//===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the C++ Decl subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_DECLCXX_H #define LLVM_CLANG_AST_DECLCXX_H #include "clang/AST/Expr.h" #include "clang/AST/Decl.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SmallPtrSet.h" namespace clang { class ClassTemplateDecl; class ClassTemplateSpecializationDecl; class CXXBasePath; class CXXBasePaths; class CXXConstructorDecl; class CXXConversionDecl; class CXXDestructorDecl; class CXXMethodDecl; class CXXRecordDecl; class CXXMemberLookupCriteria; /// \brief Represents any kind of function declaration, whether it is a /// concrete function or a function template. class AnyFunctionDecl { NamedDecl *Function; AnyFunctionDecl(NamedDecl *ND) : Function(ND) { } public: AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { } AnyFunctionDecl(FunctionTemplateDecl *FTD); /// \brief Implicily converts any function or function template into a /// named declaration. operator NamedDecl *() const { return Function; } /// \brief Retrieve the underlying function or function template. NamedDecl *get() const { return Function; } static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) { return AnyFunctionDecl(ND); } }; } // end namespace clang namespace llvm { /// Implement simplify_type for AnyFunctionDecl, so that we can dyn_cast from /// AnyFunctionDecl to any function or function template declaration. template<> struct simplify_type { typedef ::clang::NamedDecl* SimpleType; static SimpleType getSimplifiedValue(const ::clang::AnyFunctionDecl &Val) { return Val; } }; template<> struct simplify_type< ::clang::AnyFunctionDecl> : public simplify_type {}; // Provide PointerLikeTypeTraits for non-cvr pointers. template<> class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> { public: static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) { return F.get(); } static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) { return ::clang::AnyFunctionDecl::getFromNamedDecl( static_cast< ::clang::NamedDecl*>(P)); } enum { NumLowBitsAvailable = 2 }; }; } // end namespace llvm namespace clang { /// OverloadedFunctionDecl - An instance of this class represents a /// set of overloaded functions. All of the functions have the same /// name and occur within the same scope. /// /// An OverloadedFunctionDecl has no ownership over the FunctionDecl /// nodes it contains. Rather, the FunctionDecls are owned by the /// enclosing scope (which also owns the OverloadedFunctionDecl /// node). OverloadedFunctionDecl is used primarily to store a set of /// overloaded functions for name lookup. class OverloadedFunctionDecl : public NamedDecl { protected: OverloadedFunctionDecl(DeclContext *DC, DeclarationName N) : NamedDecl(OverloadedFunction, DC, SourceLocation(), N) { } /// Functions - the set of overloaded functions contained in this /// overload set. llvm::SmallVector Functions; // FIXME: This should go away when we stop using // OverloadedFunctionDecl to store conversions in CXXRecordDecl. friend class CXXRecordDecl; public: typedef llvm::SmallVector::iterator function_iterator; typedef llvm::SmallVector::const_iterator function_const_iterator; static OverloadedFunctionDecl *Create(ASTContext &C, DeclContext *DC, DeclarationName N); /// \brief Add a new overloaded function or function template to the set /// of overloaded function templates. void addOverload(AnyFunctionDecl F); function_iterator function_begin() { return Functions.begin(); } function_iterator function_end() { return Functions.end(); } function_const_iterator function_begin() const { return Functions.begin(); } function_const_iterator function_end() const { return Functions.end(); } /// \brief Returns the number of overloaded functions stored in /// this set. unsigned size() const { return Functions.size(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return D->getKind() == OverloadedFunction; } static bool classof(const OverloadedFunctionDecl *D) { return true; } }; /// \brief Provides uniform iteration syntax for an overload set, function, /// or function template. class OverloadIterator { /// \brief An overloaded function set, function declaration, or /// function template declaration. NamedDecl *D; /// \brief If the declaration is an overloaded function set, this is the /// iterator pointing to the current position within that overloaded /// function set. OverloadedFunctionDecl::function_iterator Iter; public: typedef AnyFunctionDecl value_type; typedef value_type reference; typedef NamedDecl *pointer; typedef int difference_type; typedef std::forward_iterator_tag iterator_category; OverloadIterator() : D(0) { } OverloadIterator(FunctionDecl *FD) : D(FD) { } OverloadIterator(FunctionTemplateDecl *FTD) : D(reinterpret_cast(FTD)) { } OverloadIterator(OverloadedFunctionDecl *Ovl) : D(Ovl), Iter(Ovl->function_begin()) { } OverloadIterator(NamedDecl *ND); reference operator*() const; pointer operator->() const { return (**this).get(); } OverloadIterator &operator++(); OverloadIterator operator++(int) { OverloadIterator Temp(*this); ++(*this); return Temp; } bool Equals(const OverloadIterator &Other) const; }; inline bool operator==(const OverloadIterator &X, const OverloadIterator &Y) { return X.Equals(Y); } inline bool operator!=(const OverloadIterator &X, const OverloadIterator &Y) { return !(X == Y); } /// CXXBaseSpecifier - A base class of a C++ class. /// /// Each CXXBaseSpecifier represents a single, direct base class (or /// struct) of a C++ class (or struct). It specifies the type of that /// base class, whether it is a virtual or non-virtual base, and what /// level of access (public, protected, private) is used for the /// derivation. For example: /// /// @code /// class A { }; /// class B { }; /// class C : public virtual A, protected B { }; /// @endcode /// /// In this code, C will have two CXXBaseSpecifiers, one for "public /// virtual A" and the other for "protected B". class CXXBaseSpecifier { /// Range - The source code range that covers the full base /// specifier, including the "virtual" (if present) and access /// specifier (if present). SourceRange Range; /// Virtual - Whether this is a virtual base class or not. bool Virtual : 1; /// BaseOfClass - Whether this is the base of a class (true) or of a /// struct (false). This determines the mapping from the access /// specifier as written in the source code to the access specifier /// used for semantic analysis. bool BaseOfClass : 1; /// Access - Access specifier as written in the source code (which /// may be AS_none). The actual type of data stored here is an /// AccessSpecifier, but we use "unsigned" here to work around a /// VC++ bug. unsigned Access : 2; /// BaseType - The type of the base class. This will be a class or /// struct (or a typedef of such). QualType BaseType; public: CXXBaseSpecifier() { } CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A, QualType T) : Range(R), Virtual(V), BaseOfClass(BC), Access(A), BaseType(T) { } /// getSourceRange - Retrieves the source range that contains the /// entire base specifier. SourceRange getSourceRange() const { return Range; } /// isVirtual - Determines whether the base class is a virtual base /// class (or not). bool isVirtual() const { return Virtual; } /// getAccessSpecifier - Returns the access specifier for this base /// specifier. This is the actual base specifier as used for /// semantic analysis, so the result can never be AS_none. To /// retrieve the access specifier as written in the source code, use /// getAccessSpecifierAsWritten(). AccessSpecifier getAccessSpecifier() const { if ((AccessSpecifier)Access == AS_none) return BaseOfClass? AS_private : AS_public; else return (AccessSpecifier)Access; } /// getAccessSpecifierAsWritten - Retrieves the access specifier as /// written in the source code (which may mean that no access /// specifier was explicitly written). Use getAccessSpecifier() to /// retrieve the access specifier for use in semantic analysis. AccessSpecifier getAccessSpecifierAsWritten() const { return (AccessSpecifier)Access; } /// getType - Retrieves the type of the base class. This type will /// always be an unqualified class type. QualType getType() const { return BaseType; } }; /// CXXRecordDecl - Represents a C++ struct/union/class. /// FIXME: This class will disappear once we've properly taught RecordDecl /// to deal with C++-specific things. class CXXRecordDecl : public RecordDecl { /// UserDeclaredConstructor - True when this class has a /// user-declared constructor. bool UserDeclaredConstructor : 1; /// UserDeclaredCopyConstructor - True when this class has a /// user-declared copy constructor. bool UserDeclaredCopyConstructor : 1; /// UserDeclaredCopyAssignment - True when this class has a /// user-declared copy assignment operator. bool UserDeclaredCopyAssignment : 1; /// UserDeclaredDestructor - True when this class has a /// user-declared destructor. bool UserDeclaredDestructor : 1; /// Aggregate - True when this class is an aggregate. bool Aggregate : 1; /// PlainOldData - True when this class is a POD-type. bool PlainOldData : 1; /// Empty - true when this class is empty for traits purposes, i.e. has no /// data members other than 0-width bit-fields, has no virtual function/base, /// and doesn't inherit from a non-empty class. Doesn't take union-ness into /// account. bool Empty : 1; /// Polymorphic - True when this class is polymorphic, i.e. has at least one /// virtual member or derives from a polymorphic class. bool Polymorphic : 1; /// Abstract - True when this class is abstract, i.e. has at least one /// pure virtual function, (that can come from a base class). bool Abstract : 1; /// HasTrivialConstructor - True when this class has a trivial constructor. /// /// C++ [class.ctor]p5. A constructor is trivial if it is an /// implicitly-declared default constructor and if: /// * its class has no virtual functions and no virtual base classes, and /// * all the direct base classes of its class have trivial constructors, and /// * for all the nonstatic data members of its class that are of class type /// (or array thereof), each such class has a trivial constructor. bool HasTrivialConstructor : 1; /// HasTrivialCopyConstructor - True when this class has a trivial copy /// constructor. /// /// C++ [class.copy]p6. A copy constructor for class X is trivial /// if it is implicitly declared and if /// * class X has no virtual functions and no virtual base classes, and /// * each direct base class of X has a trivial copy constructor, and /// * for all the nonstatic data members of X that are of class type (or /// array thereof), each such class type has a trivial copy constructor; /// otherwise the copy constructor is non-trivial. bool HasTrivialCopyConstructor : 1; /// HasTrivialCopyAssignment - True when this class has a trivial copy /// assignment operator. /// /// C++ [class.copy]p11. A copy assignment operator for class X is /// trivial if it is implicitly declared and if /// * class X has no virtual functions and no virtual base classes, and /// * each direct base class of X has a trivial copy assignment operator, and /// * for all the nonstatic data members of X that are of class type (or /// array thereof), each such class type has a trivial copy assignment /// operator; /// otherwise the copy assignment operator is non-trivial. bool HasTrivialCopyAssignment : 1; /// HasTrivialDestructor - True when this class has a trivial destructor. /// /// C++ [class.dtor]p3. A destructor is trivial if it is an /// implicitly-declared destructor and if: /// * all of the direct base classes of its class have trivial destructors /// and /// * for all of the non-static data members of its class that are of class /// type (or array thereof), each such class has a trivial destructor. bool HasTrivialDestructor : 1; /// ComputedVisibleConversions - True when visible conversion functions are /// already computed and are available. bool ComputedVisibleConversions : 1; /// Bases - Base classes of this class. /// FIXME: This is wasted space for a union. CXXBaseSpecifier *Bases; /// NumBases - The number of base class specifiers in Bases. unsigned NumBases; /// VBases - direct and indirect virtual base classes of this class. CXXBaseSpecifier *VBases; /// NumVBases - The number of virtual base class specifiers in VBases. unsigned NumVBases; /// Conversions - Overload set containing the conversion functions /// of this C++ class (but not its inherited conversion /// functions). Each of the entries in this overload set is a /// CXXConversionDecl. UnresolvedSet Conversions; /// VisibleConversions - Overload set containing the conversion functions /// of this C++ class and all those inherited conversion functions that /// are visible in this class. Each of the entries in this overload set is /// a CXXConversionDecl or a FunctionTemplateDecl. UnresolvedSet VisibleConversions; /// \brief The template or declaration that this declaration /// describes or was instantiated from, respectively. /// /// For non-templates, this value will be NULL. For record /// declarations that describe a class template, this will be a /// pointer to a ClassTemplateDecl. For member /// classes of class template specializations, this will be the /// MemberSpecializationInfo referring to the member class that was /// instantiated or specialized. llvm::PointerUnion TemplateOrInstantiation; void getNestedVisibleConversionFunctions(CXXRecordDecl *RD, const llvm::SmallPtrSet &TopConversionsTypeSet, const llvm::SmallPtrSet &HiddenConversionTypes); void collectConversionFunctions( llvm::SmallPtrSet& ConversionsTypeSet) const; protected: CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, CXXRecordDecl *PrevDecl, SourceLocation TKL = SourceLocation()); ~CXXRecordDecl(); public: /// base_class_iterator - Iterator that traverses the base classes /// of a class. typedef CXXBaseSpecifier* base_class_iterator; /// base_class_const_iterator - Iterator that traverses the base /// classes of a class. typedef const CXXBaseSpecifier* base_class_const_iterator; /// reverse_base_class_iterator = Iterator that traverses the base classes /// of a class in reverse order. typedef std::reverse_iterator reverse_base_class_iterator; /// reverse_base_class_iterator = Iterator that traverses the base classes /// of a class in reverse order. typedef std::reverse_iterator reverse_base_class_const_iterator; virtual CXXRecordDecl *getCanonicalDecl() { return cast(RecordDecl::getCanonicalDecl()); } virtual const CXXRecordDecl *getCanonicalDecl() const { return cast(RecordDecl::getCanonicalDecl()); } static CXXRecordDecl *Create(ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, SourceLocation TKL = SourceLocation(), CXXRecordDecl* PrevDecl=0, bool DelayTypeCreation = false); virtual void Destroy(ASTContext& C); bool isDynamicClass() const { return Polymorphic || NumVBases != 0; } /// setBases - Sets the base classes of this struct or class. void setBases(ASTContext &C, CXXBaseSpecifier const * const *Bases, unsigned NumBases); /// getNumBases - Retrieves the number of base classes of this /// class. unsigned getNumBases() const { return NumBases; } base_class_iterator bases_begin() { return Bases; } base_class_const_iterator bases_begin() const { return Bases; } base_class_iterator bases_end() { return Bases + NumBases; } base_class_const_iterator bases_end() const { return Bases + NumBases; } reverse_base_class_iterator bases_rbegin() { return reverse_base_class_iterator(bases_end()); } reverse_base_class_const_iterator bases_rbegin() const { return reverse_base_class_const_iterator(bases_end()); } reverse_base_class_iterator bases_rend() { return reverse_base_class_iterator(bases_begin()); } reverse_base_class_const_iterator bases_rend() const { return reverse_base_class_const_iterator(bases_begin()); } /// getNumVBases - Retrieves the number of virtual base classes of this /// class. unsigned getNumVBases() const { return NumVBases; } base_class_iterator vbases_begin() { return VBases; } base_class_const_iterator vbases_begin() const { return VBases; } base_class_iterator vbases_end() { return VBases + NumVBases; } base_class_const_iterator vbases_end() const { return VBases + NumVBases; } reverse_base_class_iterator vbases_rbegin() { return reverse_base_class_iterator(vbases_end()); } reverse_base_class_const_iterator vbases_rbegin() const { return reverse_base_class_const_iterator(vbases_end()); } reverse_base_class_iterator vbases_rend() { return