/* * WPA Supplicant - WPA state machine and EAPOL-Key processing * Copyright (c) 2003-2006, Jouni Malinen * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Alternatively, this software may be distributed under the terms of BSD * license. * * See README and COPYING for more details. */ #include "includes.h" #include "common.h" #include "md5.h" #include "sha1.h" #include "rc4.h" #include "aes_wrap.h" #include "wpa.h" #include "eloop.h" #include "config.h" #include "l2_packet.h" #include "eapol_sm.h" #include "preauth.h" #include "pmksa_cache.h" #include "wpa_i.h" static const int WPA_SELECTOR_LEN = 4; static const u8 WPA_OUI_TYPE[] = { 0x00, 0x50, 0xf2, 1 }; static const u16 WPA_VERSION = 1; static const u8 WPA_AUTH_KEY_MGMT_NONE[] = { 0x00, 0x50, 0xf2, 0 }; static const u8 WPA_AUTH_KEY_MGMT_UNSPEC_802_1X[] = { 0x00, 0x50, 0xf2, 1 }; static const u8 WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X[] = { 0x00, 0x50, 0xf2, 2 }; static const u8 WPA_CIPHER_SUITE_NONE[] = { 0x00, 0x50, 0xf2, 0 }; static const u8 WPA_CIPHER_SUITE_WEP40[] = { 0x00, 0x50, 0xf2, 1 }; static const u8 WPA_CIPHER_SUITE_TKIP[] = { 0x00, 0x50, 0xf2, 2 }; #if 0 static const u8 WPA_CIPHER_SUITE_WRAP[] = { 0x00, 0x50, 0xf2, 3 }; #endif static const u8 WPA_CIPHER_SUITE_CCMP[] = { 0x00, 0x50, 0xf2, 4 }; static const u8 WPA_CIPHER_SUITE_WEP104[] = { 0x00, 0x50, 0xf2, 5 }; /* WPA IE version 1 * 00-50-f2:1 (OUI:OUI type) * 0x01 0x00 (version; little endian) * (all following fields are optional:) * Group Suite Selector (4 octets) (default: TKIP) * Pairwise Suite Count (2 octets, little endian) (default: 1) * Pairwise Suite List (4 * n octets) (default: TKIP) * Authenticated Key Management Suite Count (2 octets, little endian) * (default: 1) * Authenticated Key Management Suite List (4 * n octets) * (default: unspec 802.1X) * WPA Capabilities (2 octets, little endian) (default: 0) */ #ifdef _MSC_VER #pragma pack(push, 1) #endif /* _MSC_VER */ struct wpa_ie_hdr { u8 elem_id; u8 len; u8 oui[3]; u8 oui_type; u8 version[2]; } STRUCT_PACKED; #ifdef _MSC_VER #pragma pack(pop) #endif /* _MSC_VER */ static const int RSN_SELECTOR_LEN = 4; static const u16 RSN_VERSION = 1; static const u8 RSN_AUTH_KEY_MGMT_UNSPEC_802_1X[] = { 0x00, 0x0f, 0xac, 1 }; static const u8 RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X[] = { 0x00, 0x0f, 0xac, 2 }; static const u8 RSN_CIPHER_SUITE_NONE[] = { 0x00, 0x0f, 0xac, 0 }; static const u8 RSN_CIPHER_SUITE_WEP40[] = { 0x00, 0x0f, 0xac, 1 }; static const u8 RSN_CIPHER_SUITE_TKIP[] = { 0x00, 0x0f, 0xac, 2 }; #if 0 static const u8 RSN_CIPHER_SUITE_WRAP[] = { 0x00, 0x0f, 0xac, 3 }; #endif static const u8 RSN_CIPHER_SUITE_CCMP[] = { 0x00, 0x0f, 0xac, 4 }; static const u8 RSN_CIPHER_SUITE_WEP104[] = { 0x00, 0x0f, 0xac, 5 }; #ifdef CONFIG_IEEE80211W static const u8 RSN_CIPHER_SUITE_AES_128_CMAC[] = { 0x00, 0x0f, 0xac, 6 }; #endif /* CONFIG_IEEE80211W */ /* EAPOL-Key Key Data Encapsulation * GroupKey and PeerKey require encryption, otherwise, encryption is optional. */ static const u8 RSN_KEY_DATA_GROUPKEY[] = { 0x00, 0x0f, 0xac, 1 }; #if 0 static const u8 RSN_KEY_DATA_STAKEY[] = { 0x00, 0x0f, 0xac, 2 }; #endif static const u8 RSN_KEY_DATA_MAC_ADDR[] = { 0x00, 0x0f, 0xac, 3 }; static const u8 RSN_KEY_DATA_PMKID[] = { 0x00, 0x0f, 0xac, 4 }; #ifdef CONFIG_PEERKEY static const u8 RSN_KEY_DATA_SMK[] = { 0x00, 0x0f, 0xac, 5 }; static const u8 RSN_KEY_DATA_NONCE[] = { 0x00, 0x0f, 0xac, 6 }; static const u8 RSN_KEY_DATA_LIFETIME[] = { 0x00, 0x0f, 0xac, 7 }; static const u8 RSN_KEY_DATA_ERROR[] = { 0x00, 0x0f, 0xac, 8 }; #endif /* CONFIG_PEERKEY */ #ifdef CONFIG_IEEE80211W /* FIX: IEEE 802.11w/D1.0 is using subtypes 5 and 6 for these, but they were * already taken by 802.11ma (PeerKey). Need to update the values here once * IEEE 802.11w fixes these. */ static const u8 RSN_KEY_DATA_DHV[] = { 0x00, 0x0f, 0xac, 9 }; static const u8 RSN_KEY_DATA_IGTK[] = { 0x00, 0x0f, 0xac, 10 }; #endif /* CONFIG_IEEE80211W */ #ifdef CONFIG_PEERKEY enum { STK_MUI_4WAY_STA_AP = 1, STK_MUI_4WAY_STAT_STA = 2, STK_MUI_GTK = 3, STK_MUI_SMK = 4 }; enum { STK_ERR_STA_NR = 1, STK_ERR_STA_NRSN = 2, STK_ERR_CPHR_NS = 3, STK_ERR_NO_STSL = 4 }; #endif /* CONFIG_PEERKEY */ /* 1/4: PMKID * 2/4: RSN IE * 3/4: one or two RSN IEs + GTK IE (encrypted) * 4/4: empty * 1/2: GTK IE (encrypted) * 2/2: empty */ /* RSN IE version 1 * 0x01 0x00 (version; little endian) * (all following fields are optional:) * Group Suite Selector (4 octets) (default: CCMP) * Pairwise Suite Count (2 octets, little endian) (default: 1) * Pairwise Suite List (4 * n octets) (default: CCMP) * Authenticated Key Management Suite Count (2 octets, little endian) * (default: 1) * Authenticated Key Management Suite List (4 * n octets) * (default: unspec 802.1X) * RSN Capabilities (2 octets, little endian) (default: 0) * PMKID Count (2 octets) (default: 0) * PMKID List (16 * n octets) * Management Group Cipher Suite (4 octets) (default: AES-128-CMAC) */ #ifdef _MSC_VER #pragma pack(push, 1) #endif /* _MSC_VER */ struct rsn_ie_hdr { u8 elem_id; /* WLAN_EID_RSN */ u8 len; u8 version[2]; } STRUCT_PACKED; struct wpa_eapol_key { u8 type; /* Note: key_info, key_length, and key_data_length are unaligned */ u8 key_info[2]; u8 key_length[2]; u8 replay_counter[WPA_REPLAY_COUNTER_LEN]; u8 key_nonce[WPA_NONCE_LEN]; u8 key_iv[16]; u8 key_rsc[8]; u8 key_id[8]; /* Reserved in IEEE 802.11i/RSN */ u8 key_mic[16]; u8 key_data_length[2]; /* followed by key_data_length bytes of key_data */ } STRUCT_PACKED; struct rsn_error_kde { u16 mui; u16 error_type; } STRUCT_PACKED; #ifdef CONFIG_IEEE80211W struct wpa_dhv_kde { u8 dhv[WPA_DHV_LEN]; } STRUCT_PACKED; struct wpa_igtk_kde { u8 keyid[2]; u8 pn[6]; u8 igtk[WPA_IGTK_LEN]; } STRUCT_PACKED; #endif /* CONFIG_IEEE80211W */ #ifdef _MSC_VER #pragma pack(pop) #endif /* _MSC_VER */ #define WPA_KEY_INFO_TYPE_MASK ((u16) (BIT(0) | BIT(1) | BIT(2))) #define WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 BIT(0) #define WPA_KEY_INFO_TYPE_HMAC_SHA1_AES BIT(1) #define WPA_KEY_INFO_KEY_TYPE BIT(3) /* 1 = Pairwise, 0 = Group key */ /* bit4..5 is used in WPA, but is reserved in IEEE 802.11i/RSN */ #define WPA_KEY_INFO_KEY_INDEX_MASK (BIT(4) | BIT(5)) #define WPA_KEY_INFO_KEY_INDEX_SHIFT 4 #define WPA_KEY_INFO_INSTALL BIT(6) /* pairwise */ #define WPA_KEY_INFO_TXRX BIT(6) /* group */ #define WPA_KEY_INFO_ACK BIT(7) #define WPA_KEY_INFO_MIC BIT(8) #define WPA_KEY_INFO_SECURE BIT(9) #define WPA_KEY_INFO_ERROR BIT(10) #define WPA_KEY_INFO_REQUEST BIT(11) #define WPA_KEY_INFO_ENCR_KEY_DATA BIT(12) /* IEEE 802.11i/RSN only */ #define WPA_KEY_INFO_SMK_MESSAGE BIT(13) #ifdef CONFIG_PEERKEY static void wpa_supplicant_peerkey_free(struct wpa_sm *sm, struct wpa_peerkey *peerkey); #endif /* CONFIG_PEERKEY */ /** * wpa_cipher_txt - Convert cipher suite to a text string * @cipher: Cipher suite (WPA_CIPHER_* enum) * Returns: Pointer to a text string of the cipher suite name */ static const char * wpa_cipher_txt(int cipher) { switch (cipher) { case WPA_CIPHER_NONE: return "NONE"; case WPA_CIPHER_WEP40: return "WEP-40"; case WPA_CIPHER_WEP104: return "WEP-104"; case WPA_CIPHER_TKIP: return "TKIP"; case WPA_CIPHER_CCMP: return "CCMP"; default: return "UNKNOWN"; } } /** * wpa_key_mgmt_txt - Convert key management suite to a text string * @key_mgmt: Key management suite (WPA_KEY_MGMT_* enum) * @proto: WPA/WPA2 version (WPA_PROTO_*) * Returns: Pointer to a text string of the key management suite name */ static const char * wpa_key_mgmt_txt(int key_mgmt, int proto) { switch (key_mgmt) { case WPA_KEY_MGMT_IEEE8021X: return proto == WPA_PROTO_RSN ? "WPA2/IEEE 802.1X/EAP" : "WPA/IEEE 802.1X/EAP"; case WPA_KEY_MGMT_PSK: return proto == WPA_PROTO_RSN ? "WPA2-PSK" : "WPA-PSK"; case WPA_KEY_MGMT_NONE: return "NONE"; case WPA_KEY_MGMT_IEEE8021X_NO_WPA: return "IEEE 802.1X (no WPA)"; default: return "UNKNOWN"; } } static int wpa_selector_to_bitfield(const u8 *s) { if (os_memcmp(s, WPA_CIPHER_SUITE_NONE, WPA_SELECTOR_LEN) == 0) return WPA_CIPHER_NONE; if (os_memcmp(s, WPA_CIPHER_SUITE_WEP40, WPA_SELECTOR_LEN) == 0) return WPA_CIPHER_WEP40; if (os_memcmp(s, WPA_CIPHER_SUITE_TKIP, WPA_SELECTOR_LEN) == 0) return WPA_CIPHER_TKIP; if (os_memcmp(s, WPA_CIPHER_SUITE_CCMP, WPA_SELECTOR_LEN) == 0) return WPA_CIPHER_CCMP; if (os_memcmp(s, WPA_CIPHER_SUITE_WEP104, WPA_SELECTOR_LEN) == 0) return WPA_CIPHER_WEP104; return 0; } static int wpa_key_mgmt_to_bitfield(const u8 *s) { if (os_memcmp(s, WPA_AUTH_KEY_MGMT_UNSPEC_802_1X, WPA_SELECTOR_LEN) == 0) return WPA_KEY_MGMT_IEEE8021X; if (os_memcmp(s, WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X, WPA_SELECTOR_LEN) == 0) return WPA_KEY_MGMT_PSK; if (os_memcmp(s, WPA_AUTH_KEY_MGMT_NONE, WPA_SELECTOR_LEN) == 0) return WPA_KEY_MGMT_WPA_NONE; return 0; } #ifndef CONFIG_NO_WPA2 static int rsn_selector_to_bitfield(const u8 *s) { if (os_memcmp(s, RSN_CIPHER_SUITE_NONE, RSN_SELECTOR_LEN) == 0) return WPA_CIPHER_NONE; if (os_memcmp(s, RSN_CIPHER_SUITE_WEP40, RSN_SELECTOR_LEN) == 0) return WPA_CIPHER_WEP40; if (os_memcmp(s, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN) == 0) return WPA_CIPHER_TKIP; if (os_memcmp(s, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN) == 0) return WPA_CIPHER_CCMP; if (os_memcmp(s, RSN_CIPHER_SUITE_WEP104, RSN_SELECTOR_LEN) == 0) return WPA_CIPHER_WEP104; #ifdef CONFIG_IEEE80211W if (os_memcmp(s, RSN_CIPHER_SUITE_AES_128_CMAC, RSN_SELECTOR_LEN) == 0) return WPA_CIPHER_AES_128_CMAC; #endif /* CONFIG_IEEE80211W */ return 0; } static int rsn_key_mgmt_to_bitfield(const u8 *s) { if (os_memcmp(s, RSN_AUTH_KEY_MGMT_UNSPEC_802_1X, RSN_SELECTOR_LEN) == 0) return WPA_KEY_MGMT_IEEE8021X; if (os_memcmp(s, RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X, RSN_SELECTOR_LEN) == 0) return WPA_KEY_MGMT_PSK; return 0; } #endif /* CONFIG_NO_WPA2 */ #ifdef CONFIG_PEERKEY static u8 * wpa_add_ie(u8 *pos, const u8 *ie, size_t ie_len) { os_memcpy(pos, ie, ie_len); return pos + ie_len; } static u8 * wpa_add_kde(u8 *pos, const u8 *kde, const u8 *data, size_t data_len) { *pos++ = GENERIC_INFO_ELEM; *pos++ = RSN_SELECTOR_LEN + data_len; os_memcpy(pos, kde, RSN_SELECTOR_LEN); pos += RSN_SELECTOR_LEN; os_memcpy(pos, data, data_len); pos += data_len; return pos; } #endif /* CONFIG_PEERKEY */ static int wpa_parse_wpa_ie_wpa(const u8 *wpa_ie, size_t wpa_ie_len, struct wpa_ie_data *data) { const struct wpa_ie_hdr *hdr; const u8 *pos; int left; int i, count; data->proto = WPA_PROTO_WPA; data->pairwise_cipher = WPA_CIPHER_TKIP; data->group_cipher = WPA_CIPHER_TKIP; data->key_mgmt = WPA_KEY_MGMT_IEEE8021X; data->capabilities = 0; data->pmkid = NULL; data->num_pmkid = 0; data->mgmt_group_cipher = 0; if (wpa_ie_len == 0) { /* No WPA IE - fail silently */ return -1; } if (wpa_ie_len < sizeof(struct wpa_ie_hdr)) { wpa_printf(MSG_DEBUG, "%s: ie len too short %lu", __func__, (unsigned long) wpa_ie_len); return -1; } hdr = (const struct wpa_ie_hdr *) wpa_ie; if (hdr->elem_id != GENERIC_INFO_ELEM || hdr->len != wpa_ie_len - 2 || os_memcmp(hdr->oui, WPA_OUI_TYPE, WPA_SELECTOR_LEN) != 0 || WPA_GET_LE16(hdr->version) != WPA_VERSION) { wpa_printf(MSG_DEBUG, "%s: malformed ie or unknown version", __func__); return -1; } pos = (const u8 *) (hdr + 1); left = wpa_ie_len - sizeof(*hdr); if (left >= WPA_SELECTOR_LEN) { data->group_cipher = wpa_selector_to_bitfield(pos); pos += WPA_SELECTOR_LEN; left -= WPA_SELECTOR_LEN; } else if (left > 0) { wpa_printf(MSG_DEBUG, "%s: ie length mismatch, %u too much", __func__, left); return -1; } if (left >= 2) { data->pairwise_cipher = 0; count = WPA_GET_LE16(pos); pos += 2; left -= 2; if (count == 0 || left < count * WPA_SELECTOR_LEN) { wpa_printf(MSG_DEBUG, "%s: ie count botch (pairwise), " "count %u left %u", __func__, count, left); return -1; } for (i = 0; i < count; i++) { data->pairwise_cipher |= wpa_selector_to_bitfield(pos); pos += WPA_SELECTOR_LEN; left -= WPA_SELECTOR_LEN; } } else if (left == 1) { wpa_printf(MSG_DEBUG, "%s: ie too short (for key mgmt)", __func__); return -1; } if (left >= 2) { data->key_mgmt = 0; count = WPA_GET_LE16(pos); pos += 2; left -= 2; if (count == 0 || left < count * WPA_SELECTOR_LEN) { wpa_printf(MSG_DEBUG, "%s: ie count botch (key mgmt), " "count %u left %u", __func__, count, left); return -1; } for (i = 0; i < count; i++) { data->key_mgmt |= wpa_key_mgmt_to_bitfield(pos); pos += WPA_SELECTOR_LEN; left -= WPA_SELECTOR_LEN; } } else if (left == 1) { wpa_printf(MSG_DEBUG, "%s: ie too short (for capabilities)", __func__); return -1; } if (left >= 2) { data->capabilities = WPA_GET_LE16(pos); pos += 2; left -= 2; } if (left > 0) { wpa_printf(MSG_DEBUG, "%s: ie has %u trailing bytes - ignored", __func__, left); } return 0; } static int wpa_parse_wpa_ie_rsn(const u8 *rsn_ie, size_t rsn_ie_len, struct wpa_ie_data *data) { #ifndef CONFIG_NO_WPA2 const struct rsn_ie_hdr *hdr; const u8 *pos; int left; int i, count; data->proto = WPA_PROTO_RSN; data->pairwise_cipher = WPA_CIPHER_CCMP; data->group_cipher = WPA_CIPHER_CCMP; data->key_mgmt = WPA_KEY_MGMT_IEEE8021X; data->capabilities = 0; data->pmkid = NULL; data->num_pmkid = 0; #ifdef CONFIG_IEEE80211W data->mgmt_group_cipher = WPA_CIPHER_AES_128_CMAC; #else /* CONFIG_IEEE80211W */ data->mgmt_group_cipher = 0; #endif /* CONFIG_IEEE80211W */ if (rsn_ie_len == 0) { /* No RSN IE - fail silently */ return -1; } if (rsn_ie_len < sizeof(struct rsn_ie_hdr)) { wpa_printf(MSG_DEBUG, "%s: ie len too short %lu", __func__, (unsigned long) rsn_ie_len); return -1; } hdr = (const struct rsn_ie_hdr *) rsn_ie; if (hdr->elem_id != RSN_INFO_ELEM || hdr->len != rsn_ie_len - 2 || WPA_GET_LE16(hdr->version) != RSN_VERSION) { wpa_printf(MSG_DEBUG, "%s: malformed ie or unknown version", __func__); return -1; } pos = (const u8 *) (hdr + 1); left = rsn_ie_len - sizeof(*hdr); if (left >= RSN_SELECTOR_LEN) { data->group_cipher = rsn_selector_to_bitfield(pos); #ifdef CONFIG_IEEE80211W if (data->group_cipher == WPA_CIPHER_AES_128_CMAC) { wpa_printf(MSG_DEBUG, "%s: AES-128-CMAC used as group " "cipher", __func__); return -1; } #endif /* CONFIG_IEEE80211W */ pos += RSN_SELECTOR_LEN; left -= RSN_SELECTOR_LEN; } else if (left > 0) { wpa_printf(MSG_DEBUG, "%s: ie length mismatch, %u too much", __func__, left); return -1; } if (left >= 2) { data->pairwise_cipher = 0; count = WPA_GET_LE16(pos); pos += 2; left -= 2; if (count == 0 || left < count * RSN_SELECTOR_LEN) { wpa_printf(MSG_DEBUG, "%s: ie count botch (pairwise), " "count %u left %u", __func__, count, left); return -1; } for (i = 0; i < count; i++) { data->pairwise_cipher |= rsn_selector_to_bitfield(pos); pos += RSN_SELECTOR_LEN; left -= RSN_SELECTOR_LEN; } #ifdef CONFIG_IEEE80211W if (data->pairwise_cipher & WPA_CIPHER_AES_128_CMAC) { wpa_printf(MSG_DEBUG, "%s: AES-128-CMAC used as " "pairwise cipher", __func__); return -1; } #endif /* CONFIG_IEEE80211W */ } else if (left == 1) { wpa_printf(MSG_DEBUG, "%s: ie too short (for key mgmt)", __func__); return -1; } if (left >= 2) { data->key_mgmt = 0; count = WPA_GET_LE16(pos); pos += 2; left -= 2; if (count == 0 || left < count * RSN_SELECTOR_LEN) { wpa_printf(MSG_DEBUG, "%s: ie count botch (key mgmt), " "count %u left %u", __func__, count, left); return -1; } for (i = 0; i < count; i++) { data->key_mgmt |= rsn_key_mgmt_to_bitfield(pos); pos += RSN_SELECTOR_LEN; left -= RSN_SELECTOR_LEN; } } else if (left == 1) { wpa_printf(MSG_DEBUG, "%s: ie too short (for capabilities)", __func__); return -1; } if (left >= 2) { data->capabilities = WPA_GET_LE16(pos); pos += 2; left -= 2; } if (left >= 2) { data->num_pmkid = WPA_GET_LE16(pos); pos += 2; left -= 2; if (left < data->num_pmkid * PMKID_LEN) { wpa_printf(MSG_DEBUG, "%s: PMKID underflow " "(num_pmkid=%d left=%d)", __func__, data->num_pmkid, left); data->num_pmkid = 0; } else { data->pmkid = pos; pos += data->num_pmkid * PMKID_LEN; left -= data->num_pmkid * PMKID_LEN; } } #ifdef CONFIG_IEEE80211W if (left >= 4) { data->mgmt_group_cipher = rsn_selector_to_bitfield(pos); if (data->mgmt_group_cipher != WPA_CIPHER_AES_128_CMAC) { wpa_printf(MSG_DEBUG, "%s: Unsupported management " "group cipher 0x%x", __func__, data->mgmt_group_cipher); return -1; } pos += RSN_SELECTOR_LEN; left -= RSN_SELECTOR_LEN; } #endif /* CONFIG_IEEE80211W */ if (left > 0) { wpa_printf(MSG_DEBUG, "%s: ie has %u trailing bytes - ignored", __func__, left); } return 0; #else /* CONFIG_NO_WPA2 */ return -1; #endif /* CONFIG_NO_WPA2 */ } /** * wpa_parse_wpa_ie - Parse WPA/RSN IE * @wpa_ie: Pointer to WPA or RSN IE * @wpa_ie_len: Length of the WPA/RSN IE * @data: Pointer to data area for parsing results * Returns: 0 on success, -1 on failure * * Parse the contents of WPA or RSN IE and write the parsed data into data. */ int wpa_parse_wpa_ie(const u8 *wpa_ie, size_t wpa_ie_len, struct wpa_ie_data *data) { if (wpa_ie_len >= 1 && wpa_ie[0] == RSN_INFO_ELEM) return wpa_parse_wpa_ie_rsn(wpa_ie, wpa_ie_len, data); else return wpa_parse_wpa_ie_wpa(wpa_ie, wpa_ie_len, data); } static int wpa_gen_wpa_ie_wpa(u8 *wpa_ie, size_t wpa_ie_len, int pairwise_cipher, int group_cipher, int key_mgmt) { u8 *pos; struct wpa_ie_hdr *hdr; if (wpa_ie_len < sizeof(*hdr) + WPA_SELECTOR_LEN + 2 + WPA_SELECTOR_LEN + 2 + WPA_SELECTOR_LEN) return -1; hdr = (struct wpa_ie_hdr *) wpa_ie; hdr->elem_id = GENERIC_INFO_ELEM; os_memcpy(hdr->oui, WPA_OUI_TYPE, WPA_SELECTOR_LEN); WPA_PUT_LE16(hdr->version, WPA_VERSION); pos = (u8 *) (hdr + 1); if (group_cipher == WPA_CIPHER_CCMP) { os_memcpy(pos, WPA_CIPHER_SUITE_CCMP, WPA_SELECTOR_LEN); } else if (group_cipher == WPA_CIPHER_TKIP) { os_memcpy(pos, WPA_CIPHER_SUITE_TKIP, WPA_SELECTOR_LEN); } else if (group_cipher == WPA_CIPHER_WEP104) { os_memcpy(pos, WPA_CIPHER_SUITE_WEP104, WPA_SELECTOR_LEN); } else if (group_cipher == WPA_CIPHER_WEP40) { os_memcpy(pos, WPA_CIPHER_SUITE_WEP40, WPA_SELECTOR_LEN); } else { wpa_printf(MSG_WARNING, "Invalid group cipher (%d).", group_cipher); return -1; } pos += WPA_SELECTOR_LEN; *pos++ = 1; *pos++ = 0; if (pairwise_cipher == WPA_CIPHER_CCMP) { os_memcpy(pos, WPA_CIPHER_SUITE_CCMP, WPA_SELECTOR_LEN); } else if (pairwise_cipher == WPA_CIPHER_TKIP) { os_memcpy(pos, WPA_CIPHER_SUITE_TKIP, WPA_SELECTOR_LEN); } else if (pairwise_cipher == WPA_CIPHER_NONE) { os_memcpy(pos, WPA_CIPHER_SUITE_NONE, WPA_SELECTOR_LEN); } else { wpa_printf(MSG_WARNING, "Invalid pairwise cipher (%d).", pairwise_cipher); return -1; } pos += WPA_SELECTOR_LEN; *pos++ = 1; *pos++ = 0; if (key_mgmt == WPA_KEY_MGMT_IEEE8021X) { os_memcpy(pos, WPA_AUTH_KEY_MGMT_UNSPEC_802_1X, WPA_SELECTOR_LEN); } else if (key_mgmt == WPA_KEY_MGMT_PSK) { os_memcpy(pos, WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X, WPA_SELECTOR_LEN); } else if (key_mgmt == WPA_KEY_MGMT_WPA_NONE) { os_memcpy(pos, WPA_AUTH_KEY_MGMT_NONE, WPA_SELECTOR_LEN); } else { wpa_printf(MSG_WARNING, "Invalid key management type (%d).", key_mgmt); return -1; } pos += WPA_SELECTOR_LEN; /* WPA Capabilities; use defaults, so no need to include it */ hdr->len = (pos - wpa_ie) - 2; WPA_ASSERT((size_t) (pos - wpa_ie) <= wpa_ie_len); return pos - wpa_ie; } static int wpa_gen_wpa_ie_rsn(u8 *rsn_ie, size_t rsn_ie_len, int pairwise_cipher, int group_cipher, int key_mgmt, int mgmt_group_cipher, struct wpa_sm *sm) { #ifndef CONFIG_NO_WPA2 u8 *pos; struct rsn_ie_hdr *hdr; u16 capab; if (rsn_ie_len < sizeof(*hdr) + RSN_SELECTOR_LEN + 2 + RSN_SELECTOR_LEN + 2 + RSN_SELECTOR_LEN + 2 + (sm->cur_pmksa ? 2 + PMKID_LEN : 0)) return -1; hdr = (struct rsn_ie_hdr *) rsn_ie; hdr->elem_id = RSN_INFO_ELEM; WPA_PUT_LE16(hdr->version, RSN_VERSION); pos = (u8 *) (hdr + 1); if (group_cipher == WPA_CIPHER_CCMP) { os_memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN); } else if (group_cipher == WPA_CIPHER_TKIP) { os_memcpy(pos, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN); } else if (group_cipher == WPA_CIPHER_WEP104) { os_memcpy(pos, RSN_CIPHER_SUITE_WEP104, RSN_SELECTOR_LEN); } else if (group_cipher == WPA_CIPHER_WEP40) { os_memcpy(pos, RSN_CIPHER_SUITE_WEP40, RSN_SELECTOR_LEN); } else { wpa_printf(MSG_WARNING, "Invalid group cipher (%d).", group_cipher); return -1; } pos += RSN_SELECTOR_LEN; *pos++ = 1; *pos++ = 0; if (pairwise_cipher == WPA_CIPHER_CCMP) { os_memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN); } else if (pairwise_cipher == WPA_CIPHER_TKIP) { os_memcpy(pos, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN); } else if (pairwise_cipher == WPA_CIPHER_NONE) { os_memcpy(pos, RSN_CIPHER_SUITE_NONE, RSN_SELECTOR_LEN); } else { wpa_printf(MSG_WARNING, "Invalid pairwise cipher (%d).", pairwise_cipher); return -1; } pos += RSN_SELECTOR_LEN; *pos++ = 1; *pos++ = 0; if (key_mgmt == WPA_KEY_MGMT_IEEE8021X) { os_memcpy(pos, RSN_AUTH_KEY_MGMT_UNSPEC_802_1X, RSN_SELECTOR_LEN); } else if (key_mgmt == WPA_KEY_MGMT_PSK) { os_memcpy(pos, RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X, RSN_SELECTOR_LEN); } else { wpa_printf(MSG_WARNING, "Invalid key management type (%d).", key_mgmt); return -1; } pos += RSN_SELECTOR_LEN; /* RSN Capabilities */ capab = 0; #ifdef CONFIG_IEEE80211W if (mgmt_group_cipher == WPA_CIPHER_AES_128_CMAC) capab |= WPA_CAPABILITY_MGMT_FRAME_PROTECTION; #endif /* CONFIG_IEEE80211W */ WPA_PUT_LE16(pos, capab); pos += 2; if (sm->cur_pmksa) { /* PMKID Count (2 octets, little endian) */ *pos++ = 1; *pos++ = 0; /* PMKID */ os_memcpy(pos, sm->cur_pmksa->pmkid, PMKID_LEN); pos += PMKID_LEN; } #ifdef CONFIG_IEEE80211W if (mgmt_group_cipher == WPA_CIPHER_AES_128_CMAC) { if (!sm->cur_pmksa) { /* PMKID Count */ WPA_PUT_LE16(pos, 0); pos += 2; /* Management Group Cipher Suite */ memcpy(pos, RSN_CIPHER_SUITE_AES_128_CMAC, RSN_SELECTOR_LEN); pos += RSN_SELECTOR_LEN; } } #endif /* CONFIG_IEEE80211W */ hdr->len = (pos - rsn_ie) - 2; WPA_ASSERT((size_t) (pos - rsn_ie) <= rsn_ie_len); return pos - rsn_ie; #else /* CONFIG_NO_WPA2 */ return -1; #endif /* CONFIG_NO_WPA2 */ } /** * wpa_gen_wpa_ie - Generate WPA/RSN IE based on current security policy * @sm: Pointer to WPA state machine data from wpa_sm_init() * @wpa_ie: Pointer to memory area for the generated WPA/RSN IE * @wpa_ie_len: Maximum length of the generated WPA/RSN IE * Returns: Length of the generated WPA/RSN IE or -1 on failure */ static int wpa_gen_wpa_ie(struct wpa_sm *sm, u8 *wpa_ie, size_t wpa_ie_len) { if (sm->proto == WPA_PROTO_RSN) return wpa_gen_wpa_ie_rsn(wpa_ie, wpa_ie_len, sm->pairwise_cipher, sm->group_cipher, sm->key_mgmt, sm->mgmt_group_cipher, sm); else return wpa_gen_wpa_ie_wpa(wpa_ie, wpa_ie_len, sm->pairwise_cipher, sm->group_cipher, sm->key_mgmt); } /** * wpa_pmk_to_ptk - Calculate PTK from PMK, addresses, and nonces * @pmk: Pairwise master key * @pmk_len: Length of PMK * @label: Label to use in derivation * @addr1: AA or SA * @addr2: SA or AA * @nonce1: ANonce or SNonce * @nonce2: SNonce or ANonce * @ptk: Buffer for pairwise transient key * @ptk_len: Length of PTK * * IEEE Std 802.11i-2004 - 8.5.1.2 Pairwise key hierarchy * PTK = PRF-X(PMK, "Pairwise key expansion", * Min(AA, SA) || Max(AA, SA) || * Min(ANonce, SNonce) || Max(ANonce, SNonce)) * * STK = PRF-X(SMK, "Peer key expansion", * Min(MAC_I, MAC_P) || Max(MAC_I, MAC_P) || * Min(INonce, PNonce) || Max(INonce, PNonce)) */ static void wpa_pmk_to_ptk(const u8 *pmk, size_t pmk_len, const char *label, const u8 *addr1, const u8 *addr2, const u8 *nonce1, const u8 *nonce2, u8 *ptk, size_t ptk_len) { u8 data[2 * ETH_ALEN + 2 * 32]; if (os_memcmp(addr1, addr2, ETH_ALEN) < 0) { os_memcpy(data, addr1, ETH_ALEN); os_memcpy(data + ETH_ALEN, addr2, ETH_ALEN); } else { os_memcpy(data, addr2, ETH_ALEN); os_memcpy(data + ETH_ALEN, addr1, ETH_ALEN); } if (os_memcmp(nonce1, nonce2, 32) < 0) { os_memcpy(data + 2 * ETH_ALEN, nonce1, 32); os_memcpy(data + 2 * ETH_ALEN + 32, nonce2, 32); } else { os_memcpy(data + 2 * ETH_ALEN, nonce2, 32); os_memcpy(data + 2 * ETH_ALEN + 32, nonce1, 32); } sha1_prf(pmk, pmk_len, label, data, sizeof(data), ptk, ptk_len); wpa_hexdump_key(MSG_DEBUG, "WPA: PMK", pmk, pmk_len); wpa_hexdump_key(MSG_DEBUG, "WPA: PTK", ptk, ptk_len); } /** * wpa_eapol_key_mic - Calculate EAPOL-Key MIC * @key: EAPOL-Key Key Confirmation Key (KCK) * @ver: Key descriptor version (WPA_KEY_INFO_TYPE_*) * @buf: Pointer to the beginning of the EAPOL header (version field) * @len: Length of the EAPOL frame (from EAPOL header to the end of the frame) * @mic: Pointer to the buffer to which the EAPOL-Key MIC is written * * Calculate EAPOL-Key MIC for an EAPOL-Key packet. The EAPOL-Key MIC field has * to be cleared (all zeroes) when calling this function. * * Note: 'IEEE Std 802.11i-2004 - 8.5.2 EAPOL-Key frames' has an error in the * description of the Key MIC calculation. It includes packet data from the * beginning of the EAPOL-Key header, not EAPOL header. This incorrect change * happened during final editing of the standard and the correct behavior is * defined in the last draft (IEEE 802.11i/D10). */ static void wpa_eapol_key_mic(const u8 *key, int ver, const u8 *buf, size_t len, u8 *mic) { if (ver == WPA_KEY_INFO_TYPE_HMAC_MD5_RC4) { hmac_md5(key, 16, buf, len, mic); } else if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) { u8 hash[SHA1_MAC_LEN]; hmac_sha1(key, 16, buf, len, hash); os_memcpy(mic, hash, MD5_MAC_LEN); } } static void wpa_eapol_key_send(struct wpa_sm *sm, const u8 *kck, int ver, const u8 *dest, u16 proto, u8 *msg, size_t msg_len, u8 *key_mic) { if (os_memcmp(dest, "\x00\x00\x00\x00\x00\x00", ETH_ALEN) == 0 && os_memcmp(sm->bssid, "\x00\x00\x00\x00\x00\x00", ETH_ALEN) == 0) { /* * Association event was not yet received; try to fetch * BSSID from the driver. */ if (wpa_sm_get_bssid(sm, sm->bssid) < 0) { wpa_printf(MSG_DEBUG, "WPA: Failed to read BSSID for " "EAPOL-Key destination address"); } else { dest = sm->bssid; wpa_printf(MSG_DEBUG, "WPA: Use BSSID (" MACSTR ") as the destination for EAPOL-Key", MAC2STR(dest)); } } if (key_mic) { wpa_eapol_key_mic(kck, ver, msg, msg_len, key_mic); } wpa_hexdump(MSG_MSGDUMP, "WPA: TX EAPOL-Key", msg, msg_len); wpa_sm_ether_send(sm, dest, proto, msg, msg_len); eapol_sm_notify_tx_eapol_key(sm->eapol); os_free(msg); } /** * wpa_sm_key_request - Send EAPOL-Key Request * @sm: Pointer to WPA state machine data from wpa_sm_init() * @error: Indicate whether this is an Michael MIC error report * @pairwise: 1 = error report for pairwise packet, 0 = for group packet * Returns: Pointer to the current network structure or %NULL on failure * * Send an EAPOL-Key Request to the current authenticator. This function is * used to request rekeying and it is usually called when a local Michael MIC * failure is detected. */ void wpa_sm_key_request(struct wpa_sm *sm, int error, int pairwise) { size_t rlen; struct wpa_eapol_key *reply; int key_info, ver; u8 bssid[ETH_ALEN], *rbuf; if (sm->pairwise_cipher == WPA_CIPHER_CCMP) ver = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES; else ver = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4; if (wpa_sm_get_bssid(sm, bssid) < 0) { wpa_printf(MSG_WARNING, "Failed to read BSSID for EAPOL-Key " "request"); return; } rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL, sizeof(*reply), &rlen, (void *) &reply); if (rbuf == NULL) return; reply->type = sm->proto == WPA_PROTO_RSN ? EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA; key_info = WPA_KEY_INFO_REQUEST | ver; if (sm->ptk_set) key_info |= WPA_KEY_INFO_MIC; if (error) key_info |= WPA_KEY_INFO_ERROR; if (pairwise) key_info |= WPA_KEY_INFO_KEY_TYPE; WPA_PUT_BE16(reply->key_info, key_info); WPA_PUT_BE16(reply->key_length, 0); os_memcpy(reply->replay_counter, sm->request_counter, WPA_REPLAY_COUNTER_LEN); inc_byte_array(sm->request_counter, WPA_REPLAY_COUNTER_LEN); WPA_PUT_BE16(reply->key_data_length, 0); wpa_printf(MSG_INFO, "WPA: Sending EAPOL-Key Request (error=%d " "pairwise=%d ptk_set=%d len=%lu)", error, pairwise, sm->ptk_set, (unsigned long) rlen); wpa_eapol_key_send(sm, sm->ptk.kck, ver, bssid, ETH_P_EAPOL, rbuf, rlen, key_info & WPA_KEY_INFO_MIC ? reply->key_mic : NULL); } /** * wpa_sm_stkstart - Send EAPOL-Key Request for STK handshake (STK M1) * @sm: Pointer to WPA state machine data from wpa_sm_init() * @peer: MAC address of the peer STA * Returns: 0 on success, or -1 on failure * * Send an EAPOL-Key Request to the current authenticator to start STK * handshake with the peer. */ int wpa_sm_stkstart(struct wpa_sm *sm, const u8 *peer) { #ifdef CONFIG_PEERKEY size_t rlen, kde_len; struct wpa_eapol_key *req; int key_info, ver; u8 bssid[ETH_ALEN], *rbuf, *pos, *count_pos; u16 count; struct wpa_ssid *ssid = sm->cur_ssid; struct rsn_ie_hdr *hdr; struct wpa_peerkey *peerkey; struct wpa_ie_data ie; if (sm->proto != WPA_PROTO_RSN || !sm->ptk_set || ssid == NULL || !ssid->peerkey) return -1; if (sm->ap_rsn_ie && wpa_parse_wpa_ie_rsn(sm->ap_rsn_ie, sm->ap_rsn_ie_len, &ie) == 0 && !