//===---------------- SemaCodeComplete.cpp - Code Completion ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the code-completion semantic actions. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Overload.h" #include "clang/Sema/CodeCompleteConsumer.h" #include "clang/Sema/ExternalSemaSource.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/Preprocessor.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include #include #include using namespace clang; using namespace sema; namespace { /// \brief A container of code-completion results. class ResultBuilder { public: /// \brief The type of a name-lookup filter, which can be provided to the /// name-lookup routines to specify which declarations should be included in /// the result set (when it returns true) and which declarations should be /// filtered out (returns false). typedef bool (ResultBuilder::*LookupFilter)(NamedDecl *) const; typedef CodeCompletionResult Result; private: /// \brief The actual results we have found. std::vector Results; /// \brief A record of all of the declarations we have found and placed /// into the result set, used to ensure that no declaration ever gets into /// the result set twice. llvm::SmallPtrSet AllDeclsFound; typedef std::pair DeclIndexPair; /// \brief An entry in the shadow map, which is optimized to store /// a single (declaration, index) mapping (the common case) but /// can also store a list of (declaration, index) mappings. class ShadowMapEntry { typedef llvm::SmallVector DeclIndexPairVector; /// \brief Contains either the solitary NamedDecl * or a vector /// of (declaration, index) pairs. llvm::PointerUnion DeclOrVector; /// \brief When the entry contains a single declaration, this is /// the index associated with that entry. unsigned SingleDeclIndex; public: ShadowMapEntry() : DeclOrVector(), SingleDeclIndex(0) { } void Add(NamedDecl *ND, unsigned Index) { if (DeclOrVector.isNull()) { // 0 - > 1 elements: just set the single element information. DeclOrVector = ND; SingleDeclIndex = Index; return; } if (NamedDecl *PrevND = DeclOrVector.dyn_cast()) { // 1 -> 2 elements: create the vector of results and push in the // existing declaration. DeclIndexPairVector *Vec = new DeclIndexPairVector; Vec->push_back(DeclIndexPair(PrevND, SingleDeclIndex)); DeclOrVector = Vec; } // Add the new element to the end of the vector. DeclOrVector.get()->push_back( DeclIndexPair(ND, Index)); } void Destroy() { if (DeclIndexPairVector *Vec = DeclOrVector.dyn_cast()) { delete Vec; DeclOrVector = ((NamedDecl *)0); } } // Iteration. class iterator; iterator begin() const; iterator end() const; }; /// \brief A mapping from declaration names to the declarations that have /// this name within a particular scope and their index within the list of /// results. typedef llvm::DenseMap ShadowMap; /// \brief The semantic analysis object for which results are being /// produced. Sema &SemaRef; /// \brief If non-NULL, a filter function used to remove any code-completion /// results that are not desirable. LookupFilter Filter; /// \brief Whether we should allow declarations as /// nested-name-specifiers that would otherwise be filtered out. bool AllowNestedNameSpecifiers; /// \brief If set, the type that we would prefer our resulting value /// declarations to have. /// /// Closely matching the preferred type gives a boost to a result's /// priority. CanQualType PreferredType; /// \brief A list of shadow maps, which is used to model name hiding at /// different levels of, e.g., the inheritance hierarchy. std::list ShadowMaps; /// \brief If we're potentially referring to a C++ member function, the set /// of qualifiers applied to the object type. Qualifiers ObjectTypeQualifiers; /// \brief Whether the \p ObjectTypeQualifiers field is active. bool HasObjectTypeQualifiers; /// \brief The selector that we prefer. Selector PreferredSelector; void AdjustResultPriorityForPreferredType(Result &R); public: explicit ResultBuilder(Sema &SemaRef, LookupFilter Filter = 0) : SemaRef(SemaRef), Filter(Filter), AllowNestedNameSpecifiers(false), HasObjectTypeQualifiers(false) { } /// \brief Whether we should include code patterns in the completion /// results. bool includeCodePatterns() const { return SemaRef.CodeCompleter && SemaRef.CodeCompleter->includeCodePatterns(); } /// \brief Set the filter used for code-completion results. void setFilter(LookupFilter Filter) { this->Filter = Filter; } typedef std::vector::iterator iterator; iterator begin() { return Results.begin(); } iterator end() { return Results.end(); } Result *data() { return Results.empty()? 0 : &Results.front(); } unsigned size() const { return Results.size(); } bool empty() const { return Results.empty(); } /// \brief Specify the preferred type. void setPreferredType(QualType T) { PreferredType = SemaRef.Context.getCanonicalType(T); } /// \brief Set the cv-qualifiers on the object type, for us in filtering /// calls to member functions. /// /// When there are qualifiers in this set, they will be used to filter /// out member functions that aren't available (because there will be a /// cv-qualifier mismatch) or prefer functions with an exact qualifier /// match. void setObjectTypeQualifiers(Qualifiers Quals) { ObjectTypeQualifiers = Quals; HasObjectTypeQualifiers = true; } /// \brief Set the preferred selector. /// /// When an Objective-C method declaration result is added, and that /// method's selector matches this preferred selector, we give that method /// a slight priority boost. void setPreferredSelector(Selector Sel) { PreferredSelector = Sel; } /// \brief Specify whether nested-name-specifiers are allowed. void allowNestedNameSpecifiers(bool Allow = true) { AllowNestedNameSpecifiers = Allow; } /// \brief Determine whether the given declaration is at all interesting /// as a code-completion result. /// /// \param ND the declaration that we are inspecting. /// /// \param AsNestedNameSpecifier will be set true if this declaration is /// only interesting when it is a nested-name-specifier. bool isInterestingDecl(NamedDecl *ND, bool &AsNestedNameSpecifier) const; /// \brief Check whether the result is hidden by the Hiding declaration. /// /// \returns true if the result is hidden and cannot be found, false if /// the hidden result could still be found. When false, \p R may be /// modified to describe how the result can be found (e.g., via extra /// qualification). bool CheckHiddenResult(Result &R, DeclContext *CurContext, NamedDecl *Hiding); /// \brief Add a new result to this result set (if it isn't already in one /// of the shadow maps), or replace an existing result (for, e.g., a /// redeclaration). /// /// \param CurContext the result to add (if it is unique). /// /// \param R the context in which this result will be named. void MaybeAddResult(Result R, DeclContext *CurContext = 0); /// \brief Add a new result to this result set, where we already know /// the hiding declation (if any). /// /// \param R the result to add (if it is unique). /// /// \param CurContext the context in which this result will be named. /// /// \param Hiding the declaration that hides the result. /// /// \param InBaseClass whether the result was found in a base /// class of the searched context. void AddResult(Result R, DeclContext *CurContext, NamedDecl *Hiding, bool InBaseClass); /// \brief Add a new non-declaration result to this result set. void AddResult(Result R); /// \brief Enter into a new scope. void EnterNewScope(); /// \brief Exit from the current scope. void ExitScope(); /// \brief Ignore this declaration, if it is seen again. void Ignore(Decl *D) { AllDeclsFound.insert(D->getCanonicalDecl()); } /// \name Name lookup predicates /// /// These predicates can be passed to the name lookup functions to filter the /// results of name lookup. All of the predicates have the same type, so that /// //@{ bool IsOrdinaryName(NamedDecl *ND) const; bool IsOrdinaryNonTypeName(NamedDecl *ND) const; bool IsIntegralConstantValue(NamedDecl *ND) const; bool IsOrdinaryNonValueName(NamedDecl *ND) const; bool IsNestedNameSpecifier(NamedDecl *ND) const; bool IsEnum(NamedDecl *ND) const; bool IsClassOrStruct(NamedDecl *ND) const; bool IsUnion(NamedDecl *ND) const; bool IsNamespace(NamedDecl *ND) const; bool IsNamespaceOrAlias(NamedDecl *ND) const; bool IsType(NamedDecl *ND) const; bool IsMember(NamedDecl *ND) const; bool IsObjCIvar(NamedDecl *ND) const; bool IsObjCMessageReceiver(NamedDecl *ND) const; bool IsObjCCollection(NamedDecl *ND) const; //@} }; } class ResultBuilder::ShadowMapEntry::iterator { llvm::PointerUnion DeclOrIterator; unsigned SingleDeclIndex; public: typedef DeclIndexPair value_type; typedef value_type reference; typedef std::ptrdiff_t difference_type; typedef std::input_iterator_tag iterator_category; class pointer { DeclIndexPair Value; public: pointer(const DeclIndexPair &Value) : Value(Value) { } const DeclIndexPair *operator->() const { return &Value; } }; iterator() : DeclOrIterator((NamedDecl *)0), SingleDeclIndex(0) { } iterator(NamedDecl *SingleDecl, unsigned Index) : DeclOrIterator(SingleDecl), SingleDeclIndex(Index) { } iterator(const DeclIndexPair *Iterator) : DeclOrIterator(Iterator), SingleDeclIndex(0) { } iterator &operator++() { if (DeclOrIterator.is()) { DeclOrIterator = (NamedDecl *)0; SingleDeclIndex = 0; return *this; } const DeclIndexPair *I = DeclOrIterator.get(); ++I; DeclOrIterator = I; return *this; } iterator operator++(int) { iterator tmp(*this); ++(*this); return tmp; } reference operator*() const { if (NamedDecl *ND = DeclOrIterator.dyn_cast()) return reference(ND, SingleDeclIndex); return *DeclOrIterator.get(); } pointer operator->() const { return pointer(**this); } friend bool operator==(const iterator &X, const iterator &Y) { return X.DeclOrIterator.getOpaqueValue() == Y.DeclOrIterator.getOpaqueValue() && X.SingleDeclIndex == Y.SingleDeclIndex; } friend bool operator!=(const iterator &X, const iterator &Y) { return !(X == Y); } }; ResultBuilder::ShadowMapEntry::iterator ResultBuilder::ShadowMapEntry::begin() const { if (DeclOrVector.isNull()) return iterator(); if (NamedDecl *ND = DeclOrVector.dyn_cast()) return iterator(ND, SingleDeclIndex); return iterator(DeclOrVector.get()->begin()); } ResultBuilder::ShadowMapEntry::iterator ResultBuilder::ShadowMapEntry::end() const { if (DeclOrVector.is() || DeclOrVector.isNull()) return iterator(); return iterator(DeclOrVector.get()->end()); } /// \brief Compute the qualification required to get from the current context /// (\p CurContext) to the target context (\p TargetContext). /// /// \param Context the AST context in which the qualification will be used. /// /// \param CurContext the context where an entity is being named, which is /// typically based on the current scope. /// /// \param TargetContext the context in which the named entity actually /// resides. /// /// \returns a nested name specifier that refers into the target context, or /// NULL if no qualification is needed. static NestedNameSpecifier * getRequiredQualification(ASTContext &Context, DeclContext *CurContext, DeclContext *TargetContext) { llvm::SmallVector TargetParents; for (DeclContext *CommonAncestor = TargetContext; CommonAncestor && !CommonAncestor->Encloses(CurContext); CommonAncestor = CommonAncestor->getLookupParent()) { if (CommonAncestor->isTransparentContext() || CommonAncestor->isFunctionOrMethod()) continue; TargetParents.push_back(CommonAncestor); } NestedNameSpecifier *Result = 0; while (!TargetParents.empty()) { DeclContext *Parent = TargetParents.back(); TargetParents.pop_back(); if (NamespaceDecl *Namespace = dyn_cast(Parent)) { if (!Namespace->getIdentifier()) continue; Result = NestedNameSpecifier::Create(Context, Result, Namespace); } else if (TagDecl *TD = dyn_cast(Parent)) Result = NestedNameSpecifier::Create(Context, Result, false, Context.getTypeDeclType(TD).getTypePtr()); } return Result; } bool ResultBuilder::isInterestingDecl(NamedDecl *ND, bool &AsNestedNameSpecifier) const { AsNestedNameSpecifier = false; ND = ND->getUnderlyingDecl(); unsigned IDNS = ND->getIdentifierNamespace(); // Skip unnamed entities. if (!ND->getDeclName()) return false; // Friend declarations and declarations introduced due to friends are never // added as results. if (IDNS & (Decl::IDNS_OrdinaryFriend | Decl::IDNS_TagFriend)) return false; // Class template (partial) specializations are never added as results. if (isa(ND) || isa(ND)) return false; // Using declarations themselves are never added as results. if (isa(ND)) return false; // Some declarations have reserved names that we don't want to ever show. if (const IdentifierInfo *Id = ND->getIdentifier()) { // __va_list_tag is a freak of nature. Find it and skip it. if (Id->isStr("__va_list_tag") || Id->isStr("__builtin_va_list")) return false; // Filter out names reserved for the implementation (C99 7.1.3, // C++ [lib.global.names]) if they come from a system header. // // FIXME: Add predicate for this. if (Id->getLength() >= 2) { const char *Name = Id->getNameStart(); if (Name[0] == '_' && (Name[1] == '_' || (Name[1] >= 'A' && Name[1] <= 'Z')) && (ND->getLocation().isInvalid() || SemaRef.SourceMgr.isInSystemHeader( SemaRef.SourceMgr.getSpellingLoc(ND->getLocation())))) return false; } } // C++ constructors are never found by name lookup. if (isa(ND)) return false; if (Filter == &ResultBuilder::IsNestedNameSpecifier || ((isa(ND) || isa(ND)) && Filter != &ResultBuilder::IsNamespace && Filter != &ResultBuilder::IsNamespaceOrAlias)) AsNestedNameSpecifier = true; // Filter out any unwanted results. if (Filter && !(this->*Filter)(ND)) { // Check whether it is interesting as a nested-name-specifier. if (AllowNestedNameSpecifiers && SemaRef.getLangOptions().CPlusPlus && IsNestedNameSpecifier(ND) && (Filter != &ResultBuilder::IsMember || (isa(ND) && cast(ND)->isInjectedClassName()))) { AsNestedNameSpecifier = true; return true; } return false; } // ... then it must be interesting! return true; } bool ResultBuilder::CheckHiddenResult(Result &R, DeclContext *CurContext, NamedDecl *Hiding) { // In C, there is no way to refer to a hidden name. // FIXME: This isn't true; we can find a tag name hidden by an ordinary // name if we introduce the tag type. if (!SemaRef.getLangOptions().CPlusPlus) return true; DeclContext *HiddenCtx = R.Declaration->getDeclContext()->getRedeclContext(); // There is no way to qualify a name declared in a function or method. if (HiddenCtx->isFunctionOrMethod()) return true; if (HiddenCtx == Hiding->getDeclContext()->getRedeclContext()) return true; // We can refer to the result with the appropriate qualification. Do it. R.Hidden = true; R.QualifierIsInformative = false; if (!R.Qualifier) R.Qualifier = getRequiredQualification(SemaRef.Context, CurContext, R.Declaration->getDeclContext()); return false; } /// \brief A simplified classification of types used to determine whether two /// types are "similar enough" when adjusting priorities. SimplifiedTypeClass clang::getSimplifiedTypeClass(CanQualType T) { switch (T->getTypeClass()) { case Type::Builtin: switch (cast(T)->getKind()) { case BuiltinType::Void: return STC_Void; case BuiltinType::NullPtr: return STC_Pointer; case BuiltinType::Overload: case BuiltinType::Dependent: case BuiltinType::UndeducedAuto: return STC_Other; case BuiltinType::ObjCId: case BuiltinType::ObjCClass: case BuiltinType::ObjCSel: return STC_ObjectiveC; default: return STC_Arithmetic; } return STC_Other; case Type::Complex: return STC_Arithmetic; case Type::Pointer: return STC_Pointer; case Type::BlockPointer: return STC_Block; case Type::LValueReference: case Type::RValueReference: return getSimplifiedTypeClass(T->getAs()->getPointeeType()); case Type::ConstantArray: case Type::IncompleteArray: case Type::VariableArray: case Type::DependentSizedArray: return STC_Array; case Type::DependentSizedExtVector: case Type::Vector: case Type::ExtVector: return STC_Arithmetic; case Type::FunctionProto: case Type::FunctionNoProto: return STC_Function; case Type::Record: return STC_Record; case Type::Enum: return STC_Arithmetic; case Type::ObjCObject: case Type::ObjCInterface: case Type::ObjCObjectPointer: return STC_ObjectiveC; default: return STC_Other; } } /// \brief Get the type that a given expression will have if this declaration /// is used as an expression in its "typical" code-completion form. QualType clang::getDeclUsageType(ASTContext &C, NamedDecl *ND) { ND = cast(ND->getUnderlyingDecl()); if (TypeDecl *Type = dyn_cast(ND)) return C.getTypeDeclType(Type); if (ObjCInterfaceDecl *Iface = dyn_cast(ND)) return C.getObjCInterfaceType(Iface); QualType T; if (FunctionDecl *Function = dyn_cast(ND)) T = Function->getCallResultType(); else if (ObjCMethodDecl *Method = dyn_cast(ND)) T = Method->getSendResultType(); else if (FunctionTemplateDecl *FunTmpl = dyn_cast(ND)) T = FunTmpl->getTemplatedDecl()->getCallResultType(); else if (EnumConstantDecl *Enumerator = dyn_cast(ND)) T = C.getTypeDeclType(cast(Enumerator->getDeclContext())); else if (ObjCPropertyDecl *Property = dyn_cast(ND)) T = Property->getType(); else if (ValueDecl *Value = dyn_cast(ND)) T = Value->getType(); else return QualType(); return T.getNonReferenceType(); } void ResultBuilder::AdjustResultPriorityForPreferredType(Result &R) { QualType T = getDeclUsageType(SemaRef.Context, R.Declaration); if (T.isNull()) return; CanQualType TC = SemaRef.Context.getCanonicalType(T); // Check for exactly-matching types (modulo qualifiers). if (SemaRef.Context.hasSameUnqualifiedType(PreferredType, TC)) { if (PreferredType->isVoidType()) R.Priority += CCD_VoidMatch; else R.Priority /= CCF_ExactTypeMatch; } // Check for nearly-matching types, based on classification of each. else if ((getSimplifiedTypeClass(PreferredType) == getSimplifiedTypeClass(TC)) && !