reverse_base_class_iterator(vbases_begin()); } reverse_base_class_const_iterator vbases_rend() const { return reverse_base_class_const_iterator(vbases_begin()); } /// Iterator access to method members. The method iterator visits /// all method members of the class, including non-instance methods, /// special methods, etc. typedef specific_decl_iterator method_iterator; /// method_begin - Method begin iterator. Iterates in the order the methods /// were declared. method_iterator method_begin() const { return method_iterator(decls_begin()); } /// method_end - Method end iterator. method_iterator method_end() const { return method_iterator(decls_end()); } /// Iterator access to constructor members. typedef specific_decl_iterator ctor_iterator; ctor_iterator ctor_begin() const { return ctor_iterator(decls_begin()); } ctor_iterator ctor_end() const { return ctor_iterator(decls_end()); } /// hasConstCopyConstructor - Determines whether this class has a /// copy constructor that accepts a const-qualified argument. bool hasConstCopyConstructor(ASTContext &Context) const; /// getCopyConstructor - Returns the copy constructor for this class CXXConstructorDecl *getCopyConstructor(ASTContext &Context, unsigned TypeQuals) const; /// hasConstCopyAssignment - Determines whether this class has a /// copy assignment operator that accepts a const-qualified argument. /// It returns its decl in MD if found. bool hasConstCopyAssignment(ASTContext &Context, const CXXMethodDecl *&MD) const; /// addedConstructor - Notify the class that another constructor has /// been added. This routine helps maintain information about the /// class based on which constructors have been added. void addedConstructor(ASTContext &Context, CXXConstructorDecl *ConDecl); /// hasUserDeclaredConstructor - Whether this class has any /// user-declared constructors. When true, a default constructor /// will not be implicitly declared. bool hasUserDeclaredConstructor() const { assert((isDefinition() || cast(getTypeForDecl())->isBeingDefined()) && "Incomplete record decl!"); return UserDeclaredConstructor; } /// hasUserDeclaredCopyConstructor - Whether this class has a /// user-declared copy constructor. When false, a copy constructor /// will be implicitly declared. bool hasUserDeclaredCopyConstructor() const { return UserDeclaredCopyConstructor; } /// addedAssignmentOperator - Notify the class that another assignment /// operator has been added. This routine helps maintain information about the /// class based on which operators have been added. void addedAssignmentOperator(ASTContext &Context, CXXMethodDecl *OpDecl); /// hasUserDeclaredCopyAssignment - Whether this class has a /// user-declared copy assignment operator. When false, a copy /// assigment operator will be implicitly declared. bool hasUserDeclaredCopyAssignment() const { return UserDeclaredCopyAssignment; } /// hasUserDeclaredDestructor - Whether this class has a /// user-declared destructor. When false, a destructor will be /// implicitly declared. bool hasUserDeclaredDestructor() const { return UserDeclaredDestructor; } /// setUserDeclaredDestructor - Set whether this class has a /// user-declared destructor. If not set by the time the class is /// fully defined, a destructor will be implicitly declared. void setUserDeclaredDestructor(bool UCD) { UserDeclaredDestructor = UCD; } /// getConversions - Retrieve the overload set containing all of the /// conversion functions in this class. UnresolvedSet *getConversionFunctions() { assert((this->isDefinition() || cast(getTypeForDecl())->isBeingDefined()) && "getConversionFunctions() called on incomplete type"); return &Conversions; } const UnresolvedSet *getConversionFunctions() const { assert((this->isDefinition() || cast(getTypeForDecl())->isBeingDefined()) && "getConversionFunctions() called on incomplete type"); return &Conversions; } typedef UnresolvedSet::iterator conversion_iterator; conversion_iterator conversion_begin() const { return Conversions.begin(); } conversion_iterator conversion_end() const { return Conversions.end(); } /// Replaces a conversion function with a new declaration. /// /// Returns true if the old conversion was found. bool replaceConversion(const NamedDecl* Old, NamedDecl *New) { return Conversions.replace(Old, New); } /// getVisibleConversionFunctions - get all conversion functions visible /// in current class; including conversion function templates. const UnresolvedSet *getVisibleConversionFunctions(); /// addVisibleConversionFunction - Add a new conversion function to the /// list of visible conversion functions. void addVisibleConversionFunction(CXXConversionDecl *ConvDecl); /// \brief Add a new conversion function template to the list of visible /// conversion functions. void addVisibleConversionFunction(FunctionTemplateDecl *ConvDecl); /// addConversionFunction - Add a new conversion function to the /// list of conversion functions. void addConversionFunction(CXXConversionDecl *ConvDecl); /// \brief Add a new conversion function template to the list of conversion /// functions. void addConversionFunction(FunctionTemplateDecl *ConvDecl); /// isAggregate - Whether this class is an aggregate (C++ /// [dcl.init.aggr]), which is a class with no user-declared /// constructors, no private or protected non-static data members, /// no base classes, and no virtual functions (C++ [dcl.init.aggr]p1). bool isAggregate() const { return Aggregate; } /// setAggregate - Set whether this class is an aggregate (C++ /// [dcl.init.aggr]). void setAggregate(bool Agg) { Aggregate = Agg; } /// isPOD - Whether this class is a POD-type (C++ [class]p4), which is a class /// that is an aggregate that has no non-static non-POD data members, no /// reference data members, no user-defined copy assignment operator and no /// user-defined destructor. bool isPOD() const { return PlainOldData; } /// setPOD - Set whether this class is a POD-type (C++ [class]p4). void setPOD(bool POD) { PlainOldData = POD; } /// isEmpty - Whether this class is empty (C++0x [meta.unary.prop]), which /// means it has a virtual function, virtual base, data member (other than /// 0-width bit-field) or inherits from a non-empty class. Does NOT include /// a check for union-ness. bool isEmpty() const { return Empty; } /// Set whether this class is empty (C++0x [meta.unary.prop]) void setEmpty(bool Emp) { Empty = Emp; } /// isPolymorphic - Whether this class is polymorphic (C++ [class.virtual]), /// which means that the class contains or inherits a virtual function. bool isPolymorphic() const { return Polymorphic; } /// setPolymorphic - Set whether this class is polymorphic (C++ /// [class.virtual]). void setPolymorphic(bool Poly) { Polymorphic = Poly; } /// isAbstract - Whether this class is abstract (C++ [class.abstract]), /// which means that the class contains or inherits a pure virtual function. bool isAbstract() const { return Abstract; } /// setAbstract - Set whether this class is abstract (C++ [class.abstract]) void setAbstract(bool Abs) { Abstract = Abs; } // hasTrivialConstructor - Whether this class has a trivial constructor // (C++ [class.ctor]p5) bool hasTrivialConstructor() const { return HasTrivialConstructor; } // setHasTrivialConstructor - Set whether this class has a trivial constructor // (C++ [class.ctor]p5) void setHasTrivialConstructor(bool TC) { HasTrivialConstructor = TC; } // hasTrivialCopyConstructor - Whether this class has a trivial copy // constructor (C++ [class.copy]p6) bool hasTrivialCopyConstructor() const { return HasTrivialCopyConstructor; } // setHasTrivialCopyConstructor - Set whether this class has a trivial // copy constructor (C++ [class.copy]p6) void setHasTrivialCopyConstructor(bool TC) { HasTrivialCopyConstructor = TC; } // hasTrivialCopyAssignment - Whether this class has a trivial copy // assignment operator (C++ [class.copy]p11) bool hasTrivialCopyAssignment() const { return HasTrivialCopyAssignment; } // setHasTrivialCopyAssignment - Set whether this class has a // trivial copy assignment operator (C++ [class.copy]p11) void setHasTrivialCopyAssignment(bool TC) { HasTrivialCopyAssignment = TC; } // hasTrivialDestructor - Whether this class has a trivial destructor // (C++ [class.dtor]p3) bool hasTrivialDestructor() const { return