/* * validator/val_nsec3.c - validator NSEC3 denial of existance functions. * * Copyright (c) 2007, NLnet Labs. All rights reserved. * * This software is open source. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the NLNET LABS nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * \file * * This file contains helper functions for the validator module. * The functions help with NSEC3 checking, the different NSEC3 proofs * for denial of existance, and proofs for presence of types. */ #include "config.h" #include #ifdef HAVE_OPENSSL_SSL_H #include "openssl/ssl.h" #endif #ifdef HAVE_NSS /* nss3 */ #include "sechash.h" #endif #include "validator/val_nsec3.h" #include "validator/validator.h" #include "validator/val_kentry.h" #include "services/cache/rrset.h" #include "util/regional.h" #include "util/rbtree.h" #include "util/module.h" #include "util/net_help.h" #include "util/data/packed_rrset.h" #include "util/data/dname.h" #include "util/data/msgreply.h" /* we include nsec.h for the bitmap_has_type function */ #include "validator/val_nsec.h" #include "sldns/sbuffer.h" /** * This function we get from ldns-compat or from base system * it returns the number of data bytes stored at the target, or <0 on error. */ int sldns_b32_ntop_extended_hex(uint8_t const *src, size_t srclength, char *target, size_t targsize); /** * This function we get from ldns-compat or from base system * it returns the number of data bytes stored at the target, or <0 on error. */ int sldns_b32_pton_extended_hex(char const *src, size_t hashed_owner_str_len, uint8_t *target, size_t targsize); /** * Closest encloser (ce) proof results * Contains the ce and the next-closer (nc) proof. */ struct ce_response { /** the closest encloser name */ uint8_t* ce; /** length of ce */ size_t ce_len; /** NSEC3 record that proved ce. rrset */ struct ub_packed_rrset_key* ce_rrset; /** NSEC3 record that proved ce. rr number */ int ce_rr; /** NSEC3 record that proved nc. rrset */ struct ub_packed_rrset_key* nc_rrset; /** NSEC3 record that proved nc. rr*/ int nc_rr; }; /** * Filter conditions for NSEC3 proof * Used to iterate over the applicable NSEC3 RRs. */ struct nsec3_filter { /** Zone name, only NSEC3 records for this zone are considered */ uint8_t* zone; /** length of the zonename */ size_t zone_len; /** the list of NSEC3s to filter; array */ struct ub_packed_rrset_key** list; /** number of rrsets in list */ size_t num; /** class of records for the NSEC3, only this class applies */ uint16_t fclass; }; /** return number of rrs in an rrset */ static size_t rrset_get_count(struct ub_packed_rrset_key* rrset) { struct packed_rrset_data* d = (struct packed_rrset_data*) rrset->entry.data; if(!d) return 0; return d->count; } /** return if nsec3 RR has unknown flags */ static int nsec3_unknown_flags(struct ub_packed_rrset_key* rrset, int r) { struct packed_rrset_data* d = (struct packed_rrset_data*) rrset->entry.data; log_assert(d && r < (int)d->count); if(d->rr_len[r] < 2+2) return 0; /* malformed */ return (int)(d->rr_data[r][2+1] & NSEC3_UNKNOWN_FLAGS); } int nsec3_has_optout(struct ub_packed_rrset_key* rrset, int r) { struct packed_rrset_data* d = (struct packed_rrset_data*) rrset->entry.data; log_assert(d && r < (int)d->count); if(d->rr_len[r] < 2+2) return 0; /* malformed */ return (int)(d->rr_data[r][2+1] & NSEC3_OPTOUT); } /** return nsec3 RR algorithm */ static int nsec3_get_algo(struct ub_packed_rrset_key* rrset, int r) { struct packed_rrset_data* d = (struct packed_rrset_data*) rrset->entry.data; log_assert(d && r < (int)d->count); if(d->rr_len[r] < 2+1) return 0; /* malformed */ return (int)(d->rr_data[r][2+0]); } /** return if nsec3 RR has known algorithm */ static int nsec3_known_algo(struct ub_packed_rrset_key* rrset, int r) { struct packed_rrset_data* d = (struct packed_rrset_data*) rrset->entry.data; log_assert(d && r < (int)d->count); if(d->rr_len[r] < 2+1) return 0; /* malformed */ switch(d->rr_data[r][2+0]) { case NSEC3_HASH_SHA1: return 1; } return 0; } /** return nsec3 RR iteration count */ static size_t nsec3_get_iter(struct ub_packed_rrset_key* rrset, int r) { uint16_t i; struct packed_rrset_data* d = (struct packed_rrset_data*) rrset->entry.data; log_assert(d && r < (int)d->count); if(d->rr_len[r] < 2+4) return 0; /* malformed */ memmove(&i, d->rr_data[r]+2+2, sizeof(i)); i = ntohs(i); return (size_t)i; } /** return nsec3 RR salt */ static int nsec3_get_salt(struct ub_packed_rrset_key* rrset, int r, uint8_t** salt, size_t* saltlen) { struct packed_rrset_data* d = (struct packed_rrset_data*) rrset->entry.data; log_assert(d && r < (int)d->count); if(d->rr_len[r] < 2+5) { *salt = 0; *saltlen = 0; return 0; /* malformed */ } *saltlen = (size_t)d->rr_data[r][2+4]; if(d->rr_len[r] < 2+5+(size_t)*saltlen) { *salt = 0; *saltlen = 0; return 0; /* malformed */ } *salt = d->rr_data[r]+2+5; return 1; } int nsec3_get_params(struct ub_packed_rrset_key* rrset, int r, int* algo, size_t* iter, uint8_t** salt, size_t* saltlen) { if(!nsec3_known_algo(rrset, r) || nsec3_unknown_flags(rrset, r)) return 0; if(!nsec3_get_salt(rrset, r, salt, saltlen)) return 0; *algo = nsec3_get_algo(rrset, r); *iter = nsec3_get_iter(rrset, r); return 1; } int nsec3_get_nextowner(struct