(PreferredType->isEnumeralType() && TC->isEnumeralType())) R.Priority /= CCF_SimilarTypeMatch; } void ResultBuilder::MaybeAddResult(Result R, DeclContext *CurContext) { assert(!ShadowMaps.empty() && "Must enter into a results scope"); if (R.Kind != Result::RK_Declaration) { // For non-declaration results, just add the result. Results.push_back(R); return; } // Look through using declarations. if (UsingShadowDecl *Using = dyn_cast(R.Declaration)) { MaybeAddResult(Result(Using->getTargetDecl(), R.Qualifier), CurContext); return; } Decl *CanonDecl = R.Declaration->getCanonicalDecl(); unsigned IDNS = CanonDecl->getIdentifierNamespace(); bool AsNestedNameSpecifier = false; if (!isInterestingDecl(R.Declaration, AsNestedNameSpecifier)) return; ShadowMap &SMap = ShadowMaps.back(); ShadowMapEntry::iterator I, IEnd; ShadowMap::iterator NamePos = SMap.find(R.Declaration->getDeclName()); if (NamePos != SMap.end()) { I = NamePos->second.begin(); IEnd = NamePos->second.end(); } for (; I != IEnd; ++I) { NamedDecl *ND = I->first; unsigned Index = I->second; if (ND->getCanonicalDecl() == CanonDecl) { // This is a redeclaration. Always pick the newer declaration. Results[Index].Declaration = R.Declaration; // We're done. return; } } // This is a new declaration in this scope. However, check whether this // declaration name is hidden by a similarly-named declaration in an outer // scope. std::list::iterator SM, SMEnd = ShadowMaps.end(); --SMEnd; for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) { ShadowMapEntry::iterator I, IEnd; ShadowMap::iterator NamePos = SM->find(R.Declaration->getDeclName()); if (NamePos != SM->end()) { I = NamePos->second.begin(); IEnd = NamePos->second.end(); } for (; I != IEnd; ++I) { // A tag declaration does not hide a non-tag declaration. if (I->first->hasTagIdentifierNamespace() && (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | Decl::IDNS_ObjCProtocol))) continue; // Protocols are in distinct namespaces from everything else. if (((I->first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) || (IDNS & Decl::IDNS_ObjCProtocol)) && I->first->getIdentifierNamespace() != IDNS) continue; // The newly-added result is hidden by an entry in the shadow map. if (CheckHiddenResult(R, CurContext, I->first)) return; break; } } // Make sure that any given declaration only shows up in the result set once. if (!AllDeclsFound.insert(CanonDecl)) return; // If this is an Objective-C method declaration whose selector matches our // preferred selector, give it a priority boost. if (!PreferredSelector.isNull()) if (ObjCMethodDecl *Method = dyn_cast(R.Declaration)) if (PreferredSelector == Method->getSelector()) R.Priority += CCD_SelectorMatch; // If the filter is for nested-name-specifiers, then this result starts a // nested-name-specifier. if (AsNestedNameSpecifier) { R.StartsNestedNameSpecifier = true; R.Priority = CCP_NestedNameSpecifier; } else if (!PreferredType.isNull()) AdjustResultPriorityForPreferredType(R); // If this result is supposed to have an informative qualifier, add one. if (R.QualifierIsInformative && !R.Qualifier && !R.StartsNestedNameSpecifier) { DeclContext *Ctx = R.Declaration->getDeclContext(); if (NamespaceDecl *Namespace = dyn_cast(Ctx)) R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, Namespace); else if (TagDecl *Tag = dyn_cast(Ctx)) R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, false, SemaRef.Context.getTypeDeclType(Tag).getTypePtr()); else R.QualifierIsInformative = false; } // Insert this result into the set of results and into the current shadow // map. SMap[R.Declaration->getDeclName()].Add(R.Declaration, Results.size()); Results.push_back(R); } void ResultBuilder::AddResult(Result R, DeclContext *CurContext, NamedDecl *Hiding, bool InBaseClass = false) { if (R.Kind != Result::RK_Declaration) { // For non-declaration results, just add the result. Results.push_back(R); return; } // Look through using declarations. if (UsingShadowDecl *Using = dyn_cast(R.Declaration)) { AddResult(Result(Using->getTargetDecl(), R.Qualifier), CurContext, Hiding); return; } bool AsNestedNameSpecifier = false; if (!isInterestingDecl(R.Declaration, AsNestedNameSpecifier)) return; if (Hiding && CheckHiddenResult(R, CurContext, Hiding)) return; // Make sure that any given declaration only shows up in the result set once. if (!AllDeclsFound.insert(R.Declaration->getCanonicalDecl())) return; // If the filter is for nested-name-specifiers, then this result starts a // nested-name-specifier. if (AsNestedNameSpecifier) { R.StartsNestedNameSpecifier = true; R.Priority = CCP_NestedNameSpecifier; } else if (Filter == &ResultBuilder::IsMember && !R.Qualifier && InBaseClass && isa(R.Declaration->getDeclContext() ->getRedeclContext())) R.QualifierIsInformative = true; // If this result is supposed to have an informative qualifier, add one. if (R.QualifierIsInformative && !R.Qualifier && !R.StartsNestedNameSpecifier) { DeclContext *Ctx = R.Declaration->getDeclContext(); if (NamespaceDecl *Namespace = dyn_cast(Ctx)) R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, Namespace); else if (TagDecl *Tag = dyn_cast(Ctx)) R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, false, SemaRef.Context.getTypeDeclType(Tag).getTypePtr()); else R.QualifierIsInformative = false; } // Adjust the priority if this result comes from a base class. if (InBaseClass) R.Priority += CCD_InBaseClass; // If this is an Objective-C method declaration whose selector matches our // preferred selector, give it a priority boost. if (!PreferredSelector.isNull()) if (ObjCMethodDecl *Method = dyn_cast(R.Declaration)) if (PreferredSelector == Method->getSelector()) R.Priority += CCD_SelectorMatch; if (!PreferredType.isNull()) AdjustResultPriorityForPreferredType(R); if (HasObjectTypeQualifiers) if (CXXMethodDecl *Method = dyn_cast(R.Declaration)) if (Method->isInstance()) { Qualifiers MethodQuals = Qualifiers::fromCVRMask(Method->getTypeQualifiers()); if (ObjectTypeQualifiers == MethodQuals) R.Priority += CCD_ObjectQualifierMatch; else if (ObjectTypeQualifiers - MethodQuals) { // The method cannot be invoked, because doing so would drop // qualifiers. return; } } // Insert this result into the set of results. Results.push_back(R); } void ResultBuilder::AddResult(Result R) { assert(R.Kind != Result::RK_Declaration && "Declaration results need more context"); Results.push_back(R); } /// \brief Enter into a new scope. void ResultBuilder::EnterNewScope() { ShadowMaps.push_back(ShadowMap()); } /// \brief Exit from the current scope. void ResultBuilder::ExitScope() { for (ShadowMap::iterator E = ShadowMaps.back().begin(), EEnd = ShadowMaps.back().end(); E != EEnd; ++E) E->second.Destroy(); ShadowMaps.pop_back(); } /// \brief Determines whether this given declaration will be found by /// ordinary name lookup. bool ResultBuilder::IsOrdinaryName(NamedDecl *ND) const { ND = cast(ND->getUnderlyingDecl()); unsigned IDNS = Decl::IDNS_Ordinary; if (SemaRef.getLangOptions().CPlusPlus) IDNS |= Decl::IDNS_Tag | Decl::IDNS_Namespace | Decl::IDNS_Member; else if (SemaRef.getLangOptions().ObjC1 && isa(ND)) return true; return ND->getIdentifierNamespace() & IDNS; } /// \brief Determines whether this given declaration will be found by /// ordinary name lookup but is not a type name. bool ResultBuilder::IsOrdinaryNonTypeName(NamedDecl *ND) const { ND = cast(ND->getUnderlyingDecl()); if (isa(ND) || isa(ND)) return false; unsigned IDNS = Decl::IDNS_Ordinary; if (SemaRef.getLangOptions().CPlusPlus) IDNS |= Decl::IDNS_Tag | Decl::IDNS_Namespace | Decl::IDNS_Member; else if (SemaRef.getLangOptions().ObjC1 && isa(ND)) return true; return ND->getIdentifierNamespace() & IDNS; } bool ResultBuilder::IsIntegralConstantValue(NamedDecl *ND) const { if (!IsOrdinaryNonTypeName(ND)) return 0; if (ValueDecl *VD = dyn_cast(ND->getUnderlyingDecl())) if (VD->getType()->isIntegralOrEnumerationType()) return true; return false; } /// \brief Determines whether this given declaration will be found by /// ordinary name lookup. bool ResultBuilder::IsOrdinaryNonValueName(NamedDecl *ND) const { ND = cast(ND->getUnderlyingDecl()); unsigned IDNS = Decl::IDNS_Ordinary; if (SemaRef.getLangOptions().CPlusPlus) IDNS |= Decl::IDNS_Tag | Decl::IDNS_Namespace; return (ND->getIdentifierNamespace() & IDNS) && !isa(ND) && !isa(ND) && !isa(ND); } /// \brief Determines whether the given declaration is suitable as the /// start of a C++ nested-name-specifier, e.g., a class or namespace. bool ResultBuilder::IsNestedNameSpecifier(NamedDecl *ND) const { // Allow us to find class templates, too. if (ClassTemplateDecl *ClassTemplate = dyn_cast(ND)) ND = ClassTemplate->getTemplatedDecl(); return SemaRef.isAcceptableNestedNameSpecifier(ND); } /// \brief Determines whether the given declaration is an enumeration. bool ResultBuilder::IsEnum(NamedDecl *ND) const { return isa(ND); } /// \brief Determines whether the given declaration is a class or struct. bool ResultBuilder::IsClassOrStruct(NamedDecl *ND) const { // Allow us to find class templates, too. if (ClassTemplateDecl *ClassTemplate = dyn_cast(ND)) ND = ClassTemplate->getTemplatedDecl(); if (RecordDecl *RD = dyn_cast(ND)) return RD->getTagKind() == TTK_Class || RD->getTagKind() == TTK_Struct; return false; } /// \brief Determines whether the given declaration is a union. bool ResultBuilder::IsUnion(NamedDecl *ND) const { // Allow us to find class templates, too. if (ClassTemplateDecl *ClassTemplate = dyn_cast(ND)) ND = ClassTemplate->getTemplatedDecl(); if (RecordDecl *RD = dyn_cast(ND)) return RD->getTagKind() == TTK_Union; return false; } /// \brief Determines whether the given declaration is a namespace. bool ResultBuilder::IsNamespace(NamedDecl *ND) const { return isa(ND); } /// \brief Determines whether the given declaration is a namespace or /// namespace alias. bool ResultBuilder::IsNamespaceOrAlias(NamedDecl *ND) const { return isa(ND) || isa(ND); } /// \brief Determines whether the given declaration is a type. bool ResultBuilder::IsType(NamedDecl *ND) const { if (UsingShadowDecl *Using = dyn_cast(ND)) ND = Using->getTargetDecl(); return isa(ND) || isa(ND); } /// \brief Determines which members of a class should be visible via /// "." or "->". Only value declarations, nested name specifiers, and /// using declarations thereof should show up. bool ResultBuilder::IsMember(NamedDecl *ND) const { if (UsingShadowDecl *Using = dyn_cast(ND)) ND = Using->getTargetDecl(); return isa(ND) || isa(ND) || isa(ND); } static bool isObjCReceiverType(ASTContext &C, QualType T) { T = C.getCanonicalType(T); switch (T->getTypeClass()) { case Type::ObjCObject: case Type::ObjCInterface: case Type::ObjCObjectPointer: return true; case Type::Builtin: switch (cast(T)->getKind()) { case BuiltinType::ObjCId: case BuiltinType::ObjCClass: case BuiltinType::ObjCSel: return true; default: break; } return false; default: break; } if (!C.getLangOptions().CPlusPlus) return false; // FIXME: We could perform more analysis here to determine whether a // particular class type has any conversions to Objective-C types. For now, // just accept all class types. return T->isDependentType() || T->isRecordType(); } bool ResultBuilder::IsObjCMessageReceiver(NamedDecl *ND) const { QualType T = getDeclUsageType(SemaRef.Context, ND); if (T.isNull()) return false; T = SemaRef.Context.getBaseElementType(T); return isObjCReceiverType(SemaRef.Context, T); } bool ResultBuilder::IsObjCCollection(NamedDecl *ND) const { if ((SemaRef.getLangOptions().CPlusPlus && !IsOrdinaryName(ND)) || (!SemaRef.getLangOptions().CPlusPlus && !IsOrdinaryNonTypeName(ND))) return false; QualType T = getDeclUsageType(SemaRef.Context, ND); if (T.isNull()) return false; T = SemaRef.Context.getBaseElementType(T); return T->isObjCObjectType() || T->isObjCObjectPointerType() || T->isObjCIdType() || (SemaRef.getLangOptions().CPlusPlus && T->isRecordType()); } /// \rief Determines whether the given declaration is an Objective-C /// instance variable. bool ResultBuilder::IsObjCIvar(NamedDecl *ND) const { return isa(ND); } namespace { /// \brief Visible declaration consumer that adds a code-completion result /// for each visible declaration. class CodeCompletionDeclConsumer : public VisibleDeclConsumer { ResultBuilder &Results; DeclContext *CurContext; public: CodeCompletionDeclConsumer(ResultBuilder &Results, DeclContext *CurContext) : Results(Results), CurContext(CurContext) { } virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass) { Results.AddResult(ND, CurContext, Hiding, InBaseClass); } }; } /// \brief Add type specifiers for the current language as keyword results. static void AddTypeSpecifierResults(const LangOptions &LangOpts, ResultBuilder &Results) { typedef CodeCompletionResult Result; Results.AddResult(Result("short", CCP_Type)); Results.AddResult(Result("long", CCP_Type)); Results.AddResult(Result("signed", CCP_Type)); Results.AddResult(Result("unsigned", CCP_Type)); Results.AddResult(Result("void", CCP_Type)); Results.AddResult(Result("char", CCP_Type)); Results.AddResult(Result("int", CCP_Type)); Results.AddResult(Result("float", CCP_Type)); Results.AddResult(Result("double", CCP_Type)); Results.AddResult(Result("enum", CCP_Type)); Results.AddResult(Result("struct", CCP_Type)); Results.AddResult(Result("union", CCP_Type)); Results.AddResult(Result("const", CCP_Type)); Results.AddResult(Result("volatile", CCP_Type)); if (LangOpts.C99) { // C99-specific Results.AddResult(Result("_Complex", CCP_Type)); Results.AddResult(Result("_Imaginary", CCP_Type)); Results.AddResult(Result("_Bool", CCP_Type)); Results.AddResult(Result("restrict", CCP_Type)); } if (LangOpts.CPlusPlus) { // C++-specific Results.AddResult(Result("bool", CCP_Type)); Results.AddResult(Result("class", CCP_Type)); Results.AddResult(Result("wchar_t", CCP_Type)); // typename qualified-id CodeCompletionString *Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("typename"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("qualifier"); Pattern->AddTextChunk("::"); Pattern->AddPlaceholderChunk("name"); Results.AddResult(Result(Pattern)); if (LangOpts.CPlusPlus0x) { Results.AddResult(Result("auto", CCP_Type)); Results.AddResult(Result("char16_t", CCP_Type)); Results.AddResult(Result("char32_t", CCP_Type)); CodeCompletionString *Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("decltype"); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("expression"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); } } // GNU extensions if (LangOpts.GNUMode) { // FIXME: Enable when we actually support decimal floating point. // Results.AddResult(Result("_Decimal32")); // Results.AddResult(Result("_Decimal64")); // Results.AddResult(Result("_Decimal128")); CodeCompletionString *Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("typeof"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("expression"); Results.AddResult(Result(Pattern)); Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("typeof"); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("type"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); } } static void AddStorageSpecifiers(Sema::ParserCompletionContext CCC, const LangOptions &LangOpts, ResultBuilder &Results) { typedef CodeCompletionResult Result; // Note: we don't suggest either "auto" or "register", because both // are pointless as storage specifiers. Elsewhere, we suggest "auto" // in C++0x as a type specifier. Results.AddResult(Result("extern")); Results.AddResult(Result("static")); } static void AddFunctionSpecifiers(Sema::ParserCompletionContext CCC, const LangOptions &LangOpts, ResultBuilder &Results) { typedef CodeCompletionResult Result; switch (CCC) { case Sema::PCC_Class: case Sema::PCC_MemberTemplate: if (LangOpts.CPlusPlus) { Results.AddResult(Result("explicit")); Results.AddResult(Result("friend")); Results.AddResult(Result("mutable")); Results.AddResult(Result("virtual")); } // Fall through case Sema::PCC_ObjCInterface: case Sema::PCC_ObjCImplementation: case Sema::PCC_Namespace: case Sema::PCC_Template: if (LangOpts.CPlusPlus || LangOpts.C99) Results.AddResult(Result("inline")); break; case Sema::PCC_ObjCInstanceVariableList: case Sema::PCC_Expression: case Sema::PCC_Statement: case Sema::PCC_ForInit: case Sema::PCC_Condition: case Sema::PCC_RecoveryInFunction: case Sema::PCC_Type: break; } } static void AddObjCExpressionResults(ResultBuilder &Results, bool NeedAt); static void AddObjCStatementResults(ResultBuilder &Results, bool NeedAt); static void AddObjCVisibilityResults(const LangOptions &LangOpts, ResultBuilder &Results, bool NeedAt); static void AddObjCImplementationResults(const LangOptions &LangOpts, ResultBuilder &Results, bool NeedAt); static void AddObjCInterfaceResults(const LangOptions &LangOpts, ResultBuilder &Results, bool NeedAt); static void AddObjCTopLevelResults(ResultBuilder &Results, bool NeedAt); static void AddTypedefResult(ResultBuilder &Results) { CodeCompletionString *Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("typedef"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("type"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("name"); Results.AddResult(CodeCompletionResult(Pattern)); } static bool WantTypesInContext(Sema::ParserCompletionContext CCC, const LangOptions &LangOpts) { if (LangOpts.CPlusPlus) return true; switch (CCC) { case Sema::PCC_Namespace: case Sema::PCC_Class: case Sema::PCC_ObjCInstanceVariableList: case Sema::PCC_Template: case Sema::PCC_MemberTemplate: case Sema::PCC_Statement: case Sema::PCC_RecoveryInFunction: case Sema::PCC_Type: return true; case Sema::PCC_ObjCInterface: case Sema::PCC_ObjCImplementation: case Sema::PCC_Expression: case Sema::PCC_Condition: return false; case Sema::PCC_ForInit: return LangOpts.ObjC1 || LangOpts.C99; } return false; } /// \brief Add language constructs that show up for "ordinary" names. static void AddOrdinaryNameResults(Sema::ParserCompletionContext CCC, Scope *S, Sema &SemaRef, ResultBuilder &Results) { typedef CodeCompletionResult Result; switch (CCC) { case Sema::PCC_Namespace: if (SemaRef.getLangOptions().CPlusPlus) { CodeCompletionString *Pattern = 0; if (Results.includeCodePatterns()) { // namespace { declarations } CodeCompletionString *Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("namespace"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("identifier"); Pattern->AddChunk(CodeCompletionString::CK_LeftBrace); Pattern->AddPlaceholderChunk("declarations"); Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace); Pattern->AddChunk(CodeCompletionString::CK_RightBrace); Results.AddResult(Result(Pattern)); } // namespace identifier = identifier ; Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("namespace"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("name"); Pattern->AddChunk(CodeCompletionString::CK_Equal); Pattern->AddPlaceholderChunk("namespace"); Results.AddResult(Result(Pattern)); // Using directives Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("using"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddTextChunk("namespace"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("identifier"); Results.AddResult(Result(Pattern)); // asm(string-literal) Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("asm"); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("string-literal"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); if (Results.includeCodePatterns()) { // Explicit template instantiation Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("template"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("declaration"); Results.AddResult(Result(Pattern)); } } if (SemaRef.getLangOptions().ObjC1) AddObjCTopLevelResults(Results, true); AddTypedefResult(Results); // Fall through case Sema::PCC_Class: if (SemaRef.getLangOptions().CPlusPlus) { // Using declaration CodeCompletionString *Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("using"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("qualifier"); Pattern->AddTextChunk("::"); Pattern->AddPlaceholderChunk("name"); Results.AddResult(Result(Pattern)); // using typename qualifier::name (only in a dependent context) if (SemaRef.CurContext->isDependentContext()) { Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("using"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddTextChunk("typename"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("qualifier"); Pattern->AddTextChunk("::"); Pattern->AddPlaceholderChunk("name"); Results.AddResult(Result(Pattern)); } if (CCC == Sema::PCC_Class) { AddTypedefResult(Results); // public: Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("public"); Pattern->AddChunk(CodeCompletionString::CK_Colon); Results.AddResult(Result(Pattern)); // protected: Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("protected"); Pattern->AddChunk(CodeCompletionString::CK_Colon); Results.AddResult(Result(Pattern)); // private: Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("private"); Pattern->AddChunk(CodeCompletionString::CK_Colon); Results.AddResult(Result(Pattern)); } } // Fall through case Sema::PCC_Template: case Sema::PCC_MemberTemplate: if (SemaRef.getLangOptions().CPlusPlus && Results.includeCodePatterns()) { // template < parameters > CodeCompletionString *Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("template"); Pattern->AddChunk(CodeCompletionString::CK_LeftAngle); Pattern->AddPlaceholderChunk("parameters"); Pattern->AddChunk(CodeCompletionString::CK_RightAngle); Results.AddResult(Result(Pattern)); } AddStorageSpecifiers(CCC, SemaRef.getLangOptions(), Results); AddFunctionSpecifiers(CCC, SemaRef.getLangOptions(), Results); break; case Sema::PCC_ObjCInterface: AddObjCInterfaceResults(SemaRef.getLangOptions(), Results, true); AddStorageSpecifiers(CCC, SemaRef.getLangOptions(), Results); AddFunctionSpecifiers(CCC, SemaRef.getLangOptions(), Results); break; case Sema::PCC_ObjCImplementation: AddObjCImplementationResults(SemaRef.getLangOptions(), Results, true); AddStorageSpecifiers(CCC, SemaRef.getLangOptions(), Results); AddFunctionSpecifiers(CCC, SemaRef.getLangOptions(), Results); break; case