HasTrivialDestructor; } // setHasTrivialDestructor - Set whether this class has a trivial destructor // (C++ [class.dtor]p3) void setHasTrivialDestructor(bool TC) { HasTrivialDestructor = TC; } /// \brief If this record is an instantiation of a member class, /// retrieves the member class from which it was instantiated. /// /// This routine will return non-NULL for (non-templated) member /// classes of class templates. For example, given: /// /// \code /// template /// struct X { /// struct A { }; /// }; /// \endcode /// /// The declaration for X::A is a (non-templated) CXXRecordDecl /// whose parent is the class template specialization X. For /// this declaration, getInstantiatedFromMemberClass() will return /// the CXXRecordDecl X::A. When a complete definition of /// X::A is required, it will be instantiated from the /// declaration returned by getInstantiatedFromMemberClass(). CXXRecordDecl *getInstantiatedFromMemberClass() const; /// \brief If this class is an instantiation of a member class of a /// class template specialization, retrieves the member specialization /// information. MemberSpecializationInfo *getMemberSpecializationInfo() const; /// \brief Specify that this record is an instantiation of the /// member class RD. void setInstantiationOfMemberClass(CXXRecordDecl *RD, TemplateSpecializationKind TSK); /// \brief Retrieves the class template that is described by this /// class declaration. /// /// Every class template is represented as a ClassTemplateDecl and a /// CXXRecordDecl. The former contains template properties (such as /// the template parameter lists) while the latter contains the /// actual description of the template's /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the /// CXXRecordDecl that from a ClassTemplateDecl, while /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from /// a CXXRecordDecl. ClassTemplateDecl *getDescribedClassTemplate() const { return TemplateOrInstantiation.dyn_cast(); } void setDescribedClassTemplate(ClassTemplateDecl *Template) { TemplateOrInstantiation = Template; } /// \brief Determine whether this particular class is a specialization or /// instantiation of a class template or member class of a class template, /// and how it was instantiated or specialized. TemplateSpecializationKind getTemplateSpecializationKind(); /// \brief Set the kind of specialization or template instantiation this is. void setTemplateSpecializationKind(TemplateSpecializationKind TSK); /// getDefaultConstructor - Returns the default constructor for this class CXXConstructorDecl *getDefaultConstructor(ASTContext &Context); /// getDestructor - Returns the destructor decl for this class. const CXXDestructorDecl *getDestructor(ASTContext &Context); /// isLocalClass - If the class is a local class [class.local], returns /// the enclosing function declaration. const FunctionDecl *isLocalClass() const { if (const CXXRecordDecl *RD = dyn_cast(getDeclContext())) return RD->isLocalClass(); return dyn_cast(getDeclContext()); } /// \brief Determine whether this class is derived from the class \p Base. /// /// This routine only determines whether this class is derived from \p Base, /// but does not account for factors that may make a Derived -> Base class /// ill-formed, such as private/protected inheritance or multiple, ambiguous /// base class subobjects. /// /// \param Base the base class we are searching for. /// /// \returns true if this class is derived from Base, false otherwise. bool isDerivedFrom(CXXRecordDecl *Base) const; /// \brief Determine whether this class is derived from the type \p Base. /// /// This routine only determines whether this class is derived from \p Base, /// but does not account for factors that may make a Derived -> Base class /// ill-formed, such as private/protected inheritance or multiple, ambiguous /// base class subobjects. /// /// \param Base the base class we are searching for. /// /// \param Paths will contain the paths taken from the current class to the /// given \p Base class. /// /// \returns true if this class is derived from Base, false otherwise. /// /// \todo add a separate paramaeter to configure IsDerivedFrom, rather than /// tangling input and output in \p Paths bool isDerivedFrom(CXXRecordDecl *Base, CXXBasePaths &Paths) const; /// \brief Function type used by lookupInBases() to determine whether a /// specific base class subobject matches the lookup criteria. /// /// \param Specifier the base-class specifier that describes the inheritance /// from the base class we are trying to match. /// /// \param Path the current path, from the most-derived class down to the /// base named by the \p Specifier. /// /// \param UserData a single pointer to user-specified data, provided to /// lookupInBases(). /// /// \returns true if this base matched the search criteria, false otherwise. typedef bool BaseMatchesCallback(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *UserData); /// \brief Look for entities within the base classes of this C++ class, /// transitively searching all base class subobjects. /// /// This routine uses the callback function \p BaseMatches to find base /// classes meeting some search criteria, walking all base class subobjects /// and populating the given \p Paths structure with the paths through the /// inheritance hierarchy that resulted in a match. On a successful search, /// the \p Paths structure can be queried to retrieve the matching paths and /// to determine if there were any ambiguities. /// /// \param BaseMatches callback function used to determine whether a given /// base matches the user-defined search criteria. /// /// \param UserData user data pointer that will be provided to \p BaseMatches. /// /// \param Paths used to record the paths from this class to its base class /// subobjects that match the search criteria. /// /// \returns true if there exists any path from this class to a base class /// subobject that matches the search criteria. bool lookupInBases(BaseMatchesCallback *BaseMatches, void *UserData, CXXBasePaths &Paths) const; /// \brief Base-class lookup callback that determines whether the given /// base class specifier refers to a specific class declaration. /// /// This callback can be used with \c lookupInBases() to determine whether /// a given derived class has is a base class subobject of a particular type. /// The user data pointer should refer to the canonical CXXRecordDecl of the /// base class that we are searching for. static bool FindBaseClass(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *BaseRecord); /// \brief Base-class lookup callback that determines whether there exists /// a tag with the given name. /// /// This callback can be used with \c lookupInBases() to find tag members /// of the given name within a C++ class hierarchy. The user data pointer /// is an opaque \c DeclarationName pointer. static bool FindTagMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *Name); /// \brief Base-class lookup callback that determines whether there exists /// a member with the given name. /// /// This callback can be used with \c lookupInBases() to find members /// of the given name within a C++ class hierarchy. The user data pointer /// is an opaque \c DeclarationName pointer. static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *Name); /// \brief Base-class lookup callback that determines whether there exists /// a member with the given name that can be used in a nested-name-specifier. /// /// This callback can be used with \c lookupInBases() to find membes of /// the given name within a C++ class hierarchy that can occur within /// nested-name-specifiers. static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *UserData); /// viewInheritance - Renders and displays an inheritance diagram /// for this C++ class and all of its base classes (transitively) using /// GraphViz. void viewInheritance(ASTContext& Context) const; static bool classof(const Decl *D) { return D->getKind() == CXXRecord || D->getKind() == ClassTemplateSpecialization || D->getKind() == ClassTemplatePartialSpecialization; } static bool classof(const CXXRecordDecl *D) { return true; } static bool classof(const ClassTemplateSpecializationDecl *D) { return true; } }; /// CXXMethodDecl - Represents a static or instance