//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Constant Expr nodes as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "CGObjCRuntime.h" #include "CGRecordLayout.h" #include "clang/AST/APValue.h" #include "clang/AST/ASTContext.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/Builtins.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Target/TargetData.h" using namespace clang; using namespace CodeGen; //===----------------------------------------------------------------------===// // ConstStructBuilder //===----------------------------------------------------------------------===// namespace { class ConstStructBuilder { CodeGenModule &CGM; CodeGenFunction *CGF; bool Packed; unsigned NextFieldOffsetInBytes; unsigned LLVMStructAlignment; std::vector<llvm::Constant *> Elements; public: static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, InitListExpr *ILE); private: ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF) : CGM(CGM), CGF(CGF), Packed(false), NextFieldOffsetInBytes(0), LLVMStructAlignment(1) { } bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitExpr); bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitExpr); void AppendPadding(uint64_t NumBytes); void AppendTailPadding(uint64_t RecordSize); void ConvertStructToPacked(); bool Build(InitListExpr *ILE); unsigned getAlignment(const llvm::Constant *C) const { if (Packed) return 1; return CGM.getTargetData().getABITypeAlignment(C->getType()); } uint64_t getSizeInBytes(const llvm::Constant *C) const { return CGM.getTargetData().getTypeAllocSize(C->getType()); } }; bool ConstStructBuilder:: AppendField(const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst) { uint64_t FieldOffsetInBytes = FieldOffset / 8; assert(NextFieldOffsetInBytes <= FieldOffsetInBytes && "Field offset mismatch!"); // Emit the field. if (!InitCst) return false; unsigned FieldAlignment = getAlignment(InitCst); // Round up the field offset to the alignment of the field type. uint64_t AlignedNextFieldOffsetInBytes = llvm::RoundUpToAlignment(NextFieldOffsetInBytes, FieldAlignment); if (AlignedNextFieldOffsetInBytes > FieldOffsetInBytes) { assert(!Packed && "Alignment is wrong even with a packed struct!"); // Convert the struct to a packed struct. ConvertStructToPacked(); AlignedNextFieldOffsetInBytes = NextFieldOffsetInBytes; } if (AlignedNextFieldOffsetInBytes < FieldOffsetInBytes) { // We need to append padding. AppendPadding(FieldOffsetInBytes - NextFieldOffsetInBytes); assert(NextFieldOffsetInBytes == FieldOffsetInBytes && "Did not add enough padding!"); AlignedNextFieldOffsetInBytes = NextFieldOffsetInBytes; } // Add the field. Elements.push_back(InitCst); NextFieldOffsetInBytes = AlignedNextFieldOffsetInBytes + getSizeInBytes(InitCst); if (Packed) assert(LLVMStructAlignment == 1 && "Packed struct not byte-aligned!"); else LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); return true; } bool ConstStructBuilder:: AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst) { llvm::ConstantInt *CI = cast_or_null<llvm::ConstantInt>(InitCst); // FIXME: Can this ever happen? if (!CI) return false; if (FieldOffset > NextFieldOffsetInBytes * 8) { // We need to add padding. uint64_t NumBytes = llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBytes * 8, 8) / 8; AppendPadding(NumBytes); } uint64_t FieldSize = Field->getBitWidth()->EvaluateAsInt(CGM.getContext()).getZExtValue(); llvm::APInt FieldValue = CI->getValue(); // Promote the size of FieldValue if necessary // FIXME: This should never occur, but currently it can because initializer // constants are cast to bool, and because clang is not enforcing bitfield // width limits. if (FieldSize > FieldValue.getBitWidth()) FieldValue.zext(FieldSize); // Truncate the size of FieldValue