Sema::PCC_ObjCInstanceVariableList: AddObjCVisibilityResults(SemaRef.getLangOptions(), Results, true); break; case Sema::PCC_RecoveryInFunction: case Sema::PCC_Statement: { AddTypedefResult(Results); CodeCompletionString *Pattern = 0; if (SemaRef.getLangOptions().CPlusPlus && Results.includeCodePatterns()) { Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("try"); Pattern->AddChunk(CodeCompletionString::CK_LeftBrace); Pattern->AddPlaceholderChunk("statements"); Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace); Pattern->AddChunk(CodeCompletionString::CK_RightBrace); Pattern->AddTextChunk("catch"); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("declaration"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Pattern->AddChunk(CodeCompletionString::CK_LeftBrace); Pattern->AddPlaceholderChunk("statements"); Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace); Pattern->AddChunk(CodeCompletionString::CK_RightBrace); Results.AddResult(Result(Pattern)); } if (SemaRef.getLangOptions().ObjC1) AddObjCStatementResults(Results, true); if (Results.includeCodePatterns()) { // if (condition) { statements } Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("if"); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); if (SemaRef.getLangOptions().CPlusPlus) Pattern->AddPlaceholderChunk("condition"); else Pattern->AddPlaceholderChunk("expression"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Pattern->AddChunk(CodeCompletionString::CK_LeftBrace); Pattern->AddPlaceholderChunk("statements"); Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace); Pattern->AddChunk(CodeCompletionString::CK_RightBrace); Results.AddResult(Result(Pattern)); // switch (condition) { } Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("switch"); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); if (SemaRef.getLangOptions().CPlusPlus) Pattern->AddPlaceholderChunk("condition"); else Pattern->AddPlaceholderChunk("expression"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Pattern->AddChunk(CodeCompletionString::CK_LeftBrace); Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace); Pattern->AddChunk(CodeCompletionString::CK_RightBrace); Results.AddResult(Result(Pattern)); } // Switch-specific statements. if (!SemaRef.getCurFunction()->SwitchStack.empty()) { // case expression: Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("case"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("expression"); Pattern->AddChunk(CodeCompletionString::CK_Colon); Results.AddResult(Result(Pattern)); // default: Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("default"); Pattern->AddChunk(CodeCompletionString::CK_Colon); Results.AddResult(Result(Pattern)); } if (Results.includeCodePatterns()) { /// while (condition) { statements } Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("while"); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); if (SemaRef.getLangOptions().CPlusPlus) Pattern->AddPlaceholderChunk("condition"); else Pattern->AddPlaceholderChunk("expression"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Pattern->AddChunk(CodeCompletionString::CK_LeftBrace); Pattern->AddPlaceholderChunk("statements"); Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace); Pattern->AddChunk(CodeCompletionString::CK_RightBrace); Results.AddResult(Result(Pattern)); // do { statements } while ( expression ); Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("do"); Pattern->AddChunk(CodeCompletionString::CK_LeftBrace); Pattern->AddPlaceholderChunk("statements"); Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace); Pattern->AddChunk(CodeCompletionString::CK_RightBrace); Pattern->AddTextChunk("while"); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("expression"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); // for ( for-init-statement ; condition ; expression ) { statements } Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("for"); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); if (SemaRef.getLangOptions().CPlusPlus || SemaRef.getLangOptions().C99) Pattern->AddPlaceholderChunk("init-statement"); else Pattern->AddPlaceholderChunk("init-expression"); Pattern->AddChunk(CodeCompletionString::CK_SemiColon); Pattern->AddPlaceholderChunk("condition"); Pattern->AddChunk(CodeCompletionString::CK_SemiColon); Pattern->AddPlaceholderChunk("inc-expression"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Pattern->AddChunk(CodeCompletionString::CK_LeftBrace); Pattern->AddPlaceholderChunk("statements"); Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace); Pattern->AddChunk(CodeCompletionString::CK_RightBrace); Results.AddResult(Result(Pattern)); } if (S->getContinueParent()) { // continue ; Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("continue"); Results.AddResult(Result(Pattern)); } if (S->getBreakParent()) { // break ; Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("break"); Results.AddResult(Result(Pattern)); } // "return expression ;" or "return ;", depending on whether we // know the function is void or not. bool isVoid = false; if (FunctionDecl *Function = dyn_cast(SemaRef.CurContext)) isVoid = Function->getResultType()->isVoidType(); else if (ObjCMethodDecl *Method = dyn_cast(SemaRef.CurContext)) isVoid = Method->getResultType()->isVoidType(); else if (SemaRef.getCurBlock() && !SemaRef.getCurBlock()->ReturnType.isNull()) isVoid = SemaRef.getCurBlock()->ReturnType->isVoidType(); Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("return"); if (!isVoid) { Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("expression"); } Results.AddResult(Result(Pattern)); // goto identifier ; Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("goto"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("label"); Results.AddResult(Result(Pattern)); // Using directives Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("using"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddTextChunk("namespace"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("identifier"); Results.AddResult(Result(Pattern)); } // Fall through (for statement expressions). case Sema::PCC_ForInit: case Sema::PCC_Condition: AddStorageSpecifiers(CCC, SemaRef.getLangOptions(), Results); // Fall through: conditions and statements can have expressions. case Sema::PCC_Expression: { CodeCompletionString *Pattern = 0; if (SemaRef.getLangOptions().CPlusPlus) { // 'this', if we're in a non-static member function. if (CXXMethodDecl *Method = dyn_cast(SemaRef.CurContext)) if (!Method->isStatic()) Results.AddResult(Result("this")); // true, false Results.AddResult(Result("true")); Results.AddResult(Result("false")); // dynamic_cast < type-id > ( expression ) Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("dynamic_cast"); Pattern->AddChunk(CodeCompletionString::CK_LeftAngle); Pattern->AddPlaceholderChunk("type"); Pattern->AddChunk(CodeCompletionString::CK_RightAngle); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("expression"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); // static_cast < type-id > ( expression ) Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("static_cast"); Pattern->AddChunk(CodeCompletionString::CK_LeftAngle); Pattern->AddPlaceholderChunk("type"); Pattern->AddChunk(CodeCompletionString::CK_RightAngle); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("expression"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); // reinterpret_cast < type-id > ( expression ) Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("reinterpret_cast"); Pattern->AddChunk(CodeCompletionString::CK_LeftAngle); Pattern->AddPlaceholderChunk("type"); Pattern->AddChunk(CodeCompletionString::CK_RightAngle); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("expression"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); // const_cast < type-id > ( expression ) Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("const_cast"); Pattern->AddChunk(CodeCompletionString::CK_LeftAngle); Pattern->AddPlaceholderChunk("type"); Pattern->AddChunk(CodeCompletionString::CK_RightAngle); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("expression"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); // typeid ( expression-or-type ) Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("typeid"); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("expression-or-type"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); // new T ( ... ) Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("new"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("type"); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("expressions"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); // new T [ ] ( ... ) Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("new"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("type"); Pattern->AddChunk(CodeCompletionString::CK_LeftBracket); Pattern->AddPlaceholderChunk("size"); Pattern->AddChunk(CodeCompletionString::CK_RightBracket); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("expressions"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); // delete expression Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("delete"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("expression"); Results.AddResult(Result(Pattern)); // delete [] expression Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("delete"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddChunk(CodeCompletionString::CK_LeftBracket); Pattern->AddChunk(CodeCompletionString::CK_RightBracket); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("expression"); Results.AddResult(Result(Pattern)); // throw expression Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("throw"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("expression"); Results.AddResult(Result(Pattern)); // FIXME: Rethrow? } if (SemaRef.getLangOptions().ObjC1) { // Add "super", if we're in an Objective-C class with a superclass. if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { // The interface can be NULL. if (ObjCInterfaceDecl *ID = Method->getClassInterface()) if (ID->getSuperClass()) Results.AddResult(Result("super")); } AddObjCExpressionResults(Results, true); } // sizeof expression Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("sizeof"); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("expression-or-type"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); break; } case Sema::PCC_Type: break; } if (WantTypesInContext(CCC, SemaRef.getLangOptions())) AddTypeSpecifierResults(SemaRef.getLangOptions(), Results); if (SemaRef.getLangOptions().CPlusPlus && CCC != Sema::PCC_Type) Results.AddResult(Result("operator")); } /// \brief If the given declaration has an associated type, add it as a result /// type chunk. static void AddResultTypeChunk(ASTContext &Context, NamedDecl *ND, CodeCompletionString *Result) { if (!ND) return; // Determine the type of the declaration (if it has a type). QualType T; if (FunctionDecl *Function = dyn_cast(ND)) T = Function->getResultType(); else if (ObjCMethodDecl *Method = dyn_cast(ND)) T = Method->getResultType(); else if (FunctionTemplateDecl *FunTmpl = dyn_cast(ND)) T = FunTmpl->getTemplatedDecl()->getResultType(); else if (EnumConstantDecl *Enumerator = dyn_cast(ND)) T = Context.getTypeDeclType(cast(Enumerator->getDeclContext())); else if (isa(ND)) { /* Do nothing: ignore unresolved using declarations*/ } else if (ValueDecl *Value = dyn_cast(ND)) T = Value->getType(); else if (ObjCPropertyDecl *Property = dyn_cast(ND)) T = Property->getType(); if (T.isNull() || Context.hasSameType(T, Context.DependentTy)) return; PrintingPolicy Policy(Context.PrintingPolicy); Policy.AnonymousTagLocations = false; std::string TypeStr; T.getAsStringInternal(TypeStr, Policy); Result->AddResultTypeChunk(TypeStr); } static void MaybeAddSentinel(ASTContext &Context, NamedDecl *FunctionOrMethod, CodeCompletionString *Result) { if (SentinelAttr *Sentinel = FunctionOrMethod->getAttr()) if (Sentinel->getSentinel() == 0) { if (Context.getLangOptions().ObjC1 && Context.Idents.get("nil").hasMacroDefinition()) Result->AddTextChunk(", nil"); else if (Context.Idents.get("NULL").hasMacroDefinition()) Result->AddTextChunk(", NULL"); else Result->AddTextChunk(", (void*)0"); } } static std::string FormatFunctionParameter(ASTContext &Context, ParmVarDecl *Param, bool SuppressName = false) { bool ObjCMethodParam = isa(Param->getDeclContext()); if (Param->getType()->isDependentType() || !Param->getType()->isBlockPointerType()) { // The argument for a dependent or non-block parameter is a placeholder // containing that parameter's type. std::string Result; if (Param->getIdentifier() && !ObjCMethodParam && !SuppressName) Result = Param->getIdentifier()->getName(); Param->getType().getAsStringInternal(Result, Context.PrintingPolicy); if (ObjCMethodParam) { Result = "(" + Result; Result += ")"; if (Param->getIdentifier() && !SuppressName) Result += Param->getIdentifier()->getName(); } return Result; } // The argument for a block pointer parameter is a block literal with // the appropriate type. FunctionProtoTypeLoc *Block = 0; TypeLoc TL; if (TypeSourceInfo *TSInfo = Param->getTypeSourceInfo()) { TL = TSInfo->getTypeLoc().getUnqualifiedLoc(); while (true) { // Look through typedefs. if (TypedefTypeLoc *TypedefTL = dyn_cast(&TL)) { if (TypeSourceInfo *InnerTSInfo = TypedefTL->getTypedefDecl()->getTypeSourceInfo()) { TL = InnerTSInfo->getTypeLoc().getUnqualifiedLoc(); continue; } } // Look through qualified types if (QualifiedTypeLoc *QualifiedTL = dyn_cast(&TL)) { TL = QualifiedTL->getUnqualifiedLoc(); continue; } // Try to get the function prototype behind the block pointer type, // then we're done. if (BlockPointerTypeLoc *BlockPtr = dyn_cast(&TL)) { TL = BlockPtr->getPointeeLoc(); Block = dyn_cast(&TL); } break; } } if (!Block) { // We were unable to find a FunctionProtoTypeLoc with parameter names // for the block; just use the parameter type as a placeholder. std::string Result; Param->getType().getUnqualifiedType(). getAsStringInternal(Result, Context.PrintingPolicy); if (ObjCMethodParam) { Result = "(" + Result; Result += ")"; if (Param->getIdentifier()) Result += Param->getIdentifier()->getName(); } return Result; } // We have the function prototype behind the block pointer type, as it was // written in the source. std::string Result = "(^)("; for (unsigned I = 0, N = Block->getNumArgs(); I != N; ++I) { if (I) Result += ", "; Result += FormatFunctionParameter(Context, Block->getArg(I)); if (I == N - 1 && Block->getTypePtr()->isVariadic()) Result += ", ..."; } if (Block->getTypePtr()->isVariadic() && Block->getNumArgs() == 0) Result += "..."; else if (Block->getNumArgs() == 0 && !Context.getLangOptions().CPlusPlus) Result += "void"; Result += ")"; Block->getTypePtr()->getResultType().getAsStringInternal(Result, Context.PrintingPolicy); return Result; } /// \brief Add function parameter chunks to the given code completion string. static void AddFunctionParameterChunks(ASTContext &Context, FunctionDecl *Function, CodeCompletionString *Result) { typedef CodeCompletionString::Chunk Chunk; CodeCompletionString *CCStr = Result; for (unsigned P = 0, N = Function->getNumParams(); P != N; ++P) { ParmVarDecl *Param = Function->getParamDecl(P); if (Param->hasDefaultArg()) { // When we see an optional default argument, put that argument and // the remaining default arguments into a new, optional string. CodeCompletionString *Opt = new CodeCompletionString; CCStr->AddOptionalChunk(std::auto_ptr(Opt)); CCStr = Opt; } if (P != 0) CCStr->AddChunk(Chunk(CodeCompletionString::CK_Comma)); // Format the placeholder string. std::string PlaceholderStr = FormatFunctionParameter(Context, Param); if (Function->isVariadic() && P == N - 1) PlaceholderStr += ", ..."; // Add the placeholder string. CCStr->AddPlaceholderChunk(PlaceholderStr); } if (const FunctionProtoType *Proto = Function->getType()->getAs()) if (Proto->isVariadic()) { if (Proto->getNumArgs() == 0) CCStr->AddPlaceholderChunk("..."); MaybeAddSentinel(Context, Function, CCStr); } } /// \brief Add template parameter chunks to the given code completion string. static void AddTemplateParameterChunks(ASTContext &Context, TemplateDecl *Template, CodeCompletionString *Result, unsigned MaxParameters = 0) { typedef CodeCompletionString::Chunk Chunk; CodeCompletionString *CCStr = Result; bool FirstParameter = true; TemplateParameterList *Params = Template->getTemplateParameters(); TemplateParameterList::iterator PEnd = Params->end(); if (MaxParameters) PEnd = Params->begin() + MaxParameters; for (TemplateParameterList::iterator P = Params->begin(); P != PEnd; ++P) { bool HasDefaultArg = false; std::string PlaceholderStr; if (TemplateTypeParmDecl *TTP = dyn_cast(*P)) { if (TTP->wasDeclaredWithTypename()) PlaceholderStr = "typename"; else PlaceholderStr = "class"; if (TTP->getIdentifier()) { PlaceholderStr += ' '; PlaceholderStr += TTP->getIdentifier()->getName(); } HasDefaultArg = TTP->hasDefaultArgument(); } else if (NonTypeTemplateParmDecl *NTTP = dyn_cast(*P)) { if (NTTP->getIdentifier()) PlaceholderStr = NTTP->getIdentifier()->getName(); NTTP->getType().getAsStringInternal(PlaceholderStr, Context.PrintingPolicy); HasDefaultArg = NTTP->hasDefaultArgument(); } else { assert(isa(*P)); TemplateTemplateParmDecl *TTP = cast(*P); // Since putting the template argument list into the placeholder would // be very, very long, we just use an abbreviation. PlaceholderStr = "template<...> class"; if (TTP->getIdentifier()) { PlaceholderStr += ' '; PlaceholderStr += TTP->getIdentifier()->getName(); } HasDefaultArg = TTP->hasDefaultArgument(); } if (HasDefaultArg) { // When we see an optional default argument, put that argument and // the remaining default arguments into a new, optional string. CodeCompletionString *Opt = new CodeCompletionString; CCStr->AddOptionalChunk(std::auto_ptr(Opt)); CCStr = Opt; } if (FirstParameter) FirstParameter = false; else CCStr->AddChunk(Chunk(CodeCompletionString::CK_Comma)); // Add the placeholder string. CCStr->AddPlaceholderChunk(PlaceholderStr); } } /// \brief Add a qualifier to the given code-completion string, if the /// provided nested-name-specifier is non-NULL. static void AddQualifierToCompletionString(CodeCompletionString *Result, NestedNameSpecifier *Qualifier, bool QualifierIsInformative, ASTContext &Context) { if (!Qualifier) return; std::string PrintedNNS; { llvm::raw_string_ostream OS(PrintedNNS); Qualifier->print(OS, Context.PrintingPolicy); } if (QualifierIsInformative) Result->AddInformativeChunk(PrintedNNS); else Result->AddTextChunk(PrintedNNS); } static void AddFunctionTypeQualsToCompletionString(CodeCompletionString *Result, FunctionDecl *Function) { const FunctionProtoType *Proto = Function->getType()->getAs(); if (!Proto || !Proto->getTypeQuals()) return; std::string QualsStr; if (Proto->getTypeQuals() & Qualifiers::Const) QualsStr += " const"; if (Proto->getTypeQuals() & Qualifiers::Volatile) QualsStr += " volatile"; if (Proto->getTypeQuals() & Qualifiers::Restrict) QualsStr += " restrict"; Result->AddInformativeChunk(QualsStr); } /// \brief If possible, create a new code completion string for the given /// result. /// /// \returns Either a new, heap-allocated code completion string describing /// how to use this result, or NULL to indicate that the string or name of the /// result is all that is needed. CodeCompletionString * CodeCompletionResult::CreateCodeCompletionString(Sema &S, CodeCompletionString *Result) { typedef CodeCompletionString::Chunk Chunk; if (Kind == RK_Pattern) return Pattern->Clone(Result); if (!Result) Result = new CodeCompletionString; if (Kind == RK_Keyword) { Result->AddTypedTextChunk(Keyword); return Result; } if (Kind == RK_Macro) { MacroInfo *MI = S.PP.getMacroInfo(Macro); assert(MI && "Not a macro?"); Result->AddTypedTextChunk(Macro->getName()); if (!MI->isFunctionLike()) return Result; // Format a function-like macro with placeholders for the arguments. Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen)); for (MacroInfo::arg_iterator A = MI->arg_begin(), AEnd = MI->arg_end(); A != AEnd; ++A) { if (A != MI->arg_begin()) Result->AddChunk(Chunk(CodeCompletionString::CK_Comma)); if (!MI->isVariadic() || A != AEnd - 1) { // Non-variadic argument. Result->AddPlaceholderChunk((*A)->getName()); continue; } // Variadic argument; cope with the different between GNU and C99 // variadic macros, providing a single placeholder for the rest of the // arguments. if ((*A)->isStr("__VA_ARGS__")) Result->AddPlaceholderChunk("..."); else { std::string Arg = (*A)->getName(); Arg += "..."; Result->AddPlaceholderChunk(Arg); } } Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen)); return Result; } assert(Kind == RK_Declaration && "Missed a result kind?"); NamedDecl *ND = Declaration; if (StartsNestedNameSpecifier) { Result->AddTypedTextChunk(ND->getNameAsString()); Result->AddTextChunk("::"); return Result; } AddResultTypeChunk(S.Context, ND, Result); if (FunctionDecl *Function = dyn_cast(ND)) { AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, S.Context); Result->AddTypedTextChunk(Function->getNameAsString()); Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen)); AddFunctionParameterChunks(S.Context, Function, Result); Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen)); AddFunctionTypeQualsToCompletionString(Result, Function); return Result; } if (FunctionTemplateDecl *FunTmpl = dyn_cast(ND)) { AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, S.Context); FunctionDecl *Function = FunTmpl->getTemplatedDecl(); Result->AddTypedTextChunk(Function->getNameAsString()); // Figure out which template parameters are deduced (or have default // arguments). llvm::SmallVector Deduced; S.MarkDeducedTemplateParameters(FunTmpl, Deduced); unsigned LastDeducibleArgument; for (LastDeducibleArgument = Deduced.size(); LastDeducibleArgument > 0; --LastDeducibleArgument) { if (!Deduced[LastDeducibleArgument - 1]) { // C++0x: Figure out if the template argument has a default. If so, // the user doesn't need to type this argument. // FIXME: We need to abstract template parameters better! bool HasDefaultArg = false; NamedDecl *Param = FunTmpl->getTemplateParameters()->getParam( LastDeducibleArgument - 1); if (TemplateTypeParmDecl *TTP = dyn_cast(Param)) HasDefaultArg = TTP->hasDefaultArgument(); else if (NonTypeTemplateParmDecl *NTTP = dyn_cast(Param)) HasDefaultArg = NTTP->hasDefaultArgument(); else { assert(isa(Param)); HasDefaultArg = cast(Param)->hasDefaultArgument(); } if (!HasDefaultArg) break; } } if (LastDeducibleArgument) { // Some of the function template arguments cannot be deduced from a // function call, so we introduce an explicit template argument list // containing all of the arguments up to the first deducible argument. Result->AddChunk(Chunk(CodeCompletionString::CK_LeftAngle)); AddTemplateParameterChunks(S.Context, FunTmpl, Result, LastDeducibleArgument); Result->AddChunk(Chunk(CodeCompletionString::CK_RightAngle)); } // Add the function parameters Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen)); AddFunctionParameterChunks(S.Context, Function, Result); Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen)); AddFunctionTypeQualsToCompletionString(Result, Function); return Result; } if (TemplateDecl *Template = dyn_cast(ND)) { AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, S.Context); Result->AddTypedTextChunk(Template->getNameAsString()); Result->AddChunk(Chunk(CodeCompletionString::CK_LeftAngle)); AddTemplateParameterChunks(S.Context, Template, Result); Result->AddChunk(Chunk(CodeCompletionString::CK_RightAngle)); return Result; } if (ObjCMethodDecl *Method = dyn_cast(ND)) { Selector Sel = Method->getSelector(); if (Sel.isUnarySelector()) { Result->AddTypedTextChunk(Sel.getIdentifierInfoForSlot(0)->getName()); return Result; } std::string SelName = Sel.getIdentifierInfoForSlot(0)->getName().str(); SelName += ':'; if (StartParameter == 0) Result->AddTypedTextChunk(SelName); else { Result->AddInformativeChunk(SelName); // If there is only one parameter, and we're past it, add an empty // typed-text chunk since there is nothing to type. if (Method->param_size() == 1) Result->AddTypedTextChunk(""); } unsigned Idx = 0; for (ObjCMethodDecl::param_iterator P = Method->param_begin(), PEnd = Method->param_end(); P != PEnd; (void)++P, ++Idx) { if (Idx > 0) { std::string Keyword; if (Idx > StartParameter) Result->AddChunk(CodeCompletionString::CK_HorizontalSpace); if (IdentifierInfo *II = Sel.getIdentifierInfoForSlot(Idx)) Keyword += II->getName().str(); Keyword += ":"; if (Idx < StartParameter || AllParametersAreInformative) Result->AddInformativeChunk(Keyword); else if (Idx == StartParameter) Result->AddTypedTextChunk(Keyword); else Result->AddTextChunk(Keyword); } // If we're before the starting parameter, skip the placeholder. if (Idx < StartParameter) continue; std::string Arg; if ((*P)->getType()->isBlockPointerType() && !DeclaringEntity) Arg = FormatFunctionParameter(S.Context, *P, true); else { (*P)->getType().getAsStringInternal(Arg, S.Context.PrintingPolicy); Arg = "(" + Arg + ")"; if (IdentifierInfo *II = (*P)->getIdentifier()) if (DeclaringEntity || AllParametersAreInformative) Arg += II->getName().str(); } if (Method->isVariadic() && (P + 1) == PEnd) Arg += ", ..."; if (DeclaringEntity) Result->AddTextChunk(Arg); else if (AllParametersAreInformative) Result->AddInformativeChunk(Arg); else Result->AddPlaceholderChunk(Arg); } if (Method->isVariadic()) { if (Method->param_size() == 0) { if (DeclaringEntity) Result->AddTextChunk(", ..."); else if (AllParametersAreInformative) Result->AddInformativeChunk(", ..."); else Result->AddPlaceholderChunk(", ..."); } MaybeAddSentinel(S.Context, Method, Result); } return Result; } if (Qualifier) AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, S.Context); Result->AddTypedTextChunk(ND->getNameAsString()); return Result; } CodeCompletionString * CodeCompleteConsumer::OverloadCandidate::CreateSignatureString( unsigned CurrentArg, Sema &S) const { typedef CodeCompletionString::Chunk Chunk; CodeCompletionString *Result = new CodeCompletionString; FunctionDecl *FDecl = getFunction(); AddResultTypeChunk(S.Context, FDecl, Result); const FunctionProtoType *Proto = dyn_cast(getFunctionType()); if (!FDecl && !Proto) { // Function without a prototype. Just give the return type and a // highlighted ellipsis. const FunctionType *FT = getFunctionType(); Result->AddTextChunk( FT->getResultType().getAsString(S.Context.PrintingPolicy)); Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen)); Result->AddChunk(Chunk(CodeCompletionString::CK_CurrentParameter, "...")); Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen)); return Result; } if (FDecl) Result->AddTextChunk(FDecl->getNameAsString()); else Result->AddTextChunk( Proto->getResultType().getAsString(S.Context.PrintingPolicy)); Result->AddChunk(Chunk(CodeCompletionString::CK_LeftParen)); unsigned NumParams = FDecl? FDecl->getNumParams() : Proto->getNumArgs(); for (unsigned I = 0; I != NumParams; ++I) { if (I) Result->AddChunk(Chunk(CodeCompletionString::CK_Comma)); std::string ArgString; QualType ArgType; if (FDecl) { ArgString = FDecl->getParamDecl(I)->getNameAsString(); ArgType = FDecl->getParamDecl(I)->getOriginalType(); } else { ArgType = Proto->getArgType(I); } ArgType.getAsStringInternal(ArgString, S.Context.PrintingPolicy); if (I == CurrentArg) Result->AddChunk(Chunk(CodeCompletionString::CK_CurrentParameter, ArgString)); else Result->AddTextChunk(ArgString); } if (Proto && Proto->isVariadic()) { Result->AddChunk(Chunk(CodeCompletionString::CK_Comma)); if (CurrentArg < NumParams) Result->AddTextChunk("..."); else Result->AddChunk(Chunk(CodeCompletionString::CK_CurrentParameter, "...")); } Result->AddChunk(Chunk(CodeCompletionString::CK_RightParen)); return Result; } unsigned clang::getMacroUsagePriority(llvm::StringRef MacroName, bool PreferredTypeIsPointer) { unsigned Priority = CCP_Macro; // Treat the "nil" and "NULL" macros as null pointer constants. if (MacroName.equals("nil") || MacroName.equals("NULL")) { Priority = CCP_Constant; if (PreferredTypeIsPointer) Priority = Priority / CCF_SimilarTypeMatch; } return Priority; } CXCursorKind clang::getCursorKindForDecl(Decl *D) { if (!D) return CXCursor_UnexposedDecl; switch (D->getKind()) { case Decl::Enum: return CXCursor_EnumDecl; case Decl::EnumConstant: return CXCursor_EnumConstantDecl; case Decl::Field: return CXCursor_FieldDecl; case Decl::Function: return CXCursor_FunctionDecl; case Decl::ObjCCategory: return CXCursor_ObjCCategoryDecl; case Decl::ObjCCategoryImpl: return CXCursor_ObjCCategoryImplDecl; case Decl::ObjCClass: // FIXME return CXCursor_UnexposedDecl; case Decl::ObjCForwardProtocol: // FIXME return CXCursor_UnexposedDecl; case Decl::ObjCImplementation: return CXCursor_ObjCImplementationDecl; case Decl::ObjCInterface: return CXCursor_ObjCInterfaceDecl; case Decl::ObjCIvar: return CXCursor_ObjCIvarDecl; case Decl::ObjCMethod: return cast(D)->isInstanceMethod() ? CXCursor_ObjCInstanceMethodDecl : CXCursor_ObjCClassMethodDecl; case Decl::CXXMethod: return CXCursor_CXXMethod; case Decl::CXXConstructor: return CXCursor_Constructor; case Decl::CXXDestructor: return CXCursor_Destructor; case Decl::CXXConversion: return CXCursor_ConversionFunction; case Decl::ObjCProperty: return CXCursor_ObjCPropertyDecl; case Decl::ObjCProtocol: return CXCursor_ObjCProtocolDecl; case Decl::ParmVar: return CXCursor_ParmDecl; case Decl::Typedef: return CXCursor_TypedefDecl; case Decl::Var: return CXCursor_VarDecl; case Decl::Namespace: return CXCursor_Namespace; case Decl::NamespaceAlias: return CXCursor_NamespaceAlias; case Decl::TemplateTypeParm: return CXCursor_TemplateTypeParameter; case Decl::NonTypeTemplateParm:return CXCursor_NonTypeTemplateParameter; case Decl::TemplateTemplateParm:return CXCursor_TemplateTemplateParameter; case Decl::FunctionTemplate: return CXCursor_FunctionTemplate; case Decl::ClassTemplate: return CXCursor_ClassTemplate; case Decl::ClassTemplatePartialSpecialization: return CXCursor_ClassTemplatePartialSpecialization; case Decl::UsingDirective: return CXCursor_UsingDirective; case Decl::Using: case Decl::UnresolvedUsingValue: case Decl::UnresolvedUsingTypename: return CXCursor_UsingDeclaration; default: if (TagDecl *TD = dyn_cast(D)) { switch (TD->getTagKind()) { case TTK_Struct: return CXCursor_StructDecl; case TTK_Class: return CXCursor_ClassDecl; case TTK_Union: return CXCursor_UnionDecl; case TTK_Enum: return CXCursor_EnumDecl; } } } return CXCursor_UnexposedDecl; } static void AddMacroResults(Preprocessor &PP, ResultBuilder &Results, bool TargetTypeIsPointer = false) { typedef CodeCompletionResult Result; Results.EnterNewScope(); for (Preprocessor::macro_iterator M = PP.macro_begin(), MEnd = PP.macro_end(); M != MEnd; ++M) { Results.AddResult(Result(M->first, getMacroUsagePriority(M->first->getName(), TargetTypeIsPointer))); } Results.ExitScope(); } static void AddPrettyFunctionResults(const LangOptions &LangOpts, ResultBuilder &Results) { typedef CodeCompletionResult Result; Results.EnterNewScope(); Results.AddResult(Result("__PRETTY_FUNCTION__", CCP_Constant)); Results.AddResult(Result("__FUNCTION__", CCP_Constant)); if (LangOpts.C99 || LangOpts.CPlusPlus0x) Results.AddResult(Result("__func__", CCP_Constant)); Results.ExitScope(); } static void HandleCodeCompleteResults(Sema *S, CodeCompleteConsumer *CodeCompleter, CodeCompletionContext Context, CodeCompletionResult *Results, unsigned NumResults) { if (CodeCompleter) CodeCompleter->ProcessCodeCompleteResults(*S, Context, Results, NumResults); for (unsigned I = 0; I != NumResults; ++I) Results[I].Destroy(); } static enum CodeCompletionContext::Kind mapCodeCompletionContext(Sema &S, Sema::ParserCompletionContext PCC) { switch (PCC) { case Sema::PCC_Namespace: return CodeCompletionContext::CCC_TopLevel; case Sema::PCC_Class: return CodeCompletionContext::CCC_ClassStructUnion; case Sema::PCC_ObjCInterface: return CodeCompletionContext::CCC_ObjCInterface; case Sema::PCC_ObjCImplementation: return CodeCompletionContext::CCC_ObjCImplementation; case Sema::PCC_ObjCInstanceVariableList: return CodeCompletionContext::CCC_ObjCIvarList; case Sema::PCC_Template: case Sema::PCC_MemberTemplate: case Sema::PCC_RecoveryInFunction: return CodeCompletionContext::CCC_Other; case Sema::PCC_Expression: case Sema::PCC_ForInit: case Sema::PCC_Condition: return CodeCompletionContext::CCC_Expression; case Sema::PCC_Statement: return CodeCompletionContext::CCC_Statement; case Sema::PCC_Type: return CodeCompletionContext::CCC_Type; } return CodeCompletionContext::CCC_Other; } /// \brief If we're in a C++ virtual member function, add completion results /// that invoke the functions we override, since it's common to invoke the /// overridden function as well as adding new functionality. /// /// \param S The semantic analysis object for which we are generating results. /// /// \param InContext This context in which the nested-name-specifier preceding /// the code-completion point static void MaybeAddOverrideCalls(Sema &S, DeclContext *InContext, ResultBuilder &Results) { // Look through blocks. DeclContext *CurContext = S.CurContext; while (isa(CurContext)) CurContext = CurContext->getParent(); CXXMethodDecl *Method = dyn_cast(CurContext); if (!Method || !Method->isVirtual()) return; // We need to have names for all of the parameters, if we're going to // generate a forwarding call. for (CXXMethodDecl::param_iterator P = Method->param_begin(), PEnd = Method->param_end(); P != PEnd; ++P) { if (!(*P)->getDeclName()) return; } for (CXXMethodDecl::method_iterator M = Method->begin_overridden_methods(), MEnd = Method->end_overridden_methods(); M != MEnd; ++M) { CodeCompletionString *Pattern = new CodeCompletionString; CXXMethodDecl *Overridden = const_cast(*M); if (Overridden->getCanonicalDecl() == Method->getCanonicalDecl()) continue; // If we need a nested-name-specifier, add one now. if (!InContext) { NestedNameSpecifier *NNS = getRequiredQualification(S.Context, CurContext, Overridden->getDeclContext()); if (NNS) { std::string Str; llvm::raw_string_ostream OS(Str); NNS->print(OS, S.Context.PrintingPolicy); Pattern->AddTextChunk(OS.str()); } } else if (!InContext->Equals(Overridden->getDeclContext())) continue; Pattern->AddTypedTextChunk(Overridden->getNameAsString()); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); bool FirstParam = true; for (CXXMethodDecl::param_iterator P = Method->param_begin(), PEnd = Method->param_end(); P != PEnd; ++P) { if (FirstParam) FirstParam = false; else Pattern->AddChunk(CodeCompletionString::CK_Comma); Pattern->AddPlaceholderChunk((*P)->getIdentifier()->getName()); } Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(CodeCompletionResult(Pattern, CCP_SuperCompletion, CXCursor_CXXMethod)); Results.Ignore(Overridden); } } void Sema::CodeCompleteOrdinaryName(Scope *S, ParserCompletionContext CompletionContext) { typedef CodeCompletionResult Result; ResultBuilder Results(*this); Results.EnterNewScope(); // Determine how to filter results, e.g., so that the names of // values (functions, enumerators, function templates, etc.) are // only allowed where we can have an expression. switch (CompletionContext) { case PCC_Namespace: case PCC_Class: case PCC_ObjCInterface: case PCC_ObjCImplementation: case PCC_ObjCInstanceVariableList: case PCC_Template: case PCC_MemberTemplate: case PCC_Type: Results.setFilter(&ResultBuilder::IsOrdinaryNonValueName); break; case PCC_Statement: // For statements that are expressions, we prefer to call 'void' functions // rather than functions that return a result, since then the result would // be ignored. Results.setPreferredType(Context.VoidTy); // Fall through case PCC_Expression: case PCC_ForInit: case PCC_Condition: if (WantTypesInContext(CompletionContext, getLangOptions())) Results.setFilter(&ResultBuilder::IsOrdinaryName); else Results.setFilter(&ResultBuilder::IsOrdinaryNonTypeName); if (getLangOptions().CPlusPlus) MaybeAddOverrideCalls(*this, /*InContext=*/0, Results); break; case PCC_RecoveryInFunction: // Unfiltered break; } // If we are in a C++ non-static member function, check the qualifiers on // the member function to filter/prioritize the results list. if (CXXMethodDecl *CurMethod = dyn_cast(CurContext)) if (CurMethod->isInstance()) Results.setObjectTypeQualifiers( Qualifiers::fromCVRMask(CurMethod->getTypeQualifiers())); CodeCompletionDeclConsumer Consumer(Results, CurContext); LookupVisibleDecls(S, LookupOrdinaryName, Consumer, CodeCompleter->includeGlobals()); AddOrdinaryNameResults(CompletionContext, S, *this, Results); Results.ExitScope(); switch (CompletionContext) { case PCC_Expression: case PCC_Statement: case PCC_RecoveryInFunction: if (S->getFnParent()) AddPrettyFunctionResults(PP.getLangOptions(), Results); break; case PCC_Namespace: case PCC_Class: case PCC_ObjCInterface: case PCC_ObjCImplementation: case PCC_ObjCInstanceVariableList: case PCC_Template: case PCC_MemberTemplate: case PCC_ForInit: case PCC_Condition: case PCC_Type: break; } if (CodeCompleter->includeMacros()) AddMacroResults(PP, Results); HandleCodeCompleteResults(this, CodeCompleter, mapCodeCompletionContext(*this, CompletionContext), Results.data(),Results.size()); } void Sema::CodeCompleteDeclarator(Scope *S, bool AllowNonIdentifiers, bool AllowNestedNameSpecifiers) { typedef CodeCompletionResult Result; ResultBuilder Results(*this); Results.EnterNewScope(); // Type qualifiers can come after names. Results.AddResult(Result("const")); Results.AddResult(Result("volatile")); if (getLangOptions().C99) Results.AddResult(Result("restrict")); if (getLangOptions().CPlusPlus) { if (AllowNonIdentifiers) { Results.AddResult(Result("operator")); } // Add nested-name-specifiers. if (AllowNestedNameSpecifiers) { Results.allowNestedNameSpecifiers(); CodeCompletionDeclConsumer Consumer(Results, CurContext); LookupVisibleDecls(S, LookupNestedNameSpecifierName, Consumer, CodeCompleter->includeGlobals()); } } Results.ExitScope(); // Note that we intentionally suppress macro results here, since we do not // encourage using macros to produce the names of entities. HandleCodeCompleteResults(this, CodeCompleter, AllowNestedNameSpecifiers ? CodeCompletionContext::CCC_PotentiallyQualifiedName : CodeCompletionContext::CCC_Name, Results.data(), Results.size()); } struct Sema::CodeCompleteExpressionData { CodeCompleteExpressionData(QualType PreferredType = QualType()) : PreferredType(PreferredType), IntegralConstantExpression(false), ObjCCollection(false) { } QualType PreferredType; bool IntegralConstantExpression; bool ObjCCollection; llvm::SmallVector IgnoreDecls; }; /// \brief Perform code-completion in an expression context when we know what /// type we're looking for. /// /// \param IntegralConstantExpression Only permit integral constant /// expressions. void Sema::CodeCompleteExpression(Scope *S, const CodeCompleteExpressionData &Data) { typedef CodeCompletionResult Result; ResultBuilder Results(*this); if (Data.ObjCCollection) Results.setFilter(&ResultBuilder::IsObjCCollection); else if (Data.IntegralConstantExpression) Results.setFilter(&ResultBuilder::IsIntegralConstantValue); else if (WantTypesInContext(PCC_Expression, getLangOptions())) Results.setFilter(&ResultBuilder::IsOrdinaryName); else Results.setFilter(&ResultBuilder::IsOrdinaryNonTypeName); if (!Data.PreferredType.isNull()) Results.setPreferredType(Data.PreferredType.getNonReferenceType()); // Ignore any declarations that we were told that we don't care about. for (unsigned I = 0, N = Data.IgnoreDecls.size(); I != N; ++I) Results.Ignore(Data.IgnoreDecls[I]); CodeCompletionDeclConsumer Consumer(Results, CurContext); LookupVisibleDecls(S, LookupOrdinaryName, Consumer, CodeCompleter->includeGlobals()); Results.EnterNewScope(); AddOrdinaryNameResults(PCC_Expression, S, *this, Results); Results.ExitScope(); bool