method of a /// struct/union/class. class CXXMethodDecl : public FunctionDecl { protected: CXXMethodDecl(Kind DK, CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, DeclaratorInfo *DInfo, bool isStatic, bool isInline) : FunctionDecl(DK, RD, L, N, T, DInfo, (isStatic ? Static : None), isInline) {} public: static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, DeclaratorInfo *DInfo, bool isStatic = false, bool isInline = false); bool isStatic() const { return getStorageClass() == Static; } bool isInstance() const { return !isStatic(); } bool isVirtual() const { CXXMethodDecl *CD = cast(const_cast(this)->getCanonicalDecl()); if (CD->isVirtualAsWritten()) return true; return (CD->begin_overridden_methods() != CD->end_overridden_methods()); } /// \brief Determine whether this is a usual deallocation function /// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded /// delete or delete[] operator with a particular signature. bool isUsualDeallocationFunction() const; const CXXMethodDecl *getCanonicalDecl() const { return cast(FunctionDecl::getCanonicalDecl()); } CXXMethodDecl *getCanonicalDecl() { return cast(FunctionDecl::getCanonicalDecl()); } /// void addOverriddenMethod(const CXXMethodDecl *MD); typedef const CXXMethodDecl ** method_iterator; method_iterator begin_overridden_methods() const; method_iterator end_overridden_methods() const; /// getParent - Returns the parent of this method declaration, which /// is the class in which this method is defined. const CXXRecordDecl *getParent() const { return cast(FunctionDecl::getParent()); } /// getParent - Returns the parent of this method declaration, which /// is the class in which this method is defined. CXXRecordDecl *getParent() { return const_cast( cast(FunctionDecl::getParent())); } /// getThisType - Returns the type of 'this' pointer. /// Should only be called for instance methods. QualType getThisType(ASTContext &C) const; unsigned getTypeQualifiers() const { return getType()->getAs()->getTypeQuals(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return D->getKind() >= CXXMethod && D->getKind() <= CXXConversion; } static bool classof(const CXXMethodDecl *D) { return true; } }; /// CXXBaseOrMemberInitializer - Represents a C++ base or member /// initializer, which is part of a constructor initializer that /// initializes one non-static member variable or one base class. For /// example, in the following, both 'A(a)' and 'f(3.14159)' are member /// initializers: /// /// @code /// class A { }; /// class B : public A { /// float f; /// public: /// B(A& a) : A(a), f(3.14159) { } /// }; /// @endcode class CXXBaseOrMemberInitializer { /// BaseOrMember - This points to the entity being initialized, /// which is either a base class (a Type) or a non-static data /// member. When the low bit is 1, it's a base /// class; when the low bit is 0, it's a member. uintptr_t BaseOrMember; /// Args - The arguments used to initialize the base or member. Stmt **Args; unsigned NumArgs; /// \brief Stores either the constructor to call to initialize this base or /// member (a CXXConstructorDecl pointer), or stores the anonymous union of /// which the initialized value is a member. /// /// When the value is a FieldDecl pointer, 'BaseOrMember' is class's /// anonymous union data member, this field holds the FieldDecl for the /// member of the anonymous union being initialized. /// @code /// struct X { /// X() : au_i1(123) {} /// union { /// int au_i1; /// float au_f1; /// }; /// }; /// @endcode /// In above example, BaseOrMember holds the field decl. for anonymous union /// and AnonUnionMember holds field decl for au_i1. llvm::PointerUnion CtorOrAnonUnion; /// IdLoc - Location of the id in ctor-initializer list. SourceLocation IdLoc; /// RParenLoc - Location of the right paren of the ctor-initializer. SourceLocation RParenLoc; public: /// CXXBaseOrMemberInitializer - Creates a new base-class initializer. explicit CXXBaseOrMemberInitializer(QualType BaseType, Expr **Args, unsigned NumArgs, CXXConstructorDecl *C, SourceLocation L, SourceLocation R); /// CXXBaseOrMemberInitializer - Creates a new member initializer. explicit CXXBaseOrMemberInitializer(FieldDecl *Member, Expr **Args, unsigned NumArgs, CXXConstructorDecl *C, SourceLocation L, SourceLocation R); /// ~CXXBaseOrMemberInitializer - Destroy the base or member initializer. ~CXXBaseOrMemberInitializer(); /// arg_iterator - Iterates through the member initialization /// arguments. typedef ExprIterator arg_iterator; /// arg_const_iterator - Iterates through the member initialization /// arguments. typedef ConstExprIterator const_arg_iterator; /// getBaseOrMember - get the generic 'member' representing either the field /// or a base class. void* getBaseOrMember() const { return reinterpret_cast(BaseOrMember); } /// isBaseInitializer - Returns true when this initializer is /// initializing a base class. bool isBaseInitializer() const { return (BaseOrMember & 0x1) != 0; } /// isMemberInitializer - Returns true when this initializer is /// initializing a non-static data member. bool isMemberInitializer() const { return (BaseOrMember & 0x1) == 0; } /// getBaseClass - If this is a base class initializer, returns the /// type used to specify the initializer. The resulting type will be /// a class type or a typedef of a class type. If this is not a base /// class initializer, returns NULL. Type *getBaseClass() { if (isBaseInitializer()) return reinterpret_cast(BaseOrMember & ~0x01); else return 0; } /// getBaseClass - If this is a base class initializer, returns the /// type used to specify the initializer. The resulting type will be /// a class type or a typedef of a class type. If this is not a base /// class initializer, returns NULL. const Type *getBaseClass() const { if (isBaseInitializer()) return reinterpret_cast(BaseOrMember & ~0x01); else return 0; } /// getMember - If this is a member initializer, returns the /// declaration of the non-static data member being /// initialized. Otherwise, returns NULL. FieldDecl *getMember() { if (isMemberInitializer()) return reinterpret_cast(BaseOrMember); else return 0; } void setMember(FieldDecl * anonUnionField) { BaseOrMember = reinterpret_cast(anonUnionField); } FieldDecl *getAnonUnionMember() const { return CtorOrAnonUnion.dyn_cast(); } void setAnonUnionMember(FieldDecl *anonMember) { CtorOrAnonUnion = anonMember; } const CXXConstructorDecl *getConstructor() const { return CtorOrAnonUnion.dyn_cast(); } SourceLocation getSourceLocation() const { return IdLoc; } SourceLocation getRParenLoc() const { return RParenLoc; } /// arg_begin() - Retrieve an iterator to the first initializer argument. arg_iterator arg_begin() { return Args; } /// arg_begin() - Retrieve an iterator to the first initializer argument. const_arg_iterator const_arg_begin() const { return Args; } /// arg_end() - Retrieve an iterator past the last initializer argument. arg_iterator arg_end() { return Args + NumArgs; } /// arg_end() - Retrieve an iterator past the last initializer argument. const_arg_iterator const_arg_end() const { return Args + NumArgs; } /// getNumArgs - Determine the number of arguments used to /// initialize the member or base. unsigned getNumArgs() const { return NumArgs; } }; /// CXXConstructorDecl - Represents a C++ constructor within a /// class. For example: /// /// @code /// class X { /// public: /// explicit X(int); // represented by a CXXConstructorDecl. /// }; /// @endcode class CXXConstructorDecl : public CXXMethodDecl { /// Explicit - Whether this constructor is explicit. bool Explicit : 1; /// ImplicitlyDefined - Whether this constructor was implicitly /// defined by the compiler. When false, the constructor was defined /// by the user. In C++03, this flag will have the same value as /// Implicit. In C++0x, however, a constructor that is /// explicitly defaulted (i.e., defined with " = default") will have /// @c !Implicit && ImplicitlyDefined. bool ImplicitlyDefined : 1; /// Support for base and member initializers. /// BaseOrMemberInitializers - The arguments used to initialize the base /// or member. CXXBaseOrMemberInitializer **BaseOrMemberInitializers; unsigned NumBaseOrMemberInitializers; CXXConstructorDecl(CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, DeclaratorInfo *DInfo, bool isExplicit, bool isInline, bool isImplicitlyDeclared) : CXXMethodDecl(CXXConstructor, RD, L, N, T, DInfo, false, isInline), Explicit(isExplicit), ImplicitlyDefined(false), BaseOrMemberInitializers(0), NumBaseOrMemberInitializers(0) { setImplicit(isImplicitlyDeclared); } virtual void Destroy(ASTContext& C); public: static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, DeclaratorInfo *DInfo, bool isExplicit, bool isInline, bool isImplicitlyDeclared); /// isExplicit - Whether this constructor was marked "explicit" or not. bool isExplicit() const { return Explicit; } /// isImplicitlyDefined - Whether this constructor was implicitly /// defined. If false, then this constructor was defined by the /// user. This operation can only be invoked if the constructor has /// already been defined. bool isImplicitlyDefined(ASTContext &C) const { assert(isThisDeclarationADefinition() && "Can only get the implicit-definition flag once the " "constructor has been defined"); return ImplicitlyDefined; } /// setImplicitlyDefined - Set whether this constructor was /// implicitly defined or not. void setImplicitlyDefined(bool ID) { assert(isThisDeclarationADefinition() && "Can only set the implicit-definition flag once the constructor " "has been defined"); ImplicitlyDefined = ID; } /// init_iterator - Iterates through the member/base initializer list. typedef CXXBaseOrMemberInitializer **init_iterator; /// init_const_iterator - Iterates through the memberbase initializer list. typedef CXXBaseOrMemberInitializer * const * init_const_iterator; /// init_begin() - Retrieve an iterator to the first initializer. init_iterator init_begin() { return BaseOrMemberInitializers; } /// begin() - Retrieve an iterator to the first initializer. init_const_iterator init_begin() const { return BaseOrMemberInitializers; } /// init_end() - Retrieve an iterator past the last initializer. init_iterator init_end() { return BaseOrMemberInitializers + NumBaseOrMemberInitializers; } /// end() - Retrieve an iterator past the last initializer. init_const_iterator init_end() const { return BaseOrMemberInitializers + NumBaseOrMemberInitializers; } /// getNumArgs - Determine the number of arguments used to /// initialize the member or base. unsigned getNumBaseOrMemberInitializers() const { return NumBaseOrMemberInitializers; } void setNumBaseOrMemberInitializers(unsigned numBaseOrMemberInitializers) { NumBaseOrMemberInitializers = numBaseOrMemberInitializers; } void setBaseOrMemberInitializers(CXXBaseOrMemberInitializer ** initializers) { BaseOrMemberInitializers = initializers; } /// isDefaultConstructor - Whether this constructor is a default /// constructor (C++ [class.ctor]p5), which can be used to /// default-initialize a class of this type. bool isDefaultConstructor() const; /// isCopyConstructor - Whether this constructor is a copy /// constructor (C++ [class.copy]p2, which can be used to copy the /// class. @p TypeQuals will be set to the qualifiers on the /// argument type. For example, @p TypeQuals would be set to @c /// QualType::Const for the following copy constructor: /// /// @code /// class X { /// public: /// X(const X&); /// }; /// @endcode bool isCopyConstructor(ASTContext &Context, unsigned &TypeQuals) const; /// isCopyConstructor - Whether this constructor is a copy /// constructor (C++ [class.copy]p2, which can be used to copy the /// class. bool isCopyConstructor(ASTContext &Context) const { unsigned TypeQuals = 0; return isCopyConstructor(Context, TypeQuals); } /// isConvertingConstructor - Whether this constructor is a /// converting constructor (C++ [class.conv.ctor]), which can be /// used for user-defined conversions. bool isConvertingConstructor(bool AllowExplicit) const; /// \brief Determine whether this is a member template specialization that /// looks like a copy constructor. Such constructors are never used to copy /// an object. bool isCopyConstructorLikeSpecialization() const; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return D->getKind() == CXXConstructor; } static bool classof(const CXXConstructorDecl *D) { return true; } }; /// CXXDestructorDecl - Represents a C++ destructor within a /// class. For example: /// /// @code /// class X { /// public: /// ~X(); // represented by a CXXDestructorDecl. /// }; /// @endcode class CXXDestructorDecl : public CXXMethodDecl { /// ImplicitlyDefined - Whether this destructor was implicitly /// defined by the compiler. When false, the destructor was defined /// by the user. In C++03, this flag will have the same value as /// Implicit. In C++0x, however, a destructor that is /// explicitly defaulted (i.e., defined with " = default") will have /// @c !Implicit && ImplicitlyDefined. bool ImplicitlyDefined : 1; FunctionDecl *OperatorDelete; CXXDestructorDecl(CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, bool isInline, bool isImplicitlyDeclared) : CXXMethodDecl(CXXDestructor, RD, L, N, T, /*DInfo=*/0, false, isInline), ImplicitlyDefined(false), OperatorDelete(0) { setImplicit(isImplicitlyDeclared); } public: static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, bool isInline, bool isImplicitlyDeclared); /// isImplicitlyDefined - Whether this destructor was implicitly /// defined. If false, then this destructor was defined by the /// user. This operation can only be invoked if the destructor has /// already been defined. bool isImplicitlyDefined() const { assert(isThisDeclarationADefinition() && "Can only get the implicit-definition flag once the destructor has been defined"); return ImplicitlyDefined; } /// setImplicitlyDefined - Set whether this destructor was /// implicitly defined or not. void setImplicitlyDefined(bool ID) { assert(isThisDeclarationADefinition() && "Can only set the implicit-definition flag once the destructor has been defined"); ImplicitlyDefined = ID; } void setOperatorDelete(FunctionDecl *OD) { OperatorDelete = OD; } const FunctionDecl *getOperatorDelete() const { return OperatorDelete; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return D->getKind() == CXXDestructor; } static bool classof(const CXXDestructorDecl *D) { return true; } }; /// CXXConversionDecl - Represents a C++ conversion function within a /// class. For example: /// /// @code /// class X { /// public: /// operator bool(); /// }; /// @endcode class CXXConversionDecl : public CXXMethodDecl { /// Explicit - Whether this conversion function is marked /// "explicit", meaning that it can only be applied when the user /// explicitly wrote a cast. This is a C++0x feature. bool Explicit : 1; CXXConversionDecl(CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, DeclaratorInfo *DInfo, bool isInline, bool isExplicit) : CXXMethodDecl(CXXConversion, RD, L, N, T, DInfo, false, isInline), Explicit(isExplicit) { } public: static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation L, DeclarationName N, QualType T, DeclaratorInfo *DInfo, bool isInline, bool isExplicit); /// isExplicit - Whether this is an explicit conversion operator /// (C++0x only). Explicit conversion operators are only considered /// when the user has explicitly written a cast. bool isExplicit() const { return Explicit; } /// getConversionType - Returns the type that this conversion /// function is converting to. QualType getConversionType() const { return getType()->getAs()->getResultType(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return D->getKind() == CXXConversion; } static bool classof(const CXXConversionDecl *D) { return true; } }; /// FriendDecl - Represents the declaration of a friend entity, /// which can be a function, a type, or a templated function or type. // For example: /// /// @code /// template class A { /// friend int foo(T); /// friend class B; /// friend T; // only in C++0x /// template friend class C; /// template friend A& operator+=(A&, const U&) { ... } /// }; /// @endcode /// /// The semantic context of a friend decl is its declaring class. class FriendDecl : public Decl { public: typedef llvm::PointerUnion FriendUnion; private: // The declaration that's a friend of this class. FriendUnion Friend; // Location of the 'friend' specifier. SourceLocation FriendLoc; FriendDecl(DeclContext *DC, SourceLocation L, FriendUnion Friend, SourceLocation