ub_packed_rrset_key* rrset, int r, uint8_t** next, size_t* nextlen) { size_t saltlen; struct packed_rrset_data* d = (struct packed_rrset_data*) rrset->entry.data; log_assert(d && r < (int)d->count); if(d->rr_len[r] < 2+5) { *next = 0; *nextlen = 0; return 0; /* malformed */ } saltlen = (size_t)d->rr_data[r][2+4]; if(d->rr_len[r] < 2+5+saltlen+1) { *next = 0; *nextlen = 0; return 0; /* malformed */ } *nextlen = (size_t)d->rr_data[r][2+5+saltlen]; if(d->rr_len[r] < 2+5+saltlen+1+*nextlen) { *next = 0; *nextlen = 0; return 0; /* malformed */ } *next = d->rr_data[r]+2+5+saltlen+1; return 1; } size_t nsec3_hash_to_b32(uint8_t* hash, size_t hashlen, uint8_t* zone, size_t zonelen, uint8_t* buf, size_t max) { /* write b32 of name, leave one for length */ int ret; if(max < hashlen*2+1) /* quick approx of b32, as if hexb16 */ return 0; ret = sldns_b32_ntop_extended_hex(hash, hashlen, (char*)buf+1, max-1); if(ret < 1) return 0; buf[0] = (uint8_t)ret; /* length of b32 label */ ret++; if(max - ret < zonelen) return 0; memmove(buf+ret, zone, zonelen); return zonelen+(size_t)ret; } size_t nsec3_get_nextowner_b32(struct ub_packed_rrset_key* rrset, int r, uint8_t* buf, size_t max) { uint8_t* nm, *zone; size_t nmlen, zonelen; if(!nsec3_get_nextowner(rrset, r, &nm, &nmlen)) return 0; /* append zone name; the owner name must be .zone */ zone = rrset->rk.dname; zonelen = rrset->rk.dname_len; dname_remove_label(&zone, &zonelen); return nsec3_hash_to_b32(nm, nmlen, zone, zonelen, buf, max); } int nsec3_has_type(struct ub_packed_rrset_key* rrset, int r, uint16_t type) { uint8_t* bitmap; size_t bitlen, skiplen; struct packed_rrset_data* d = (struct packed_rrset_data*) rrset->entry.data; log_assert(d && r < (int)d->count); skiplen = 2+4; /* skip salt */ if(d->rr_len[r] < skiplen+1) return 0; /* malformed, too short */ skiplen += 1+(size_t)d->rr_data[r][skiplen]; /* skip next hashed owner */ if(d->rr_len[r] < skiplen+1) return 0; /* malformed, too short */ skiplen += 1+(size_t)d->rr_data[r][skiplen]; if(d->rr_len[r] < skiplen) return 0; /* malformed, too short */ bitlen = d->rr_len[r] - skiplen; bitmap = d->rr_data[r]+skiplen; return nsecbitmap_has_type_rdata(bitmap, bitlen, type); } /** * Iterate through NSEC3 list, per RR * This routine gives the next RR in the list (or sets rrset null). * Usage: * * size_t rrsetnum; * int rrnum; * struct ub_packed_rrset_key* rrset; * for(rrset=filter_first(filter, &rrsetnum, &rrnum); rrset; * rrset=filter_next(filter, &rrsetnum, &rrnum)) * do_stuff; * * Also filters out * o unknown flag NSEC3s * o unknown algorithm NSEC3s. * @param filter: nsec3 filter structure. * @param rrsetnum: in/out rrset number to look at. * @param rrnum: in/out rr number in rrset to look at. * @returns ptr to the next rrset (or NULL at end). */ static struct ub_packed_rrset_key* filter_next(struct nsec3_filter* filter, size_t* rrsetnum, int* rrnum) { size_t i; int r; uint8_t* nm; size_t nmlen; if(!filter->zone) /* empty list */ return NULL; for(i=*rrsetnum; inum; i++) { /* see if RRset qualifies */ if(ntohs(filter->list[i]->rk.type) != LDNS_RR_TYPE_NSEC3 || ntohs(filter->list[i]->rk.rrset_class) != filter->fclass) continue; /* check RRset zone */ nm = filter->list[i]->rk.dname; nmlen = filter->list[i]->rk.dname_len; dname_remove_label(&nm, &nmlen); if(query_dname_compare(nm, filter->zone) != 0) continue; if(i == *rrsetnum) r = (*rrnum) + 1; /* continue at next RR */ else r = 0; /* new RRset start at first RR */ for(; r < (int)rrset_get_count(filter->list[i]); r++) { /* skip unknown flags, algo */ if(nsec3_unknown_flags(filter->list[i], r) || !nsec3_known_algo(filter->list[i], r)) continue; /* this one is a good target */ *rrsetnum = i; *rrnum = r; return filter->list[i]; } } return NULL; } /** * Start iterating over NSEC3 records. * @param filter: the filter structure, must have been filter_init-ed. * @param rrsetnum: can be undefined on call, inited. * @param rrnum: can be undefined on call, inited. * @return first rrset of an NSEC3, together with rrnum this points to * the first RR to examine. Is NULL on empty list. */ static struct ub_packed_rrset_key* filter_first(struct nsec3_filter* filter, size_t* rrsetnum, int* rrnum) { *rrsetnum = 0; *rrnum = -1; return filter_next(filter, rrsetnum, rrnum); } /** see if at least one RR is known (flags, algo) */ static int nsec3_rrset_has_known(struct ub_packed_rrset_key* s) { int r; for(r=0; r < (int)rrset_get_count(s); r++) { if(!nsec3_unknown_flags(s, r) && nsec3_known_algo(s, r)) return 1; } return 0; } /** * Initialize the filter structure. * Finds the zone by looking at available NSEC3 records and best match. * (skips the unknown flag and unknown algo NSEC3s). * * @param filter: nsec3 filter structure. * @param list: list of rrsets, an array of them. * @param num: number of rrsets in list. * @param qinfo: * query name to match a zone for. * query type (if DS a higher zone must be chosen) * qclass, to filter NSEC3s with. */ static void filter_init(struct nsec3_filter* filter, struct ub_packed_rrset_key** list, size_t num, struct query_info* qinfo) { size_t i; uint8_t* nm; size_t nmlen; filter->zone = NULL; filter->zone_len = 0; filter->list = list; filter->num = num; filter->fclass = qinfo->qclass; for(i=0; irk.type) != LDNS_RR_TYPE_NSEC3 || ntohs(list[i]->rk.rrset_class) != qinfo->qclass) continue; /* skip unknown flags, algo */ if(!nsec3_rrset_has_known(list[i])) continue; /* since NSEC3s are base32.zonename, we can find the zone * name by stripping off the first label of the record */ nm = list[i]->rk.dname; nmlen = list[i]->rk.dname_len; dname_remove_label(&nm, &nmlen); /* if we find a domain that can prove about the qname, * and if this domain is closer to the qname */ if(dname_subdomain_c(qinfo->qname, nm) && (!filter->zone || dname_subdomain_c(nm, filter->zone))) { /* for a type DS do not accept a zone equal to qname*/ if(qinfo->qtype == LDNS_RR_TYPE_DS && query_dname_compare(qinfo->qname, nm) == 0 && !dname_is_root(qinfo->qname)) continue; filter->zone = nm; filter->zone_len = nmlen; } } } /** * Find max iteration count using config settings and key size * @param ve: validator environment with iteration count config settings. * @param bits: key size * @return max iteration count */ static size_t get_max_iter(struct val_env* ve, size_t bits) { int i; log_assert(ve->nsec3_keyiter_count > 0); /* round up to nearest config keysize, linear search, keep it small */ for(i=0; insec3_keyiter_count; i++) { if(bits <= ve->nsec3_keysize[i]) return ve->nsec3_maxiter[i]; } /* else, use value for biggest key */ return ve->nsec3_maxiter[ve->nsec3_keyiter_count-1]; } /** * Determine if any of the NSEC3 rrs iteration count is too high, from key. * @param ve: validator environment with iteration count config settings. * @param filter: what NSEC3s to loop over. * @param kkey: key entry used for verification; used for iteration counts. * @return 1 if some nsec3s are above the max iteration count. */ static int nsec3_iteration_count_high(struct val_env* ve, struct nsec3_filter* filter, struct key_entry_key* kkey) { size_t rrsetnum; int rrnum; struct ub_packed_rrset_key* rrset; /* first determine the max number of iterations */ size_t bits = key_entry_keysize(kkey); size_t max_iter = get_max_iter(ve, bits); verbose(VERB_ALGO, "nsec3: keysize %d bits, max iterations %d", (int)bits, (int)max_iter); for(rrset=filter_first(filter, &rrsetnum, &rrnum); rrset; rrset=filter_next(filter, &rrsetnum, &rrnum)) { if(nsec3_get_iter(rrset, rrnum) > max_iter) return 1; } return 0; } /* nsec3_cache_compare for rbtree */ int nsec3_hash_cmp(const void* c1, const void* c2) { struct nsec3_cached_hash* h1 = (struct nsec3_cached_hash*)c1; struct nsec3_cached_hash* h2 = (struct nsec3_cached_hash*)c2; uint8_t* s1, *s2; size_t s1len, s2len; int c = query_dname_compare(h1->dname, h2->dname); if(c != 0) return c; /* compare parameters */ /* if both malformed, its equal, robustness */ if(nsec3_get_algo(h1->nsec3, h1->rr) != nsec3_get_algo(h2->nsec3, h2->rr)) { if(nsec3_get_algo(h1->nsec3, h1->rr) < nsec3_get_algo(h2->nsec3, h2->rr)) return -1; return 1; } if(nsec3_get_iter(h1->nsec3, h1->rr) != nsec3_get_iter(h2->nsec3, h2->rr)) { if(nsec3_get_iter(h1->nsec3, h1->rr) < nsec3_get_iter(h2->nsec3, h2->rr)) return -1; return 1; } (void)nsec3_get_salt(h1->nsec3, h1->rr, &s1, &s1len); (void)nsec3_get_salt(h2->nsec3, h2->rr, &s2, &s2len); if(s1len != s2len) { if(s1len < s2len) return -1; return 1; } return memcmp(s1, s2, s1len); } size_t nsec3_get_hashed(sldns_buffer* buf, uint8_t* nm, size_t nmlen, int algo, size_t iter, uint8_t* salt, size_t saltlen, uint8_t* res, size_t max) { size_t i, hash_len; /* prepare buffer for first iteration */ sldns_buffer_clear(buf); sldns_buffer_write(buf, nm, nmlen); query_dname_tolower(sldns_buffer_begin(buf)); sldns_buffer_write(buf, salt, saltlen); sldns_buffer_flip(buf); switch(algo) { #if defined(HAVE_EVP_SHA1) || defined(HAVE_NSS) case NSEC3_HASH_SHA1: #ifdef HAVE_SSL hash_len = SHA_DIGEST_LENGTH; #else hash_len = SHA1_LENGTH; #endif if(hash_len > max) return 0; # ifdef HAVE_SSL (void)SHA1((unsigned char*)sldns_buffer_begin(buf), (unsigned long)sldns_buffer_limit(buf), (unsigned char*)res); # else (void)HASH_HashBuf(HASH_AlgSHA1, (unsigned char*)res, (unsigned char*)sldns_buffer_begin(buf), (unsigned long)sldns_buffer_limit(buf)); # endif for(i=0; insec3, c->rr); size_t iter = nsec3_get_iter(c->nsec3, c->rr); uint8_t* salt; size_t saltlen, i; if(!nsec3_get_salt(c->nsec3, c->rr, &salt, &saltlen)) return -1; /* prepare buffer for first iteration */ sldns_buffer_clear(buf); sldns_buffer_write(buf, c->dname, c->dname_len); query_dname_tolower(sldns_buffer_begin(buf)); sldns_buffer_write(buf, salt, saltlen); sldns_buffer_flip(buf); switch(algo) { #if defined(HAVE_EVP_SHA1) || defined(HAVE_NSS) case NSEC3_HASH_SHA1: #ifdef HAVE_SSL c->hash_len = SHA_DIGEST_LENGTH; #else c->hash_len = SHA1_LENGTH; #endif c->hash = (uint8_t*)regional_alloc(region, c->hash_len); if(!c->hash) return 0; # ifdef HAVE_SSL (void)SHA1((unsigned char*)sldns_buffer_begin(buf), (unsigned long)sldns_buffer_limit(buf), (unsigned char*)c->hash); # else (void)HASH_HashBuf(HASH_AlgSHA1, (unsigned char*)c->hash, (unsigned char*)sldns_buffer_begin(buf), (unsigned long)sldns_buffer_limit(buf)); # endif for(i=0; ihash, c->hash_len); sldns_buffer_write(buf, salt, saltlen); sldns_buffer_flip(buf); # ifdef HAVE_SSL (void)SHA1( (unsigned char*)sldns_buffer_begin(buf), (unsigned