(ie.capabilities & WPA_CAPABILITY_PEERKEY_ENABLED)) { wpa_printf(MSG_DEBUG, "RSN: Current AP does not support STK"); return -1; } if (sm->pairwise_cipher == WPA_CIPHER_CCMP) ver = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES; else ver = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4; if (wpa_sm_get_bssid(sm, bssid) < 0) { wpa_printf(MSG_WARNING, "Failed to read BSSID for EAPOL-Key " "SMK M1"); return -1; } /* TODO: find existing entry and if found, use that instead of adding * a new one */ peerkey = os_malloc(sizeof(*peerkey)); if (peerkey == NULL) return -1; os_memset(peerkey, 0, sizeof(*peerkey)); peerkey->initiator = 1; os_memcpy(peerkey->addr, peer, ETH_ALEN); /* SMK M1: * EAPOL-Key(S=1, M=1, A=0, I=0, K=0, SM=1, KeyRSC=0, Nonce=INonce, * MIC=MIC, DataKDs=(RSNIE_I, MAC_P KDE)) */ hdr = (struct rsn_ie_hdr *) peerkey->rsnie_i; hdr->elem_id = RSN_INFO_ELEM; WPA_PUT_LE16(hdr->version, RSN_VERSION); pos = (u8 *) (hdr + 1); /* Group Suite can be anything for SMK RSN IE; receiver will just * ignore it. */ os_memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN); pos += RSN_SELECTOR_LEN; count_pos = pos; pos += 2; count = 0; if (ssid->pairwise_cipher & WPA_CIPHER_CCMP) { os_memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN); pos += RSN_SELECTOR_LEN; count++; } if (ssid->pairwise_cipher & WPA_CIPHER_TKIP) { os_memcpy(pos, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN); pos += RSN_SELECTOR_LEN; count++; } WPA_PUT_LE16(count_pos, count); hdr->len = (pos - peerkey->rsnie_i) - 2; peerkey->rsnie_i_len = pos - peerkey->rsnie_i; wpa_hexdump(MSG_DEBUG, "WPA: RSN IE for SMK handshake", peerkey->rsnie_i, peerkey->rsnie_i_len); kde_len = peerkey->rsnie_i_len + 2 + RSN_SELECTOR_LEN + ETH_ALEN; rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL, sizeof(*req) + kde_len, &rlen, (void *) &req); if (rbuf == NULL) { wpa_supplicant_peerkey_free(sm, peerkey); return -1; } req->type = EAPOL_KEY_TYPE_RSN; key_info = WPA_KEY_INFO_SMK_MESSAGE | WPA_KEY_INFO_MIC | WPA_KEY_INFO_SECURE | WPA_KEY_INFO_REQUEST | ver; WPA_PUT_BE16(req->key_info, key_info); WPA_PUT_BE16(req->key_length, 0); os_memcpy(req->replay_counter, sm->request_counter, WPA_REPLAY_COUNTER_LEN); inc_byte_array(sm->request_counter, WPA_REPLAY_COUNTER_LEN); if (hostapd_get_rand(peerkey->inonce, WPA_NONCE_LEN)) { wpa_msg(sm->ctx->ctx, MSG_WARNING, "WPA: Failed to get random data for INonce"); os_free(rbuf); wpa_supplicant_peerkey_free(sm, peerkey); return -1; } os_memcpy(req->key_nonce, peerkey->inonce, WPA_NONCE_LEN); wpa_hexdump(MSG_DEBUG, "WPA: INonce for SMK handshake", req->key_nonce, WPA_NONCE_LEN); WPA_PUT_BE16(req->key_data_length, (u16) kde_len); pos = (u8 *) (req + 1); /* Initiator RSN IE */ pos = wpa_add_ie(pos, peerkey->rsnie_i, peerkey->rsnie_i_len); /* Peer MAC address KDE */ pos = wpa_add_kde(pos, RSN_KEY_DATA_MAC_ADDR, peer, ETH_ALEN); wpa_printf(MSG_INFO, "RSN: Sending EAPOL-Key SMK M1 Request (peer " MACSTR ")", MAC2STR(peer)); wpa_eapol_key_send(sm, sm->ptk.kck, ver, bssid, ETH_P_EAPOL, rbuf, rlen, req->key_mic); peerkey->next = sm->peerkey; sm->peerkey = peerkey; return 0; #else /* CONFIG_PEERKEY */ return -1; #endif /* CONFIG_PEERKEY */ } struct wpa_eapol_ie_parse { const u8 *wpa_ie; size_t wpa_ie_len; const u8 *rsn_ie; size_t rsn_ie_len; const u8 *pmkid; const u8 *gtk; size_t gtk_len; const u8 *mac_addr; size_t mac_addr_len; #ifdef CONFIG_PEERKEY const u8 *smk; size_t smk_len; const u8 *nonce; size_t nonce_len; const u8 *lifetime; size_t lifetime_len; const u8 *error; size_t error_len; #endif /* CONFIG_PEERKEY */ #ifdef CONFIG_IEEE80211W const u8 *dhv; size_t dhv_len; const u8 *igtk; size_t igtk_len; #endif /* CONFIG_IEEE80211W */ }; /** * wpa_supplicant_parse_generic - Parse EAPOL-Key Key Data Generic IEs * @pos: Pointer to the IE header * @end: Pointer to the end of the Key Data buffer * @ie: Pointer to parsed IE data * Returns: 0 on success, 1 if end mark is found, -1 on failure */ static int wpa_supplicant_parse_generic(const u8 *pos, const u8 *end, struct wpa_eapol_ie_parse *ie) { if (pos[1] == 0) return 1; if (pos[1] >= 6 && os_memcmp(pos + 2, WPA_OUI_TYPE, WPA_SELECTOR_LEN) == 0 && pos[2 + WPA_SELECTOR_LEN] == 1 && pos[2 + WPA_SELECTOR_LEN + 1] == 0) { ie->wpa_ie = pos; ie->wpa_ie_len = pos[1] + 2; return 0; } if (pos + 1 + RSN_SELECTOR_LEN < end && pos[1] >= RSN_SELECTOR_LEN + PMKID_LEN && os_memcmp(pos + 2, RSN_KEY_DATA_PMKID, RSN_SELECTOR_LEN) == 0) { ie->pmkid = pos + 2 + RSN_SELECTOR_LEN; return 0; } if (pos[1] > RSN_SELECTOR_LEN + 2 && os_memcmp(pos + 2, RSN_KEY_DATA_GROUPKEY, RSN_SELECTOR_LEN) == 0) { ie->gtk = pos + 2 + RSN_SELECTOR_LEN; ie->gtk_len = pos[1] - RSN_SELECTOR_LEN; return 0; } if (pos[1] > RSN_SELECTOR_LEN + 2 && os_memcmp(pos + 2, RSN_KEY_DATA_MAC_ADDR, RSN_SELECTOR_LEN) == 0) { ie->mac_addr = pos + 2 + RSN_SELECTOR_LEN; ie->mac_addr_len = pos[1] - RSN_SELECTOR_LEN; return 0; } #ifdef CONFIG_PEERKEY if (pos[1] > RSN_SELECTOR_LEN + 2 && os_memcmp(pos + 2, RSN_KEY_DATA_SMK, RSN_SELECTOR_LEN) == 0) { ie->smk = pos + 2 + RSN_SELECTOR_LEN; ie->smk_len = pos[1] - RSN_SELECTOR_LEN; return 0; } if (pos[1] > RSN_SELECTOR_LEN + 2 && os_memcmp(pos + 2, RSN_KEY_DATA_NONCE, RSN_SELECTOR_LEN) == 0) { ie->nonce = pos + 2 + RSN_SELECTOR_LEN; ie->nonce_len = pos[1] - RSN_SELECTOR_LEN; return 0; } if (pos[1] > RSN_SELECTOR_LEN + 2 && os_memcmp(pos + 2, RSN_KEY_DATA_LIFETIME, RSN_SELECTOR_LEN) == 0) { ie->lifetime = pos + 2 + RSN_SELECTOR_LEN; ie->lifetime_len = pos[1] - RSN_SELECTOR_LEN; return 0; } if (pos[1] > RSN_SELECTOR_LEN + 2 && os_memcmp(pos + 2, RSN_KEY_DATA_ERROR, RSN_SELECTOR_LEN) == 0) { ie->error = pos + 2 + RSN_SELECTOR_LEN; ie->error_len = pos[1] - RSN_SELECTOR_LEN; return 0; } #endif /* CONFIG_PEERKEY */ #ifdef CONFIG_IEEE80211W if (pos[1] > RSN_SELECTOR_LEN + 2 && os_memcmp(pos + 2, RSN_KEY_DATA_DHV, RSN_SELECTOR_LEN) == 0) { ie->dhv = pos + 2 + RSN_SELECTOR_LEN; ie->dhv_len = pos[1] - RSN_SELECTOR_LEN; return 0; } if (pos[1] > RSN_SELECTOR_LEN + 2 && os_memcmp(pos + 2, RSN_KEY_DATA_IGTK, RSN_SELECTOR_LEN) == 0) { ie->igtk = pos + 2 + RSN_SELECTOR_LEN; ie->igtk_len = pos[1] - RSN_SELECTOR_LEN; return 0; } #endif /* CONFIG_IEEE80211W */ return 0; } /** * wpa_supplicant_parse_ies - Parse EAPOL-Key Key Data IEs * @buf: Pointer to the Key Data buffer * @len: Key Data Length * @ie: Pointer to parsed IE data * Returns: 0 on success, -1 on failure */ static int wpa_supplicant_parse_ies(const u8 *buf, size_t len, struct wpa_eapol_ie_parse *ie) { const u8 *pos, *end; int ret = 0; os_memset(ie, 0, sizeof(*ie)); for (pos = buf, end = pos + len; pos + 1 < end; pos += 2 + pos[1]) { if (pos[0] == 0xdd && ((pos == buf + len - 1) || pos[1] == 0)) { /* Ignore padding */ break; } if (pos + 2 + pos[1] > end) { wpa_printf(MSG_DEBUG, "WPA: EAPOL-Key Key Data " "underflow (ie=%d len=%d pos=%d)", pos[0], pos[1], (int) (pos - buf)); wpa_hexdump_key(MSG_DEBUG, "WPA: Key Data", buf, len); ret = -1; break; } if (*pos == RSN_INFO_ELEM) { ie->rsn_ie = pos; ie->rsn_ie_len = pos[1] + 2; } else if (*pos == GENERIC_INFO_ELEM) { ret = wpa_supplicant_parse_generic(pos, end, ie); if (ret < 0) break; if (ret > 0) { ret = 0; break; } } else { wpa_hexdump(MSG_DEBUG, "WPA: Unrecognized EAPOL-Key " "Key Data IE", pos, 2 + pos[1]); } } return ret; } static int wpa_supplicant_get_pmk(struct wpa_sm *sm, const unsigned char *src_addr, const u8 *pmkid) { int abort_cached = 0; if (pmkid && !sm->cur_pmksa) { /* When using drivers that generate RSN IE, wpa_supplicant may * not have enough time to get the association information * event before receiving this 1/4 message, so try to find a * matching PMKSA cache entry here. */ sm->cur_pmksa = pmksa_cache_get(sm->pmksa, src_addr, pmkid); if (sm->cur_pmksa) { wpa_printf(MSG_DEBUG, "RSN: found matching PMKID from " "PMKSA cache"); } else { wpa_printf(MSG_DEBUG, "RSN: no matching PMKID found"); abort_cached = 1; } } if (pmkid && sm->cur_pmksa && os_memcmp(pmkid, sm->cur_pmksa->pmkid, PMKID_LEN) == 0) { wpa_hexdump(MSG_DEBUG, "RSN: matched PMKID", pmkid, PMKID_LEN); wpa_sm_set_pmk_from_pmksa(sm); wpa_hexdump_key(MSG_DEBUG, "RSN: PMK from PMKSA cache", sm->pmk, sm->pmk_len); eapol_sm_notify_cached(sm->eapol); } else if (sm->key_mgmt == WPA_KEY_MGMT_IEEE8021X && sm->eapol) { int res, pmk_len; pmk_len = PMK_LEN; res = eapol_sm_get_key(sm->eapol, sm->pmk, PMK_LEN); if (res) { /* * EAP-LEAP is an exception from other EAP methods: it * uses only 16-byte PMK. */ res = eapol_sm_get_key(sm->eapol, sm->pmk, 16); pmk_len = 16; } if (res == 0) { wpa_hexdump_key(MSG_DEBUG, "WPA: PMK from EAPOL state " "machines", sm->pmk, pmk_len); sm->pmk_len = pmk_len; pmksa_cache_add(sm->pmksa, sm->pmk, pmk_len, src_addr, sm->own_addr, sm->cur_ssid); if (!sm->cur_pmksa && pmkid && pmksa_cache_get(sm->pmksa, src_addr, pmkid)) { wpa_printf(MSG_DEBUG, "RSN: the new PMK " "matches with the PMKID"); abort_cached = 0; } } else { wpa_msg(sm->ctx->ctx, MSG_WARNING, "WPA: Failed to get master session key from " "EAPOL state machines"); wpa_msg(sm->ctx->ctx, MSG_WARNING, "WPA: Key handshake aborted"); if (sm->cur_pmksa) { wpa_printf(MSG_DEBUG, "RSN: Cancelled PMKSA " "caching attempt"); sm->cur_pmksa = NULL; abort_cached = 1; } else { return -1; } } } if (abort_cached && sm->key_mgmt == WPA_KEY_MGMT_IEEE8021X) { /* Send EAPOL-Start to trigger full EAP authentication. */ u8 *buf; size_t buflen; wpa_printf(MSG_DEBUG, "RSN: no PMKSA entry found - trigger " "full EAP authentication"); buf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_START, NULL, 0, &buflen, NULL); if (buf) { wpa_sm_ether_send(sm, sm->bssid, ETH_P_EAPOL, buf, buflen); os_free(buf); } return -1; } return 0; } static int wpa_supplicant_send_2_of_4(struct wpa_sm *sm, const unsigned char *dst, const struct wpa_eapol_key *key, int ver, const u8 *nonce, const u8 *wpa_ie, size_t wpa_ie_len, struct wpa_ptk *ptk) { size_t rlen; struct wpa_eapol_key *reply; u8 *rbuf; if (wpa_ie == NULL) { wpa_printf(MSG_WARNING, "WPA: No wpa_ie set - cannot " "generate msg 2/4"); return -1; } wpa_hexdump(MSG_DEBUG, "WPA: WPA IE for msg 2/4", wpa_ie, wpa_ie_len); rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL, sizeof(*reply) + wpa_ie_len, &rlen, (void *) &reply); if (rbuf == NULL) return -1; reply->type = sm->proto == WPA_PROTO_RSN ? EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA; WPA_PUT_BE16(reply->key_info, ver | WPA_KEY_INFO_KEY_TYPE | WPA_KEY_INFO_MIC); if (sm->proto == WPA_PROTO_RSN) WPA_PUT_BE16(reply->key_length, 0); else os_memcpy(reply->key_length, key->key_length, 2); os_memcpy(reply->replay_counter, key->replay_counter, WPA_REPLAY_COUNTER_LEN); WPA_PUT_BE16(reply->key_data_length, wpa_ie_len); os_memcpy(reply + 1, wpa_ie, wpa_ie_len); os_memcpy(reply->key_nonce, nonce, WPA_NONCE_LEN); wpa_printf(MSG_DEBUG, "WPA: Sending EAPOL-Key 2/4"); wpa_eapol_key_send(sm, ptk->kck, ver, dst, ETH_P_EAPOL, rbuf, rlen, reply->key_mic); return 0; } static void wpa_supplicant_process_1_of_4(struct wpa_sm *sm, const unsigned char *src_addr, const struct wpa_eapol_key *key, u16 ver) { struct wpa_eapol_ie_parse ie; struct wpa_ptk *ptk; u8 buf[8]; if (wpa_sm_get_ssid(sm) == NULL) { wpa_printf(MSG_WARNING, "WPA: No SSID info found (msg 1 of " "4)."); return; } wpa_sm_set_state(sm, WPA_4WAY_HANDSHAKE); wpa_printf(MSG_DEBUG, "WPA: RX message 1 of 4-Way Handshake from " MACSTR " (ver=%d)", MAC2STR(src_addr), ver); os_memset(&ie, 0, sizeof(ie)); #ifndef CONFIG_NO_WPA2 if (sm->proto == WPA_PROTO_RSN) { /* RSN: msg 1/4 should contain PMKID for the selected PMK */ const u8 *_buf = (const u8 *) (key + 1); size_t len = WPA_GET_BE16(key->key_data_length); wpa_hexdump(MSG_DEBUG, "RSN: msg 1/4 key data", _buf, len); wpa_supplicant_parse_ies(_buf, len, &ie); if (ie.pmkid) { wpa_hexdump(MSG_DEBUG, "RSN: PMKID from " "Authenticator", ie.pmkid, PMKID_LEN); } } #endif /* CONFIG_NO_WPA2 */ if (wpa_supplicant_get_pmk(sm, src_addr, ie.pmkid)) return; if (sm->renew_snonce) { if (hostapd_get_rand(sm->snonce, WPA_NONCE_LEN)) { wpa_msg(sm->ctx->ctx, MSG_WARNING, "WPA: Failed to get random data for SNonce"); return; } sm->renew_snonce = 0; wpa_hexdump(MSG_DEBUG, "WPA: Renewed SNonce", sm->snonce, WPA_NONCE_LEN); } /* Calculate PTK which will be stored as a temporary PTK until it has * been verified when processing message 3/4. */ ptk = &sm->tptk; wpa_pmk_to_ptk(sm->pmk, sm->pmk_len, "Pairwise key expansion", sm->own_addr, sm->bssid, sm->snonce, key->key_nonce, (u8 *) ptk, sizeof(*ptk)); /* Supplicant: swap tx/rx Mic keys */ os_memcpy(buf, ptk->u.auth.tx_mic_key, 8); os_memcpy(ptk->u.auth.tx_mic_key, ptk->u.auth.rx_mic_key, 8); os_memcpy(ptk->u.auth.rx_mic_key, buf, 8); sm->tptk_set = 1; if (wpa_supplicant_send_2_of_4(sm, sm->bssid, key, ver, sm->snonce, sm->assoc_wpa_ie, sm->assoc_wpa_ie_len, ptk)) return; os_memcpy(sm->anonce, key->key_nonce, WPA_NONCE_LEN); } static void wpa_sm_start_preauth(void *eloop_ctx, void *timeout_ctx) { struct wpa_sm *sm = eloop_ctx; rsn_preauth_candidate_process(sm); } static void wpa_supplicant_key_neg_complete(struct wpa_sm *sm, const u8 *addr, int secure) { wpa_msg(sm->ctx->ctx, MSG_INFO, "WPA: Key negotiation completed with " MACSTR " [PTK=%s GTK=%s]", MAC2STR(addr), wpa_cipher_txt(sm->pairwise_cipher), wpa_cipher_txt(sm->group_cipher)); eloop_cancel_timeout(sm->ctx->scan, sm->ctx->ctx, NULL); wpa_sm_cancel_auth_timeout(sm); wpa_sm_set_state(sm, WPA_COMPLETED); if (secure) { wpa_sm_mlme_setprotection( sm, addr, MLME_SETPROTECTION_PROTECT_TYPE_RX_TX, MLME_SETPROTECTION_KEY_TYPE_PAIRWISE); eapol_sm_notify_portValid(sm->eapol, TRUE); if (sm->key_mgmt == WPA_KEY_MGMT_PSK) eapol_sm_notify_eap_success(sm->eapol, TRUE); /* * Start preauthentication after a short wait to avoid a * possible race condition between the data receive and key * configuration after the 4-Way Handshake. This increases the * likelyhood of the first preauth EAPOL-Start frame getting to * the target AP. */ eloop_register_timeout(1, 0, wpa_sm_start_preauth, sm, NULL); } if (sm->cur_pmksa && sm->cur_pmksa->opportunistic) { wpa_printf(MSG_DEBUG, "RSN: Authenticator accepted " "opportunistic PMKSA entry - marking it valid"); sm->cur_pmksa->opportunistic = 0; } } static int wpa_supplicant_install_ptk(struct wpa_sm *sm, const struct wpa_eapol_key *key) { int keylen, rsclen; wpa_alg alg; const u8 *key_rsc; u8 null_rsc[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; wpa_printf(MSG_DEBUG, "WPA: Installing PTK to the driver."); switch (sm->pairwise_cipher) { case WPA_CIPHER_CCMP: alg = WPA_ALG_CCMP; keylen = 16; rsclen = 6; break; case WPA_CIPHER_TKIP: alg = WPA_ALG_TKIP; keylen = 32; rsclen = 6; break; case WPA_CIPHER_NONE: wpa_printf(MSG_DEBUG, "WPA: Pairwise Cipher Suite: " "NONE - do not use pairwise keys"); return 0; default: wpa_printf(MSG_WARNING, "WPA: Unsupported pairwise cipher %d", sm->pairwise_cipher); return -1; } if (sm->proto == WPA_PROTO_RSN) { key_rsc = null_rsc; } else { key_rsc = key->key_rsc; wpa_hexdump(MSG_DEBUG, "WPA: RSC", key_rsc, rsclen); } if (wpa_sm_set_key(sm, alg, sm->bssid, 0, 1, key_rsc, rsclen, (u8 *) sm->ptk.tk1, keylen) < 0) { wpa_printf(MSG_WARNING, "WPA: Failed to set PTK to the " "driver."); return -1; } return 0; } static int wpa_supplicant_check_group_cipher(int group_cipher, int keylen, int maxkeylen, int *key_rsc_len, wpa_alg *alg) { int ret = 0; switch (group_cipher) { case WPA_CIPHER_CCMP: if (keylen != 16 || maxkeylen < 16) { ret = -1; break; } *key_rsc_len = 6; *alg = WPA_ALG_CCMP; break; case WPA_CIPHER_TKIP: if (keylen != 32 || maxkeylen < 32) { ret = -1; break; } *key_rsc_len = 6; *alg = WPA_ALG_TKIP; break; case WPA_CIPHER_WEP104: if (keylen != 13 || maxkeylen < 13) { ret = -1; break; } *key_rsc_len = 0; *alg = WPA_ALG_WEP; break; case WPA_CIPHER_WEP40: if (keylen != 5 || maxkeylen < 5) { ret = -1; break; } *key_rsc_len = 0; *alg = WPA_ALG_WEP; break; default: wpa_printf(MSG_WARNING, "WPA: Unsupported Group Cipher %d", group_cipher); return -1; } if (ret < 0 ) { wpa_printf(MSG_WARNING, "WPA: Unsupported %s Group Cipher key " "length %d (%d).", wpa_cipher_txt(group_cipher), keylen, maxkeylen); } return ret; } struct wpa_gtk_data { wpa_alg alg; int tx, key_rsc_len, keyidx; u8 gtk[32]; int gtk_len; }; static int wpa_supplicant_install_gtk(struct wpa_sm *sm, const struct wpa_gtk_data *gd, const u8 *key_rsc) { const u8 *_gtk = gd->gtk; u8 gtk_buf[32]; wpa_hexdump_key(MSG_DEBUG, "WPA: Group Key", gd->gtk, gd->gtk_len); wpa_printf(MSG_DEBUG, "WPA: Installing GTK to the driver " "(keyidx=%d tx=%d).", gd->keyidx, gd->tx); wpa_hexdump(MSG_DEBUG, "WPA: RSC", key_rsc, gd->key_rsc_len); if (sm->group_cipher == WPA_CIPHER_TKIP) { /* Swap Tx/Rx keys for Michael MIC */ os_memcpy(gtk_buf, gd->gtk, 16); os_memcpy(gtk_buf + 16, gd->gtk + 24, 8); os_memcpy(gtk_buf + 24, gd->gtk + 16, 8); _gtk = gtk_buf; } if (sm->pairwise_cipher == WPA_CIPHER_NONE) { if (wpa_sm_set_key(sm, gd->alg, (u8 *) "\xff\xff\xff\xff\xff\xff", gd->keyidx, 1, key_rsc, gd->key_rsc_len, _gtk, gd->gtk_len) < 0) { wpa_printf(MSG_WARNING, "WPA: Failed to set " "GTK to the driver (Group only)."); return -1; } } else if (wpa_sm_set_key(sm, gd->alg, (u8 *) "\xff\xff\xff\xff\xff\xff", gd->keyidx, gd->tx, key_rsc, gd->key_rsc_len, _gtk, gd->gtk_len) < 0) { wpa_printf(MSG_WARNING, "WPA: Failed to set GTK to " "the driver."); return -1; } return 0; } static int wpa_supplicant_gtk_tx_bit_workaround(const struct wpa_sm *sm, int tx) { if (tx && sm->pairwise_cipher != WPA_CIPHER_NONE) { /* Ignore Tx bit for GTK if a pairwise key is used. One AP * seemed to set this bit (incorrectly, since Tx is only when * doing Group Key only APs) and without this workaround, the * data connection does not work because wpa_supplicant * configured non-zero keyidx to be used for unicast. */ wpa_printf(MSG_INFO, "WPA: Tx bit set for GTK, but pairwise " "keys are used - ignore Tx bit"); return 0; } return tx; } static int wpa_supplicant_pairwise_gtk(struct wpa_sm *sm, const struct wpa_eapol_key *key, const u8 *gtk, size_t gtk_len, int key_info) { #ifndef CONFIG_NO_WPA2 struct wpa_gtk_data gd; /* * IEEE Std 802.11i-2004 - 8.5.2 EAPOL-Key frames - Figure 43x * GTK KDE format: * KeyID[bits 0-1], Tx [bit 2], Reserved [bits 3-7] * Reserved [bits 0-7] * GTK */ os_memset(&gd, 0, sizeof(gd)); wpa_hexdump_key(MSG_DEBUG, "RSN: received GTK in pairwise handshake", gtk, gtk_len); if (gtk_len < 2 || gtk_len - 2 > sizeof(gd.gtk)) return -1; gd.keyidx = gtk[0] & 0x3; gd.tx = wpa_supplicant_gtk_tx_bit_workaround(sm, !!(gtk[0] & BIT(2))); gtk += 2; gtk_len -= 2; os_memcpy(gd.gtk, gtk, gtk_len); gd.gtk_len = gtk_len; if (wpa_supplicant_check_group_cipher(sm->group_cipher, gtk_len, gtk_len, &gd.key_rsc_len, &gd.alg) || wpa_supplicant_install_gtk(sm, &gd, key->key_rsc)) { wpa_printf(MSG_DEBUG, "RSN: Failed to install GTK"); return -1; } wpa_supplicant_key_neg_complete(sm, sm->bssid, key_info & WPA_KEY_INFO_SECURE); return 0; #else /* CONFIG_NO_WPA2 */ return -1; #endif /* CONFIG_NO_WPA2 */ } static int ieee80211w_set_keys(struct wpa_sm *sm, struct wpa_eapol_ie_parse *ie) { #ifdef CONFIG_IEEE80211W if (sm->mgmt_group_cipher != WPA_CIPHER_AES_128_CMAC) return 0; if (ie->igtk) { const struct wpa_igtk_kde *igtk; u16 keyidx; if (ie->igtk_len != sizeof(*igtk)) return -1; igtk = (const struct wpa_igtk_kde *) ie->igtk; keyidx = WPA_GET_LE16(igtk->keyid); wpa_printf(MSG_DEBUG, "WPA: IGTK keyid %d " "pn %02x%02x%02x%02x%02x%02x", keyidx, MAC2STR(igtk->pn)); wpa_hexdump_key(MSG_DEBUG, "WPA: IGTK", igtk->igtk, WPA_IGTK_LEN); if (keyidx > 4095) { wpa_printf(MSG_WARNING, "WPA: Invalid IGTK KeyID %d", keyidx); return -1; } if (wpa_sm_set_key(sm, WPA_ALG_IGTK, (u8 *) "\xff\xff\xff\xff\xff\xff", keyidx, 0, igtk->pn, sizeof(igtk->pn), igtk->igtk, WPA_IGTK_LEN) < 0) { wpa_printf(MSG_WARNING, "WPA: Failed to configure IGTK" " to the driver"); return -1; } } if (ie->dhv) { const struct wpa_dhv_kde *dhv; if (ie->dhv_len != sizeof(*dhv)) return -1; dhv = (const struct wpa_dhv_kde *) ie->dhv; wpa_hexdump_key(MSG_DEBUG, "WPA: DHV", dhv->dhv, WPA_DHV_LEN); if (wpa_sm_set_key(sm, WPA_ALG_DHV, (u8 *) "\xff\xff\xff\xff\xff\xff", 0, 0, NULL, 0, dhv->dhv, WPA_DHV_LEN) < 0) { wpa_printf(MSG_WARNING, "WPA: Failed to configure DHV " "to the driver"); return -1; } } return 0; #else /* CONFIG_IEEE80211W */ return 0; #endif /* CONFIG_IEEE80211W */ } static void wpa_report_ie_mismatch(struct wpa_sm *sm, const char *reason, const u8 *src_addr, const u8 *wpa_ie, size_t wpa_ie_len, const u8 *rsn_ie, size_t rsn_ie_len) { wpa_msg(sm->ctx->ctx, MSG_WARNING, "WPA: %s (src=" MACSTR ")", reason, MAC2STR(src_addr)); if (sm->ap_wpa_ie) { wpa_hexdump(MSG_INFO, "WPA: WPA IE in Beacon/ProbeResp", sm->ap_wpa_ie, sm->ap_wpa_ie_len); } if (wpa_ie) { if (!sm->ap_wpa_ie) { wpa_printf(MSG_INFO, "WPA: No WPA IE in " "Beacon/ProbeResp"); } wpa_hexdump(MSG_INFO, "WPA: WPA IE in 3/4 msg", wpa_ie, wpa_ie_len); } if (sm->ap_rsn_ie) { wpa_hexdump(MSG_INFO, "WPA: RSN IE in Beacon/ProbeResp", sm->ap_rsn_ie, sm->ap_rsn_ie_len); } if (rsn_ie) { if (!sm->ap_rsn_ie) { wpa_printf(MSG_INFO, "WPA: No RSN IE in " "Beacon/ProbeResp"); } wpa_hexdump(MSG_INFO, "WPA: RSN IE in 3/4 msg", rsn_ie, rsn_ie_len); } wpa_sm_disassociate(sm, REASON_IE_IN_4WAY_DIFFERS); wpa_sm_req_scan(sm, 0, 0); } static int wpa_supplicant_validate_ie(struct wpa_sm *sm, const unsigned char *src_addr, struct wpa_eapol_ie_parse *ie) { struct wpa_ssid *ssid = sm->cur_ssid; if (sm->ap_wpa_ie == NULL && sm->ap_rsn_ie == NULL) { wpa_printf(MSG_DEBUG, "WPA: No WPA/RSN IE for this AP known. " "Trying to get from scan results"); if (wpa_sm_get_beacon_ie(sm) < 0) { wpa_printf(MSG_WARNING, "WPA: Could not find AP from " "the scan results"); } else { wpa_printf(MSG_DEBUG, "WPA: Found the current AP from " "updated scan results"); } } if (ie->wpa_ie == NULL && ie->rsn_ie == NULL && (sm->ap_wpa_ie || sm->ap_rsn_ie)) { wpa_report_ie_mismatch(sm, "IE in 3/4 msg does not match " "with IE in Beacon/ProbeResp (no IE?)", src_addr, ie->wpa_ie, ie->wpa_ie_len, ie->rsn_ie, ie->rsn_ie_len); return -1; } if ((ie->wpa_ie && sm->ap_wpa_ie && (ie->wpa_ie_len != sm->ap_wpa_ie_len || os_memcmp(ie->wpa_ie, sm->ap_wpa_ie, ie->wpa_ie_len) != 0)) || (ie->rsn_ie && sm->ap_rsn_ie && (ie->rsn_ie_len != sm->ap_rsn_ie_len || os_memcmp(ie->rsn_ie, sm->ap_rsn_ie, ie->rsn_ie_len) != 0))) { wpa_report_ie_mismatch(sm, "IE in 3/4 msg does not match " "with IE in Beacon/ProbeResp", src_addr, ie->wpa_ie, ie->wpa_ie_len, ie->rsn_ie, ie->rsn_ie_len); return -1; } if (sm->proto == WPA_PROTO_WPA && ie->rsn_ie && sm->ap_rsn_ie == NULL && ssid && (ssid->proto & WPA_PROTO_RSN)) { wpa_report_ie_mismatch(sm, "Possible downgrade attack " "detected - RSN was enabled and RSN IE " "was in msg 3/4, but not in " "Beacon/ProbeResp", src_addr, ie->wpa_ie, ie->wpa_ie_len, ie->rsn_ie, ie->rsn_ie_len); return -1; } return 0; } static int wpa_supplicant_send_4_of_4(struct wpa_sm *sm, const unsigned char *dst, const struct wpa_eapol_key *key, u16 ver, u16 key_info, const u8 *kde, size_t kde_len, struct wpa_ptk *ptk) { size_t rlen; struct wpa_eapol_key *reply; u8 *rbuf; if (kde) wpa_hexdump(MSG_DEBUG, "WPA: KDE for msg 4/4", kde, kde_len); rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL, sizeof(*reply) + kde_len, &rlen, (void *) &reply); if (rbuf == NULL) return -1; reply->type = sm->proto == WPA_PROTO_RSN ? EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA; key_info &= WPA_KEY_INFO_SECURE; key_info |= ver | WPA_KEY_INFO_KEY_TYPE | WPA_KEY_INFO_MIC; WPA_PUT_BE16(reply->key_info, key_info); if (sm->proto == WPA_PROTO_RSN) WPA_PUT_BE16(reply->key_length, 0); else os_memcpy(reply->key_length, key->key_length, 2); os_memcpy(reply->replay_counter, key->replay_counter, WPA_REPLAY_COUNTER_LEN); WPA_PUT_BE16(reply->key_data_length, kde_len); if (kde) os_memcpy(reply + 1, kde, kde_len); wpa_printf(MSG_DEBUG, "WPA: Sending EAPOL-Key 4/4"); wpa_eapol_key_send(sm, ptk->kck, ver, dst, ETH_P_EAPOL, rbuf, rlen, reply->key_mic); return 0; } static void wpa_supplicant_process_3_of_4(struct wpa_sm *sm, const struct wpa_eapol_key *key, u16 ver) { u16 key_info, keylen, len; const u8 *pos; struct wpa_eapol_ie_parse ie; wpa_sm_set_state(sm, WPA_4WAY_HANDSHAKE); wpa_printf(MSG_DEBUG, "WPA: RX message 3 of 4-Way Handshake from " MACSTR " (ver=%d)", MAC2STR(sm->bssid), ver); key_info = WPA_GET_BE16(key->key_info); pos = (const u8 *) (key + 1); len = WPA_GET_BE16(key->key_data_length); wpa_hexdump(MSG_DEBUG, "WPA: IE KeyData", pos, len); wpa_supplicant_parse_ies(pos, len, &ie); if (ie.gtk && !(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) { wpa_printf(MSG_WARNING, "WPA: GTK IE in unencrypted key data"); return; } #ifdef CONFIG_IEEE80211W if ((ie.dhv || ie.igtk) && !(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) { wpa_printf(MSG_WARNING, "WPA: DHV/IGTK KDE in unencrypted key " "data"); return; } if (ie.dhv && ie.dhv_len != sizeof(struct wpa_dhv_kde)) { wpa_printf(MSG_WARNING, "WPA: Invalid DHV KDE length %lu", (unsigned long) ie.dhv_len); return; } if (ie.igtk && ie.igtk_len != sizeof(struct wpa_igtk_kde)) { wpa_printf(MSG_WARNING, "WPA: Invalid IGTK KDE length %lu", (unsigned long) ie.igtk_len); return; } #endif /* CONFIG_IEEE80211W */ if (wpa_supplicant_validate_ie(sm, sm->bssid, &ie) < 0) return; if (os_memcmp(sm->anonce, key->key_nonce, WPA_NONCE_LEN) != 0) { wpa_printf(MSG_WARNING, "WPA: ANonce from message 1 of 4-Way " "Handshake differs from 3 of 4-Way Handshake - drop" " packet (src=" MACSTR ")", MAC2STR(sm->bssid)); return; } keylen = WPA_GET_BE16(key->key_length); switch (sm->pairwise_cipher) { case WPA_CIPHER_CCMP: if (keylen != 16) { wpa_printf(MSG_WARNING, "WPA: Invalid CCMP key length " "%d (src=" MACSTR ")", keylen, MAC2STR(sm->bssid)); return; } break; case WPA_CIPHER_TKIP: if (keylen != 32) { wpa_printf(MSG_WARNING, "WPA: Invalid TKIP key length " "%d (src=" MACSTR ")", keylen, MAC2STR(sm->bssid)); return; } break; } if (wpa_supplicant_send_4_of_4(sm, sm->bssid, key, ver, key_info, NULL, 0, &sm->ptk)) return; /* SNonce was successfully used in msg 3/4, so mark it to be renewed * for the next 4-Way Handshake. If msg 3 is received again, the old * SNonce will still be used to avoid changing PTK. */ sm->renew_snonce = 1; if (key_info & WPA_KEY_INFO_INSTALL) { wpa_supplicant_install_ptk(sm, key); } if (key_info & WPA_KEY_INFO_SECURE) { wpa_sm_mlme_setprotection( sm, sm->bssid, MLME_SETPROTECTION_PROTECT_TYPE_RX, MLME_SETPROTECTION_KEY_TYPE_PAIRWISE); eapol_sm_notify_portValid(sm->eapol, TRUE); } wpa_sm_set_state(sm, WPA_GROUP_HANDSHAKE); if (ie.gtk && wpa_supplicant_pairwise_gtk(sm, key, ie.gtk, ie.gtk_len, key_info) < 0) { wpa_printf(MSG_INFO, "RSN: Failed to configure GTK"); } if (ieee80211w_set_keys(sm, &ie) < 0) wpa_printf(MSG_INFO, "RSN: Failed to configure DHV/IGTK"); } #ifdef CONFIG_PEERKEY static void wpa_supplicant_smk_timeout(void *eloop_ctx, void *timeout_ctx) { #if 0 struct wpa_sm *sm = eloop_ctx; struct wpa_peerkey *peerkey = timeout_ctx; #endif /* TODO: time out SMK and any STK that was generated using this SMK */ } static void wpa_supplicant_peerkey_free(struct wpa_sm *sm, struct wpa_peerkey *peerkey) { eloop_cancel_timeout(wpa_supplicant_smk_timeout, sm, peerkey); os_free(peerkey); } static int wpa_supplicant_send_smk_error(struct wpa_sm *sm, const u8 *dst, const u8 *peer, u16 mui, u16 error_type, int ver) { #ifndef CONFIG_NO_WPA2 size_t rlen; struct wpa_eapol_key *err; struct rsn_error_kde error; u8 *rbuf, *pos; size_t kde_len; u16 key_info; kde_len = 2 + RSN_SELECTOR_LEN + sizeof(error); if (peer) kde_len += 2 + RSN_SELECTOR_LEN + ETH_ALEN; rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL, sizeof(*err) + kde_len, &rlen, (void *) &err); if (rbuf == NULL) return -1; err->type = EAPOL_KEY_TYPE_RSN; key_info = ver | WPA_KEY_INFO_SMK_MESSAGE | WPA_KEY_INFO_MIC | WPA_KEY_INFO_SECURE | WPA_KEY_INFO_ERROR | WPA_KEY_INFO_REQUEST; WPA_PUT_BE16(err->key_info, key_info); WPA_PUT_BE16(err->key_length, 0); os_memcpy(err->replay_counter, sm->request_counter, WPA_REPLAY_COUNTER_LEN); inc_byte_array(sm->request_counter, WPA_REPLAY_COUNTER_LEN); WPA_PUT_BE16(err->key_data_length, (u16) kde_len); pos = (u8 *) (err + 1); if (peer) { /* Peer MAC Address KDE */ pos = wpa_add_kde(pos, RSN_KEY_DATA_MAC_ADDR, peer, ETH_ALEN); } /* Error KDE */ error.mui = host_to_be16(mui); error.error_type = host_to_be16(error_type); pos = wpa_add_kde(pos, RSN_KEY_DATA_ERROR, (u8 *) &error, sizeof(error)); if (peer) { wpa_printf(MSG_DEBUG, "RSN: Sending