::GCNone) { RHS = QualType(cast(RHS.getDesugaredType())->getBaseType(), RHS.getCVRQualifiers()); QualType Result = mergeTypes(LHS, RHS); if (Result.getObjCGCAttr() == QualType::GCNone) Result = getObjCGCQualType(Result, GCAttr); else if (Result.getObjCGCAttr() != GCAttr) Result = QualType(); return Result; } } if (LHSClass == Type::ExtQual) { QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr(); if (GCAttr != QualType::GCNone) { LHS = QualType(cast(LHS.getDesugaredType())->getBaseType(), LHS.getCVRQualifiers()); QualType Result = mergeTypes(LHS, RHS); if (Result.getObjCGCAttr() == QualType::GCNone) Result = getObjCGCQualType(Result, GCAttr); else if (Result.getObjCGCAttr() != GCAttr) Result = QualType(); return Result; } } // Same as above for arrays if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) LHSClass = Type::ConstantArray; if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) RHSClass = Type::ConstantArray; // Canonicalize ExtVector -> Vector. if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; // Consider qualified interfaces and interfaces the same. if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface; if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface; // If the canonical type classes don't match. if (LHSClass != RHSClass) { const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType(); const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType(); // 'id' and 'Class' act sort of like void* for ObjC interfaces if (LHSIface && (isObjCIdStructType(RHS) || isObjCClassStructType(RHS))) return LHS; if (RHSIface && (isObjCIdStructType(LHS) || isObjCClassStructType(LHS))) return RHS; // ID is compatible with all qualified id types. if (LHS->isObjCQualifiedIdType()) { if (const PointerType *PT = RHS->getAsPointerType()) { QualType pType = PT->getPointeeType(); if (isObjCIdStructType(pType) || isObjCClassStructType(pType)) return LHS; // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true). // Unfortunately, this API is part of Sema (which we don't have access // to. Need to refactor. The following check is insufficient, since we // need to make sure the class implements the protocol. if (pType->isObjCInterfaceType()) return LHS; } } if (RHS->isObjCQualifiedIdType()) { if (const PointerType *PT = LHS->getAsPointerType()) { QualType pType = PT->getPointeeType(); if (isObjCIdStructType(pType) || isObjCClassStructType(pType)) return RHS; // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true). // Unfortunately, this API is part of Sema (which we don't have access // to. Need to refactor. The following check is insufficient, since we // need to make sure the class implements the protocol. if (pType->isObjCInterfaceType()) return RHS; } } // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, // a signed integer type, or an unsigned integer type. if (const EnumType* ETy = LHS->getAsEnumType()) { if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType()) return RHS; } if (const EnumType* ETy = RHS->getAsEnumType()) { if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType()) return LHS; } return QualType(); } // The canonical type classes match. switch (LHSClass) { #define TYPE(Class, Base) #define ABSTRACT_TYPE(Class, Base) #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: #define DEPENDENT_TYPE(Class, Base) case Type::Class: #include "clang/AST/TypeNodes.def" assert(false && "Non-canonical and dependent types shouldn't get here"); return QualType(); case Type::LValueReference: case Type::RValueReference: case Type::MemberPointer: assert(false && "C++ should never be in mergeTypes"); return QualType(); case Type::IncompleteArray: case Type::VariableArray: case Type::FunctionProto: case Type::ExtVector: case Type::ObjCQualifiedInterface: assert(false && "Types are eliminated above"); return QualType(); case Type::Pointer: { // Merge two pointer types, while trying to preserve typedef info QualType LHSPointee = LHS->getAsPointerType()->getPointeeType(); QualType RHSPointee = RHS->getAsPointerType()->getPointeeType(); QualType ResultType = mergeTypes(LHSPointee, RHSPointee); if (ResultType.isNull()) return QualType(); if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) return LHS; if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) return RHS; return getPointerType(ResultType); } case Type::BlockPointer: { // Merge two block pointer types, while trying to preserve typedef info QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType(); QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType(); QualType ResultType = mergeTypes(LHSPointee, RHSPointee); if (ResultType.isNull()) return QualType(); if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) return LHS; if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) return