long)sldns_buffer_limit(buf), (unsigned char*)c->hash); # else (void)HASH_HashBuf(HASH_AlgSHA1, (unsigned char*)c->hash, (unsigned char*)sldns_buffer_begin(buf), (unsigned long)sldns_buffer_limit(buf)); # endif } break; #endif /* HAVE_EVP_SHA1 or NSS */ default: log_err("nsec3 hash of unknown algo %d", algo); return -1; } return 1; } /** perform b32 encoding of hash */ static int nsec3_calc_b32(struct regional* region, sldns_buffer* buf, struct nsec3_cached_hash* c) { int r; sldns_buffer_clear(buf); r = sldns_b32_ntop_extended_hex(c->hash, c->hash_len, (char*)sldns_buffer_begin(buf), sldns_buffer_limit(buf)); if(r < 1) { log_err("b32_ntop_extended_hex: error in encoding: %d", r); return 0; } c->b32_len = (size_t)r; c->b32 = regional_alloc_init(region, sldns_buffer_begin(buf), c->b32_len); if(!c->b32) return 0; return 1; } int nsec3_hash_name(rbtree_t* table, struct regional* region, sldns_buffer* buf, struct ub_packed_rrset_key* nsec3, int rr, uint8_t* dname, size_t dname_len, struct nsec3_cached_hash** hash) { struct nsec3_cached_hash* c; struct nsec3_cached_hash looki; #ifdef UNBOUND_DEBUG rbnode_t* n; #endif int r; looki.node.key = &looki; looki.nsec3 = nsec3; looki.rr = rr; looki.dname = dname; looki.dname_len = dname_len; /* lookup first in cache */ c = (struct nsec3_cached_hash*)rbtree_search(table, &looki); if(c) { *hash = c; return 1; } /* create a new entry */ c = (struct nsec3_cached_hash*)regional_alloc(region, sizeof(*c)); if(!c) return 0; c->node.key = c; c->nsec3 = nsec3; c->rr = rr; c->dname = dname; c->dname_len = dname_len; r = nsec3_calc_hash(region, buf, c); if(r != 1) return r; r = nsec3_calc_b32(region, buf, c); if(r != 1) return r; #ifdef UNBOUND_DEBUG n = #else (void) #endif rbtree_insert(table, &c->node); log_assert(n); /* cannot be duplicate, just did lookup */ *hash = c; return 1; } /** * compare a label lowercased */ static int label_compare_lower(uint8_t* lab1, uint8_t* lab2, size_t lablen) { size_t i; for(i=0; irk.dname; /* compare, does hash of name based on params in this NSEC3 * match the owner name of this NSEC3? * name must be: base32 . zone name * so; first label must not be root label (not zero length), * and match the b32 encoded hash length, * and the label content match the b32 encoded hash * and the rest must be the zone name. */ if(hash->b32_len != 0 && (size_t)nm[0] == hash->b32_len && label_compare_lower(nm+1, hash->b32, hash->b32_len) == 0 && query_dname_compare(nm+(size_t)nm[0]+1, flt->zone) == 0) { return 1; } return 0; } /** * Find matching NSEC3 * Find the NSEC3Record that matches a hash of a name. * @param env: module environment with temporary region and buffer. * @param flt: the NSEC3 RR filter, contains zone name and RRs. * @param ct: cached hashes table. * @param nm: name to look for. * @param nmlen: length of name. * @param rrset: nsec3 that matches is returned here. * @param rr: rr number in nsec3 rrset that matches. * @return true if a matching NSEC3 is found, false if not. */ static int find_matching_nsec3(struct module_env* env, struct nsec3_filter* flt, rbtree_t* ct, uint8_t* nm, size_t nmlen, struct ub_packed_rrset_key** rrset, int* rr) { size_t i_rs; int i_rr; struct ub_packed_rrset_key* s; struct nsec3_cached_hash* hash; int r; /* this loop skips other-zone and unknown NSEC3s, also non-NSEC3 RRs */ for(s=filter_first(flt, &i_rs, &i_rr); s; s=filter_next(flt, &i_rs, &i_rr)) { /* get name hashed for this NSEC3 RR */ r = nsec3_hash_name(ct, env->scratch, env->scratch_buffer, s, i_rr, nm, nmlen, &hash); if(r == 0) { log_err("nsec3: malloc failure"); break; /* alloc failure */ } else if(r < 0) continue; /* malformed NSEC3 */ else if(nsec3_hash_matches_owner(flt, hash, s)) { *rrset = s; /* rrset with this name */ *rr = i_rr; /* matches hash with these parameters */ return 1; } } *rrset = NULL; *rr = 0; return 0; } int nsec3_covers(uint8_t* zone, struct nsec3_cached_hash* hash, struct ub_packed_rrset_key* rrset, int rr, sldns_buffer* buf) { uint8_t* next, *owner; size_t nextlen; int len; if(!nsec3_get_nextowner(rrset, rr, &next, &nextlen)) return 0; /* malformed RR proves nothing */ /* check the owner name is a hashed value . apex * base32 encoded values must have equal length. * hash_value and next hash value must have equal length. */ if(nextlen != hash->hash_len || hash->hash_len==0||hash->b32_len==0|| (size_t)*rrset->rk.dname != hash->b32_len || query_dname_compare(rrset->rk.dname+1+ (size_t)*rrset->rk.dname, zone) != 0) return 0; /* bad lengths or owner name */ /* This is the "normal case: owner < next and owner < hash < next */ if(label_compare_lower(rrset->rk.dname+1, hash->b32, hash->b32_len) < 0 && memcmp(hash->hash, next, nextlen) < 0) return 1; /* convert owner name from text to binary */ sldns_buffer_clear(buf); owner = sldns_buffer_begin(buf); len = sldns_b32_pton_extended_hex((char*)rrset->rk.dname+1, hash->b32_len, owner, sldns_buffer_limit(buf)); if(len<1) return 0; /* bad owner name in some way */ if((size_t)len != hash->hash_len || (size_t)len != nextlen) return 0; /* wrong length */ /* this is the end of zone case: next <= owner && * (hash > owner || hash < next) * this also covers the only-apex case of next==owner. */ if(memcmp(next, owner, nextlen) <= 