FriendL) : Decl(Decl::Friend, DC, L), Friend(Friend), FriendLoc(FriendL) { } public: static FriendDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L, FriendUnion Friend_, SourceLocation FriendL); /// If this friend declaration names an (untemplated but /// possibly dependent) type, return the type; otherwise /// return null. This is used only for C++0x's unelaborated /// friend type declarations. Type *getFriendType() const { return Friend.dyn_cast(); } /// If this friend declaration doesn't name an unelaborated /// type, return the inner declaration. NamedDecl *getFriendDecl() const { return Friend.dyn_cast(); } /// Retrieves the location of the 'friend' keyword. SourceLocation getFriendLoc() const { return FriendLoc; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return D->getKind() == Decl::Friend; } static bool classof(const FriendDecl *D) { return true; } }; /// LinkageSpecDecl - This represents a linkage specification. For example: /// extern "C" void foo(); /// class LinkageSpecDecl : public Decl, public DeclContext { public: /// LanguageIDs - Used to represent the language in a linkage /// specification. The values are part of the serialization abi for /// ASTs and cannot be changed without altering that abi. To help /// ensure a stable abi for this, we choose the DW_LANG_ encodings /// from the dwarf standard. enum LanguageIDs { lang_c = /* DW_LANG_C */ 0x0002, lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004 }; private: /// Language - The language for this linkage specification. LanguageIDs Language; /// HadBraces - Whether this linkage specification had curly braces or not. bool HadBraces : 1; LinkageSpecDecl(DeclContext *DC, SourceLocation L, LanguageIDs lang, bool Braces) : Decl(LinkageSpec, DC, L), DeclContext(LinkageSpec), Language(lang), HadBraces(Braces) { } public: static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L, LanguageIDs Lang, bool Braces); LanguageIDs getLanguage() const { return Language; } /// hasBraces - Determines whether this linkage specification had /// braces in its syntactic form. bool hasBraces() const { return HadBraces; } static bool classof(const Decl *D) { return D->getKind() == LinkageSpec; } static bool classof(const LinkageSpecDecl *D) { return true; } static DeclContext *castToDeclContext(const LinkageSpecDecl *D) { return static_cast(const_cast(D)); } static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) { return static_cast(const_cast(DC)); } }; /// UsingDirectiveDecl - Represents C++ using-directive. For example: /// /// using namespace std; /// // NB: UsingDirectiveDecl should be Decl not NamedDecl, but we provide // artificial name, for all using-directives in order to store // them in DeclContext effectively. class UsingDirectiveDecl : public NamedDecl { /// SourceLocation - Location of 'namespace' token. SourceLocation NamespaceLoc; /// \brief The source range that covers the nested-name-specifier /// preceding the namespace name. SourceRange QualifierRange; /// \brief The nested-name-specifier that precedes the namespace /// name, if any. NestedNameSpecifier *Qualifier; /// IdentLoc - Location of nominated namespace-name identifier. // FIXME: We don't store location of scope specifier. SourceLocation IdentLoc; /// NominatedNamespace - Namespace nominated by using-directive. NamedDecl *NominatedNamespace; /// Enclosing context containing both using-directive and nominated /// namespace. DeclContext *CommonAncestor; /// getUsingDirectiveName - Returns special DeclarationName used by /// using-directives. This is only used by DeclContext for storing /// UsingDirectiveDecls in its lookup structure. static DeclarationName getName() { return DeclarationName::getUsingDirectiveName(); } UsingDirectiveDecl(DeclContext *DC, SourceLocation L, SourceLocation NamespcLoc, SourceRange QualifierRange, NestedNameSpecifier *Qualifier, SourceLocation IdentLoc, NamedDecl *Nominated, DeclContext *CommonAncestor) : NamedDecl(Decl::UsingDirective, DC, L, getName()), NamespaceLoc(NamespcLoc), QualifierRange(QualifierRange), Qualifier(Qualifier), IdentLoc(IdentLoc), NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) { } public: /// \brief Retrieve the source range of the nested-name-specifier /// that qualifiers the namespace name. SourceRange getQualifierRange() const { return QualifierRange; } /// \brief Retrieve the nested-name-specifier that qualifies the /// name of the namespace. NestedNameSpecifier *getQualifier() const { return Qualifier; } NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; } const NamedDecl *getNominatedNamespaceAsWritten() const { return NominatedNamespace; } /// getNominatedNamespace - Returns namespace nominated by using-directive. NamespaceDecl *getNominatedNamespace(); const NamespaceDecl *getNominatedNamespace() const { return const_cast(this)->getNominatedNamespace(); } /// getCommonAncestor - returns common ancestor context of using-directive, /// and nominated by it namespace. DeclContext *getCommonAncestor() { return CommonAncestor; } const DeclContext *getCommonAncestor() const { return CommonAncestor; } /// getNamespaceKeyLocation - Returns location of namespace keyword. SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; } /// getIdentLocation - Returns location of identifier. SourceLocation getIdentLocation() const { return IdentLoc; } static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L, SourceLocation NamespaceLoc, SourceRange QualifierRange, NestedNameSpecifier *Qualifier, SourceLocation IdentLoc, NamedDecl *Nominated, DeclContext *CommonAncestor); static bool classof(const Decl *D) { return D->getKind() == Decl::UsingDirective; } static bool classof(const UsingDirectiveDecl *D) { return true; } // Friend for getUsingDirectiveName. friend class DeclContext; }; /// NamespaceAliasDecl - Represents a C++ namespace alias. For example: /// /// @code /// namespace Foo = Bar; /// @endcode class NamespaceAliasDecl : public NamedDecl { SourceLocation AliasLoc; /// \brief The source range that covers the nested-name-specifier /// preceding the namespace name. SourceRange QualifierRange; /// \brief The nested-name-specifier that precedes the namespace /// name, if any. NestedNameSpecifier *Qualifier; /// IdentLoc - Location of namespace identifier. SourceLocation IdentLoc; /// Namespace - The Decl that this alias points to. Can either be a /// NamespaceDecl or a NamespaceAliasDecl. NamedDecl *Namespace; NamespaceAliasDecl(DeclContext *DC, SourceLocation L, SourceLocation AliasLoc, IdentifierInfo *Alias, SourceRange QualifierRange, NestedNameSpecifier *Qualifier, SourceLocation IdentLoc, NamedDecl *Namespace) : NamedDecl(Decl::NamespaceAlias, DC, L, Alias), AliasLoc(AliasLoc), QualifierRange(QualifierRange), Qualifier(Qualifier), IdentLoc(IdentLoc), Namespace(Namespace) { } public: /// \brief Retrieve the source range of the nested-name-specifier /// that qualifiers the namespace name. SourceRange getQualifierRange() const { return QualifierRange; } /// \brief Retrieve the nested-name-specifier that qualifies the /// name of the namespace. NestedNameSpecifier *getQualifier() const { return Qualifier; } NamespaceDecl *getNamespace() { if (NamespaceAliasDecl *AD = dyn_cast(Namespace)) return AD->getNamespace(); return cast(Namespace); } const NamespaceDecl *getNamespace() const { return const_cast(this)->getNamespace(); } /// \brief Retrieve the namespace that this alias refers to, which /// may either be a NamespaceDecl or a NamespaceAliasDecl. NamedDecl *getAliasedNamespace() const { return Namespace; } static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L, SourceLocation AliasLoc, IdentifierInfo *Alias, SourceRange QualifierRange, NestedNameSpecifier *Qualifier, SourceLocation IdentLoc, NamedDecl *Namespace); static bool classof(const Decl *D) { return D->getKind() == Decl::NamespaceAlias; } static bool classof(const NamespaceAliasDecl *D) { return true; } }; /// UsingShadowDecl - Represents a shadow declaration introduced into /// a scope by a (resolved) using declaration. For example, /// /// namespace A { /// void foo(); /// } /// namespace B { /// using A::foo(); // <- a UsingDecl /// // Also creates a UsingShadowDecl for A::foo in B /// } /// class UsingShadowDecl : public NamedDecl { /// The