PreferredTypeIsPointer = false; if (!Data.PreferredType.isNull()) PreferredTypeIsPointer = Data.PreferredType->isAnyPointerType() || Data.PreferredType->isMemberPointerType() || Data.PreferredType->isBlockPointerType(); if (S->getFnParent() && !Data.ObjCCollection && !Data.IntegralConstantExpression) AddPrettyFunctionResults(PP.getLangOptions(), Results); if (CodeCompleter->includeMacros()) AddMacroResults(PP, Results, PreferredTypeIsPointer); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext(CodeCompletionContext::CCC_Expression, Data.PreferredType), Results.data(),Results.size()); } static void AddObjCProperties(ObjCContainerDecl *Container, bool AllowCategories, DeclContext *CurContext, ResultBuilder &Results) { typedef CodeCompletionResult Result; // Add properties in this container. for (ObjCContainerDecl::prop_iterator P = Container->prop_begin(), PEnd = Container->prop_end(); P != PEnd; ++P) Results.MaybeAddResult(Result(*P, 0), CurContext); // Add properties in referenced protocols. if (ObjCProtocolDecl *Protocol = dyn_cast(Container)) { for (ObjCProtocolDecl::protocol_iterator P = Protocol->protocol_begin(), PEnd = Protocol->protocol_end(); P != PEnd; ++P) AddObjCProperties(*P, AllowCategories, CurContext, Results); } else if (ObjCInterfaceDecl *IFace = dyn_cast(Container)){ if (AllowCategories) { // Look through categories. for (ObjCCategoryDecl *Category = IFace->getCategoryList(); Category; Category = Category->getNextClassCategory()) AddObjCProperties(Category, AllowCategories, CurContext, Results); } // Look through protocols. for (ObjCInterfaceDecl::all_protocol_iterator I = IFace->all_referenced_protocol_begin(), E = IFace->all_referenced_protocol_end(); I != E; ++I) AddObjCProperties(*I, AllowCategories, CurContext, Results); // Look in the superclass. if (IFace->getSuperClass()) AddObjCProperties(IFace->getSuperClass(), AllowCategories, CurContext, Results); } else if (const ObjCCategoryDecl *Category = dyn_cast(Container)) { // Look through protocols. for (ObjCCategoryDecl::protocol_iterator P = Category->protocol_begin(), PEnd = Category->protocol_end(); P != PEnd; ++P) AddObjCProperties(*P, AllowCategories, CurContext, Results); } } void Sema::CodeCompleteMemberReferenceExpr(Scope *S, ExprTy *BaseE, SourceLocation OpLoc, bool IsArrow) { if (!BaseE || !CodeCompleter) return; typedef CodeCompletionResult Result; Expr *Base = static_cast(BaseE); QualType BaseType = Base->getType(); if (IsArrow) { if (const PointerType *Ptr = BaseType->getAs()) BaseType = Ptr->getPointeeType(); else if (BaseType->isObjCObjectPointerType()) /*Do nothing*/ ; else return; } ResultBuilder Results(*this, &ResultBuilder::IsMember); Results.EnterNewScope(); if (const RecordType *Record = BaseType->getAs()) { // Indicate that we are performing a member access, and the cv-qualifiers // for the base object type. Results.setObjectTypeQualifiers(BaseType.getQualifiers()); // Access to a C/C++ class, struct, or union. Results.allowNestedNameSpecifiers(); CodeCompletionDeclConsumer Consumer(Results, CurContext); LookupVisibleDecls(Record->getDecl(), LookupMemberName, Consumer, CodeCompleter->includeGlobals()); if (getLangOptions().CPlusPlus) { if (!Results.empty()) { // The "template" keyword can follow "->" or "." in the grammar. // However, we only want to suggest the template keyword if something // is dependent. bool IsDependent = BaseType->isDependentType(); if (!IsDependent) { for (Scope *DepScope = S; DepScope; DepScope = DepScope->getParent()) if (DeclContext *Ctx = (DeclContext *)DepScope->getEntity()) { IsDependent = Ctx->isDependentContext(); break; } } if (IsDependent) Results.AddResult(Result("template")); } } } else if (!IsArrow && BaseType->getAsObjCInterfacePointerType()) { // Objective-C property reference. // Add property results based on our interface. const ObjCObjectPointerType *ObjCPtr = BaseType->getAsObjCInterfacePointerType(); assert(ObjCPtr && "Non-NULL pointer guaranteed above!"); AddObjCProperties(ObjCPtr->getInterfaceDecl(), true, CurContext, Results); // Add properties from the protocols in a qualified interface. for (ObjCObjectPointerType::qual_iterator I = ObjCPtr->qual_begin(), E = ObjCPtr->qual_end(); I != E; ++I) AddObjCProperties(*I, true, CurContext, Results); } else if ((IsArrow && BaseType->isObjCObjectPointerType()) || (!IsArrow && BaseType->isObjCObjectType())) { // Objective-C instance variable access. ObjCInterfaceDecl *Class = 0; if (const ObjCObjectPointerType *ObjCPtr = BaseType->getAs()) Class = ObjCPtr->getInterfaceDecl(); else Class = BaseType->getAs()->getInterface(); // Add all ivars from this class and its superclasses. if (Class) { CodeCompletionDeclConsumer Consumer(Results, CurContext); Results.setFilter(&ResultBuilder::IsObjCIvar); LookupVisibleDecls(Class, LookupMemberName, Consumer, CodeCompleter->includeGlobals()); } } // FIXME: How do we cope with isa? Results.ExitScope(); // Hand off the results found for code completion. HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext(CodeCompletionContext::CCC_MemberAccess, BaseType), Results.data(),Results.size()); } void Sema::CodeCompleteTag(Scope *S, unsigned TagSpec) { if (!CodeCompleter) return; typedef CodeCompletionResult Result; ResultBuilder::LookupFilter Filter = 0; enum CodeCompletionContext::Kind ContextKind = CodeCompletionContext::CCC_Other; switch ((DeclSpec::TST)TagSpec) { case DeclSpec::TST_enum: Filter = &ResultBuilder::IsEnum; ContextKind = CodeCompletionContext::CCC_EnumTag; break; case DeclSpec::TST_union: Filter = &ResultBuilder::IsUnion; ContextKind = CodeCompletionContext::CCC_UnionTag; break; case DeclSpec::TST_struct: case DeclSpec::TST_class: Filter = &ResultBuilder::IsClassOrStruct; ContextKind = CodeCompletionContext::CCC_ClassOrStructTag; break; default: assert(false && "Unknown type specifier kind in CodeCompleteTag"); return; } ResultBuilder Results(*this); CodeCompletionDeclConsumer Consumer(Results, CurContext); // First pass: look for tags. Results.setFilter(Filter); LookupVisibleDecls(S, LookupTagName, Consumer, CodeCompleter->includeGlobals()); if (CodeCompleter->includeGlobals()) { // Second pass: look for nested name specifiers. Results.setFilter(&ResultBuilder::IsNestedNameSpecifier); LookupVisibleDecls(S, LookupNestedNameSpecifierName, Consumer); } HandleCodeCompleteResults(this, CodeCompleter, ContextKind, Results.data(),Results.size()); } void Sema::CodeCompleteTypeQualifiers(DeclSpec &DS) { ResultBuilder Results(*this); Results.EnterNewScope(); if (!(DS.getTypeQualifiers() & DeclSpec::TQ_const)) Results.AddResult("const"); if (!(DS.getTypeQualifiers() & DeclSpec::TQ_volatile)) Results.AddResult("volatile"); if (getLangOptions().C99 && !(DS.getTypeQualifiers() & DeclSpec::TQ_restrict)) Results.AddResult("restrict"); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_TypeQualifiers, Results.data(), Results.size()); } void Sema::CodeCompleteCase(Scope *S) { if (getCurFunction()->SwitchStack.empty() || !CodeCompleter) return; SwitchStmt *Switch = getCurFunction()->SwitchStack.back(); if (!Switch->getCond()->getType()->isEnumeralType()) { CodeCompleteExpressionData Data(Switch->getCond()->getType()); Data.IntegralConstantExpression = true; CodeCompleteExpression(S, Data); return; } // Code-complete the cases of a switch statement over an enumeration type // by providing the list of EnumDecl *Enum = Switch->getCond()->getType()->getAs()->getDecl(); // Determine which enumerators we have already seen in the switch statement. // FIXME: Ideally, we would also be able to look *past* the code-completion // token, in case we are code-completing in the middle of the switch and not // at the end. However, we aren't able to do so at the moment. llvm::SmallPtrSet EnumeratorsSeen; NestedNameSpecifier *Qualifier = 0; for (SwitchCase *SC = Switch->getSwitchCaseList(); SC; SC = SC->getNextSwitchCase()) { CaseStmt *Case = dyn_cast(SC); if (!Case) continue; Expr *CaseVal = Case->getLHS()->IgnoreParenCasts(); if (DeclRefExpr *DRE = dyn_cast(CaseVal)) if (EnumConstantDecl *Enumerator = dyn_cast(DRE->getDecl())) { // We look into the AST of the case statement to determine which // enumerator was named. Alternatively, we could compute the value of // the integral constant expression, then compare it against the // values of each enumerator. However, value-based approach would not // work as well with C++ templates where enumerators declared within a // template are type- and value-dependent. EnumeratorsSeen.insert(Enumerator); // If this is a qualified-id, keep track of the nested-name-specifier // so that we can reproduce it as part of code completion, e.g., // // switch (TagD.getKind()) { // case TagDecl::TK_enum: // break; // case XXX // // At the XXX, our completions are TagDecl::TK_union, // TagDecl::TK_struct, and TagDecl::TK_class, rather than TK_union, // TK_struct, and TK_class. Qualifier = DRE->getQualifier(); } } if (getLangOptions().CPlusPlus && !Qualifier && EnumeratorsSeen.empty()) { // If there are no prior enumerators in C++, check whether we have to // qualify the names of the enumerators that we suggest, because they // may not be visible in this scope. Qualifier = getRequiredQualification(Context, CurContext, Enum->getDeclContext()); // FIXME: Scoped enums need to start with "EnumDecl" as the context! } // Add any enumerators that have not yet been mentioned. ResultBuilder Results(*this); Results.EnterNewScope(); for (EnumDecl::enumerator_iterator E = Enum->enumerator_begin(), EEnd = Enum->enumerator_end(); E != EEnd; ++E) { if (EnumeratorsSeen.count(*E)) continue; Results.AddResult(CodeCompletionResult(*E, Qualifier), CurContext, 0, false); } Results.ExitScope(); if (CodeCompleter->includeMacros()) AddMacroResults(PP, Results); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Expression, Results.data(),Results.size()); } namespace { struct IsBetterOverloadCandidate { Sema &S; SourceLocation Loc; public: explicit IsBetterOverloadCandidate(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { } bool operator()(const OverloadCandidate &X, const OverloadCandidate &Y) const { return isBetterOverloadCandidate(S, X, Y, Loc); } }; } static bool anyNullArguments(Expr **Args, unsigned NumArgs) { if (NumArgs && !Args) return true; for (unsigned I = 0; I != NumArgs; ++I) if (!Args[I]) return true; return false; } void Sema::CodeCompleteCall(Scope *S, ExprTy *FnIn, ExprTy **ArgsIn, unsigned NumArgs) { if (!CodeCompleter) return; // When we're code-completing for a call, we fall back to ordinary // name code-completion whenever we can't produce specific // results. We may want to revisit this strategy in the future, // e.g., by merging the two kinds of results. Expr *Fn = (Expr *)FnIn; Expr **Args = (Expr **)ArgsIn; // Ignore type-dependent call expressions entirely. if (!Fn || Fn->isTypeDependent() || anyNullArguments(Args, NumArgs) || Expr::hasAnyTypeDependentArguments(Args, NumArgs)) { CodeCompleteOrdinaryName(S, PCC_Expression); return; } // Build an overload candidate set based on the functions we find. SourceLocation Loc = Fn->getExprLoc(); OverloadCandidateSet CandidateSet(Loc); // FIXME: What if we're calling something that isn't a function declaration? // FIXME: What if we're calling a pseudo-destructor? // FIXME: What if we're calling a member function? typedef CodeCompleteConsumer::OverloadCandidate ResultCandidate; llvm::SmallVector Results; Expr *NakedFn = Fn->IgnoreParenCasts(); if (UnresolvedLookupExpr *ULE = dyn_cast(NakedFn)) AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet, /*PartialOverloading=*/ true); else if (DeclRefExpr *DRE = dyn_cast(NakedFn)) { FunctionDecl *FDecl = dyn_cast(DRE->getDecl()); if (FDecl) { if (!getLangOptions().CPlusPlus || !FDecl->getType()->getAs()) Results.push_back(ResultCandidate(FDecl)); else // FIXME: access? AddOverloadCandidate(FDecl, DeclAccessPair::make(FDecl, AS_none), Args, NumArgs, CandidateSet, false, /*PartialOverloading*/true); } } QualType ParamType; if (!CandidateSet.empty()) { // Sort the overload candidate set by placing the best overloads first. std::stable_sort(CandidateSet.begin(), CandidateSet.end(), IsBetterOverloadCandidate(*this, Loc)); // Add the remaining viable overload candidates as code-completion reslults. for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), CandEnd = CandidateSet.end(); Cand != CandEnd; ++Cand) { if (Cand->Viable) Results.push_back(ResultCandidate(Cand->Function)); } // From the viable candidates, try to determine the type of this parameter. for (unsigned I = 0, N = Results.size(); I != N; ++I) { if (const FunctionType *FType = Results[I].getFunctionType()) if (const FunctionProtoType *Proto = dyn_cast(FType)) if (NumArgs < Proto->getNumArgs()) { if (ParamType.isNull()) ParamType = Proto->getArgType(NumArgs); else if (!Context.hasSameUnqualifiedType( ParamType.getNonReferenceType(), Proto->getArgType(NumArgs).getNonReferenceType())) { ParamType = QualType(); break; } } } } else { // Try to determine the parameter type from the type of the expression // being called. QualType FunctionType = Fn->getType(); if (const PointerType *Ptr = FunctionType->getAs()) FunctionType = Ptr->getPointeeType(); else if (const BlockPointerType *BlockPtr = FunctionType->getAs()) FunctionType = BlockPtr->getPointeeType(); else if (const MemberPointerType *MemPtr = FunctionType->getAs()) FunctionType = MemPtr->getPointeeType(); if (const FunctionProtoType *Proto = FunctionType->getAs()) { if (NumArgs < Proto->getNumArgs()) ParamType = Proto->getArgType(NumArgs); } } if (ParamType.isNull()) CodeCompleteOrdinaryName(S, PCC_Expression); else CodeCompleteExpression(S, ParamType); if (!Results.empty()) CodeCompleter->ProcessOverloadCandidates(*this, NumArgs, Results.data(), Results.size()); } void Sema::CodeCompleteInitializer(Scope *S, Decl *D) { ValueDecl *VD = dyn_cast_or_null(D); if (!VD) { CodeCompleteOrdinaryName(S, PCC_Expression); return; } CodeCompleteExpression(S, VD->getType()); } void Sema::CodeCompleteReturn(Scope *S) { QualType ResultType; if (isa(CurContext)) { if (BlockScopeInfo *BSI = getCurBlock()) ResultType = BSI->ReturnType; } else if (FunctionDecl *Function = dyn_cast(CurContext)) ResultType = Function->getResultType(); else if (ObjCMethodDecl *Method = dyn_cast(CurContext)) ResultType = Method->getResultType(); if (ResultType.isNull()) CodeCompleteOrdinaryName(S, PCC_Expression); else CodeCompleteExpression(S, ResultType); } void Sema::CodeCompleteAssignmentRHS(Scope *S, ExprTy *LHS) { if (LHS) CodeCompleteExpression(S, static_cast(LHS)->getType()); else CodeCompleteOrdinaryName(S, PCC_Expression); } void Sema::CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext) { if (!SS.getScopeRep() || !CodeCompleter) return; DeclContext *Ctx = computeDeclContext(SS, EnteringContext); if (!Ctx) return; // Try to instantiate any non-dependent declaration contexts before // we look in them. if (!isDependentScopeSpecifier(SS) && RequireCompleteDeclContext(SS, Ctx)) return; ResultBuilder Results(*this); Results.EnterNewScope(); // The "template" keyword can follow "::" in the grammar, but only // put it into the grammar if the nested-name-specifier is dependent. NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); if (!Results.empty() && NNS->isDependent()) Results.AddResult("template"); // Add calls to overridden virtual functions, if there are any. // // FIXME: This isn't wonderful, because we don't know whether we're actually // in a context that permits expressions. This is a general issue with // qualified-id completions. if (!EnteringContext) MaybeAddOverrideCalls(*this, Ctx, Results); Results.ExitScope(); CodeCompletionDeclConsumer Consumer(Results, CurContext); LookupVisibleDecls(Ctx, LookupOrdinaryName, Consumer); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Name, Results.data(),Results.size()); } void Sema::CodeCompleteUsing(Scope *S) { if (!CodeCompleter) return; ResultBuilder Results(*this, &ResultBuilder::IsNestedNameSpecifier); Results.EnterNewScope(); // If we aren't in class scope, we could see the "namespace" keyword. if (!S->isClassScope()) Results.AddResult(CodeCompletionResult("namespace")); // After "using", we can see anything that would start a // nested-name-specifier. CodeCompletionDeclConsumer Consumer(Results, CurContext); LookupVisibleDecls(S, LookupOrdinaryName, Consumer, CodeCompleter->includeGlobals()); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompleteUsingDirective(Scope *S) { if (!CodeCompleter) return; // After "using namespace", we expect to see a namespace name or namespace // alias. ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias); Results.EnterNewScope(); CodeCompletionDeclConsumer Consumer(Results, CurContext); LookupVisibleDecls(S, LookupOrdinaryName, Consumer, CodeCompleter->includeGlobals()); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Namespace, Results.data(),Results.size()); } void Sema::CodeCompleteNamespaceDecl(Scope *S) { if (!CodeCompleter) return; ResultBuilder Results(*this, &ResultBuilder::IsNamespace); DeclContext *Ctx = (DeclContext *)S->getEntity(); if (!S->getParent()) Ctx = Context.getTranslationUnitDecl(); if (Ctx && Ctx->isFileContext()) { // We only want to see those namespaces that have already been defined // within this scope, because its likely that the user is creating an // extended namespace declaration. Keep track of the most recent // definition of each namespace. std::map OrigToLatest; for (DeclContext::specific_decl_iterator NS(Ctx->decls_begin()), NSEnd(Ctx->decls_end()); NS != NSEnd; ++NS) OrigToLatest[NS->getOriginalNamespace()] = *NS; // Add the most recent definition (or extended definition) of each // namespace to the list of results. Results.EnterNewScope(); for (std::map::iterator NS = OrigToLatest.begin(), NSEnd = OrigToLatest.end(); NS != NSEnd; ++NS) Results.AddResult(CodeCompletionResult(NS->second, 0), CurContext, 0, false); Results.ExitScope(); } HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompleteNamespaceAliasDecl(Scope *S) { if (!CodeCompleter) return; // After "namespace", we expect to see a namespace or alias. ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias); CodeCompletionDeclConsumer Consumer(Results, CurContext); LookupVisibleDecls(S, LookupOrdinaryName, Consumer, CodeCompleter->includeGlobals()); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Namespace, Results.data(),Results.size()); } void Sema::CodeCompleteOperatorName(Scope *S) { if (!CodeCompleter) return; typedef CodeCompletionResult Result; ResultBuilder Results(*this, &ResultBuilder::IsType); Results.EnterNewScope(); // Add the names of overloadable operators. #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ if (std::strcmp(Spelling, "?")) \ Results.AddResult(Result(Spelling)); #include "clang/Basic/OperatorKinds.def" // Add any type names visible from the current scope Results.allowNestedNameSpecifiers(); CodeCompletionDeclConsumer Consumer(Results, CurContext); LookupVisibleDecls(S, LookupOrdinaryName, Consumer, CodeCompleter->includeGlobals()); // Add any type specifiers AddTypeSpecifierResults(getLangOptions(), Results); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Type, Results.data(),Results.size()); } void Sema::CodeCompleteConstructorInitializer(Decl *ConstructorD, CXXBaseOrMemberInitializer** Initializers, unsigned NumInitializers) { CXXConstructorDecl *Constructor = static_cast(ConstructorD); if (!Constructor) return; ResultBuilder Results(*this); Results.EnterNewScope(); // Fill in any already-initialized fields or base classes. llvm::SmallPtrSet InitializedFields; llvm::SmallPtrSet InitializedBases; for (unsigned I = 0; I != NumInitializers; ++I) { if (Initializers[I]->isBaseInitializer()) InitializedBases.insert( Context.getCanonicalType(QualType(Initializers[I]->getBaseClass(), 0))); else InitializedFields.insert(cast(Initializers[I]->getMember())); } // Add completions for base classes. bool SawLastInitializer = (NumInitializers == 0); CXXRecordDecl *ClassDecl = Constructor->getParent(); for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), BaseEnd = ClassDecl->bases_end(); Base != BaseEnd; ++Base) { if (!InitializedBases.insert(Context.getCanonicalType(Base->getType()))) { SawLastInitializer = NumInitializers > 0 && Initializers[NumInitializers - 1]->isBaseInitializer() && Context.hasSameUnqualifiedType(Base->getType(), QualType(Initializers[NumInitializers - 1]->getBaseClass(), 0)); continue; } CodeCompletionString *Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk( Base->getType().getAsString(Context.PrintingPolicy)); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("args"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(CodeCompletionResult(Pattern, SawLastInitializer? CCP_NextInitializer : CCP_MemberDeclaration)); SawLastInitializer = false; } // Add completions for virtual base classes. for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), BaseEnd = ClassDecl->vbases_end(); Base != BaseEnd; ++Base) { if (!InitializedBases.insert(Context.getCanonicalType(Base->getType()))) { SawLastInitializer = NumInitializers > 0 && Initializers[NumInitializers - 1]->isBaseInitializer() && Context.hasSameUnqualifiedType(Base->getType(), QualType(Initializers[NumInitializers - 1]->getBaseClass(), 0)); continue; } CodeCompletionString *Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk( Base->getType().getAsString(Context.PrintingPolicy)); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("args"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(CodeCompletionResult(Pattern, SawLastInitializer? CCP_NextInitializer : CCP_MemberDeclaration)); SawLastInitializer = false; } // Add completions for members. for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), FieldEnd = ClassDecl->field_end(); Field != FieldEnd; ++Field) { if (!InitializedFields.insert(cast(Field->getCanonicalDecl()))) { SawLastInitializer = NumInitializers > 0 && Initializers[NumInitializers - 1]->isMemberInitializer() && Initializers[NumInitializers - 1]->getMember() == *Field; continue; } if (!Field->getDeclName()) continue; CodeCompletionString *Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(Field->getIdentifier()->getName()); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("args"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(CodeCompletionResult(Pattern, SawLastInitializer? CCP_NextInitializer : CCP_MemberDeclaration)); SawLastInitializer = false; } Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Name, Results.data(), Results.size()); } // Macro that expands to @Keyword or Keyword, depending on whether NeedAt is // true or false. #define OBJC_AT_KEYWORD_NAME(NeedAt,Keyword) NeedAt? "@" #Keyword : #Keyword static void AddObjCImplementationResults(const LangOptions &LangOpts, ResultBuilder &Results, bool NeedAt) { typedef CodeCompletionResult Result; // Since we have an implementation, we can end it. Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,end))); CodeCompletionString *Pattern = 0; if (LangOpts.ObjC2) { // @dynamic Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,dynamic)); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("property"); Results.AddResult(Result(Pattern)); // @synthesize Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,synthesize)); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("property"); Results.AddResult(Result(Pattern)); } } static void AddObjCInterfaceResults(const LangOptions &LangOpts, ResultBuilder &Results, bool NeedAt) { typedef CodeCompletionResult Result; // Since we have an interface or protocol, we can end it. Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,end))); if (LangOpts.ObjC2) { // @property Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,property))); // @required Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,required))); // @optional Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,optional))); } } static void AddObjCTopLevelResults(ResultBuilder &Results, bool NeedAt) { typedef CodeCompletionResult Result; CodeCompletionString *Pattern = 0; // @class name ; Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,class)); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("name"); Results.AddResult(Result(Pattern)); if (Results.includeCodePatterns()) { // @interface name // FIXME: Could introduce the whole pattern, including superclasses and // such. Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,interface)); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("class"); Results.AddResult(Result(Pattern)); // @protocol name Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,protocol)); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("protocol"); Results.AddResult(Result(Pattern)); // @implementation name Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,implementation)); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("class"); Results.AddResult(Result(Pattern)); } // @compatibility_alias name Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,compatibility_alias)); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("alias"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("class"); Results.AddResult(Result(Pattern)); } void Sema::CodeCompleteObjCAtDirective(Scope *S, Decl *ObjCImpDecl, bool InInterface) { typedef CodeCompletionResult Result; ResultBuilder Results(*this); Results.EnterNewScope(); if (ObjCImpDecl) AddObjCImplementationResults(getLangOptions(), Results, false); else if (InInterface) AddObjCInterfaceResults(getLangOptions(), Results, false); else AddObjCTopLevelResults(Results, false); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } static void AddObjCExpressionResults(ResultBuilder &Results, bool NeedAt) { typedef CodeCompletionResult Result; CodeCompletionString *Pattern = 0; // @encode ( type-name ) Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,encode)); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("type-name"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); // @protocol ( protocol-name ) Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,protocol)); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("protocol-name"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); // @selector ( selector ) Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,selector)); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("selector"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Result(Pattern)); } static void AddObjCStatementResults(ResultBuilder &Results, bool NeedAt) { typedef CodeCompletionResult Result; CodeCompletionString *Pattern = 0; if (Results.includeCodePatterns()) { // @try { statements } @catch ( declaration ) { statements } @finally // { statements } Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,try)); Pattern->AddChunk(CodeCompletionString::CK_LeftBrace); Pattern->AddPlaceholderChunk("statements"); Pattern->AddChunk(CodeCompletionString::CK_RightBrace); Pattern->AddTextChunk("@catch"); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("parameter"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Pattern->AddChunk(CodeCompletionString::CK_LeftBrace); Pattern->AddPlaceholderChunk("statements"); Pattern->AddChunk(CodeCompletionString::CK_RightBrace); Pattern->AddTextChunk("@finally"); Pattern->AddChunk(CodeCompletionString::CK_LeftBrace); Pattern->AddPlaceholderChunk("statements"); Pattern->AddChunk(CodeCompletionString::CK_RightBrace); Results.AddResult(Result(Pattern)); } // @throw Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,throw)); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("expression"); Results.AddResult(Result(Pattern)); if (Results.includeCodePatterns()) { // @synchronized ( expression ) { statements } Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt,synchronized)); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("expression"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Pattern->AddChunk(CodeCompletionString::CK_LeftBrace); Pattern->AddPlaceholderChunk("statements"); Pattern->AddChunk(CodeCompletionString::CK_RightBrace); Results.AddResult(Result(Pattern)); } } static void AddObjCVisibilityResults(const LangOptions &LangOpts, ResultBuilder &Results, bool NeedAt) { typedef CodeCompletionResult Result; Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,private))); Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,protected))); Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,public))); if (LangOpts.ObjC2) Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt,package))); } void Sema::CodeCompleteObjCAtVisibility(Scope *S) { ResultBuilder Results(*this); Results.EnterNewScope(); AddObjCVisibilityResults(getLangOptions(), Results, false); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompleteObjCAtStatement(Scope *S) { ResultBuilder Results(*this); Results.EnterNewScope(); AddObjCStatementResults(Results, false); AddObjCExpressionResults(Results, false); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompleteObjCAtExpression(Scope *S) { ResultBuilder Results(*this); Results.EnterNewScope(); AddObjCExpressionResults(Results, false); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } /// \brief Determine whether the addition of the given flag to an Objective-C /// property's attributes will cause a conflict. static bool ObjCPropertyFlagConflicts(unsigned Attributes, unsigned NewFlag) { // Check if we've already added this flag. if (Attributes & NewFlag) return true; Attributes |= NewFlag; // Check for collisions with "readonly". if ((Attributes & ObjCDeclSpec::DQ_PR_readonly) && (Attributes & (ObjCDeclSpec::DQ_PR_readwrite | ObjCDeclSpec::DQ_PR_assign | ObjCDeclSpec::DQ_PR_copy | ObjCDeclSpec::DQ_PR_retain))) return true; // Check for more than one of { assign, copy, retain }. unsigned AssignCopyRetMask = Attributes & (ObjCDeclSpec::DQ_PR_assign | ObjCDeclSpec::DQ_PR_copy | ObjCDeclSpec::DQ_PR_retain); if (AssignCopyRetMask && AssignCopyRetMask != ObjCDeclSpec::DQ_PR_assign && AssignCopyRetMask != ObjCDeclSpec::DQ_PR_copy && AssignCopyRetMask != ObjCDeclSpec::DQ_PR_retain) return true; return false; } void Sema::CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS) { if (!CodeCompleter) return; unsigned Attributes = ODS.getPropertyAttributes(); typedef CodeCompletionResult Result; ResultBuilder Results(*this); Results.EnterNewScope(); if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_readonly)) Results.AddResult(CodeCompletionResult("readonly")); if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_assign)) Results.AddResult(CodeCompletionResult("assign")); if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_readwrite)) Results.AddResult(CodeCompletionResult("readwrite")); if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_retain)) Results.AddResult(CodeCompletionResult("retain")); if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_copy)) Results.AddResult(CodeCompletionResult("copy")); if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_nonatomic)) Results.AddResult(CodeCompletionResult("nonatomic")); if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_setter)) { CodeCompletionString *Setter = new CodeCompletionString; Setter->AddTypedTextChunk("setter"); Setter->AddTextChunk(" = "); Setter->AddPlaceholderChunk("method"); Results.AddResult(CodeCompletionResult(Setter)); } if (!ObjCPropertyFlagConflicts(Attributes, ObjCDeclSpec::DQ_PR_getter)) { CodeCompletionString *Getter = new CodeCompletionString; Getter->AddTypedTextChunk("getter"); Getter->AddTextChunk(" = "); Getter->AddPlaceholderChunk("method"); Results.AddResult(CodeCompletionResult(Getter)); } Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } /// \brief Descripts the kind of Objective-C method that we want to find /// via code completion. enum ObjCMethodKind { MK_Any, //< Any kind of method, provided it means other specified criteria. MK_ZeroArgSelector, //< Zero-argument (unary) selector. MK_OneArgSelector //< One-argument selector. }; static bool isAcceptableObjCSelector(Selector Sel, ObjCMethodKind WantKind, IdentifierInfo **SelIdents, unsigned NumSelIdents) { if (NumSelIdents > Sel.getNumArgs()) return false; switch (WantKind) { case MK_Any: break; case MK_ZeroArgSelector: return Sel.isUnarySelector(); case MK_OneArgSelector: return Sel.getNumArgs() == 1; } for (unsigned I = 0; I != NumSelIdents; ++I) if (SelIdents[I] != Sel.getIdentifierInfoForSlot(I)) return false; return true; } static bool isAcceptableObjCMethod(ObjCMethodDecl *Method, ObjCMethodKind WantKind, IdentifierInfo **SelIdents, unsigned NumSelIdents) { return isAcceptableObjCSelector(Method->getSelector(), WantKind, SelIdents, NumSelIdents); } /// \brief Add all of the Objective-C methods in the given Objective-C /// container to the set of results. /// /// The container will be a class, protocol, category, or implementation of /// any of the above. This mether will recurse to include methods from /// the superclasses of classes along with their categories, protocols, and /// implementations. /// /// \param Container the container in which we'll look to find methods. /// /// \param WantInstance whether to add instance methods (only); if false, this /// routine will add factory methods (only). /// /// \param CurContext the context in which we're performing the lookup that /// finds methods. /// /// \param Results the structure into which we'll add results. static void AddObjCMethods(ObjCContainerDecl *Container, bool WantInstanceMethods, ObjCMethodKind WantKind, IdentifierInfo **SelIdents, unsigned NumSelIdents, DeclContext *CurContext, ResultBuilder &Results, bool InOriginalClass = true) { typedef CodeCompletionResult Result; for (ObjCContainerDecl::method_iterator M = Container->meth_begin(), MEnd = Container->meth_end(); M != MEnd; ++M) { if ((*M)->isInstanceMethod() == WantInstanceMethods) { // Check whether the selector identifiers we've been given are a // subset of the identifiers for this particular method. if (!isAcceptableObjCMethod(*M, WantKind, SelIdents, NumSelIdents)) continue; Result R = Result(*M, 0); R.StartParameter = NumSelIdents; R.AllParametersAreInformative = (WantKind != MK_Any); if (!InOriginalClass) R.Priority += CCD_InBaseClass; Results.MaybeAddResult(R, CurContext); } } ObjCInterfaceDecl *IFace = dyn_cast(Container); if (!IFace) return; // Add methods in protocols. const ObjCList &Protocols= IFace->getReferencedProtocols(); for (ObjCList::iterator I = Protocols.begin(), E = Protocols.end(); I != E; ++I) AddObjCMethods(*I, WantInstanceMethods, WantKind, SelIdents, NumSelIdents, CurContext, Results, false); // Add methods in categories. for (ObjCCategoryDecl *CatDecl = IFace->getCategoryList(); CatDecl; CatDecl = CatDecl->getNextClassCategory()) { AddObjCMethods(CatDecl, WantInstanceMethods, WantKind, SelIdents, NumSelIdents, CurContext, Results, InOriginalClass); // Add a categories protocol methods. const ObjCList &Protocols = CatDecl->getReferencedProtocols(); for (ObjCList::iterator I = Protocols.begin(), E = Protocols.end(); I != E; ++I) AddObjCMethods(*I, WantInstanceMethods, WantKind, SelIdents, NumSelIdents, CurContext, Results, false); // Add methods in category implementations. if (ObjCCategoryImplDecl *Impl = CatDecl->getImplementation()) AddObjCMethods(Impl, WantInstanceMethods, WantKind, SelIdents, NumSelIdents, CurContext, Results, InOriginalClass); } // Add methods in superclass. if (IFace->getSuperClass()) AddObjCMethods(IFace->getSuperClass(), WantInstanceMethods, WantKind, SelIdents, NumSelIdents, CurContext, Results, false); // Add methods in our implementation, if any. if (ObjCImplementationDecl *Impl = IFace->getImplementation()) AddObjCMethods(Impl, WantInstanceMethods, WantKind, SelIdents, NumSelIdents, CurContext, Results, InOriginalClass); } void Sema::CodeCompleteObjCPropertyGetter(Scope *S, Decl *ClassDecl, Decl **Methods, unsigned NumMethods) { typedef CodeCompletionResult Result; // Try to find the interface where getters might live. ObjCInterfaceDecl *Class = dyn_cast_or_null(ClassDecl); if (!Class) { if (ObjCCategoryDecl *Category = dyn_cast_or_null(ClassDecl)) Class = Category->getClassInterface(); if (!Class) return; } // Find all of the potential getters. ResultBuilder Results(*this); Results.EnterNewScope(); // FIXME: We need to do this because Objective-C methods don't get // pushed into DeclContexts early enough. Argh! for (unsigned I = 0; I != NumMethods; ++I) { if (ObjCMethodDecl *Method = dyn_cast_or_null(Methods[I])) if (Method->isInstanceMethod() && isAcceptableObjCMethod(Method, MK_ZeroArgSelector, 0, 0)) { Result R = Result(Method, 0); R.AllParametersAreInformative = true; Results.MaybeAddResult(R, CurContext); } } AddObjCMethods(Class, true, MK_ZeroArgSelector, 0, 0, CurContext, Results); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompleteObjCPropertySetter(Scope *S, Decl *ObjCImplDecl, Decl **Methods, unsigned NumMethods) { typedef CodeCompletionResult Result; // Try to find the interface where setters might live. ObjCInterfaceDecl *Class = dyn_cast_or_null(ObjCImplDecl); if (!Class) { if (ObjCCategoryDecl *Category = dyn_cast_or_null(ObjCImplDecl)) Class = Category->getClassInterface(); if (!Class) return; } // Find all of the potential getters. ResultBuilder Results(*this); Results.EnterNewScope(); // FIXME: We need to do this because Objective-C methods don't get // pushed into DeclContexts early enough. Argh! for (unsigned I = 0; I != NumMethods; ++I) { if (ObjCMethodDecl *Method = dyn_cast_or_null(Methods[I])) if (Method->isInstanceMethod() && isAcceptableObjCMethod(Method, MK_OneArgSelector, 0, 0)) { Result R = Result(Method, 0); R.AllParametersAreInformative = true; Results.MaybeAddResult(R, CurContext); } } AddObjCMethods(Class, true, MK_OneArgSelector, 0, 0, CurContext, Results); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS) { typedef CodeCompletionResult Result; ResultBuilder Results(*this); Results.EnterNewScope(); // Add context-sensitive, Objective-C parameter-passing keywords. bool AddedInOut = false; if ((DS.getObjCDeclQualifier() & (ObjCDeclSpec::DQ_In | ObjCDeclSpec::DQ_Inout)) == 0) { Results.AddResult("in"); Results.AddResult("inout"); AddedInOut = true; } if ((DS.getObjCDeclQualifier() & (ObjCDeclSpec::DQ_Out | ObjCDeclSpec::DQ_Inout)) == 0) { Results.AddResult("out"); if (!AddedInOut) Results.AddResult("inout"); } if ((DS.getObjCDeclQualifier() & (ObjCDeclSpec::DQ_Bycopy | ObjCDeclSpec::DQ_Byref | ObjCDeclSpec::DQ_Oneway)) == 0) { Results.AddResult("bycopy"); Results.AddResult("byref"); Results.AddResult("oneway"); } // Add various builtin type names and specifiers. AddOrdinaryNameResults(PCC_Type, S, *this, Results); Results.ExitScope(); // Add the various type names Results.setFilter(&ResultBuilder::IsOrdinaryNonValueName); CodeCompletionDeclConsumer Consumer(Results, CurContext); LookupVisibleDecls(S, LookupOrdinaryName, Consumer, CodeCompleter->includeGlobals()); if (CodeCompleter->includeMacros()) AddMacroResults(PP, Results); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Type, Results.data(), Results.size()); } /// \brief When we have an expression with type "id", we may assume /// that it has some more-specific class type based on knowledge of /// common uses of Objective-C. This routine returns that class type, /// or NULL if no better result could be determined. static ObjCInterfaceDecl *GetAssumedMessageSendExprType(Expr *E) { ObjCMessageExpr *Msg = dyn_cast(E); if (!Msg) return 0; Selector Sel = Msg->getSelector(); if (Sel.isNull()) return 0; IdentifierInfo *Id = Sel.getIdentifierInfoForSlot(0); if (!Id) return 0; ObjCMethodDecl *Method = Msg->getMethodDecl(); if (!Method) return 0; // Determine the class that we're sending the message to. ObjCInterfaceDecl *IFace = 0; switch (Msg->getReceiverKind()) { case ObjCMessageExpr::Class: if (const ObjCObjectType *ObjType = Msg->getClassReceiver()->getAs()) IFace = ObjType->getInterface(); break; case ObjCMessageExpr::Instance: { QualType T = Msg->getInstanceReceiver()->getType(); if (const ObjCObjectPointerType *Ptr = T->getAs()) IFace = Ptr->getInterfaceDecl(); break; } case ObjCMessageExpr::SuperInstance: case ObjCMessageExpr::SuperClass: break; } if (!IFace) return 0; ObjCInterfaceDecl *Super = IFace->getSuperClass(); if (Method->isInstanceMethod()) return llvm::StringSwitch(Id->getName()) .Case("retain", IFace) .Case("autorelease", IFace) .Case("copy", IFace) .Case("copyWithZone", IFace) .Case("mutableCopy", IFace) .Case("mutableCopyWithZone", IFace) .Case("awakeFromCoder", IFace) .Case("replacementObjectFromCoder", IFace) .Case("class", IFace) .Case("classForCoder", IFace) .Case("superclass", Super) .Default(0); return llvm::StringSwitch(Id->getName()) .Case("new", IFace) .Case("alloc", IFace) .Case("allocWithZone", IFace) .Case("class", IFace) .Case("superclass", Super) .Default(0); } // Add a special completion for a message send to "super", which fills in the // most likely case of forwarding all of our arguments to the superclass // function. /// /// \param S The semantic analysis object. /// /// \param S NeedSuperKeyword Whether we need to prefix this completion with /// the "super" keyword. Otherwise, we just need to provide the arguments. /// /// \param SelIdents The identifiers in the selector that have already been /// provided as arguments for a send to "super". /// /// \param NumSelIdents The number of identifiers in \p SelIdents. /// /// \param Results The set of results to augment. /// /// \returns the Objective-C method declaration that would be invoked by /// this "super" completion. If NULL, no completion was added. static ObjCMethodDecl *AddSuperSendCompletion(Sema &S, bool NeedSuperKeyword, IdentifierInfo **SelIdents, unsigned NumSelIdents, ResultBuilder &Results) { ObjCMethodDecl *CurMethod = S.getCurMethodDecl(); if (!CurMethod) return 0; ObjCInterfaceDecl *Class = CurMethod->getClassInterface(); if (!Class) return 0; // Try to find a superclass method with the same selector. ObjCMethodDecl *SuperMethod = 0; while ((Class = Class->getSuperClass()) && !SuperMethod) SuperMethod = Class->getMethod(CurMethod->getSelector(), CurMethod->isInstanceMethod()); if (!SuperMethod) return 0; // Check whether the superclass method has the same signature. if (CurMethod->param_size() != SuperMethod->param_size() || CurMethod->isVariadic() != SuperMethod->isVariadic()) return 0; for (ObjCMethodDecl::param_iterator CurP = CurMethod->param_begin(), CurPEnd = CurMethod->param_end(), SuperP = SuperMethod->param_begin(); CurP != CurPEnd; ++CurP, ++SuperP) { // Make sure the parameter types are compatible. if (!S.Context.hasSameUnqualifiedType((*CurP)->getType(), (*SuperP)->getType())) return 0; // Make sure we have a parameter name to forward! if (!