0 && ( memcmp(hash->hash, owner, nextlen) > 0 || memcmp(hash->hash, next, nextlen) < 0)) { return 1; } return 0; } /** * findCoveringNSEC3 * Given a name, find a covering NSEC3 from among a list of NSEC3s. * * @param env: module environment with temporary region and buffer. * @param flt: the NSEC3 RR filter, contains zone name and RRs. * @param ct: cached hashes table. * @param nm: name to check if covered. * @param nmlen: length of name. * @param rrset: covering NSEC3 rrset is returned here. * @param rr: rr of cover is returned here. * @return true if a covering NSEC3 is found, false if not. */ static int find_covering_nsec3(struct module_env* env, struct nsec3_filter* flt, rbtree_t* ct, uint8_t* nm, size_t nmlen, struct ub_packed_rrset_key** rrset, int* rr) { size_t i_rs; int i_rr; struct ub_packed_rrset_key* s; struct nsec3_cached_hash* hash; int r; /* this loop skips other-zone and unknown NSEC3s, also non-NSEC3 RRs */ for(s=filter_first(flt, &i_rs, &i_rr); s; s=filter_next(flt, &i_rs, &i_rr)) { /* get name hashed for this NSEC3 RR */ r = nsec3_hash_name(ct, env->scratch, env->scratch_buffer, s, i_rr, nm, nmlen, &hash); if(r == 0) { log_err("nsec3: malloc failure"); break; /* alloc failure */ } else if(r < 0) continue; /* malformed NSEC3 */ else if(nsec3_covers(flt->zone, hash, s, i_rr, env->scratch_buffer)) { *rrset = s; /* rrset with this name */ *rr = i_rr; /* covers hash with these parameters */ return 1; } } *rrset = NULL; *rr = 0; return 0; } /** * findClosestEncloser * Given a name and a list of NSEC3s, find the candidate closest encloser. * This will be the first ancestor of 'name' (including itself) to have a * matching NSEC3 RR. * @param env: module environment with temporary region and buffer. * @param flt: the NSEC3 RR filter, contains zone name and RRs. * @param ct: cached hashes table. * @param qinfo: query that is verified for. * @param ce: closest encloser information is returned in here. * @return true if a closest encloser candidate is found, false if not. */ static int nsec3_find_closest_encloser(struct module_env* env, struct nsec3_filter* flt, rbtree_t* ct, struct query_info* qinfo, struct ce_response* ce) { uint8_t* nm = qinfo->qname; size_t nmlen = qinfo->qname_len; /* This scans from longest name to shortest, so the first match * we find is the only viable candidate. */ /* (David:) FIXME: modify so that the NSEC3 matching the zone apex need * not be present. (Mark Andrews idea). * (Wouter:) But make sure you check for DNAME bit in zone apex, * if the NSEC3 you find is the only NSEC3 in the zone, then this * may be the case. */ while(dname_subdomain_c(nm, flt->zone)) { if(find_matching_nsec3(env, flt, ct, nm, nmlen, &ce->ce_rrset, &ce->ce_rr)) { ce->ce = nm; ce->ce_len = nmlen; return 1; } dname_remove_label(&nm, &nmlen); } return 0; } /** * Given a qname and its proven closest encloser, calculate the "next * closest" name. Basically, this is the name that is one label longer than * the closest encloser that is still a subdomain of qname. * * @param qname: query name. * @param qnamelen: length of qname. * @param ce: closest encloser * @param nm: result name. * @param nmlen: length of nm. */ static void next_closer(uint8_t* qname, size_t qnamelen, uint8_t* ce, uint8_t** nm, size_t* nmlen) { int strip = dname_count_labels(qname) - dname_count_labels(ce) -1; *nm = qname; *nmlen = qnamelen; if(strip>0) dname_remove_labels(nm, nmlen, strip); } /** * proveClosestEncloser * Given a List of nsec3 RRs, find and prove the closest encloser to qname. * @param env: module environment with temporary region and buffer. * @param flt: the NSEC3 RR filter, contains zone name and RRs. * @param ct: cached hashes table. * @param qinfo: query that is verified for. * @param prove_does_not_exist: If true, then if the closest encloser * turns out to be qname, then null is returned. * If set true, and the return value is true, then you can be * certain that the ce.nc_rrset and ce.nc_rr are set properly. * @param ce: closest encloser information is returned in here. * @return bogus if no closest encloser could be proven. * secure if a closest encloser could be proven, ce is set. * insecure if the closest-encloser candidate turns out to prove * that an insecure delegation exists above the qname. */ static enum sec_status nsec3_prove_closest_encloser(struct module_env* env, struct nsec3_filter* flt, rbtree_t* ct, struct query_info* qinfo, int prove_does_not_exist, struct ce_response* ce) { uint8_t* nc; size_t nc_len; /* robust: clean out ce, in case it gets abused later */ memset(ce, 0, sizeof(*ce)); if(!nsec3_find_closest_encloser(env, flt, ct, qinfo, ce)) { verbose(VERB_ALGO, "nsec3 proveClosestEncloser: could " "not find a candidate for the closest encloser."); return sec_status_bogus; } log_nametypeclass(VERB_ALGO, "ce candidate", ce->ce, 0, 0); if(query_dname_compare(ce->ce, qinfo->qname) == 0) { if(prove_does_not_exist) { verbose(VERB_ALGO, "nsec3 proveClosestEncloser: " "proved that qname existed, bad"); return sec_status_bogus; } /* otherwise, we need to nothing else to prove that qname * is its own closest encloser. */ return sec_status_secure; } /* If the closest encloser is actually a delegation, then