referenced declaration. NamedDecl *Underlying; /// The using declaration which introduced this decl. UsingDecl *Using; UsingShadowDecl(DeclContext *DC, SourceLocation Loc, UsingDecl *Using, NamedDecl *Target) : NamedDecl(UsingShadow, DC, Loc, Target->getDeclName()), Underlying(Target), Using(Using) { IdentifierNamespace = Target->getIdentifierNamespace(); setImplicit(); } public: static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation Loc, UsingDecl *Using, NamedDecl *Target) { return new (C) UsingShadowDecl(DC, Loc, Using, Target); } /// Gets the underlying declaration which has been brought into the /// local scope. NamedDecl *getTargetDecl() const { return Underlying; } /// Gets the using declaration to which this declaration is tied. UsingDecl *getUsingDecl() const { return Using; } static bool classof(const Decl *D) { return D->getKind() == Decl::UsingShadow; } static bool classof(const UsingShadowDecl *D) { return true; } }; /// UsingDecl - Represents a C++ using-declaration. For example: /// using someNameSpace::someIdentifier; class UsingDecl : public NamedDecl { /// \brief The source range that covers the nested-name-specifier /// preceding the declaration name. SourceRange NestedNameRange; /// \brief The source location of the "using" location itself. SourceLocation UsingLocation; /// \brief Target nested name specifier. NestedNameSpecifier* TargetNestedName; /// \brief The collection of shadow declarations associated with /// this using declaration. This set can change as a class is /// processed. llvm::SmallPtrSet Shadows; // \brief Has 'typename' keyword. bool IsTypeName; UsingDecl(DeclContext *DC, SourceLocation L, SourceRange NNR, SourceLocation UL, NestedNameSpecifier* TargetNNS, DeclarationName Name, bool IsTypeNameArg) : NamedDecl(Decl::Using, DC, L, Name), NestedNameRange(NNR), UsingLocation(UL), TargetNestedName(TargetNNS), IsTypeName(IsTypeNameArg) { } public: /// \brief Returns the source range that covers the nested-name-specifier /// preceding the namespace name. SourceRange getNestedNameRange() { return NestedNameRange; } /// \brief Returns the source location of the "using" location itself. SourceLocation getUsingLocation() { return UsingLocation; } /// \brief Get target nested name declaration. NestedNameSpecifier* getTargetNestedNameDecl() { return TargetNestedName; } /// isTypeName - Return true if using decl has 'typename'. bool isTypeName() const { return IsTypeName; } typedef llvm::SmallPtrSet::const_iterator shadow_iterator; shadow_iterator shadow_begin() const { return Shadows.begin(); } shadow_iterator shadow_end() const { return Shadows.end(); } void addShadowDecl(UsingShadowDecl *S) { assert(S->getUsingDecl() == this); if (!Shadows.insert(S)) { assert(false && "declaration already in set"); } } void removeShadowDecl(UsingShadowDecl *S) { assert(S->getUsingDecl() == this); if (!Shadows.erase(S)) { assert(false && "declaration not in set"); } } static UsingDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation IdentL, SourceRange NNR, SourceLocation UsingL, NestedNameSpecifier* TargetNNS, DeclarationName Name, bool IsTypeNameArg); static bool classof(const Decl *D) { return D->getKind() == Decl::Using; } static bool classof(const UsingDecl *D) { return true; } }; /// UnresolvedUsingValueDecl - Represents a dependent using /// declaration which was not marked with 'typename'. Unlike /// non-dependent using declarations, these *only* bring through /// non-types; otherwise they would break two-phase lookup. /// /// template class A : public Base { /// using Base::foo; /// }; class UnresolvedUsingValueDecl : public ValueDecl { /// \brief The source range that covers the nested-name-specifier /// preceding the declaration name. SourceRange TargetNestedNameRange; /// \brief The source location of the 'using' keyword SourceLocation UsingLocation; NestedNameSpecifier *TargetNestedNameSpecifier; UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty, SourceLocation UsingLoc, SourceRange TargetNNR, NestedNameSpecifier *TargetNNS, SourceLocation TargetNameLoc, DeclarationName TargetName) : ValueDecl(Decl::UnresolvedUsingValue, DC, TargetNameLoc, TargetName, Ty), TargetNestedNameRange(TargetNNR), UsingLocation(UsingLoc), TargetNestedNameSpecifier(TargetNNS) { } public: /// \brief Returns the source range that covers the nested-name-specifier /// preceding the namespace name. SourceRange getTargetNestedNameRange() const { return TargetNestedNameRange; } /// \brief Get target nested name declaration. NestedNameSpecifier* getTargetNestedNameSpecifier() { return TargetNestedNameSpecifier; } /// \brief Returns the source location of the 'using' keyword. SourceLocation getUsingLoc() const { return UsingLocation; } static UnresolvedUsingValueDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, SourceRange TargetNNR, NestedNameSpecifier *TargetNNS, SourceLocation TargetNameLoc, DeclarationName TargetName); static bool classof(const Decl *D) { return D->getKind() == Decl::UnresolvedUsingValue; } static bool classof(const UnresolvedUsingValueDecl *D) { return true; } }; /// UnresolvedUsingTypenameDecl - Represents a dependent using /// declaration which was marked with 'typename'. /// /// template class A : public Base { /// using typename Base::foo; /// }; /// /// The type associated with a unresolved using typename decl is /// currently always a typename type. class UnresolvedUsingTypenameDecl : public TypeDecl { /// \brief The source range that covers the nested-name-specifier /// preceding the declaration name. SourceRange TargetNestedNameRange; /// \brief The source location of the 'using' keyword SourceLocation UsingLocation; /// \brief The source location of the 'typename' keyword SourceLocation TypenameLocation; NestedNameSpecifier *TargetNestedNameSpecifier; UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc, SourceLocation TypenameLoc, SourceRange TargetNNR, NestedNameSpecifier *TargetNNS, SourceLocation TargetNameLoc, IdentifierInfo *TargetName) : TypeDecl(Decl::UnresolvedUsingTypename, DC, TargetNameLoc, TargetName), TargetNestedNameRange(TargetNNR), UsingLocation(UsingLoc), TypenameLocation(TypenameLoc), TargetNestedNameSpecifier(TargetNNS) { } public: /// \brief Returns the source range that covers the nested-name-specifier /// preceding the namespace name. SourceRange getTargetNestedNameRange() const { return TargetNestedNameRange; } /// \brief Get target nested name declaration. NestedNameSpecifier* getTargetNestedNameSpecifier() { return TargetNestedNameSpecifier; } /// \brief Returns the source location of the 'using' keyword. SourceLocation getUsingLoc() const { return UsingLocation; } /// \brief Returns the source location of the 'typename' keyword. SourceLocation getTypenameLoc() const { return TypenameLocation; } static UnresolvedUsingTypenameDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, SourceLocation TypenameLoc, SourceRange TargetNNR, NestedNameSpecifier *TargetNNS, SourceLocation TargetNameLoc, DeclarationName TargetName); static bool classof(const Decl *D) { return D->getKind() == Decl::UnresolvedUsingTypename; } static bool classof(const UnresolvedUsingTypenameDecl *D) { return true; } }; /// StaticAssertDecl - Represents a C++0x static_assert declaration. class StaticAssertDecl : public Decl { Expr *AssertExpr; StringLiteral *Message; StaticAssertDecl(DeclContext *DC, SourceLocation L, Expr *assertexpr, StringLiteral *message) : Decl(StaticAssert, DC, L), AssertExpr(assertexpr), Message(message) { } public: static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L, Expr *AssertExpr, StringLiteral *Message); Expr *getAssertExpr() { return AssertExpr; } const Expr *getAssertExpr() const { return AssertExpr; } StringLiteral *getMessage() { return Message; } const StringLiteral *getMessage() const { return Message; } virtual ~StaticAssertDecl(); virtual void Destroy(ASTContext& C); static bool classof(const Decl *D) { return D->getKind() == Decl::StaticAssert; } static bool classof(StaticAssertDecl *D) { return true; } }; /// Insertion operator for diagnostics. This allows sending AccessSpecifier's /// into a diagnostic with <<. const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, AccessSpecifier AS); } // end namespace clang #endif