RHS; return getBlockPointerType(ResultType); } case Type::ConstantArray: { const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) return QualType(); QualType LHSElem = getAsArrayType(LHS)->getElementType(); QualType RHSElem = getAsArrayType(RHS)->getElementType(); QualType ResultType = mergeTypes(LHSElem, RHSElem); if (ResultType.isNull()) return QualType(); if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(), ArrayType::ArraySizeModifier(), 0); if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(), ArrayType::ArraySizeModifier(), 0); const VariableArrayType* LVAT = getAsVariableArrayType(LHS); const VariableArrayType* RVAT = getAsVariableArrayType(RHS); if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; if (LVAT) { // FIXME: This isn't correct! But tricky to implement because // the array's size has to be the size of LHS, but the type // has to be different. return LHS; } if (RVAT) { // FIXME: This isn't correct! But tricky to implement because // the array's size has to be the size of RHS, but the type // has to be different. return RHS; } if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0); } case Type::FunctionNoProto: return mergeFunctionTypes(LHS, RHS); case Type::Record: case Type::Enum: // FIXME: Why are these compatible? if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS; if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS; return QualType(); case Type::Builtin: // Only exactly equal builtin types are compatible, which is tested above. return QualType(); case Type::Complex: // Distinct complex types are incompatible. return QualType(); case Type::Vector: // FIXME: The merged type should be an ExtVector! if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType())) return LHS; return QualType(); case Type::ObjCInterface: { // Check if the interfaces are assignment compatible. // FIXME: This should be type compatibility, e.g. whether // "LHS x; RHS x;" at global scope is legal. const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType(); const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType(); if (LHSIface && RHSIface && canAssignObjCInterfaces(LHSIface, RHSIface)) return LHS; return QualType(); } case Type::ObjCQualifiedId: // Distinct qualified id's are not compatible. return QualType(); case Type::FixedWidthInt: // Distinct fixed-width integers are not compatible. return QualType(); case Type::ExtQual: // FIXME: ExtQual types can be compatible even if they're not // identical! return QualType(); // First attempt at an implementation, but I'm not really sure it's // right... #if 0 ExtQualType* LQual = cast(LHSCan); ExtQualType* RQual = cast(RHSCan); if (LQual->getAddressSpace() != RQual->getAddressSpace() || LQual->getObjCGCAttr() != RQual->getObjCGCAttr()) return QualType(); QualType LHSBase, RHSBase, ResultType, ResCanUnqual; LHSBase = QualType(LQual->getBaseType(), 0); RHSBase = QualType(RQual->getBaseType(), 0); ResultType = mergeTypes(LHSBase, RHSBase); if (ResultType.isNull()) return QualType(); ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType(); if (LHSCan.getUnqualifiedType() == ResCanUnqual) return LHS; if (RHSCan.getUnqualifiedType() == ResCanUnqual) return RHS; ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace()); ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr()); ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers()); return ResultType; #endif case Type::TemplateSpecialization: assert(false && "Dependent types have no size"); break; } return QualType(); } //===----------------------------------------------------------------------===// // Integer Predicates //===----------------------------------------------------------------------===// unsigned ASTContext::getIntWidth(QualType T) { if (T == BoolTy) return 1; if (FixedWidthIntType* FWIT = dyn_cast(T)) { return FWIT->getWidth(); } // For builtin types, just use the standard type sizing method return (unsigned)getTypeSize(T); } QualType ASTContext::getCorrespondingUnsignedType(QualType T) { assert(T->isSignedIntegerType() && "Unexpected type"); if (const EnumType* ETy = T->getAsEnumType()) T = ETy->getDecl()->getIntegerType(); const BuiltinType* BTy = T->getAsBuiltinType(); assert (BTy && "Unexpected signed integer type"); switch (BTy->getKind()) { case BuiltinType::Char_S: case BuiltinType::SChar: return UnsignedCharTy; case BuiltinType::Short: return UnsignedShortTy; case BuiltinType::Int: return UnsignedIntTy; case BuiltinType::Long: return UnsignedLongTy; case BuiltinType::LongLong: return UnsignedLongLongTy; case BuiltinType::Int128: return UnsignedInt128Ty; default: assert(0 && "Unexpected signed integer type"); return QualType(); } } ExternalASTSource::~ExternalASTSource() { } void ExternalASTSource::PrintStats() { }