(*CurP)->getIdentifier()) return 0; } // We have a superclass method. Now, form the send-to-super completion. CodeCompletionString *Pattern = new CodeCompletionString; // Give this completion a return type. AddResultTypeChunk(S.Context, SuperMethod, Pattern); // If we need the "super" keyword, add it (plus some spacing). if (NeedSuperKeyword) { Pattern->AddTypedTextChunk("super"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); } Selector Sel = CurMethod->getSelector(); if (Sel.isUnarySelector()) { if (NeedSuperKeyword) Pattern->AddTextChunk(Sel.getIdentifierInfoForSlot(0)->getName()); else Pattern->AddTypedTextChunk(Sel.getIdentifierInfoForSlot(0)->getName()); } else { ObjCMethodDecl::param_iterator CurP = CurMethod->param_begin(); for (unsigned I = 0, N = Sel.getNumArgs(); I != N; ++I, ++CurP) { if (I > NumSelIdents) Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); if (I < NumSelIdents) Pattern->AddInformativeChunk( Sel.getIdentifierInfoForSlot(I)->getName().str() + ":"); else if (NeedSuperKeyword || I > NumSelIdents) { Pattern->AddTextChunk( Sel.getIdentifierInfoForSlot(I)->getName().str() + ":"); Pattern->AddPlaceholderChunk((*CurP)->getIdentifier()->getName()); } else { Pattern->AddTypedTextChunk( Sel.getIdentifierInfoForSlot(I)->getName().str() + ":"); Pattern->AddPlaceholderChunk((*CurP)->getIdentifier()->getName()); } } } Results.AddResult(CodeCompletionResult(Pattern, CCP_SuperCompletion, SuperMethod->isInstanceMethod() ? CXCursor_ObjCInstanceMethodDecl : CXCursor_ObjCClassMethodDecl)); return SuperMethod; } void Sema::CodeCompleteObjCMessageReceiver(Scope *S) { typedef CodeCompletionResult Result; ResultBuilder Results(*this); // Find anything that looks like it could be a message receiver. Results.setFilter(&ResultBuilder::IsObjCMessageReceiver); CodeCompletionDeclConsumer Consumer(Results, CurContext); Results.EnterNewScope(); LookupVisibleDecls(S, LookupOrdinaryName, Consumer, CodeCompleter->includeGlobals()); // If we are in an Objective-C method inside a class that has a superclass, // add "super" as an option. if (ObjCMethodDecl *Method = getCurMethodDecl()) if (ObjCInterfaceDecl *Iface = Method->getClassInterface()) if (Iface->getSuperClass()) { Results.AddResult(Result("super")); AddSuperSendCompletion(*this, /*NeedSuperKeyword=*/true, 0, 0, Results); } Results.ExitScope(); if (CodeCompleter->includeMacros()) AddMacroResults(PP, Results); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_ObjCMessageReceiver, Results.data(), Results.size()); } void Sema::CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc, IdentifierInfo **SelIdents, unsigned NumSelIdents) { ObjCInterfaceDecl *CDecl = 0; if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) { // Figure out which interface we're in. CDecl = CurMethod->getClassInterface(); if (!CDecl) return; // Find the superclass of this class. CDecl = CDecl->getSuperClass(); if (!CDecl) return; if (CurMethod->isInstanceMethod()) { // We are inside an instance method, which means that the message // send [super ...] is actually calling an instance method on the // current object. Build the super expression and handle this like // an instance method. QualType SuperTy = Context.getObjCInterfaceType(CDecl); SuperTy = Context.getObjCObjectPointerType(SuperTy); ExprResult Super = Owned(new (Context) ObjCSuperExpr(SuperLoc, SuperTy)); return CodeCompleteObjCInstanceMessage(S, (Expr *)Super.get(), SelIdents, NumSelIdents, /*IsSuper=*/true); } // Fall through to send to the superclass in CDecl. } else { // "super" may be the name of a type or variable. Figure out which // it is. IdentifierInfo *Super = &Context.Idents.get("super"); NamedDecl *ND = LookupSingleName(S, Super, SuperLoc, LookupOrdinaryName); if ((CDecl = dyn_cast_or_null(ND))) { // "super" names an interface. Use it. } else if (TypeDecl *TD = dyn_cast_or_null(ND)) { if (const ObjCObjectType *Iface = Context.getTypeDeclType(TD)->getAs()) CDecl = Iface->getInterface(); } else if (ND && isa(ND)) { // "super" names an unresolved type; we can't be more specific. } else { // Assume that "super" names some kind of value and parse that way. CXXScopeSpec SS; UnqualifiedId id; id.setIdentifier(Super, SuperLoc); ExprResult SuperExpr = ActOnIdExpression(S, SS, id, false, false); return CodeCompleteObjCInstanceMessage(S, (Expr *)SuperExpr.get(), SelIdents, NumSelIdents); } // Fall through } ParsedType Receiver; if (CDecl) Receiver = ParsedType::make(Context.getObjCInterfaceType(CDecl)); return CodeCompleteObjCClassMessage(S, Receiver, SelIdents, NumSelIdents, /*IsSuper=*/true); } void Sema::CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver, IdentifierInfo **SelIdents, unsigned NumSelIdents) { CodeCompleteObjCClassMessage(S, Receiver, SelIdents, NumSelIdents, false); } void Sema::CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver, IdentifierInfo **SelIdents, unsigned NumSelIdents, bool IsSuper) { typedef CodeCompletionResult Result; ObjCInterfaceDecl *CDecl = 0; // If the given name refers to an interface type, retrieve the // corresponding declaration. if (Receiver) { QualType T = GetTypeFromParser(Receiver, 0); if (!T.isNull()) if (const ObjCObjectType *Interface = T->getAs()) CDecl = Interface->getInterface(); } // Add all of the factory methods in this Objective-C class, its protocols, // superclasses, categories, implementation, etc. ResultBuilder Results(*this); Results.EnterNewScope(); // If this is a send-to-super, try to add the special "super" send // completion. if (IsSuper) { if (ObjCMethodDecl *SuperMethod = AddSuperSendCompletion(*this, false, SelIdents, NumSelIdents, Results)) Results.Ignore(SuperMethod); } // If we're inside an Objective-C method definition, prefer its selector to // others. if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) Results.setPreferredSelector(CurMethod->getSelector()); if (CDecl) AddObjCMethods(CDecl, false, MK_Any, SelIdents, NumSelIdents, CurContext, Results); else { // We're messaging "id" as a type; provide all class/factory methods. // If we have an external source, load the entire class method // pool from the AST file. if (ExternalSource) { for (uint32_t I = 0, N = ExternalSource->GetNumExternalSelectors(); I != N; ++I) { Selector Sel = ExternalSource->GetExternalSelector(I); if (Sel.isNull() || MethodPool.count(Sel)) continue; ReadMethodPool(Sel); } } for (GlobalMethodPool::iterator M = MethodPool.begin(), MEnd = MethodPool.end(); M != MEnd; ++M) { for (ObjCMethodList *MethList = &M->second.second; MethList && MethList->Method; MethList = MethList->Next) { if (!isAcceptableObjCMethod(MethList->Method, MK_Any, SelIdents, NumSelIdents)) continue; Result R(MethList->Method, 0); R.StartParameter = NumSelIdents; R.AllParametersAreInformative = false; Results.MaybeAddResult(R, CurContext); } } } Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(), Results.size()); } void Sema::CodeCompleteObjCInstanceMessage(Scope *S, ExprTy *Receiver, IdentifierInfo **SelIdents, unsigned NumSelIdents) { CodeCompleteObjCInstanceMessage(S, Receiver, SelIdents, NumSelIdents, false); } void Sema::CodeCompleteObjCInstanceMessage(Scope *S, ExprTy *Receiver, IdentifierInfo **SelIdents, unsigned NumSelIdents, bool IsSuper) { typedef CodeCompletionResult Result; Expr *RecExpr = static_cast(Receiver); // If necessary, apply function/array conversion to the receiver. // C99 6.7.5.3p[7,8]. DefaultFunctionArrayLvalueConversion(RecExpr); QualType ReceiverType = RecExpr->getType(); // Build the set of methods we can see. ResultBuilder Results(*this); Results.EnterNewScope(); // If this is a send-to-super, try to add the special "super" send // completion. if (IsSuper) { if (ObjCMethodDecl *SuperMethod = AddSuperSendCompletion(*this, false, SelIdents, NumSelIdents, Results)) Results.Ignore(SuperMethod); } // If we're inside an Objective-C method definition, prefer its selector to // others. if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) Results.setPreferredSelector(CurMethod->getSelector()); // If we're messaging an expression with type "id" or "Class", check // whether we know something special about the receiver that allows // us to assume a more-specific receiver type. if (ReceiverType->isObjCIdType() || ReceiverType->isObjCClassType()) if (ObjCInterfaceDecl *IFace = GetAssumedMessageSendExprType(RecExpr)) ReceiverType = Context.getObjCObjectPointerType( Context.getObjCInterfaceType(IFace)); // Handle messages to Class. This really isn't a message to an instance // method, so we treat it the same way we would treat a message send to a // class method. if (ReceiverType->isObjCClassType() || ReceiverType->isObjCQualifiedClassType()) { if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) { if (ObjCInterfaceDecl *ClassDecl = CurMethod->getClassInterface()) AddObjCMethods(ClassDecl, false, MK_Any, SelIdents, NumSelIdents, CurContext, Results); } } // Handle messages to a qualified ID ("id"). else if (const ObjCObjectPointerType *QualID = ReceiverType->getAsObjCQualifiedIdType()) { // Search protocols for instance methods. for (ObjCObjectPointerType::qual_iterator I = QualID->qual_begin(), E = QualID->qual_end(); I != E; ++I) AddObjCMethods(*I, true, MK_Any, SelIdents, NumSelIdents, CurContext, Results); } // Handle messages to a pointer to interface type. else if (const ObjCObjectPointerType *IFacePtr = ReceiverType->getAsObjCInterfacePointerType()) { // Search the class, its superclasses, etc., for instance methods. AddObjCMethods(IFacePtr->getInterfaceDecl(), true, MK_Any, SelIdents, NumSelIdents, CurContext, Results); // Search protocols for instance methods. for (ObjCObjectPointerType::qual_iterator I = IFacePtr->qual_begin(), E = IFacePtr->qual_end(); I != E; ++I) AddObjCMethods(*I, true, MK_Any, SelIdents, NumSelIdents, CurContext, Results); } // Handle messages to "id". else if (ReceiverType->isObjCIdType()) { // We're messaging "id", so provide all instance methods we know // about as code-completion results. // If we have an external source, load the entire class method // pool from the AST file. if (ExternalSource) { for (uint32_t I = 0, N = ExternalSource->GetNumExternalSelectors(); I != N; ++I) { Selector Sel = ExternalSource->GetExternalSelector(I); if (Sel.isNull() || MethodPool.count(Sel)) continue; ReadMethodPool(Sel); } } for (GlobalMethodPool::iterator M = MethodPool.begin(), MEnd = MethodPool.end(); M != MEnd; ++M) { for (ObjCMethodList *MethList = &M->second.first; MethList && MethList->Method; MethList = MethList->Next) { if (!isAcceptableObjCMethod(MethList->Method, MK_Any, SelIdents, NumSelIdents)) continue; Result R(MethList->Method, 0); R.StartParameter = NumSelIdents; R.AllParametersAreInformative = false; Results.MaybeAddResult(R, CurContext); } } } Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompleteObjCForCollection(Scope *S, DeclGroupPtrTy IterationVar) { CodeCompleteExpressionData Data; Data.ObjCCollection = true; if (IterationVar.getAsOpaquePtr()) { DeclGroupRef DG = IterationVar.getAsVal(); for (DeclGroupRef::iterator I = DG.begin(), End = DG.end(); I != End; ++I) { if (*I) Data.IgnoreDecls.push_back(*I); } } CodeCompleteExpression(S, Data); } void Sema::CodeCompleteObjCSelector(Scope *S, IdentifierInfo **SelIdents, unsigned NumSelIdents) { // If we have an external source, load the entire class method // pool from the AST file. if (ExternalSource) { for (uint32_t I = 0, N = ExternalSource->GetNumExternalSelectors(); I != N; ++I) { Selector Sel = ExternalSource->GetExternalSelector(I); if (Sel.isNull() || MethodPool.count(Sel)) continue; ReadMethodPool(Sel); } } ResultBuilder Results(*this); Results.EnterNewScope(); for (GlobalMethodPool::iterator M = MethodPool.begin(), MEnd = MethodPool.end(); M != MEnd; ++M) { Selector Sel = M->first; if (!isAcceptableObjCSelector(Sel, MK_Any, SelIdents, NumSelIdents)) continue; CodeCompletionString *Pattern = new CodeCompletionString; if (Sel.isUnarySelector()) { Pattern->AddTypedTextChunk(Sel.getIdentifierInfoForSlot(0)->getName()); Results.AddResult(Pattern); continue; } std::string Accumulator; for (unsigned I = 0, N = Sel.getNumArgs(); I != N; ++I) { if (I == NumSelIdents) { if (!Accumulator.empty()) { Pattern->AddInformativeChunk(Accumulator); Accumulator.clear(); } } Accumulator += Sel.getIdentifierInfoForSlot(I)->getName().str(); Accumulator += ':'; } Pattern->AddTypedTextChunk(Accumulator); Results.AddResult(Pattern); } Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_SelectorName, Results.data(), Results.size()); } /// \brief Add all of the protocol declarations that we find in the given /// (translation unit) context. static void AddProtocolResults(DeclContext *Ctx, DeclContext *CurContext, bool OnlyForwardDeclarations, ResultBuilder &Results) { typedef CodeCompletionResult Result; for (DeclContext::decl_iterator D = Ctx->decls_begin(), DEnd = Ctx->decls_end(); D != DEnd; ++D) { // Record any protocols we find. if (ObjCProtocolDecl *Proto = dyn_cast(*D)) if (!OnlyForwardDeclarations || Proto->isForwardDecl()) Results.AddResult(Result(Proto, 0), CurContext, 0, false); // Record any forward-declared protocols we find. if (ObjCForwardProtocolDecl *Forward = dyn_cast(*D)) { for (ObjCForwardProtocolDecl::protocol_iterator P = Forward->protocol_begin(), PEnd = Forward->protocol_end(); P != PEnd; ++P) if (!OnlyForwardDeclarations || (*P)->isForwardDecl()) Results.AddResult(Result(*P, 0), CurContext, 0, false); } } } void Sema::CodeCompleteObjCProtocolReferences(IdentifierLocPair *Protocols, unsigned NumProtocols) { ResultBuilder Results(*this); Results.EnterNewScope(); // Tell the result set to ignore all of the protocols we have // already seen. for (unsigned I = 0; I != NumProtocols; ++I) if (ObjCProtocolDecl *Protocol = LookupProtocol(Protocols[I].first, Protocols[I].second)) Results.Ignore(Protocol); // Add all protocols. AddProtocolResults(Context.getTranslationUnitDecl(), CurContext, false, Results); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_ObjCProtocolName, Results.data(),Results.size()); } void Sema::CodeCompleteObjCProtocolDecl(Scope *) { ResultBuilder Results(*this); Results.EnterNewScope(); // Add all protocols. AddProtocolResults(Context.getTranslationUnitDecl(), CurContext, true, Results); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_ObjCProtocolName, Results.data(),Results.size()); } /// \brief Add all of the Objective-C interface declarations that we find in /// the given (translation unit) context. static void AddInterfaceResults(DeclContext *Ctx, DeclContext *CurContext, bool OnlyForwardDeclarations, bool OnlyUnimplemented, ResultBuilder &Results) { typedef CodeCompletionResult Result; for (DeclContext::decl_iterator D = Ctx->decls_begin(), DEnd = Ctx->decls_end(); D != DEnd; ++D) { // Record any interfaces we find. if (ObjCInterfaceDecl *Class = dyn_cast(*D)) if ((!OnlyForwardDeclarations || Class->isForwardDecl()) && (!OnlyUnimplemented || !Class->getImplementation())) Results.AddResult(Result(Class, 0), CurContext, 0, false); // Record any forward-declared interfaces we find. if (ObjCClassDecl *Forward = dyn_cast(*D)) { for (ObjCClassDecl::iterator C = Forward->begin(), CEnd = Forward->end(); C != CEnd; ++C) if ((!OnlyForwardDeclarations || C->getInterface()->isForwardDecl()) && (!OnlyUnimplemented || !C->getInterface()->getImplementation())) Results.AddResult(Result(C->getInterface(), 0), CurContext, 0, false); } } } void Sema::CodeCompleteObjCInterfaceDecl(Scope *S) { ResultBuilder Results(*this); Results.EnterNewScope(); // Add all classes. AddInterfaceResults(Context.getTranslationUnitDecl(), CurContext, true, false, Results); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompleteObjCSuperclass(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc) { ResultBuilder Results(*this); Results.EnterNewScope(); // Make sure that we ignore the class we're currently defining. NamedDecl *CurClass = LookupSingleName(TUScope, ClassName, ClassNameLoc, LookupOrdinaryName); if (CurClass && isa(CurClass)) Results.Ignore(CurClass); // Add all classes. AddInterfaceResults(Context.getTranslationUnitDecl(), CurContext, false, false, Results); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompleteObjCImplementationDecl(Scope *S) { ResultBuilder Results(*this); Results.EnterNewScope(); // Add all unimplemented classes. AddInterfaceResults(Context.getTranslationUnitDecl(), CurContext, false, true, Results); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompleteObjCInterfaceCategory(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc) { typedef CodeCompletionResult Result; ResultBuilder Results(*this); // Ignore any categories we find that have already been implemented by this // interface. llvm::SmallPtrSet CategoryNames; NamedDecl *CurClass = LookupSingleName(TUScope, ClassName, ClassNameLoc, LookupOrdinaryName); if (ObjCInterfaceDecl *Class = dyn_cast_or_null(CurClass)) for (ObjCCategoryDecl *Category = Class->getCategoryList(); Category; Category = Category->getNextClassCategory()) CategoryNames.insert(Category->getIdentifier()); // Add all of the categories we know about. Results.EnterNewScope(); TranslationUnitDecl *TU = Context.getTranslationUnitDecl(); for (DeclContext::decl_iterator D = TU->decls_begin(), DEnd = TU->decls_end(); D != DEnd; ++D) if (ObjCCategoryDecl *Category = dyn_cast(*D)) if (CategoryNames.insert(Category->getIdentifier())) Results.AddResult(Result(Category, 0), CurContext, 0, false); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompleteObjCImplementationCategory(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc) { typedef CodeCompletionResult Result; // Find the corresponding interface. If we couldn't find the interface, the // program itself is ill-formed. However, we'll try to be helpful still by // providing the list of all of the categories we know about. NamedDecl *CurClass = LookupSingleName(TUScope, ClassName, ClassNameLoc, LookupOrdinaryName); ObjCInterfaceDecl *Class = dyn_cast_or_null(CurClass); if (!Class) return CodeCompleteObjCInterfaceCategory(S, ClassName, ClassNameLoc); ResultBuilder Results(*this); // Add all of the categories that have have corresponding interface // declarations in this class and any of its superclasses, except for // already-implemented categories in the class itself. llvm::SmallPtrSet CategoryNames; Results.EnterNewScope(); bool IgnoreImplemented = true; while (Class) { for (ObjCCategoryDecl *Category = Class->getCategoryList(); Category; Category = Category->getNextClassCategory()) if ((!IgnoreImplemented || !Category->getImplementation()) && CategoryNames.insert(Category->getIdentifier())) Results.AddResult(Result(Category, 0), CurContext, 0, false); Class = Class->getSuperClass(); IgnoreImplemented = false; } Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompleteObjCPropertyDefinition(Scope *S, Decl *ObjCImpDecl) { typedef CodeCompletionResult Result; ResultBuilder Results(*this); // Figure out where this @synthesize lives. ObjCContainerDecl *Container = dyn_cast_or_null(ObjCImpDecl); if (!Container || (!isa(Container) && !isa(Container))) return; // Ignore any properties that have already been implemented. for (DeclContext::decl_iterator D = Container->decls_begin(), DEnd = Container->decls_end(); D != DEnd; ++D) if (ObjCPropertyImplDecl *PropertyImpl = dyn_cast(*D)) Results.Ignore(PropertyImpl->getPropertyDecl()); // Add any properties that we find. Results.EnterNewScope(); if (ObjCImplementationDecl *ClassImpl = dyn_cast(Container)) AddObjCProperties(ClassImpl->getClassInterface(), false, CurContext, Results); else AddObjCProperties(cast(Container)->getCategoryDecl(), false, CurContext, Results); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompleteObjCPropertySynthesizeIvar(Scope *S, IdentifierInfo *PropertyName, Decl *ObjCImpDecl) { typedef CodeCompletionResult Result; ResultBuilder Results(*this); // Figure out where this @synthesize lives. ObjCContainerDecl *Container = dyn_cast_or_null(ObjCImpDecl); if (!Container || (!isa(Container) && !isa(Container))) return; // Figure out which interface we're looking into. ObjCInterfaceDecl *Class = 0; if (ObjCImplementationDecl *ClassImpl = dyn_cast(Container)) Class = ClassImpl->getClassInterface(); else Class = cast(Container)->getCategoryDecl() ->getClassInterface(); // Add all of the instance variables in this class and its superclasses. Results.EnterNewScope(); for(; Class; Class = Class->getSuperClass()) { // FIXME: We could screen the type of each ivar for compatibility with // the property, but is that being too paternal? for (ObjCInterfaceDecl::ivar_iterator IVar = Class->ivar_begin(), IVarEnd = Class->ivar_end(); IVar != IVarEnd; ++IVar) Results.AddResult(Result(*IVar, 0), CurContext, 0, false); } Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } // Mapping from selectors to the methods that implement that selector, along // with the "in original class" flag. typedef llvm::DenseMap > KnownMethodsMap; /// \brief Find all of the methods that reside in the given container /// (and its superclasses, protocols, etc.) that meet the given /// criteria. Insert those methods into the map of known methods, /// indexed by selector so they can be easily found. static void FindImplementableMethods(ASTContext &Context, ObjCContainerDecl *Container, bool WantInstanceMethods, QualType ReturnType, bool IsInImplementation, KnownMethodsMap &KnownMethods, bool InOriginalClass = true) { if (ObjCInterfaceDecl *IFace = dyn_cast(Container)) { // Recurse into protocols. const ObjCList &Protocols = IFace->getReferencedProtocols(); for (ObjCList::iterator I = Protocols.begin(), E = Protocols.end(); I != E; ++I) FindImplementableMethods(Context, *I, WantInstanceMethods, ReturnType, IsInImplementation, KnownMethods, InOriginalClass); // If we're not in the implementation of a class, also visit the // superclass. if (!IsInImplementation && IFace->getSuperClass()) FindImplementableMethods(Context, IFace->getSuperClass(), WantInstanceMethods, ReturnType, IsInImplementation, KnownMethods, false); // Add methods from any class extensions (but not from categories; // those should go into category implementations). for (const ObjCCategoryDecl *Cat = IFace->getFirstClassExtension(); Cat; Cat = Cat->getNextClassExtension()) FindImplementableMethods(Context, const_cast(Cat), WantInstanceMethods, ReturnType, IsInImplementation, KnownMethods, InOriginalClass); } if (ObjCCategoryDecl *Category = dyn_cast(Container)) { // Recurse into protocols. const ObjCList &Protocols = Category->getReferencedProtocols(); for (ObjCList::iterator I = Protocols.begin(), E = Protocols.end(); I != E; ++I) FindImplementableMethods(Context, *I, WantInstanceMethods, ReturnType, IsInImplementation, KnownMethods, InOriginalClass); } if (ObjCProtocolDecl *Protocol = dyn_cast(Container)) { // Recurse into protocols. const ObjCList &Protocols = Protocol->getReferencedProtocols(); for (ObjCList::iterator I = Protocols.begin(), E = Protocols.end(); I != E; ++I) FindImplementableMethods(Context, *I, WantInstanceMethods, ReturnType, IsInImplementation, KnownMethods, false); } // Add methods in this container. This operation occurs last because // we want the methods from this container to override any methods // we've previously seen with the same selector. for (ObjCContainerDecl::method_iterator M = Container->meth_begin(), MEnd = Container->meth_end(); M != MEnd; ++M) { if ((*M)->isInstanceMethod() == WantInstanceMethods) { if (!ReturnType.isNull() && !Context.hasSameUnqualifiedType(ReturnType, (*M)->getResultType())) continue; KnownMethods[(*M)->getSelector()] = std::make_pair(*M, InOriginalClass); } } } void Sema::CodeCompleteObjCMethodDecl(Scope *S, bool IsInstanceMethod, ParsedType ReturnTy, Decl *IDecl) { // Determine the return type of the method we're declaring, if // provided. QualType ReturnType = GetTypeFromParser(ReturnTy); // Determine where we should start searching for methods, and where we ObjCContainerDecl *SearchDecl = 0, *CurrentDecl = 0; bool IsInImplementation = false; if (Decl *D = IDecl) { if (ObjCImplementationDecl *Impl = dyn_cast(D)) { SearchDecl = Impl->getClassInterface(); CurrentDecl = Impl; IsInImplementation = true; } else if (ObjCCategoryImplDecl *CatImpl = dyn_cast(D)) { SearchDecl = CatImpl->getCategoryDecl(); CurrentDecl = CatImpl; IsInImplementation = true; } else { SearchDecl = dyn_cast(D); CurrentDecl = SearchDecl; } } if (!SearchDecl && S) { if (DeclContext *DC = static_cast(S->getEntity())) { SearchDecl = dyn_cast(DC); CurrentDecl = SearchDecl; } } if (!SearchDecl || !CurrentDecl) { HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, 0, 0); return; } // Find all of the methods that we could declare/implement here. KnownMethodsMap KnownMethods; FindImplementableMethods(Context, SearchDecl, IsInstanceMethod, ReturnType, IsInImplementation, KnownMethods); // Erase any methods that have already been declared or // implemented here. for (ObjCContainerDecl::method_iterator M = CurrentDecl->meth_begin(), MEnd = CurrentDecl->meth_end(); M != MEnd; ++M) { if ((*M)->isInstanceMethod() != IsInstanceMethod) continue; KnownMethodsMap::iterator Pos = KnownMethods.find((*M)->getSelector()); if (Pos != KnownMethods.end()) KnownMethods.erase(Pos); } // Add declarations or definitions for each of the known methods. typedef CodeCompletionResult Result; ResultBuilder Results(*this); Results.EnterNewScope(); PrintingPolicy Policy(Context.PrintingPolicy); Policy.AnonymousTagLocations = false; for (KnownMethodsMap::iterator M = KnownMethods.begin(), MEnd = KnownMethods.end(); M != MEnd; ++M) { ObjCMethodDecl *Method = M->second.first; CodeCompletionString *Pattern = new CodeCompletionString; // If the result type was not already provided, add it to the // pattern as (type). if (ReturnType.isNull()) { std::string TypeStr; Method->getResultType().getAsStringInternal(TypeStr, Policy); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddTextChunk(TypeStr); Pattern->AddChunk(CodeCompletionString::CK_RightParen); } Selector Sel = Method->getSelector(); // Add the first part of the selector to the pattern. Pattern->AddTypedTextChunk(Sel.getIdentifierInfoForSlot(0)->getName()); // Add parameters to the pattern. unsigned I = 0; for (ObjCMethodDecl::param_iterator P = Method->param_begin(), PEnd = Method->param_end(); P != PEnd; (void)++P, ++I) { // Add the part of the selector name. if (I == 0) Pattern->AddChunk(CodeCompletionString::CK_Colon); else if (I < Sel.getNumArgs()) { Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddTextChunk(Sel.getIdentifierInfoForSlot(I)->getName()); Pattern->AddChunk(CodeCompletionString::CK_Colon); } else break; // Add the parameter type. std::string TypeStr; (*P)->getOriginalType().getAsStringInternal(TypeStr, Policy); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddTextChunk(TypeStr); Pattern->AddChunk(CodeCompletionString::CK_RightParen); if (IdentifierInfo *Id = (*P)->getIdentifier()) Pattern->AddTextChunk(Id->getName()); } if (Method->isVariadic()) { if (Method->param_size() > 0) Pattern->AddChunk(CodeCompletionString::CK_Comma); Pattern->AddTextChunk("..."); } if (IsInImplementation && Results.includeCodePatterns()) { // We will be defining the method here, so add a compound statement. Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddChunk(CodeCompletionString::CK_LeftBrace); Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace); if (!Method->getResultType()->isVoidType()) { // If the result type is not void, add a return clause. Pattern->AddTextChunk("return"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("expression"); Pattern->AddChunk(CodeCompletionString::CK_SemiColon); } else Pattern->AddPlaceholderChunk("statements"); Pattern->AddChunk(CodeCompletionString::CK_VerticalSpace); Pattern->AddChunk(CodeCompletionString::CK_RightBrace); } unsigned Priority = CCP_CodePattern; if (!M->second.second) Priority += CCD_InBaseClass; Results.AddResult(Result(Pattern, Priority, Method->isInstanceMethod() ? CXCursor_ObjCInstanceMethodDecl : CXCursor_ObjCClassMethodDecl)); } Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompleteObjCMethodDeclSelector(Scope *S, bool IsInstanceMethod, bool AtParameterName, ParsedType ReturnTy, IdentifierInfo **SelIdents, unsigned NumSelIdents) { // If we have an external source, load the entire class method // pool from the AST file. if (ExternalSource) { for (uint32_t I = 0, N = ExternalSource->GetNumExternalSelectors(); I != N; ++I) { Selector Sel = ExternalSource->GetExternalSelector(I); if (Sel.isNull() || MethodPool.count(Sel)) continue; ReadMethodPool(Sel); } } // Build the set of methods we can see. typedef CodeCompletionResult Result; ResultBuilder Results(*this); if (ReturnTy) Results.setPreferredType(GetTypeFromParser(ReturnTy).getNonReferenceType()); Results.EnterNewScope(); for (GlobalMethodPool::iterator M = MethodPool.begin(), MEnd = MethodPool.end(); M != MEnd; ++M) { for (ObjCMethodList *MethList = IsInstanceMethod ? &M->second.first : &M->second.second; MethList && MethList->Method; MethList = MethList->Next) { if (!isAcceptableObjCMethod(MethList->Method, MK_Any, SelIdents, NumSelIdents)) continue; if (AtParameterName) { // Suggest parameter names we've seen before. if (NumSelIdents && NumSelIdents <= MethList->Method->param_size()) { ParmVarDecl *Param = MethList->Method->param_begin()[NumSelIdents-1]; if (Param->getIdentifier()) { CodeCompletionString *Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(Param->getIdentifier()->getName()); Results.AddResult(Pattern); } } continue; } Result R(MethList->Method, 0); R.StartParameter = NumSelIdents; R.AllParametersAreInformative = false; R.DeclaringEntity = true; Results.MaybeAddResult(R, CurContext); } } Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_Other, Results.data(),Results.size()); } void Sema::CodeCompletePreprocessorDirective(bool InConditional) { ResultBuilder Results(*this); Results.EnterNewScope(); // #if CodeCompletionString *Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("if"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("condition"); Results.AddResult(Pattern); // #ifdef Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("ifdef"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("macro"); Results.AddResult(Pattern); // #ifndef Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("ifndef"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("macro"); Results.AddResult(Pattern); if (InConditional) { // #elif Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("elif"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("condition"); Results.AddResult(Pattern); // #else Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("else"); Results.AddResult(Pattern); // #endif Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("endif"); Results.AddResult(Pattern); } // #include "header" Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("include"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddTextChunk("\""); Pattern->AddPlaceholderChunk("header"); Pattern->AddTextChunk("\""); Results.AddResult(Pattern); // #include
Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("include"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddTextChunk("<"); Pattern->AddPlaceholderChunk("header"); Pattern->AddTextChunk(">"); Results.AddResult(Pattern); // #define Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("define"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("macro"); Results.AddResult(Pattern); // #define () Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("define"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("macro"); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("args"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Pattern); // #undef Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("undef"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("macro"); Results.AddResult(Pattern); // #line Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("line"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("number"); Results.AddResult(Pattern); // #line "filename" Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("line"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("number"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddTextChunk("\""); Pattern->AddPlaceholderChunk("filename"); Pattern->AddTextChunk("\""); Results.AddResult(Pattern); // #error Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("error"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("message"); Results.AddResult(Pattern); // #pragma Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("pragma"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("arguments"); Results.AddResult(Pattern); if (getLangOptions().ObjC1) { // #import "header" Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("import"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddTextChunk("\""); Pattern->AddPlaceholderChunk("header"); Pattern->AddTextChunk("\""); Results.AddResult(Pattern); // #import
Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("import"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddTextChunk("<"); Pattern->AddPlaceholderChunk("header"); Pattern->AddTextChunk(">"); Results.AddResult(Pattern); } // #include_next "header" Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("include_next"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddTextChunk("\""); Pattern->AddPlaceholderChunk("header"); Pattern->AddTextChunk("\""); Results.AddResult(Pattern); // #include_next
Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("include_next"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddTextChunk("<"); Pattern->AddPlaceholderChunk("header"); Pattern->AddTextChunk(">"); Results.AddResult(Pattern); // #warning Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("warning"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddPlaceholderChunk("message"); Results.AddResult(Pattern); // Note: #ident and #sccs are such crazy anachronisms that we don't provide // completions for them. And __include_macros is a Clang-internal extension // that we don't want to encourage anyone to use. // FIXME: we don't support #assert or #unassert, so don't suggest them. Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_PreprocessorDirective, Results.data(), Results.size()); } void Sema::CodeCompleteInPreprocessorConditionalExclusion(Scope *S) { CodeCompleteOrdinaryName(S, S->getFnParent()? Sema::PCC_RecoveryInFunction : Sema::PCC_Namespace); } void Sema::CodeCompletePreprocessorMacroName(bool IsDefinition) { ResultBuilder Results(*this); if (!IsDefinition && (!CodeCompleter || CodeCompleter->includeMacros())) { // Add just the names of macros, not their arguments. Results.EnterNewScope(); for (Preprocessor::macro_iterator M = PP.macro_begin(), MEnd = PP.macro_end(); M != MEnd; ++M) { CodeCompletionString *Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk(M->first->getName()); Results.AddResult(Pattern); } Results.ExitScope(); } else if (IsDefinition) { // FIXME: Can we detect when the user just wrote an include guard above? } HandleCodeCompleteResults(this, CodeCompleter, IsDefinition? CodeCompletionContext::CCC_MacroName : CodeCompletionContext::CCC_MacroNameUse, Results.data(), Results.size()); } void Sema::CodeCompletePreprocessorExpression() { ResultBuilder Results(*this); if (!CodeCompleter || CodeCompleter->includeMacros()) AddMacroResults(PP, Results); // defined () Results.EnterNewScope(); CodeCompletionString *Pattern = new CodeCompletionString; Pattern->AddTypedTextChunk("defined"); Pattern->AddChunk(CodeCompletionString::CK_HorizontalSpace); Pattern->AddChunk(CodeCompletionString::CK_LeftParen); Pattern->AddPlaceholderChunk("macro"); Pattern->AddChunk(CodeCompletionString::CK_RightParen); Results.AddResult(Pattern); Results.ExitScope(); HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_PreprocessorExpression, Results.data(), Results.size()); } void Sema::CodeCompletePreprocessorMacroArgument(Scope *S, IdentifierInfo *Macro, MacroInfo *MacroInfo, unsigned Argument) { // FIXME: In the future, we could provide "overload" results, much like we // do for function calls. CodeCompleteOrdinaryName(S, S->getFnParent()? Sema::PCC_RecoveryInFunction : Sema::PCC_Namespace); } void Sema::CodeCompleteNaturalLanguage() { HandleCodeCompleteResults(this, CodeCompleter, CodeCompletionContext::CCC_NaturalLanguage, 0, 0); } void Sema::GatherGlobalCodeCompletions( llvm::SmallVectorImpl &Results) { ResultBuilder Builder(*this); if (!CodeCompleter || CodeCompleter->includeGlobals()) { CodeCompletionDeclConsumer Consumer(Builder, Context.getTranslationUnitDecl()); LookupVisibleDecls(Context.getTranslationUnitDecl(), LookupAnyName, Consumer); } if (!CodeCompleter || CodeCompleter->includeMacros()) AddMacroResults(PP, Builder); Results.clear(); Results.insert(Results.end(), Builder.data(), Builder.data() + Builder.size()); }