the * response should have been a referral. If it is a DNAME, then * it should have been a DNAME response. */ if(nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_NS) && !nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_SOA)) { if(!nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_DS)) { verbose(VERB_ALGO, "nsec3 proveClosestEncloser: " "closest encloser is insecure delegation"); return sec_status_insecure; } verbose(VERB_ALGO, "nsec3 proveClosestEncloser: closest " "encloser was a delegation, bad"); return sec_status_bogus; } if(nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_DNAME)) { verbose(VERB_ALGO, "nsec3 proveClosestEncloser: closest " "encloser was a DNAME, bad"); return sec_status_bogus; } /* Otherwise, we need to show that the next closer name is covered. */ next_closer(qinfo->qname, qinfo->qname_len, ce->ce, &nc, &nc_len); if(!find_covering_nsec3(env, flt, ct, nc, nc_len, &ce->nc_rrset, &ce->nc_rr)) { verbose(VERB_ALGO, "nsec3: Could not find proof that the " "candidate encloser was the closest encloser"); return sec_status_bogus; } return sec_status_secure; } /** allocate a wildcard for the closest encloser */ static uint8_t* nsec3_ce_wildcard(struct regional* region, uint8_t* ce, size_t celen, size_t* len) { uint8_t* nm; if(celen > LDNS_MAX_DOMAINLEN - 2) return 0; /* too long */ nm = (uint8_t*)regional_alloc(region, celen+2); if(!nm) { log_err("nsec3 wildcard: out of memory"); return 0; /* alloc failure */ } nm[0] = 1; nm[1] = (uint8_t)'*'; /* wildcard label */ memmove(nm+2, ce, celen); *len = celen+2; return nm; } /** Do the name error proof */ static enum sec_status nsec3_do_prove_nameerror(struct module_env* env, struct nsec3_filter* flt, rbtree_t* ct, struct query_info* qinfo) { struct ce_response ce; uint8_t* wc; size_t wclen; struct ub_packed_rrset_key* wc_rrset; int wc_rr; enum sec_status sec; /* First locate and prove the closest encloser to qname. We will * use the variant that fails if the closest encloser turns out * to be qname. */ sec = nsec3_prove_closest_encloser(env, flt, ct, qinfo, 1, &ce); if(sec != sec_status_secure) { if(sec == sec_status_bogus) verbose(VERB_ALGO, "nsec3 nameerror proof: failed " "to prove a closest encloser"); else verbose(VERB_ALGO, "nsec3 nameerror proof: closest " "nsec3 is an insecure delegation"); return sec; } log_nametypeclass(VERB_ALGO, "nsec3 namerror: proven ce=", ce.ce,0,0); /* At this point, we know that qname does not exist. Now we need * to prove that the wildcard does not exist. */ log_assert(ce.ce); wc = nsec3_ce_wildcard(env->scratch, ce.ce, ce.ce_len, &wclen); if(!wc || !find_covering_nsec3(env, flt, ct, wc, wclen, &wc_rrset, &wc_rr)) { verbose(VERB_ALGO, "nsec3 nameerror proof: could not prove " "that the applicable wildcard did not exist."); return sec_status_bogus; } if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) { verbose(VERB_ALGO, "nsec3 nameerror proof: nc has optout"); return sec_status_insecure; } return sec_status_secure; } enum sec_status nsec3_prove_nameerror(struct module_env* env, struct val_env* ve, struct ub_packed_rrset_key** list, size_t num, struct query_info* qinfo, struct key_entry_key* kkey) { rbtree_t ct; struct nsec3_filter flt; if(!list || num == 0 || !kkey || !key_entry_isgood(kkey)) return sec_status_bogus; /* no valid NSEC3s, bogus */ rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */ filter_init(&flt, list, num, qinfo); /* init RR iterator */ if(!flt.zone) return sec_status_bogus; /* no RRs */ if(nsec3_iteration_count_high(ve, &flt, kkey)) return sec_status_insecure; /* iteration count too high */ log_nametypeclass(VERB_ALGO, "start nsec3 nameerror proof, zone", flt.zone, 0, 0); return nsec3_do_prove_nameerror(env, &flt, &ct, qinfo); } /* * No code to handle qtype=NSEC3 specially. * This existed in early drafts, but was later (-05) removed. */ /** Do the nodata proof */ static enum sec_status nsec3_do_prove_nodata(struct module_env* env, struct nsec3_filter* flt, rbtree_t* ct, struct query_info* qinfo) { struct ce_response ce; uint8_t* wc; size_t wclen; struct ub_packed_rrset_key* rrset; int rr; enum sec_status sec; if(find_matching_nsec3(env, flt, ct, qinfo->qname, qinfo->qname_len, &rrset, &rr)) { /* cases 1 and 2 */ if(nsec3_has_type(rrset, rr, qinfo->qtype)) { verbose(VERB_ALGO, "proveNodata: Matching NSEC3 " "proved that type existed, bogus"); return sec_status_bogus; } else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_CNAME)) { verbose(VERB_ALGO, "proveNodata: Matching NSEC3 " "proved that a CNAME existed, bogus"); return sec_status_bogus; } /* * If type DS: filter_init zone find already found a parent * zone, so this nsec3 is from a parent zone. * o can be not a delegation (unusual query for normal name, * no DS anyway, but we can verify that). * o can be a delegation (which is the usual DS check). * o may not have the SOA bit set (only the top of the * zone, which must have been above the name, has that). * Except for the root; which is checked by itself. * * If not type DS: matching nsec3 must not be a delegation. */ if(qinfo->qtype == LDNS_RR_TYPE_DS && qinfo->qname_len != 1 && nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA) && !dname_is_root(qinfo->qname)) { verbose(VERB_ALGO, "proveNodata: apex NSEC3 " "abused for no DS proof, bogus"); return sec_status_bogus; } else if(qinfo->qtype != LDNS_RR_TYPE_DS && nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS) && !nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) { if(!