EAPOL-Key SMK Error (peer " MACSTR " mui %d error_type %d)", MAC2STR(peer), mui, error_type); } else { wpa_printf(MSG_DEBUG, "RSN: Sending EAPOL-Key SMK Error " "(mui %d error_type %d)", mui, error_type); } wpa_eapol_key_send(sm, sm->ptk.kck, ver, dst, ETH_P_EAPOL, rbuf, rlen, err->key_mic); return 0; #else /* CONFIG_NO_WPA2 */ return -1; #endif /* CONFIG_NO_WPA2 */ } static int wpa_supplicant_send_smk_m3(struct wpa_sm *sm, const unsigned char *src_addr, const struct wpa_eapol_key *key, int ver, struct wpa_peerkey *peerkey) { size_t rlen; struct wpa_eapol_key *reply; u8 *rbuf, *pos; size_t kde_len; u16 key_info; /* KDEs: Peer RSN IE, Initiator MAC Address, Initiator Nonce */ kde_len = peerkey->rsnie_p_len + 2 + RSN_SELECTOR_LEN + ETH_ALEN + 2 + RSN_SELECTOR_LEN + WPA_NONCE_LEN; rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL, sizeof(*reply) + kde_len, &rlen, (void *) &reply); if (rbuf == NULL) return -1; reply->type = EAPOL_KEY_TYPE_RSN; key_info = ver | WPA_KEY_INFO_SMK_MESSAGE | WPA_KEY_INFO_MIC | WPA_KEY_INFO_SECURE; WPA_PUT_BE16(reply->key_info, key_info); WPA_PUT_BE16(reply->key_length, 0); os_memcpy(reply->replay_counter, key->replay_counter, WPA_REPLAY_COUNTER_LEN); os_memcpy(reply->key_nonce, peerkey->pnonce, WPA_NONCE_LEN); WPA_PUT_BE16(reply->key_data_length, (u16) kde_len); pos = (u8 *) (reply + 1); /* Peer RSN IE */ pos = wpa_add_ie(pos, peerkey->rsnie_p, peerkey->rsnie_p_len); /* Initiator MAC Address KDE */ pos = wpa_add_kde(pos, RSN_KEY_DATA_MAC_ADDR, peerkey->addr, ETH_ALEN); /* Initiator Nonce */ pos = wpa_add_kde(pos, RSN_KEY_DATA_NONCE, peerkey->inonce, WPA_NONCE_LEN); wpa_printf(MSG_DEBUG, "RSN: Sending EAPOL-Key SMK M3"); wpa_eapol_key_send(sm, sm->ptk.kck, ver, src_addr, ETH_P_EAPOL, rbuf, rlen, reply->key_mic); return 0; } static int wpa_supplicant_process_smk_m2( struct wpa_sm *sm, const unsigned char *src_addr, const struct wpa_eapol_key *key, size_t extra_len, int ver) { struct wpa_ssid *ssid = sm->cur_ssid; struct wpa_peerkey *peerkey; struct wpa_eapol_ie_parse kde; struct wpa_ie_data ie; int cipher; struct rsn_ie_hdr *hdr; u8 *pos; wpa_printf(MSG_DEBUG, "RSN: Received SMK M2"); if (ssid == NULL || !ssid->peerkey || sm->proto != WPA_PROTO_RSN) { wpa_printf(MSG_INFO, "RSN: SMK handshake not allowed for " "the current network"); return -1; } if (wpa_supplicant_parse_ies((const u8 *) (key + 1), extra_len, &kde) < 0) { wpa_printf(MSG_INFO, "RSN: Failed to parse KDEs in SMK M2"); return -1; } if (kde.rsn_ie == NULL || kde.mac_addr == NULL || kde.mac_addr_len < ETH_ALEN) { wpa_printf(MSG_INFO, "RSN: No RSN IE or MAC address KDE in " "SMK M2"); return -1; } wpa_printf(MSG_DEBUG, "RSN: SMK M2 - SMK initiator " MACSTR, MAC2STR(kde.mac_addr)); if (kde.rsn_ie_len > PEERKEY_MAX_IE_LEN) { wpa_printf(MSG_INFO, "RSN: Too long Initiator RSN IE in SMK " "M2"); return -1; } if (wpa_parse_wpa_ie_rsn(kde.rsn_ie, kde.rsn_ie_len, &ie) < 0) { wpa_printf(MSG_INFO, "RSN: Failed to parse RSN IE in SMK M2"); return -1; } cipher = ie.pairwise_cipher & ssid->pairwise_cipher; if (cipher & WPA_CIPHER_CCMP) { wpa_printf(MSG_DEBUG, "RSN: Using CCMP for PeerKey"); cipher = WPA_CIPHER_CCMP; } else if (cipher & WPA_CIPHER_TKIP) { wpa_printf(MSG_DEBUG, "RSN: Using TKIP for PeerKey"); cipher = WPA_CIPHER_TKIP; } else { wpa_printf(MSG_INFO, "RSN: No acceptable cipher in SMK M2"); wpa_supplicant_send_smk_error(sm, src_addr, kde.mac_addr, STK_MUI_SMK, STK_ERR_CPHR_NS, ver); return -1; } /* TODO: find existing entry and if found, use that instead of adding * a new one; how to handle the case where both ends initiate at the * same time? */ peerkey = os_malloc(sizeof(*peerkey)); if (peerkey == NULL) return -1; os_memset(peerkey, 0, sizeof(*peerkey)); os_memcpy(peerkey->addr, kde.mac_addr, ETH_ALEN); os_memcpy(peerkey->inonce, key->key_nonce, WPA_NONCE_LEN); os_memcpy(peerkey->rsnie_i, kde.rsn_ie, kde.rsn_ie_len); peerkey->rsnie_i_len = kde.rsn_ie_len; peerkey->cipher = cipher; if (hostapd_get_rand(peerkey->pnonce, WPA_NONCE_LEN)) { wpa_msg(sm->ctx->ctx, MSG_WARNING, "WPA: Failed to get random data for PNonce"); wpa_supplicant_peerkey_free(sm, peerkey); return -1; } hdr = (struct rsn_ie_hdr *) peerkey->rsnie_p; hdr->elem_id = RSN_INFO_ELEM; WPA_PUT_LE16(hdr->version, RSN_VERSION); pos = (u8 *) (hdr + 1); /* Group Suite can be anything for SMK RSN IE; receiver will just * ignore it. */ os_memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN); pos += RSN_SELECTOR_LEN; /* Include only the selected cipher in pairwise cipher suite */ WPA_PUT_LE16(pos, 1); pos += 2; if (cipher == WPA_CIPHER_CCMP) os_memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN); else if (cipher == WPA_CIPHER_TKIP) os_memcpy(pos, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN); pos += RSN_SELECTOR_LEN; hdr->len = (pos - peerkey->rsnie_p) - 2; peerkey->rsnie_p_len = pos - peerkey->rsnie_p; wpa_hexdump(MSG_DEBUG, "WPA: RSN IE for SMK handshake", peerkey->rsnie_p, peerkey->rsnie_p_len); wpa_supplicant_send_smk_m3(sm, src_addr, key, ver, peerkey); peerkey->next = sm->peerkey; sm->peerkey = peerkey; return 0; } /** * rsn_smkid - Derive SMK identifier * @smk: Station master key (32 bytes) * @pnonce: Peer Nonce * @mac_p: Peer MAC address * @inonce: Initiator Nonce * @mac_i: Initiator MAC address * * 8.5.1.4 Station to station (STK) key hierarchy * SMKID = HMAC-SHA1-128(SMK, "SMK Name" || PNonce || MAC_P || INonce || MAC_I) */ static void rsn_smkid(const u8 *smk, const u8 *pnonce, const u8 *mac_p, const u8 *inonce, const u8 *mac_i, u8 *smkid) { char *title = "SMK Name"; const u8 *addr[5]; const size_t len[5] = { 8, WPA_NONCE_LEN, ETH_ALEN, WPA_NONCE_LEN, ETH_ALEN }; unsigned char hash[SHA1_MAC_LEN]; addr[0] = (u8 *) title; addr[1] = pnonce; addr[2] = mac_p; addr[3] = inonce; addr[4] = mac_i; hmac_sha1_vector(smk, PMK_LEN, 5, addr, len, hash); os_memcpy(smkid, hash, PMKID_LEN); } static void wpa_supplicant_send_stk_1_of_4(struct wpa_sm *sm, struct wpa_peerkey *peerkey) { size_t mlen; struct wpa_eapol_key *msg; u8 *mbuf; size_t kde_len; u16 key_info, ver; kde_len = 2 + RSN_SELECTOR_LEN + PMKID_LEN; mbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL, sizeof(*msg) + kde_len, &mlen, (void *) &msg); if (mbuf == NULL) return; msg->type = EAPOL_KEY_TYPE_RSN; if (peerkey->cipher == WPA_CIPHER_CCMP) ver = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES; else ver = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4; key_info = ver | WPA_KEY_INFO_KEY_TYPE | WPA_KEY_INFO_ACK; WPA_PUT_BE16(msg->key_info, key_info); if (peerkey->cipher == WPA_CIPHER_CCMP) WPA_PUT_BE16(msg->key_length, 16); else WPA_PUT_BE16(msg->key_length, 32); os_memcpy(msg->replay_counter, peerkey->replay_counter, WPA_REPLAY_COUNTER_LEN); inc_byte_array(peerkey->replay_counter, WPA_REPLAY_COUNTER_LEN); WPA_PUT_BE16(msg->key_data_length, kde_len); wpa_add_kde((u8 *) (msg + 1), RSN_KEY_DATA_PMKID, peerkey->smkid, PMKID_LEN); if (hostapd_get_rand(peerkey->inonce, WPA_NONCE_LEN)) { wpa_msg(sm->ctx->ctx, MSG_WARNING, "RSN: Failed to get random data for INonce (STK)"); os_free(mbuf); return; } wpa_hexdump(MSG_DEBUG, "RSN: INonce for STK 4-Way Handshake", peerkey->inonce, WPA_NONCE_LEN); os_memcpy(msg->key_nonce, peerkey->inonce, WPA_NONCE_LEN); wpa_printf(MSG_DEBUG, "RSN: Sending EAPOL-Key STK 1/4 to " MACSTR, MAC2STR(peerkey->addr)); wpa_eapol_key_send(sm, NULL, ver, peerkey->addr, ETH_P_EAPOL, mbuf, mlen, NULL); } static void wpa_supplicant_send_stk_3_of_4(struct wpa_sm *sm, struct wpa_peerkey *peerkey) { size_t mlen; struct wpa_eapol_key *msg; u8 *mbuf, *pos; size_t kde_len; u16 key_info, ver; u32 lifetime; kde_len = peerkey->rsnie_i_len + 2 + RSN_SELECTOR_LEN + sizeof(lifetime); mbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL, sizeof(*msg) + kde_len, &mlen, (void *) &msg); if (mbuf == NULL) return; msg->type = EAPOL_KEY_TYPE_RSN; if (peerkey->cipher == WPA_CIPHER_CCMP) ver = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES; else ver = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4; key_info = ver | WPA_KEY_INFO_KEY_TYPE | WPA_KEY_INFO_ACK | WPA_KEY_INFO_MIC | WPA_KEY_INFO_SECURE; WPA_PUT_BE16(msg->key_info, key_info); if (peerkey->cipher == WPA_CIPHER_CCMP) WPA_PUT_BE16(msg->key_length, 16); else WPA_PUT_BE16(msg->key_length, 32); os_memcpy(msg->replay_counter, peerkey->replay_counter, WPA_REPLAY_COUNTER_LEN); inc_byte_array(peerkey->replay_counter, WPA_REPLAY_COUNTER_LEN); WPA_PUT_BE16(msg->key_data_length, kde_len); pos = (u8 *) (msg + 1); pos = wpa_add_ie(pos, peerkey->rsnie_i, peerkey->rsnie_i_len); lifetime = host_to_be32(peerkey->lifetime); pos = wpa_add_kde(pos, RSN_KEY_DATA_LIFETIME, (u8 *) &lifetime, sizeof(lifetime)); os_memcpy(msg->key_nonce, peerkey->inonce, WPA_NONCE_LEN); wpa_printf(MSG_DEBUG, "RSN: Sending EAPOL-Key STK 3/4 to " MACSTR, MAC2STR(peerkey->addr)); wpa_eapol_key_send(sm, peerkey->stk.kck, ver, peerkey->addr, ETH_P_EAPOL, mbuf, mlen, msg->key_mic); } static int wpa_supplicant_process_smk_m45( struct wpa_sm *sm, const unsigned char *src_addr, const struct wpa_eapol_key *key, size_t extra_len, int ver) { struct wpa_ssid *ssid = sm->cur_ssid; struct wpa_peerkey *peerkey; struct wpa_eapol_ie_parse kde; u32 lifetime; struct os_time now; struct wpa_ie_data ie; if (ssid == NULL || !ssid->peerkey || sm->proto != WPA_PROTO_RSN) { wpa_printf(MSG_DEBUG, "RSN: SMK handshake not allowed for " "the current network"); return -1; } if (wpa_supplicant_parse_ies((const u8 *) (key + 1), extra_len, &kde) < 0) { wpa_printf(MSG_INFO, "RSN: Failed to parse KDEs in SMK M4/M5"); return -1; } if (kde.mac_addr == NULL || kde.mac_addr_len < ETH_ALEN || kde.nonce == NULL || kde.nonce_len < WPA_NONCE_LEN || kde.smk == NULL || kde.smk_len < PMK_LEN + WPA_NONCE_LEN || kde.lifetime == NULL || kde.lifetime_len < 4) { wpa_printf(MSG_INFO, "RSN: No MAC Address, Nonce, SMK, or " "Lifetime KDE in SMK M4/M5"); return -1; } for (peerkey = sm->peerkey; peerkey; peerkey = peerkey->next) { if (os_memcmp(peerkey->addr, kde.mac_addr, ETH_ALEN) == 0 && os_memcmp(peerkey->initiator ? peerkey->inonce : peerkey->pnonce, key->key_nonce, WPA_NONCE_LEN) == 0) break; } if (peerkey == NULL) { wpa_printf(MSG_INFO, "RSN: No matching SMK handshake found " "for SMK M4/M5: peer " MACSTR, MAC2STR(kde.mac_addr)); return -1; } if (peerkey->initiator) { int cipher; wpa_printf(MSG_DEBUG, "RSN: Received SMK M5 (Peer " MACSTR ")", MAC2STR(kde.mac_addr)); if (kde.rsn_ie == NULL || kde.rsn_ie_len > PEERKEY_MAX_IE_LEN || wpa_parse_wpa_ie_rsn(kde.rsn_ie, kde.rsn_ie_len, &ie) < 0) { wpa_printf(MSG_INFO, "RSN: No RSN IE in SMK M5"); /* TODO: abort negotiation */ return -1; } if (os_memcmp(key->key_nonce, peerkey->inonce, WPA_NONCE_LEN) != 0) { wpa_printf(MSG_INFO, "RSN: Key Nonce in SMK M5 does " "not match with INonce used in SMK M1"); return -1; } if (os_memcmp(kde.smk + PMK_LEN, peerkey->inonce, WPA_NONCE_LEN) != 0) { wpa_printf(MSG_INFO, "RSN: INonce in SMK KDE does not " "match with the one used in SMK M1"); return -1; } os_memcpy(peerkey->rsnie_p, kde.rsn_ie, kde.rsn_ie_len); peerkey->rsnie_p_len = kde.rsn_ie_len; os_memcpy(peerkey->pnonce, kde.nonce, WPA_NONCE_LEN); cipher = ie.pairwise_cipher & ssid->pairwise_cipher; if (cipher & WPA_CIPHER_CCMP) { wpa_printf(MSG_DEBUG, "RSN: Using CCMP for PeerKey"); peerkey->cipher = WPA_CIPHER_CCMP; } else if (cipher & WPA_CIPHER_TKIP) { wpa_printf(MSG_DEBUG, "RSN: Using TKIP for PeerKey"); peerkey->cipher = WPA_CIPHER_TKIP; } else { wpa_printf(MSG_INFO, "RSN: SMK Peer STA " MACSTR " selected unacceptable cipher", MAC2STR(kde.mac_addr)); wpa_supplicant_send_smk_error( sm, src_addr, kde.mac_addr, STK_MUI_SMK, STK_ERR_CPHR_NS, ver); /* TODO: abort negotiation */ return -1; } } else { wpa_printf(MSG_DEBUG, "RSN: Received SMK M4 (Initiator " MACSTR ")", MAC2STR(kde.mac_addr)); if (os_memcmp(kde.smk + PMK_LEN, peerkey->pnonce, WPA_NONCE_LEN) != 0) { wpa_printf(MSG_INFO, "RSN: PNonce in SMK KDE does not " "match with the one used in SMK M3"); return -1; } if (os_memcmp(kde.nonce, peerkey->inonce, WPA_NONCE_LEN) != 0) { wpa_printf(MSG_INFO, "RSN: INonce in SMK M5 did not " "match with the one received in SMK M2"); return -1; } } os_memcpy(peerkey->smk, kde.smk, PMK_LEN); peerkey->smk_complete = 1; wpa_hexdump_key(MSG_DEBUG, "RSN: SMK", peerkey->smk, PMK_LEN); lifetime = WPA_GET_BE32(kde.lifetime); wpa_printf(MSG_DEBUG, "RSN: SMK lifetime %u seconds", lifetime); if (lifetime > 1000000000) lifetime = 1000000000; /* avoid overflowing expiration time */ peerkey->lifetime = lifetime; os_get_time(&now); peerkey->expiration = now.sec + lifetime; eloop_register_timeout(lifetime, 0, wpa_supplicant_smk_timeout, sm, peerkey); if (peerkey->initiator) { rsn_smkid(peerkey->smk, peerkey->pnonce, peerkey->addr, peerkey->inonce, sm->own_addr, peerkey->smkid); wpa_supplicant_send_stk_1_of_4(sm, peerkey); } else { rsn_smkid(peerkey->smk, peerkey->pnonce, sm->own_addr, peerkey->inonce, peerkey->addr, peerkey->smkid); } wpa_hexdump(MSG_DEBUG, "RSN: SMKID", peerkey->smkid, PMKID_LEN); return 0; } static int wpa_supplicant_process_smk_error( struct wpa_sm *sm, const unsigned char *src_addr, const struct wpa_eapol_key *key, size_t extra_len) { struct wpa_ssid *ssid = sm->cur_ssid; struct wpa_eapol_ie_parse kde; struct rsn_error_kde error; u8 peer[ETH_ALEN]; u16 error_type; wpa_printf(MSG_DEBUG, "RSN: Received SMK Error"); if (ssid == NULL || !ssid->peerkey || sm->proto != WPA_PROTO_RSN) { wpa_printf(MSG_DEBUG, "RSN: SMK handshake not allowed for " "the current network"); return -1; } if (wpa_supplicant_parse_ies((const u8 *) (key + 1), extra_len, &kde) < 0) { wpa_printf(MSG_INFO, "RSN: Failed to parse KDEs in SMK Error"); return -1; } if (kde.error == NULL || kde.error_len < sizeof(error)) { wpa_printf(MSG_INFO, "RSN: No Error KDE in SMK Error"); return -1; } if (kde.mac_addr && kde.mac_addr_len >= ETH_ALEN) os_memcpy(peer, kde.mac_addr, ETH_ALEN); os_memcpy(&error, kde.error, sizeof(error)); error_type = be_to_host16(error.error_type); wpa_msg(sm->ctx->ctx, MSG_INFO, "RSN: SMK Error KDE received: MUI %d error_type %d peer " MACSTR, be_to_host16(error.mui), error_type, MAC2STR(peer)); if (kde.mac_addr && (error_type == STK_ERR_STA_NR || error_type == STK_ERR_STA_NRSN || error_type == STK_ERR_CPHR_NS)) { struct wpa_peerkey *peerkey; for (peerkey = sm->peerkey; peerkey; peerkey = peerkey->next) { if (os_memcmp(peerkey->addr, kde.mac_addr, ETH_ALEN) == 0) break; } if (peerkey == NULL) { wpa_printf(MSG_DEBUG, "RSN: No matching SMK handshake " "found for SMK Error"); return -1; } /* TODO: abort SMK/STK handshake and remove all related keys */ } return 0; } static void wpa_supplicant_process_stk_1_of_4(struct wpa_sm *sm, struct wpa_peerkey *peerkey, const struct wpa_eapol_key *key, u16 ver) { struct wpa_eapol_ie_parse ie; const u8 *kde; size_t len, kde_buf_len; struct wpa_ptk *stk; u8 buf[8], *kde_buf, *pos; u32 lifetime; wpa_printf(MSG_DEBUG, "RSN: RX message 1 of STK 4-Way Handshake from " MACSTR " (ver=%d)", MAC2STR(peerkey->addr), ver); os_memset(&ie, 0, sizeof(ie)); /* RSN: msg 1/4 should contain SMKID for the selected SMK */ kde = (const u8 *) (key + 1); len = WPA_GET_BE16(key->key_data_length); wpa_hexdump(MSG_DEBUG, "RSN: msg 1/4 key data", kde, len); if (wpa_supplicant_parse_ies(kde, len, &ie) < 0 || ie.pmkid == NULL) { wpa_printf(MSG_DEBUG, "RSN: No SMKID in STK 1/4"); return; } if (os_memcmp(ie.pmkid, peerkey->smkid, PMKID_LEN) != 0) { wpa_hexdump(MSG_DEBUG, "RSN: Unknown SMKID in STK 1/4", ie.pmkid, PMKID_LEN); return; } if (hostapd_get_rand(peerkey->pnonce, WPA_NONCE_LEN)) { wpa_msg(sm->ctx->ctx, MSG_WARNING, "RSN: Failed to get random data for PNonce"); return; } wpa_hexdump(MSG_DEBUG, "WPA: Renewed PNonce", peerkey->pnonce, WPA_NONCE_LEN); /* Calculate STK which will be stored as a temporary STK until it has * been verified when processing message 3/4. */ stk = &peerkey->tstk; wpa_pmk_to_ptk(peerkey->smk, PMK_LEN, "Peer key expansion", sm->own_addr, peerkey->addr, peerkey->pnonce, key->key_nonce, (u8 *) stk, sizeof(*stk)); /* Supplicant: swap tx/rx Mic keys */ os_memcpy(buf, stk->u.auth.tx_mic_key, 8); os_memcpy(stk->u.auth.tx_mic_key, stk->u.auth.rx_mic_key, 8); os_memcpy(stk->u.auth.rx_mic_key, buf, 8); peerkey->tstk_set = 1; kde_buf_len = peerkey->rsnie_p_len + 2 + RSN_SELECTOR_LEN + sizeof(lifetime) + 2 + RSN_SELECTOR_LEN + PMKID_LEN; kde_buf = os_malloc(kde_buf_len); if (kde_buf == NULL) return; pos = kde_buf; pos = wpa_add_ie(pos, peerkey->rsnie_p, peerkey->rsnie_p_len); lifetime = host_to_be32(peerkey->lifetime); pos = wpa_add_kde(pos, RSN_KEY_DATA_LIFETIME, (u8 *) &lifetime, sizeof(lifetime)); pos = wpa_add_kde(pos, RSN_KEY_DATA_PMKID, peerkey->smkid, PMKID_LEN); if (wpa_supplicant_send_2_of_4(sm, peerkey->addr, key, ver, peerkey->pnonce, kde_buf, kde_buf_len, stk)) { os_free(kde_buf); return; } os_free(kde_buf); os_memcpy(peerkey->inonce, key->key_nonce, WPA_NONCE_LEN); } static void wpa_supplicant_update_smk_lifetime(struct wpa_sm *sm, struct wpa_peerkey *peerkey, struct wpa_eapol_ie_parse *kde) { u32 lifetime; struct os_time now; if (kde->lifetime == NULL || kde->lifetime_len < sizeof(lifetime)) return; lifetime = WPA_GET_BE32(kde->lifetime); if (lifetime >= peerkey->lifetime) { wpa_printf(MSG_DEBUG, "RSN: Peer used SMK lifetime %u seconds " "which is larger than or equal to own value %u " "seconds - ignored", lifetime, peerkey->lifetime); return; } wpa_printf(MSG_DEBUG, "RSN: Peer used shorter SMK lifetime %u seconds " "(own was %u seconds) - updated", lifetime, peerkey->lifetime); peerkey->lifetime = lifetime; os_get_time(&now); peerkey->expiration = now.sec + lifetime; eloop_cancel_timeout(wpa_supplicant_smk_timeout, sm, peerkey); eloop_register_timeout(lifetime, 0, wpa_supplicant_smk_timeout, sm, peerkey); } static void wpa_supplicant_process_stk_2_of_4(struct wpa_sm *sm, struct wpa_peerkey *peerkey, const struct wpa_eapol_key *key, u16 ver) { struct wpa_eapol_ie_parse kde; const u8 *keydata; size_t len; wpa_printf(MSG_DEBUG, "RSN: RX message 2 of STK 4-Way Handshake from " MACSTR " (ver=%d)", MAC2STR(peerkey->addr), ver); os_memset(&kde, 0, sizeof(kde)); /* RSN: msg 2/4 should contain SMKID for the selected SMK and RSN IE * from the peer. It may also include Lifetime KDE. */ keydata = (const u8 *) (key + 1); len = WPA_GET_BE16(key->key_data_length); wpa_hexdump(MSG_DEBUG, "RSN: msg 2/4 key data", keydata, len); if (wpa_supplicant_parse_ies(keydata, len, &kde) < 0 || kde.pmkid == NULL || kde.rsn_ie == NULL) { wpa_printf(MSG_DEBUG, "RSN: No SMKID or RSN IE in STK 2/4"); return; } if (os_memcmp(kde.pmkid, peerkey->smkid, PMKID_LEN) != 0) { wpa_hexdump(MSG_DEBUG, "RSN: Unknown SMKID in STK 2/4", kde.pmkid, PMKID_LEN); return; } if (kde.rsn_ie_len != peerkey->rsnie_p_len || os_memcmp(kde.rsn_ie, peerkey->rsnie_p, kde.rsn_ie_len) != 0) { wpa_printf(MSG_INFO, "RSN: Peer RSN IE in SMK and STK " "handshakes did not match"); wpa_hexdump(MSG_DEBUG, "RSN: Peer RSN IE in SMK handshake", peerkey->rsnie_p, peerkey->rsnie_p_len); wpa_hexdump(MSG_DEBUG, "RSN: Peer RSN IE in STK handshake", kde.rsn_ie, kde.rsn_ie_len); return; } wpa_supplicant_update_smk_lifetime(sm, peerkey, &kde); wpa_supplicant_send_stk_3_of_4(sm, peerkey); os_memcpy(peerkey->pnonce, key->key_nonce, WPA_NONCE_LEN); } static void wpa_supplicant_process_stk_3_of_4(struct wpa_sm *sm, struct wpa_peerkey *peerkey, const struct wpa_eapol_key *key, u16 ver) { struct wpa_eapol_ie_parse kde; const u8 *keydata; size_t len, key_len; const u8 *_key; u8 key_buf[32], rsc[6]; wpa_printf(MSG_DEBUG, "RSN: RX message 3 of STK 4-Way Handshake from " MACSTR " (ver=%d)", MAC2STR(peerkey->addr), ver); os_memset(&kde, 0, sizeof(kde)); /* RSN: msg 3/4 should contain Initiator RSN IE. It may also include * Lifetime KDE. */ keydata = (const u8 *) (key + 1); len = WPA_GET_BE16(key->key_data_length); wpa_hexdump(MSG_DEBUG, "RSN: msg 3/4 key data", keydata, len); if (wpa_supplicant_parse_ies(keydata, len, &kde) < 0) { wpa_printf(MSG_DEBUG, "RSN: Failed to parse key data in " "STK 3/4"); return; } if (kde.rsn_ie_len != peerkey->rsnie_i_len || os_memcmp(kde.rsn_ie, peerkey->rsnie_i, kde.rsn_ie_len) != 0) { wpa_printf(MSG_INFO, "RSN: Initiator RSN IE in SMK and STK " "handshakes did not match"); wpa_hexdump(MSG_DEBUG, "RSN: Initiator RSN IE in SMK " "handshake", peerkey->rsnie_i, peerkey->rsnie_i_len); wpa_hexdump(MSG_DEBUG, "RSN: Initiator RSN IE in STK " "handshake", kde.rsn_ie, kde.rsn_ie_len); return; } if (os_memcmp(peerkey->inonce, key->key_nonce, WPA_NONCE_LEN) != 0) { wpa_printf(MSG_WARNING, "RSN: INonce from message 1 of STK " "4-Way Handshake differs from 3 of STK 4-Way " "Handshake - drop packet (src=" MACSTR ")", MAC2STR(peerkey->addr)); return; } wpa_supplicant_update_smk_lifetime(sm, peerkey, &kde); if (wpa_supplicant_send_4_of_4(sm, peerkey->addr, key, ver, WPA_GET_BE16(key->key_info), NULL, 0, &peerkey->stk)) return; _key = (u8 *) peerkey->stk.tk1; if (peerkey->cipher == WPA_CIPHER_TKIP) { /* Swap Tx/Rx keys for Michael MIC */ os_memcpy(key_buf, _key, 16); os_memcpy(key_buf + 16, _key + 24, 8); os_memcpy(key_buf + 24, _key + 16, 8); _key = key_buf; key_len = 32; } else key_len = 16; os_memset(rsc, 0, 6); if (wpa_sm_set_key(sm, peerkey->cipher, peerkey->addr, 0, 1, rsc, sizeof(rsc), _key, key_len) < 0) { wpa_printf(MSG_WARNING, "RSN: Failed to set STK to the " "driver."); return; } } static void wpa_supplicant_process_stk_4_of_4(struct wpa_sm *sm, struct wpa_peerkey *peerkey, const struct wpa_eapol_key *key, u16 ver) { u8 rsc[6]; wpa_printf(MSG_DEBUG, "RSN: RX message 4 of STK 4-Way Handshake from " MACSTR " (ver=%d)", MAC2STR(peerkey->addr), ver); os_memset(rsc, 0, 6); if (wpa_sm_set_key(sm, peerkey->cipher, peerkey->addr, 0, 1, rsc, sizeof(rsc), (u8 *) peerkey->stk.tk1, peerkey->cipher == WPA_CIPHER_TKIP ? 32 : 16) < 0) { wpa_printf(MSG_WARNING, "RSN: Failed to set STK to the " "driver."); return; } } #endif /* CONFIG_PEERKEY */ static int wpa_supplicant_process_1_of_2_rsn(struct wpa_sm *sm, const u8 *keydata, size_t keydatalen, u16 key_info, struct wpa_gtk_data *gd) { int maxkeylen; struct wpa_eapol_ie_parse ie; wpa_hexdump(MSG_DEBUG, "RSN: msg 1/2 key data", keydata, keydatalen); wpa_supplicant_parse_ies(keydata, keydatalen, &ie); if (ie.gtk && !(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) { wpa_printf(MSG_WARNING, "WPA: GTK IE in unencrypted key data"); return -1; } if (ie.gtk == NULL) { wpa_printf(MSG_INFO, "WPA: No GTK IE in Group Key msg 1/2"); return -1; } maxkeylen = gd->gtk_len = ie.gtk_len - 2; if (wpa_supplicant_check_group_cipher(sm->group_cipher, gd->gtk_len, maxkeylen, &gd->key_rsc_len, &gd->alg)) return -1; wpa_hexdump(MSG_DEBUG, "RSN: received GTK in group key handshake", ie.gtk, ie.gtk_len); gd->keyidx = ie.gtk[0] & 0x3; gd->tx = wpa_supplicant_gtk_tx_bit_workaround(sm, !!(ie.gtk[0] & BIT(2))); if (ie.gtk_len - 2 > sizeof(gd->gtk)) { wpa_printf(MSG_INFO, "RSN: Too long GTK in GTK IE " "(len=%lu)", (unsigned long) ie.gtk_len - 2); return -1; } os_memcpy(gd->gtk, ie.gtk + 2, ie.gtk_len - 2); if (ieee80211w_set_keys(sm, &ie) < 0) wpa_printf(MSG_INFO, "RSN: Failed to configure DHV/IGTK"); return 0; } static int wpa_supplicant_process_1_of_2_wpa(struct wpa_sm *sm, const struct wpa_eapol_key *key, size_t keydatalen, int key_info, size_t extra_len, u16 ver, struct wpa_gtk_data *gd) { size_t maxkeylen; u8 ek[32]; gd->gtk_len = WPA_GET_BE16(key->key_length); maxkeylen = keydatalen; if (keydatalen > extra_len) { wpa_printf(MSG_INFO, "WPA: Truncated EAPOL-Key packet:" " key_data_length=%lu > extra_len=%lu", (unsigned long) keydatalen, (unsigned long) extra_len); return -1; } if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) { if (maxkeylen < 8) { wpa_printf(MSG_INFO, "WPA: Too short maxkeylen (%lu)", (unsigned long) maxkeylen); return -1; } maxkeylen -= 8; } if (wpa_supplicant_check_group_cipher(sm->group_cipher, gd->gtk_len, maxkeylen, &gd->key_rsc_len, &gd->alg)) return -1; gd->keyidx = (key_info & WPA_KEY_INFO_KEY_INDEX_MASK) >> WPA_KEY_INFO_KEY_INDEX_SHIFT; if (ver == WPA_KEY_INFO_TYPE_HMAC_MD5_RC4) { os_memcpy(ek, key->key_iv, 16); os_memcpy(ek + 16, sm->ptk.kek, 16); if (keydatalen > sizeof(gd->gtk)) { wpa_printf(MSG_WARNING, "WPA: RC4 key data " "too long (%lu)", (unsigned long) keydatalen); return -1; } os_memcpy(gd->gtk, key + 1, keydatalen); rc4_skip(ek, 32, 256, gd->gtk, keydatalen); } else if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) { if (keydatalen % 8) { wpa_printf(MSG_WARNING, "WPA: Unsupported AES-WRAP " "len %lu", (unsigned long) keydatalen); return -1; } if (maxkeylen > sizeof(gd->gtk)) { wpa_printf(MSG_WARNING, "WPA: AES-WRAP key data " "too long (keydatalen=%lu maxkeylen=%lu)", (unsigned long) keydatalen, (unsigned long) maxkeylen); return -1; } if (aes_unwrap(sm->ptk.kek, maxkeylen / 8, (const u8 *) (key + 1), gd->gtk)) { wpa_printf(MSG_WARNING, "WPA: AES unwrap " "failed - could not decrypt GTK"); return -1; } } gd->tx = wpa_supplicant_gtk_tx_bit_workaround( sm, !!(key_info & WPA_KEY_INFO_TXRX)); return 0; } static int wpa_supplicant_send_2_of_2(struct wpa_sm *sm, const struct wpa_eapol_key *key, int ver, u16 key_info) { size_t rlen; struct wpa_eapol_key *reply; u8 *rbuf; rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL, sizeof(*reply), &rlen, (void *) &reply); if (rbuf == NULL) return -1; reply->type = sm->proto == WPA_PROTO_RSN ? EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA; key_info &= WPA_KEY_INFO_KEY_INDEX_MASK; key_info |= ver | WPA_KEY_INFO_MIC | WPA_KEY_INFO_SECURE; WPA_PUT_BE16(reply->key_info, key_info); if (sm->proto == WPA_PROTO_RSN) WPA_PUT_BE16(reply->key_length, 0); else os_memcpy(reply->key_length, key->key_length, 2); os_memcpy(reply->replay_counter, key->replay_counter, WPA_REPLAY_COUNTER_LEN); WPA_PUT_BE16(reply->key_data_length, 0); wpa_printf(MSG_DEBUG, "WPA: Sending EAPOL-Key 2/2"); wpa_eapol_key_send(sm, sm->ptk.kck, ver, sm->bssid, ETH_P_EAPOL, rbuf, rlen, reply->key_mic); return 0; } static void wpa_supplicant_process_1_of_2(struct wpa_sm *sm, const unsigned char *src_addr, const struct wpa_eapol_key *key, int extra_len, u16 ver) { u16 key_info, keydatalen; int rekey, ret; struct wpa_gtk_data gd; os_memset(&gd, 0, sizeof(gd)); rekey = wpa_sm_get_state(sm) == WPA_COMPLETED; wpa_printf(MSG_DEBUG, "WPA: RX message 1 of Group Key Handshake from " MACSTR " (ver=%d)", MAC2STR(src_addr), ver); key_info = WPA_GET_BE16(key->key_info); keydatalen = WPA_GET_BE16(key->key_data_length); if (sm->proto == WPA_PROTO_RSN) { ret = wpa_supplicant_process_1_of_2_rsn(sm, (const u8 *) (key + 1), keydatalen, key_info, &gd); } else { ret = wpa_supplicant_process_1_of_2_wpa(sm, key, keydatalen, key_info, extra_len, ver, &gd); } wpa_sm_set_state(sm, WPA_GROUP_HANDSHAKE); if (ret) return; if (wpa_supplicant_install_gtk(sm, &gd, key->key_rsc) || wpa_supplicant_send_2_of_2(sm, key, ver, key_info)) return; if (rekey) { wpa_msg(sm->ctx->ctx, MSG_INFO, "WPA: Group rekeying " "completed with " MACSTR " [GTK=%s]", MAC2STR(sm->bssid), wpa_cipher_txt(sm->group_cipher)); wpa_sm_set_state(sm, WPA_COMPLETED); } else { wpa_supplicant_key_neg_complete(sm, sm->bssid, key_info & WPA_KEY_INFO_SECURE); } } static int wpa_supplicant_verify_eapol_key_mic(struct wpa_sm *sm, struct wpa_eapol_key *key, u16 ver, const u8 *buf, size_t len) { u8 mic[16]; int ok = 0; os_memcpy(mic, key->key_mic, 16); if (sm->tptk_set) { os_memset(key->key_mic, 0, 16); wpa_eapol_key_mic(sm->tptk.kck, ver, buf, len, key->key_mic); if (os_memcmp(mic, key->key_mic, 16) != 0) { wpa_printf(MSG_WARNING, "WPA: Invalid EAPOL-Key MIC " "when using TPTK - ignoring TPTK"); } else { ok = 1; sm->tptk_set = 0; sm->ptk_set = 1; os_memcpy(&sm->ptk, &sm->tptk, sizeof(sm->ptk)); } } if (!ok && sm->ptk_set) { os_memset(key->key_mic, 0, 16); wpa_eapol_key_mic(sm->ptk.kck, ver, buf, len, key->key_mic); if (os_memcmp(mic, key->key_mic, 16) != 0) { wpa_printf(MSG_WARNING, "WPA: Invalid EAPOL-Key MIC " "- dropping packet"); return -1; } ok = 1; } if (!ok) { wpa_printf(MSG_WARNING, "WPA: Could not verify EAPOL-Key MIC " "- dropping packet"); return -1; } os_memcpy(sm->rx_replay_counter, key->replay_counter, WPA_REPLAY_COUNTER_LEN); sm->rx_replay_counter_set = 1; return 0; } #ifdef CONFIG_PEERKEY static int wpa_supplicant_verify_eapol_key_mic_peerkey( struct wpa_sm *sm, struct wpa_peerkey *peerkey, struct wpa_eapol_key *key, u16 ver, const u8 *buf, size_t len) { u8 mic[16]; int ok = 0; if (peerkey->initiator && !peerkey->stk_set) { wpa_pmk_to_ptk(peerkey->smk, PMK_LEN, "Peer key expansion", sm->own_addr, peerkey->addr, peerkey->inonce, key->key_nonce, (u8 *) &peerkey->stk, sizeof(peerkey->stk)); peerkey->stk_set = 1; } os_memcpy(mic, key->key_mic, 16); if (peerkey->tstk_set) { os_memset(key->key_mic, 0, 16); wpa_eapol_key_mic(peerkey->tstk.kck, ver, buf, len, key->key_mic); if (os_memcmp(mic, key->key_mic, 16) != 0) { wpa_printf(MSG_WARNING, "RSN: Invalid EAPOL-Key MIC " "when using TSTK - ignoring TSTK"); } else { ok = 1; peerkey->tstk_set = 0; peerkey->stk_set = 1; os_memcpy(&peerkey->stk, &peerkey->tstk, sizeof(peerkey->stk)); } } if (!ok && peerkey->stk_set) { os_memset(key->key_mic, 0, 16); wpa_eapol_key_mic(peerkey->stk.kck, ver, buf, len, key->key_mic); if (os_memcmp(mic, key->key_mic, 16) != 0) { wpa_printf(MSG_WARNING, "RSN: Invalid EAPOL-Key MIC " "- dropping packet"); return -1; } ok = 1; } if (!ok) { wpa_printf(MSG_WARNING, "RSN: Could not verify EAPOL-Key MIC " "- dropping packet"); return -1; } os_memcpy(peerkey->replay_counter, key->replay_counter, WPA_REPLAY_COUNTER_LEN); peerkey->replay_counter_set = 1; return 0; } #endif /* CONFIG_PEERKEY */ /* Decrypt RSN EAPOL-Key key data (RC4 or AES-WRAP) */ static int wpa_supplicant_decrypt_key_data(struct wpa_sm *sm, struct wpa_eapol_key *key, u16 ver) { u16 keydatalen = WPA_GET_BE16(key->key_data_length); wpa_hexdump(MSG_DEBUG, "RSN: encrypted key data", (u8 *) (key + 1), keydatalen); if (!sm->ptk_set) { wpa_printf(MSG_WARNING, "WPA: PTK not available, " "cannot decrypt EAPOL-Key key data."); return -1; } /* Decrypt key data here so that this operation does not need * to be implemented separately for each message type. */ if (ver == WPA_KEY_INFO_TYPE_HMAC_MD5_RC4) { u8 ek[32]; os_memcpy(ek, key->key_iv, 16); os_memcpy(ek + 16, sm->ptk.kek, 16); rc4_skip(ek, 32, 256, (u8 *) (key + 1), keydatalen); } else if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) { u8 *buf; if (keydatalen % 8) { wpa_printf(MSG_WARNING, "WPA: Unsupported " "AES-WRAP len %d", keydatalen); return -1; } keydatalen -= 8; /* AES-WRAP adds 8 bytes */ buf = os_malloc(keydatalen); if (buf == NULL) { wpa_printf(MSG_WARNING, "WPA: No memory for " "AES-UNWRAP buffer"); return -1; } if (aes_unwrap(sm->ptk.kek, keydatalen / 8, (u8 *) (key + 1), buf)) { os_free(buf); wpa_printf(MSG_WARNING, "WPA: AES unwrap failed - " "could not decrypt EAPOL-Key key data"); return -1; } os_memcpy(key + 1, buf, keydatalen); os_free(buf); WPA_PUT_BE16(key->key_data_length, keydatalen); } wpa_hexdump_key(MSG_DEBUG, "WPA: decrypted EAPOL-Key key data", (u8 *) (key + 1), keydatalen); return 0; } /** * wpa_sm_aborted_cached - Notify WPA that PMKSA caching was aborted * @sm: Pointer to WPA state machine data from wpa_sm_init() */ void wpa_sm_aborted_cached(struct wpa_sm *sm) { if (sm && sm->cur_pmksa) { wpa_printf(MSG_DEBUG, "RSN: Cancelling PMKSA caching attempt"); sm->cur_pmksa = NULL; } } static void wpa_eapol_key_dump(const struct wpa_eapol_key *key) { #ifndef CONFIG_NO_STDOUT_DEBUG u16 key_info = WPA_GET_BE16(key->key_info); wpa_printf(MSG_DEBUG, " EAPOL-Key type=%d", key->type); wpa_printf(MSG_DEBUG, " key_info 0x%x (ver=%d keyidx=%d rsvd=%d %s" "%s%s%s%s%s%s%s)", key_info, key_info & WPA_KEY_INFO_TYPE_MASK, (key_info & WPA_KEY_INFO_KEY_INDEX_MASK) >> WPA_KEY_INFO_KEY_INDEX_SHIFT, (key_info & (BIT(13) | BIT(14) | BIT(15))) >> 13, key_info & WPA_KEY_INFO_KEY_TYPE ? "Pairwise" : "Group", key_info & WPA_KEY_INFO_INSTALL ? " Install" : "", key_info & WPA_KEY_INFO_ACK ? " Ack" : "", key_info & WPA_KEY_INFO_MIC ? " MIC" : "", key_info & WPA_KEY_INFO_SECURE ? " Secure" : "", key_info & WPA_KEY_INFO_ERROR ? " Error" : "", key_info & WPA_KEY_INFO_REQUEST ? " Request" : "", key_info & WPA_KEY_INFO_ENCR_KEY_DATA ? " Encr" : ""); wpa_printf(MSG_DEBUG, " key_length=%u key_data_length=%u", WPA_GET_BE16(key->key_length), WPA_GET_BE16(key->key_data_length)); wpa_hexdump(MSG_DEBUG, " replay_counter", key->replay_counter, WPA_REPLAY_COUNTER_LEN); wpa_hexdump(MSG_DEBUG, " key_nonce", key->key_nonce, WPA_NONCE_LEN); wpa_hexdump(MSG_DEBUG, " key_iv", key->key_iv, 16); wpa_hexdump(MSG_DEBUG, " key_rsc", key->key_rsc, 8); wpa_hexdump(MSG_DEBUG, " key_id (reserved)", key->key_id, 8); wpa_hexdump(MSG_DEBUG, " key_mic", key->key_mic, 16); #endif /* CONFIG_NO_STDOUT_DEBUG */ } /** * wpa_sm_rx_eapol - Process received WPA EAPOL frames * @sm: Pointer to WPA state machine data from wpa_sm_init() * @src_addr: Source MAC address of the EAPOL packet * @buf: Pointer to the beginning of the EAPOL data (EAPOL header) * @len: Length of the EAPOL frame * Returns: 1 = WPA EAPOL-Key processed, 0 = not a WPA EAPOL-Key, -1 failure * * This function is called for each received EAPOL frame. Other than EAPOL-Key * frames can be skipped if filtering is done elsewhere. wpa_sm_rx_eapol() is * only processing WPA and WPA2 EAPOL-Key frames. * * The received EAPOL-Key packets are validated and valid packets are replied * to. In addition, key material (PTK, GTK) is configured at the end of a * successful key handshake. */ int wpa_sm_rx_eapol(struct wpa_sm *sm, const u8 *src_addr, const u8 *buf, size_t len) { size_t plen, data_len, extra_len; struct ieee802_1x_hdr *hdr; struct wpa_eapol_key *key; u16 key_info, ver; u8 *tmp; int ret = -1; struct wpa_peerkey *peerkey = NULL; if (len < sizeof(*hdr) + sizeof(*key)) { wpa_printf(MSG_DEBUG, "WPA: EAPOL frame too short to be a WPA " "EAPOL-Key (len %lu, expecting at least %lu)", (unsigned long) len, (unsigned long) sizeof(*hdr) + sizeof(*key)); return 0; } tmp = os_malloc(len); if (tmp == NULL) return -1; os_memcpy(tmp, buf, len); hdr = (struct ieee802_1x_hdr *) tmp; key = (struct wpa_eapol_key *) (hdr + 1); plen = be_to_host16(hdr->length); data_len = plen + sizeof(*hdr); wpa_printf(MSG_DEBUG, "IEEE 802.1X RX: version=%d type=%d length=%lu", hdr->version, hdr->type, (unsigned long) plen); if (hdr->version < EAPOL_VERSION) { /* TODO: backwards compatibility */ } if (hdr->type != IEEE802_1X_TYPE_EAPOL_KEY) { wpa_printf(MSG_DEBUG, "WPA: EAPOL frame (type %u) discarded, " "not a Key frame", hdr->type); ret = 0; goto out; } if (plen > len - sizeof(*hdr) || plen < sizeof(*key)) { wpa_printf(MSG_DEBUG, "WPA: EAPOL frame payload size %lu " "invalid (frame size %lu)", (unsigned long) plen, (unsigned long) len); ret = 0; goto out; } if (key->type != EAPOL_KEY_TYPE_WPA && key->type != EAPOL_KEY_TYPE_RSN) { wpa_printf(MSG_DEBUG, "WPA: EAPOL-Key type (%d) unknown, " "discarded", key->type); ret = 0; goto out; } wpa_eapol_key_dump(key); eapol_sm_notify_lower_layer_success(sm->eapol); wpa_hexdump(MSG_MSGDUMP, "WPA: RX EAPOL-Key", tmp, len); if (data_len < len) { wpa_printf(MSG_DEBUG, "WPA: ignoring %lu bytes after the IEEE " "802.1X data", (unsigned long) len - data_len); } key_info = WPA_GET_BE16(key->key_info); ver = key_info & WPA_KEY_INFO_TYPE_MASK; if (ver != WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 && ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) { wpa_printf(MSG_INFO, "WPA: Unsupported EAPOL-Key descriptor " "version %d.", ver); goto out; } if (sm->pairwise_cipher == WPA_CIPHER_CCMP && ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) { wpa_printf(MSG_INFO, "WPA: CCMP is used, but EAPOL-Key " "descriptor version (%d) is not 2.", ver); if (sm->group_cipher != WPA_CIPHER_CCMP && !(key_info & WPA_KEY_INFO_KEY_TYPE)) { /* Earlier versions of IEEE 802.11i did not explicitly * require version 2 descriptor for all EAPOL-Key * packets, so allow group keys to use version 1 if * CCMP is not used for them. */ wpa_printf(MSG_INFO, "WPA: Backwards compatibility: " "allow invalid version for non-CCMP group " "keys"); } else goto out; } #ifdef CONFIG_PEERKEY for (peerkey = sm->peerkey; peerkey; peerkey = peerkey->next) { if (os_memcmp(peerkey->addr, src_addr, ETH_ALEN) == 0) break; } if (!(key_info & WPA_KEY_INFO_SMK_MESSAGE) && peerkey) { if (!peerkey->initiator && peerkey->replay_counter_set && os_memcmp(key->replay_counter, peerkey->replay_counter, WPA_REPLAY_COUNTER_LEN) <= 0) { wpa_printf(MSG_WARNING, "RSN: EAPOL-Key Replay " "Counter did not increase (STK) - dropping " "packet"); goto out; } else if (peerkey->initiator) { u8 _tmp[WPA_REPLAY_COUNTER_LEN]; os_memcpy(_tmp, key->replay_counter, WPA_REPLAY_COUNTER_LEN); inc_byte_array(_tmp, WPA_REPLAY_COUNTER_LEN); if (os_memcmp(_tmp, peerkey->replay_counter, WPA_REPLAY_COUNTER_LEN) != 0) { wpa_printf(MSG_DEBUG, "RSN: EAPOL-Key Replay " "Counter did not match (STK) - " "dropping packet"); goto out; } } } if (peerkey && peerkey->initiator && (key_info & WPA_KEY_INFO_ACK)) { wpa_printf(MSG_INFO, "RSN: Ack bit in key_info from STK peer"); goto out; } #endif /* CONFIG_PEERKEY */ if (!peerkey && sm->rx_replay_counter_set && os_memcmp(key->replay_counter, sm->rx_replay_counter, WPA_REPLAY_COUNTER_LEN) <= 0) { wpa_printf(MSG_WARNING, "WPA: EAPOL-Key Replay Counter did not" " increase - dropping packet"); goto out; } if (!(key_info & (WPA_KEY_INFO_ACK | WPA_KEY_INFO_SMK_MESSAGE)) #ifdef CONFIG_PEERKEY && (peerkey == NULL || !peerkey->initiator) #endif /* CONFIG_PEERKEY */ ) { wpa_printf(MSG_INFO, "WPA: No Ack bit in key_info"); goto out; } if (key_info & WPA_KEY_INFO_REQUEST) { wpa_printf(MSG_INFO, "WPA: EAPOL-Key with Request bit - " "dropped"); goto out; } if ((key_info & WPA_KEY_INFO_MIC) && !peerkey && wpa_supplicant_verify_eapol_key_mic(sm, key, ver, tmp, data_len)) goto out; #ifdef CONFIG_PEERKEY if ((key_info & WPA_KEY_INFO_MIC) && peerkey && wpa_supplicant_verify_eapol_key_mic_peerkey( sm, peerkey, key, ver, tmp, data_len)) goto out; #endif /* CONFIG_PEERKEY */ extra_len = data_len - sizeof(*hdr) - sizeof(*key); if (WPA_GET_BE16(key->key_data_length) > extra_len) { wpa_msg(sm->ctx->ctx, MSG_INFO, "WPA: Invalid EAPOL-Key " "frame - key_data overflow (%d > %lu)", WPA_GET_BE16(key->key_data_length), (unsigned long) extra_len); goto out; } extra_len = WPA_GET_BE16(key->key_data_length); if (sm->proto == WPA_PROTO_RSN && (key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) { if (wpa_supplicant_decrypt_key_data(sm, key, ver)) goto out; extra_len = WPA_GET_BE16(key->key_data_length); } if (key_info & WPA_KEY_INFO_KEY_TYPE) { if (key_info & WPA_KEY_INFO_KEY_INDEX_MASK) { wpa_printf(MSG_WARNING, "WPA: Ignored EAPOL-Key " "(Pairwise) with non-zero key index"); goto out; } #ifdef CONFIG_PEERKEY if (peerkey) { if ((key_info & (WPA_KEY_INFO_MIC | WPA_KEY_INFO_ACK)) == (WPA_KEY_INFO_MIC | WPA_KEY_INFO_ACK)) { /* 3/4 STK 4-Way Handshake */ wpa_supplicant_process_stk_3_of_4(sm, peerkey, key, ver); } else if (key_info & WPA_KEY_INFO_ACK) { /* 1/4 STK 4-Way Handshake */ wpa_supplicant_process_stk_1_of_4(sm, peerkey, key, ver); } else if (key_info & WPA_KEY_INFO_SECURE) { /* 4/4 STK 4-Way Handshake */ wpa_supplicant_process_stk_4_of_4(sm, peerkey, key, ver); } else { /* 2/4 STK 4-Way Handshake */ wpa_supplicant_process_stk_2_of_4(sm, peerkey, key, ver); } } else #endif /* CONFIG_PEERKEY */ if (key_info & WPA_KEY_INFO_MIC) { /* 3/4 4-Way Handshake */ wpa_supplicant_process_3_of_4(sm, key, ver); } else { /* 1/4 4-Way Handshake */ wpa_supplicant_process_1_of_4(sm, src_addr, key, ver); } } else if (key_info & WPA_KEY_INFO_SMK_MESSAGE) { #ifdef CONFIG_PEERKEY if (key_info & WPA_KEY_INFO_ERROR) { /* SMK Error */ wpa_supplicant_process_smk_error(sm, src_addr, key, extra_len); } else if (key_info & WPA_KEY_INFO_ACK) { /* SMK M2 */ wpa_supplicant_process_smk_m2(sm, src_addr, key, extra_len, ver); } else { /* SMK M4 or M5 */ wpa_supplicant_process_smk_m45(sm, src_addr, key, extra_len, ver); } #endif /* CONFIG_PEERKEY */ } else { if (key_info & WPA_KEY_INFO_MIC) { /* 1/2 Group Key Handshake */ wpa_supplicant_process_1_of_2(sm, src_addr, key, extra_len, ver); } else { wpa_printf(MSG_WARNING, "WPA: EAPOL-Key (Group) " "without Mic bit - dropped"); } } ret = 1; out: os_free(tmp); return ret; } #ifdef CONFIG_CTRL_IFACE static int wpa_cipher_bits(int cipher) { switch (cipher) { case WPA_CIPHER_CCMP: return 128; case WPA_CIPHER_TKIP: return 256; case WPA_CIPHER_WEP104: return 104; case WPA_CIPHER_WEP40: return 40; default: return 0; } } static const u8 * wpa_key_mgmt_suite(struct wpa_sm *sm) { static const u8 *dummy = (u8 *) "\x00\x00\x00\x00"; switch (sm->key_mgmt) { case WPA_KEY_MGMT_IEEE8021X: return (sm->proto == WPA_PROTO_RSN ? RSN_AUTH_KEY_MGMT_UNSPEC_802_1X : WPA_AUTH_KEY_MGMT_UNSPEC_802_1X); case WPA_KEY_MGMT_PSK: return (sm->proto == WPA_PROTO_RSN ? RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X : WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X); case WPA_KEY_MGMT_WPA_NONE: return WPA_AUTH_KEY_MGMT_NONE; default: return dummy; } } static const u8 * wpa_cipher_suite(struct wpa_sm *sm, int cipher) { static const u8 *dummy = (u8 *) "\x00\x00\x00\x00"; switch (cipher) { case WPA_CIPHER_CCMP: return (sm->proto == WPA_PROTO_RSN ? RSN_CIPHER_SUITE_CCMP : WPA_CIPHER_SUITE_CCMP); case WPA_CIPHER_TKIP: return (sm->proto == WPA_PROTO_RSN ? RSN_CIPHER_SUITE_TKIP : WPA_CIPHER_SUITE_TKIP); case WPA_CIPHER_WEP104: return (sm->proto == WPA_PROTO_RSN ? RSN_CIPHER_SUITE_WEP104 : WPA_CIPHER_SUITE_WEP104); case WPA_CIPHER_WEP40: return (sm->proto == WPA_PROTO_RSN ? RSN_CIPHER_SUITE_WEP40 : WPA_CIPHER_SUITE_WEP40); case WPA_CIPHER_NONE: return (sm->proto == WPA_PROTO_RSN ? RSN_CIPHER_SUITE_NONE : WPA_CIPHER_SUITE_NONE); default: return dummy; } } #define RSN_SUITE "%02x-%02x-%02x-%d" #define RSN_SUITE_ARG(s) (s)[0], (s)[1], (s)[2], (s)[3] /** * wpa_sm_get_mib - Dump text list of MIB entries * @sm: Pointer to WPA state machine data from wpa_sm_init() * @buf: Buffer for the list * @buflen: Length of the buffer * Returns: Number of bytes written to buffer * * This function is used fetch dot11 MIB variables. */ int wpa_sm_get_mib(struct wpa_sm *sm, char *buf, size_t buflen) { char pmkid_txt[PMKID_LEN * 2 + 1]; int rsna, ret; size_t len; if (sm->cur_pmksa) { wpa_snprintf_hex(pmkid_txt, sizeof(pmkid_txt), sm->cur_pmksa->pmkid, PMKID_LEN); } else pmkid_txt[0] = '\0'; if ((sm->key_mgmt == WPA_KEY_MGMT_PSK || sm->key_mgmt == WPA_KEY_MGMT_IEEE8021X) && sm->proto == WPA_PROTO_RSN) rsna = 1; else rsna = 0; ret = os_snprintf(buf, buflen, "dot11RSNAOptionImplemented=TRUE\n" "dot11RSNAPreauthenticationImplemented=TRUE\n" "dot11RSNAEnabled=%s\n" "dot11RSNAPreauthenticationEnabled=%s\n" "dot11RSNAConfigVersion=%d\n" "dot11RSNAConfigPairwiseKeysSupported=5\n" "dot11RSNAConfigGroupCipherSize=%d\n" "dot11RSNAConfigPMKLifetime=%d\n" "dot11RSNAConfigPMKReauthThreshold=%d\n" "dot11RSNAConfigNumberOfPTKSAReplayCounters=1\n" "dot11RSNAConfigSATimeout=%d\n", rsna ? "TRUE" : "FALSE", rsna ? "TRUE" : "FALSE", RSN_VERSION, wpa_cipher_bits(sm->group_cipher), sm->dot11RSNAConfigPMKLifetime, sm->dot11RSNAConfigPMKReauthThreshold, sm->dot11RSNAConfigSATimeout); if (ret < 0 || (size_t) ret >= buflen) return 0; len = ret; ret = os_snprintf( buf + len, buflen - len, "dot11RSNAAuthenticationSuiteSelected=" RSN_SUITE "\n" "dot11RSNAPairwiseCipherSelected=" RSN_SUITE "\n" "dot11RSNAGroupCipherSelected=" RSN_SUITE "\n" "dot11RSNAPMKIDUsed=%s\n" "dot11RSNAAuthenticationSuiteRequested=" RSN_SUITE "\n" "dot11RSNAPairwiseCipherRequested=" RSN_SUITE "\n" "dot11RSNAGroupCipherRequested=" RSN_SUITE "\n" "dot11RSNAConfigNumberOfGTKSAReplayCounters=0\n" "dot11RSNA4WayHandshakeFailures=%u\n", RSN_SUITE_ARG(wpa_key_mgmt_suite(sm)), RSN_SUITE_ARG(wpa_cipher_suite(sm, sm->pairwise_cipher)), RSN_SUITE_ARG(wpa_cipher_suite(sm, sm->group_cipher)), pmkid_txt, RSN_SUITE_ARG(wpa_key_mgmt_suite(sm)), RSN_SUITE_ARG(wpa_cipher_suite(sm, sm->pairwise_cipher)), RSN_SUITE_ARG(wpa_cipher_suite(sm, sm->group_cipher)), sm->dot11RSNA4WayHandshakeFailures); if (ret >= 0 && (size_t) ret < buflen) len += ret; return (int) len; } #endif /* CONFIG_CTRL_IFACE */ static void wpa_sm_pmksa_free_cb(struct rsn_pmksa_cache_entry *entry, void *ctx, int replace) { struct wpa_sm *sm = ctx; if (sm->cur_pmksa == entry || (sm->pmk_len == entry->pmk_len && os_memcmp(sm->pmk, entry->pmk, sm->pmk_len) == 0)) { wpa_printf(MSG_DEBUG, "RSN: removed current PMKSA entry"); sm->cur_pmksa = NULL; if (replace) { /* A new entry is being added, so no need to * deauthenticate in this case. This happens when EAP * authentication is completed again (reauth or failed * PMKSA caching attempt). */ return; } os_memset(sm->pmk, 0, sizeof(sm->pmk)); wpa_sm_deauthenticate(sm, REASON_UNSPECIFIED); wpa_sm_req_scan(sm, 0, 0); } } /** * wpa_sm_init - Initialize WPA state machine * @ctx: Context pointer for callbacks; this needs to be an allocated buffer * Returns: Pointer to the allocated WPA state machine data * * This function is used to allocate a new WPA state machine and the returned * value is passed to all WPA state machine calls. */ struct wpa_sm * wpa_sm_init(struct wpa_sm_ctx *ctx) { struct wpa_sm *sm; sm = os_zalloc(sizeof(*sm)); if (sm == NULL) return NULL; sm->renew_snonce = 1; sm->ctx = ctx; sm->dot11RSNAConfigPMKLifetime = 43200; sm->dot11RSNAConfigPMKReauthThreshold = 70; sm->dot11RSNAConfigSATimeout = 60; sm->pmksa = pmksa_cache_init(wpa_sm_pmksa_free_cb, sm, sm); if (sm->pmksa == NULL) { wpa_printf(MSG_ERROR, "RSN: PMKSA cache initialization " "failed"); os_free(sm); return NULL; } return sm; } /** * wpa_sm_deinit - Deinitialize WPA state machine * @sm: Pointer to WPA state machine data from wpa_sm_init() */ void wpa_sm_deinit(struct wpa_sm *sm) { if (sm == NULL) return; pmksa_cache_deinit(sm->pmksa); eloop_cancel_timeout(wpa_sm_start_preauth, sm, NULL); os_free(sm->assoc_wpa_ie); os_free(sm->ap_wpa_ie); os_free(sm->ap_rsn_ie); os_free(sm->ctx); #ifdef CONFIG_PEERKEY { struct wpa_peerkey *prev, *peerkey = sm->peerkey; while (peerkey) { prev = peerkey; peerkey = peerkey->next; os_free(prev); } } #endif /* CONFIG_PEERKEY */ os_free(sm); } /** * wpa_sm_notify_assoc - Notify WPA state machine about association * @sm: Pointer to WPA state machine data from wpa_sm_init() * @bssid: The BSSID of the new association * * This function is called to let WPA state machine know that the connection * was established. */ void wpa_sm_notify_assoc(struct wpa_sm *sm, const u8 *bssid) { if (sm == NULL) return; wpa_printf(MSG_DEBUG, "WPA: Association event - clear replay counter"); os_memcpy(sm->bssid, bssid, ETH_ALEN); os_memset(sm->rx_replay_counter, 0, WPA_REPLAY_COUNTER_LEN); sm->rx_replay_counter_set = 0; sm->renew_snonce = 1; if (os_memcmp(sm->preauth_bssid, bssid, ETH_ALEN) == 0) rsn_preauth_deinit(sm); } /** * wpa_sm_notify_disassoc - Notify WPA state machine about disassociation * @sm: Pointer to WPA state machine data from wpa_sm_init() * * This function is called to let WPA state machine know that the connection * was lost. This will abort any existing pre-authentication session. */ void wpa_sm_notify_disassoc(struct wpa_sm *sm) { rsn_preauth_deinit(sm); if (wpa_sm_get_state(sm) == WPA_4WAY_HANDSHAKE) sm->dot11RSNA4WayHandshakeFailures++; } /** * wpa_sm_set_pmk - Set PMK * @sm: Pointer to WPA state machine data from wpa_sm_init() * @pmk: The new PMK * @pmk_len: The length of the new PMK in bytes * * Configure the PMK for WPA state machine. */ void wpa_sm_set_pmk(struct wpa_sm *sm, const u8 *pmk, size_t pmk_len) { if (sm == NULL) return; sm->pmk_len = pmk_len; os_memcpy(sm->pmk, pmk, pmk_len); } /** * wpa_sm_set_pmk_from_pmksa - Set PMK based on the current PMKSA * @sm: Pointer to WPA state machine data from wpa_sm_init() * * Take the PMK from the current PMKSA into use. If no PMKSA is active, the PMK * will be cleared. */ void wpa_sm_set_pmk_from_pmksa(struct wpa_sm *sm) { if (sm == NULL) return; if (sm->cur_pmksa) { sm->pmk_len = sm->cur_pmksa->pmk_len; os_memcpy(sm->pmk, sm->cur_pmksa->pmk, sm->pmk_len); } else { sm->pmk_len = PMK_LEN; os_memset(sm->pmk, 0, PMK_LEN); } } /** * wpa_sm_set_fast_reauth - Set fast reauthentication (EAP) enabled/disabled * @sm: Pointer to WPA state machine data from wpa_sm_init() * @fast_reauth: Whether fast reauthentication (EAP) is allowed */ void wpa_sm_set_fast_reauth(struct wpa_sm *sm, int fast_reauth) { if (sm) sm->fast_reauth = fast_reauth; } /** * wpa_sm_set_scard_ctx - Set context pointer for smartcard callbacks * @sm: Pointer to WPA state machine data from wpa_sm_init() * @scard_ctx: Context pointer for smartcard related callback functions */ void wpa_sm_set_scard_ctx(struct wpa_sm *sm, void *scard_ctx) { if (sm == NULL) return; sm->scard_ctx = scard_ctx; if (sm->preauth_eapol) eapol_sm_register_scard_ctx(sm->preauth_eapol, scard_ctx); } /** * wpa_sm_set_config - Notification of current configration change * @sm: Pointer to WPA state machine data from wpa_sm_init() * @config: Pointer to current network configuration * * Notify WPA state machine that configuration has changed. config will be * stored as a backpointer to network configuration. This can be %NULL to clear * the stored pointed. */ void wpa_sm_set_config(struct wpa_sm *sm, struct wpa_ssid *config) { if (sm) { sm->cur_ssid = config; pmksa_cache_notify_reconfig(sm->pmksa); } } /** * wpa_sm_set_own_addr - Set own MAC address * @sm: Pointer to WPA state machine data from wpa_sm_init() * @addr: Own MAC address */ void wpa_sm_set_own_addr(struct wpa_sm *sm, const u8 *addr) { if (sm) os_memcpy(sm->own_addr, addr, ETH_ALEN); } /** * wpa_sm_set_ifname - Set network interface name * @sm: Pointer to WPA state machine data from wpa_sm_init() * @ifname: Interface name * @bridge_ifname: Optional bridge interface name (for pre-auth) */ void wpa_sm_set_ifname(struct wpa_sm *sm, const char *ifname, const char *bridge_ifname) { if (sm) { sm->ifname = ifname; sm->bridge_ifname = bridge_ifname; } } /** * wpa_sm_set_eapol - Set EAPOL state machine pointer * @sm: Pointer to WPA state machine data from wpa_sm_init() * @eapol: Pointer to EAPOL state machine allocated with eapol_sm_init() */ void wpa_sm_set_eapol(struct wpa_sm *sm, struct eapol_sm *eapol) { if (sm) sm->eapol = eapol; } /** * wpa_sm_set_param - Set WPA state machine parameters * @sm: Pointer to WPA state machine data from wpa_sm_init() * @param: Parameter field * @value: Parameter value * Returns: 0 on success, -1 on failure */ int wpa_sm_set_param(struct wpa_sm *sm, enum wpa_sm_conf_params param, unsigned int value) { int ret = 0; if (sm == NULL) return -1; switch (param) { case RSNA_PMK_LIFETIME: if (value > 0) sm->dot11RSNAConfigPMKLifetime = value; else ret = -1; break; case RSNA_PMK_REAUTH_THRESHOLD: if (value > 0 && value <= 100) sm->dot11RSNAConfigPMKReauthThreshold = value; else ret = -1; break; case RSNA_SA_TIMEOUT: if (value > 0) sm->dot11RSNAConfigSATimeout = value; else ret = -1; break; case WPA_PARAM_PROTO: sm->proto = value; break; case WPA_PARAM_PAIRWISE: sm->pairwise_cipher = value; break; case WPA_PARAM_GROUP: sm->group_cipher = value; break; case WPA_PARAM_KEY_MGMT: sm->key_mgmt = value; break; #ifdef CONFIG_IEEE80211W case WPA_PARAM_MGMT_GROUP: sm->mgmt_group_cipher = value; break; #endif /* CONFIG_IEEE80211W */ default: break; } return ret; } /** * wpa_sm_get_param - Get WPA state machine parameters * @sm: Pointer to WPA state machine data from wpa_sm_init() * @param: Parameter field * Returns: Parameter value */ unsigned int wpa_sm_get_param(struct wpa_sm *sm, enum wpa_sm_conf_params param) { if (sm == NULL) return 0; switch (param) { case RSNA_PMK_LIFETIME: return sm->dot11RSNAConfigPMKLifetime; case RSNA_PMK_REAUTH_THRESHOLD: return sm->dot11RSNAConfigPMKReauthThreshold; case RSNA_SA_TIMEOUT: return sm->dot11RSNAConfigSATimeout; case WPA_PARAM_PROTO: return sm->proto; case WPA_PARAM_PAIRWISE: return sm->pairwise_cipher; case WPA_PARAM_GROUP: return sm->group_cipher; case WPA_PARAM_KEY_MGMT: return sm->key_mgmt; #ifdef CONFIG_IEEE80211W case WPA_PARAM_MGMT_GROUP: return sm->mgmt_group_cipher; #endif /* CONFIG_IEEE80211W */ default: return 0; } } /** * wpa_sm_get_status - Get WPA state machine * @sm: Pointer to WPA state machine data from wpa_sm_init() * @buf: Buffer for status information * @buflen: Maximum buffer length * @verbose: Whether to include verbose status information * Returns: Number of bytes written to buf. * * Query WPA state machine for status information. This function fills in * a text area with current status information. If the buffer (buf) is not * large enough, status information will be truncated to fit the buffer. */ int wpa_sm_get_status(struct wpa_sm *sm, char *buf, size_t buflen, int verbose) { char *pos = buf, *end = buf + buflen; int ret; ret = os_snprintf(pos, end - pos, "pairwise_cipher=%s\n" "group_cipher=%s\n" "key_mgmt=%s\n", wpa_cipher_txt(sm->pairwise_cipher), wpa_cipher_txt(sm->group_cipher), wpa_key_mgmt_txt(sm->key_mgmt, sm->proto)); if (ret < 0 || ret >= end - pos) return pos - buf; pos += ret; return pos - buf; } /** * wpa_sm_set_assoc_wpa_ie_default - Generate own WPA/RSN IE from configuration * @sm: Pointer to WPA state machine data from wpa_sm_init() * @wpa_ie: Pointer to buffer for WPA/RSN IE * @wpa_ie_len: Pointer to the length of the wpa_ie buffer * Returns: 0 on success, -1 on failure */ int wpa_sm_set_assoc_wpa_ie_default(struct wpa_sm *sm, u8 *wpa_ie, size_t *wpa_ie_len) { int res; if (sm == NULL) return -1; res = wpa_gen_wpa_ie(sm, wpa_ie, *wpa_ie_len); if (res < 0) return -1; *wpa_ie_len = res; wpa_hexdump(MSG_DEBUG, "WPA: Set own WPA IE default", wpa_ie, *wpa_ie_len); if (sm->assoc_wpa_ie == NULL) { /* * Make a copy of the WPA/RSN IE so that 4-Way Handshake gets * the correct version of the IE even if PMKSA caching is * aborted (which would remove PMKID from IE generation). */ sm->assoc_wpa_ie = os_malloc(*wpa_ie_len); if (sm->assoc_wpa_ie == NULL) return -1; os_memcpy(sm->assoc_wpa_ie, wpa_ie, *wpa_ie_len); sm->assoc_wpa_ie_len = *wpa_ie_len; } return 0; } /** * wpa_sm_set_assoc_wpa_ie - Set own WPA/RSN IE from (Re)AssocReq * @sm: Pointer to WPA state machine data from wpa_sm_init() * @ie: Pointer to IE data (starting from id) * @len: IE length * Returns: 0 on success, -1 on failure * * Inform WPA state machine about the WPA/RSN IE used in (Re)Association * Request frame. The IE will be used to override the default value generated * with wpa_sm_set_assoc_wpa_ie_default(). */ int wpa_sm_set_assoc_wpa_ie(struct wpa_sm *sm, const u8 *ie, size_t len) { if (sm == NULL) return -1; os_free(sm->assoc_wpa_ie); if (ie == NULL || len == 0) { wpa_printf(MSG_DEBUG, "WPA: clearing own WPA/RSN IE"); sm->assoc_wpa_ie = NULL; sm->assoc_wpa_ie_len = 0; } else { wpa_hexdump(MSG_DEBUG, "WPA: set own WPA/RSN IE", ie, len); sm->assoc_wpa_ie = os_malloc(len); if (sm->assoc_wpa_ie == NULL) return -1; os_memcpy(sm->assoc_wpa_ie, ie, len); sm->assoc_wpa_ie_len = len; } return 0; } /** * wpa_sm_set_ap_wpa_ie - Set AP WPA IE from Beacon/ProbeResp * @sm: Pointer to WPA state machine data from wpa_sm_init() * @ie: Pointer to IE data (starting from id) * @len: IE length * Returns: 0 on success, -1 on failure * * Inform WPA state machine about the WPA IE used in Beacon / Probe Response * frame. */ int wpa_sm_set_ap_wpa_ie(struct wpa_sm *sm, const u8 *ie, size_t len) { if (sm == NULL) return -1; os_free(sm->ap_wpa_ie); if (ie == NULL || len == 0) { wpa_printf(MSG_DEBUG, "WPA: clearing AP WPA IE"); sm->ap_wpa_ie = NULL; sm->ap_wpa_ie_len = 0; } else { wpa_hexdump(MSG_DEBUG, "WPA: set AP WPA IE", ie, len); sm->ap_wpa_ie = os_malloc(len); if (sm->ap_wpa_ie == NULL) return -1; os_memcpy(sm->ap_wpa_ie, ie, len); sm->ap_wpa_ie_len = len; } return 0; } /** * wpa_sm_set_ap_rsn_ie - Set AP RSN IE from Beacon/ProbeResp * @sm: Pointer to WPA state machine data from wpa_sm_init() * @ie: Pointer to IE data (starting from id) * @len: IE length * Returns: 0 on success, -1 on failure * * Inform WPA state machine about the RSN IE used in Beacon / Probe Response * frame. */ int wpa_sm_set_ap_rsn_ie(struct wpa_sm *sm, const u8 *ie, size_t len) { if (sm == NULL) return -1; os_free(sm->ap_rsn_ie); if (ie == NULL || len == 0) { wpa_printf(MSG_DEBUG, "WPA: clearing AP RSN IE"); sm->ap_rsn_ie = NULL; sm->ap_rsn_ie_len = 0; } else { wpa_hexdump(MSG_DEBUG, "WPA: set AP RSN IE", ie, len); sm->ap_rsn_ie = os_malloc(len); if (sm->ap_rsn_ie == NULL) return -1; os_memcpy(sm->ap_rsn_ie, ie, len); sm->ap_rsn_ie_len = len; } return 0; } /** * wpa_sm_parse_own_wpa_ie - Parse own WPA/RSN IE * @sm: Pointer to WPA state machine data from wpa_sm_init() * @data: Pointer to data area for parsing results * Returns: 0 on success, -1 if IE is not known, or -2 on parsing failure * * Parse the contents of the own WPA or RSN IE from (Re)AssocReq and write the * parsed data into data. */ int wpa_sm_parse_own_wpa_ie(struct wpa_sm *sm, struct wpa_ie_data *data) { if (sm == NULL || sm->assoc_wpa_ie == NULL) { wpa_printf(MSG_DEBUG, "WPA: No WPA/RSN IE available from " "association info"); return -1; } if (wpa_parse_wpa_ie(sm->assoc_wpa_ie, sm->assoc_wpa_ie_len, data)) return -2; return 0; }