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_DS)) { verbose(VERB_ALGO, "proveNodata: matching " "NSEC3 is insecure delegation"); return sec_status_insecure; } verbose(VERB_ALGO, "proveNodata: matching " "NSEC3 is a delegation, bogus"); return sec_status_bogus; } return sec_status_secure; } /* For cases 3 - 5, we need the proven closest encloser, and it * can't match qname. Although, at this point, we know that it * won't since we just checked that. */ sec = nsec3_prove_closest_encloser(env, flt, ct, qinfo, 1, &ce); if(sec == sec_status_bogus) { verbose(VERB_ALGO, "proveNodata: did not match qname, " "nor found a proven closest encloser."); return sec_status_bogus; } else if(sec==sec_status_insecure && qinfo->qtype!=LDNS_RR_TYPE_DS){ verbose(VERB_ALGO, "proveNodata: closest nsec3 is insecure " "delegation."); return sec_status_insecure; } /* Case 3: removed */ /* Case 4: */ log_assert(ce.ce); wc = nsec3_ce_wildcard(env->scratch, ce.ce, ce.ce_len, &wclen); if(wc && find_matching_nsec3(env, flt, ct, wc, wclen, &rrset, &rr)) { /* found wildcard */ if(nsec3_has_type(rrset, rr, qinfo->qtype)) { verbose(VERB_ALGO, "nsec3 nodata proof: matching " "wildcard had qtype, bogus"); return sec_status_bogus; } else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_CNAME)) { verbose(VERB_ALGO, "nsec3 nodata proof: matching " "wildcard had a CNAME, bogus"); return sec_status_bogus; } if(qinfo->qtype == LDNS_RR_TYPE_DS && qinfo->qname_len != 1 && nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) { verbose(VERB_ALGO, "nsec3 nodata proof: matching " "wildcard for no DS proof has a SOA, bogus"); return sec_status_bogus; } else if(qinfo->qtype != LDNS_RR_TYPE_DS && nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS) && !nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) { verbose(VERB_ALGO, "nsec3 nodata proof: matching " "wilcard is a delegation, bogus"); return sec_status_bogus; } /* everything is peachy keen, except for optout spans */ if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) { verbose(VERB_ALGO, "nsec3 nodata proof: matching " "wildcard is in optout range, insecure"); return sec_status_insecure; } return sec_status_secure; } /* Case 5: */ /* Due to forwarders, cnames, and other collating effects, we * can see the ordinary unsigned data from a zone beneath an * insecure delegation under an optout here */ if(!ce.nc_rrset) { verbose(VERB_ALGO, "nsec3 nodata proof: no next closer nsec3"); return sec_status_bogus; } /* We need to make sure that the covering NSEC3 is opt-out. */ log_assert(ce.nc_rrset); if(!nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) { if(qinfo->qtype == LDNS_RR_TYPE_DS) verbose(VERB_ALGO, "proveNodata: covering NSEC3 was not " "opt-out in an opt-out DS NOERROR/NODATA case."); else verbose(VERB_ALGO, "proveNodata: could not find matching " "NSEC3, nor matching wildcard, nor optout NSEC3 " "-- no more options, bogus."); return sec_status_bogus; } /* RFC5155 section 9.2: if nc has optout then no AD flag set */ return sec_status_insecure; } enum sec_status nsec3_prove_nodata(struct module_env* env, struct val_env* ve, struct ub_packed_rrset_key** list, size_t num, struct query_info* qinfo, struct key_entry_key* kkey) { rbtree_t ct; struct nsec3_filter flt; if(!list || num == 0 || !kkey || !key_entry_isgood(kkey)) return sec_status_bogus; /* no valid NSEC3s, bogus */ rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */ filter_init(&flt, list, num, qinfo); /* init RR iterator */ if(!flt.zone) return sec_status_bogus; /* no RRs */ if(nsec3_iteration_count_high(ve, &flt, kkey)) return sec_status_insecure; /* iteration count too high */ return nsec3_do_prove_nodata(env, &flt, &ct, qinfo); } enum sec_status nsec3_prove_wildcard(struct module_env* env, struct val_env* ve, struct ub_packed_rrset_key** list, size_t num, struct query_info* qinfo, struct key_entry_key* kkey, uint8_t* wc) { rbtree_t ct; struct nsec3_filter flt; struct ce_response ce; uint8_t* nc; size_t nc_len; size_t wclen; (void)dname_count_size_labels(wc, &wclen); if(!list || num == 0 || !kkey || !key_entry_isgood(kkey)) return sec_status_bogus; /* no valid NSEC3s, bogus */ rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */ filter_init(&flt, list, num, qinfo); /* init RR iterator */ if(!flt.zone) return sec_status_bogus; /* no RRs */ if(nsec3_iteration_count_high(ve, &flt, kkey)) return sec_status_insecure; /* iteration count too high */ /* We know what the (purported) closest encloser is by just * looking at the supposed generating wildcard. * The *. has already been removed from the wc name. */ memset(&ce, 0, sizeof(ce)); ce.ce = wc; ce.ce_len = wclen; /* Now we still need to prove that the original data did not exist. * Otherwise, we need to show that the next closer name is covered. */ next_closer(qinfo->qname, qinfo->qname_len, ce.ce, &nc, &nc_len); if(!find_covering_nsec3(env, &flt, &ct, nc, nc_len, &ce.nc_rrset, &ce.nc_rr)) { verbose(VERB_ALGO, "proveWildcard: did not find a covering " "NSEC3 that covered the next closer name."); return sec_status_bogus; } if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) { verbose(VERB_ALGO, "proveWildcard: NSEC3 optout"); return sec_status_insecure; } return sec_status_secure; } /** test if list is all secure */ static int list_is_secure(struct module_env* env, struct val_env* ve, struct ub_packed_rrset_key** list, size_t num, struct key_entry_key* kkey, char** reason) { struct packed_rrset_data* d; size_t i; for(i=0; ientry.data; if(list[i]->rk.type != htons(LDNS_RR_TYPE_NSEC3)) continue; if(d->security == sec_status_secure) continue; rrset_check_sec_status(env->rrset_cache, list[i], *env->now); if(d->security == sec_status_secure) continue; d->security = val_verify_rrset_entry(env, ve, list[i], kkey, reason); if(d->security != sec_status_secure) { verbose(VERB_ALGO, "NSEC3 did not verify"); return 0; } rrset_update_sec_status(env->rrset_cache, list[i], *env->now); } return 1; } enum sec_status nsec3_prove_nods(struct module_env* env, struct val_env* ve, struct ub_packed_rrset_key** list, size_t num, struct query_info* qinfo, struct key_entry_key* kkey, char** reason) { rbtree_t ct; struct nsec3_filter flt; struct ce_response ce; struct ub_packed_rrset_key* rrset; int rr; log_assert(qinfo->qtype == LDNS_RR_TYPE_DS); if(!list || num == 0 || !kkey || !key_entry_isgood(kkey)) { *reason = "no valid NSEC3s"; return sec_status_bogus; /* no valid NSEC3s, bogus */ } if(!list_is_secure(env, ve, list, num, kkey, reason)) return sec_status_bogus; /* not all NSEC3 records secure */ rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */ filter_init(&flt, list, num, qinfo); /* init RR iterator */ if(!flt.zone) { *reason = "no NSEC3 records"; return sec_status_bogus; /* no RRs */ } if(nsec3_iteration_count_high(ve, &flt, kkey)) return sec_status_insecure; /* iteration count too high */ /* Look for a matching NSEC3 to qname -- this is the normal * NODATA case. */ if(find_matching_nsec3(env, &flt, &ct, qinfo->qname, qinfo->qname_len, &rrset, &rr)) { /* If the matching NSEC3 has the SOA bit set, it is from * the wrong zone (the child instead of the parent). If * it has the DS bit set, then we were lied to. */ if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA) && qinfo->qname_len != 1) { verbose(VERB_ALGO, "nsec3 provenods: NSEC3 is from" " child zone, bogus"); *reason = "NSEC3 from child zone"; return sec_status_bogus; } else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_DS)) { verbose(VERB_ALGO, "nsec3 provenods: NSEC3 has qtype" " DS, bogus"); *reason = "NSEC3 has DS in bitmap"; return sec_status_bogus; } /* If the NSEC3 RR doesn't have the NS bit set, then * this wasn't a delegation point. */ if(!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS)) return sec_status_indeterminate; /* Otherwise, this proves no DS. */ return sec_status_secure; } /* Otherwise, we are probably in the opt-out case. */ if(nsec3_prove_closest_encloser(env, &flt, &ct, qinfo, 1, &ce) != sec_status_secure) { /* an insecure delegation *above* the qname does not prove * anything about this qname exactly, and bogus is bogus */ verbose(VERB_ALGO, "nsec3 provenods: did not match qname, " "nor found a proven closest encloser."); *reason = "no NSEC3 closest encloser"; return sec_status_bogus; } /* robust extra check */ if(!ce.nc_rrset) { verbose(VERB_ALGO, "nsec3 nods proof: no next closer nsec3"); *reason = "no NSEC3 next closer"; return sec_status_bogus; } /* we had the closest encloser proof, then we need to check that the * covering NSEC3 was opt-out -- the proveClosestEncloser step already * checked to see if the closest encloser was a delegation or DNAME. */ log_assert(ce.nc_rrset); if(!nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) { verbose(VERB_ALGO, "nsec3 provenods: covering NSEC3 was not " "opt-out in an opt-out DS NOERROR/NODATA case."); *reason = "covering NSEC3 was not opt-out in an opt-out " "DS NOERROR/NODATA case"; return sec_status_bogus; } /* RFC5155 section 9.2: if nc has optout then no AD flag set */ return sec_status_insecure; } enum sec_status nsec3_prove_nxornodata(struct module_env* env, struct val_env* ve, struct ub_packed_rrset_key** list, size_t num, struct query_info* qinfo, struct key_entry_key* kkey, int* nodata) { enum sec_status sec, secnx; rbtree_t ct; struct nsec3_filter flt; *nodata = 0; if(!list || num == 0 || !kkey || !key_entry_isgood(kkey)) return sec_status_bogus; /* no valid NSEC3s, bogus */ rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */ filter_init(&flt, list, num, qinfo); /* init RR iterator */ if(!flt.zone) return sec_status_bogus; /* no RRs */ if(nsec3_iteration_count_high(ve, &flt, kkey)) return sec_status_insecure; /* iteration count too high */ /* try nxdomain and nodata after another, while keeping the * hash cache intact */ secnx = nsec3_do_prove_nameerror(env, &flt, &ct, qinfo); if(secnx==sec_status_secure) return sec_status_secure; sec = nsec3_do_prove_nodata(env, &flt, &ct, qinfo); if(sec==sec_status_secure) { *nodata = 1; } else if(sec == sec_status_insecure) { *nodata = 1; } else if(secnx == sec_status_insecure) { sec = sec_status_insecure; } return sec; }