to the bit field size. if (FieldSize < FieldValue.getBitWidth()) FieldValue.trunc(FieldSize); if (FieldOffset < NextFieldOffsetInBytes * 8) { // Either part of the field or the entire field can go into the previous // byte. assert(!Elements.empty() && "Elements can't be empty!"); unsigned BitsInPreviousByte = NextFieldOffsetInBytes * 8 - FieldOffset; bool FitsCompletelyInPreviousByte = BitsInPreviousByte >= FieldValue.getBitWidth(); llvm::APInt Tmp = FieldValue; if (!FitsCompletelyInPreviousByte) { unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; if (CGM.getTargetData().isBigEndian()) { Tmp = Tmp.lshr(NewFieldWidth); Tmp.trunc(BitsInPreviousByte); // We want the remaining high bits. FieldValue.trunc(NewFieldWidth); } else { Tmp.trunc(BitsInPreviousByte); // We want the remaining low bits. FieldValue = FieldValue.lshr(BitsInPreviousByte); FieldValue.trunc(NewFieldWidth); } } Tmp.zext(8); if (CGM.getTargetData().isBigEndian()) { if (FitsCompletelyInPreviousByte) Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); } else { Tmp = Tmp.shl(8 - BitsInPreviousByte); } // Or in the bits that go into the previous byte. if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(Elements.back())) Tmp |= Val->getValue(); else assert(isa<llvm::UndefValue>(Elements.back())); Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); if (FitsCompletelyInPreviousByte) return true; } while (FieldValue.getBitWidth() > 8) { llvm::APInt Tmp; if (CGM.getTargetData().isBigEndian()) { // We want the high bits. Tmp = FieldValue; Tmp = Tmp.lshr(Tmp.getBitWidth() - 8); Tmp.trunc(8); } else { // We want the low bits. Tmp = FieldValue; Tmp.trunc(8); FieldValue = FieldValue.lshr(8); } Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); NextFieldOffsetInBytes++; FieldValue.trunc(FieldValue.getBitWidth() - 8); } assert(FieldValue.getBitWidth() > 0 && "Should have at least one bit left!"); assert(FieldValue.getBitWidth() <= 8 && "Should not have more than a byte left!"); if (FieldValue.getBitWidth() < 8) { if (CGM.getTargetData().isBigEndian()) { unsigned BitWidth = FieldValue.getBitWidth(); FieldValue.zext(8); FieldValue = FieldValue << (8 - BitWidth); } else FieldValue.zext(8); } // Append the last element. Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), FieldValue)); NextFieldOffsetInBytes++; return true; } void ConstStructBuilder::AppendPadding(uint64_t NumBytes) { if (!NumBytes) return; const llvm::Type *Ty = llvm::Type::getInt8Ty(CGM.getLLVMContext()); if (NumBytes > 1) Ty = llvm::ArrayType::get(Ty, NumBytes); llvm::Constant *C = llvm::UndefValue::get(Ty); Elements.push_back(C); assert(getAlignment(C) == 1 && "Padding must have 1 byte alignment!"); NextFieldOffsetInBytes += getSizeInBytes(C); } void ConstStructBuilder::AppendTailPadding(uint64_t RecordSize) { assert(RecordSize % 8 == 0 && "Invalid record size!"); uint64_t RecordSizeInBytes = RecordSize / 8; assert(NextFieldOffsetInBytes <= RecordSizeInBytes && "Size mismatch!"); unsigned NumPadBytes = RecordSizeInBytes - NextFieldOffsetInBytes; AppendPadding(NumPadBytes); } void ConstStructBuilder::ConvertStructToPacked() { std::vector<llvm::Constant *> PackedElements; uint64_t ElementOffsetInBytes = 0; for (unsigned i = 0, e = Elements.size(); i != e; ++i) { llvm::Constant *C = Elements[i]; unsigned ElementAlign = CGM.getTargetData().getABITypeAlignment(C->getType()); uint64_t AlignedElementOffsetInBytes = llvm::RoundUpToAlignment(ElementOffsetInBytes, ElementAlign); if (AlignedElementOffsetInBytes > ElementOffsetInBytes) { // We need some padding. uint64_t NumBytes = AlignedElementOffsetInBytes - ElementOffsetInBytes; const llvm::Type *Ty = llvm::Type::getInt8Ty(CGM.getLLVMContext()); if (NumBytes > 1) Ty = llvm::ArrayType::get(Ty, NumBytes); llvm::Constant *Padding = llvm::UndefValue::get(Ty); PackedElements.push_back(Padding); ElementOffsetInBytes += getSizeInBytes(Padding); } PackedElements.push_back(C); ElementOffsetInBytes += getSizeInBytes(C); } assert(ElementOffsetInBytes == NextFieldOffsetInBytes && "Packing the struct changed its size!"); Elements = PackedElements; LLVMStructAlignment = 1; Packed = true; } bool ConstStructBuilder::Build(InitListExpr *ILE) { RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); unsigned FieldNo = 0; unsigned ElementNo = 0; for (RecordDecl::field_iterator Field = RD->field_begin(), FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { // If this is a union, skip all the fields that aren't being initialized. if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) continue; // Don't emit anonymous bitfields, they just affect layout. if (Field->isBitField() && !Field->getIdentifier()) continue; // Get the initializer. A struct can include fields without initializers, // we just use explicit null values for them. llvm::Constant *EltInit; if (ElementNo < ILE->getNumInits()) EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++), Field->getType(), CGF); else EltInit = CGM.EmitNullConstant(Field->getType()); if (!Field->isBitField()) { // Handle non-bitfield members. if (!AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit)) return false; } else { // Otherwise we have a bitfield. if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo), EltInit)) return false; } } uint64_t LayoutSizeInBytes = Layout.getSize() / 8; if (NextFieldOffsetInBytes > LayoutSizeInBytes) { // If the struct is bigger than the size of the record type, // we must have a flexible array member at the end. assert(RD->hasFlexibleArrayMember() && "Must have flexible array member if struct is bigger than type!"); // No tail padding is necessary. return true; } uint64_t LLVMSizeInBytes = llvm::RoundUpToAlignment(NextFieldOffsetInBytes, LLVMStructAlignment); // Check if we need to convert the struct to a packed struct. if (NextFieldOffsetInBytes <= LayoutSizeInBytes && LLVMSizeInBytes > LayoutSizeInBytes) { assert(!Packed && "Size mismatch!"); ConvertStructToPacked(); assert(NextFieldOffsetInBytes <= LayoutSizeInBytes && "Converting to packed did not help!"); } // Append tail padding if necessary. AppendTailPadding(Layout.getSize()); assert(Layout.getSize() / 8 == NextFieldOffsetInBytes && "Tail padding mismatch!"); return true; } llvm::Constant *ConstStructBuilder:: BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, InitListExpr *ILE) { ConstStructBuilder Builder(CGM, CGF); if (!Builder.Build(ILE)) return 0; llvm::Constant *Result = llvm::ConstantStruct::get(CGM.getLLVMContext(), Builder.Elements, Builder.Packed); assert(llvm::RoundUpToAlignment(Builder.NextFieldOffsetInBytes, Builder.getAlignment(Result)) == Builder.getSizeInBytes(Result) && "Size mismatch!"); return Result; } //===----------------------------------------------------------------------===// // ConstExprEmitter //===----------------------------------------------------------------------===// class ConstExprEmitter : public StmtVisitor<ConstExprEmitter, llvm::Constant*> { CodeGenModule &CGM; CodeGenFunction *CGF; llvm::LLVMContext &VMContext; public: ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf) : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) { } //===--------------------------------------------------------------------===// // Visitor Methods //===--------------------------------------------------------------------===// llvm::Constant *VisitStmt(Stmt *S) { return 0; } llvm::Constant *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); } llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { return Visit(E->getInitializer()); } llvm::Constant *EmitMemberFunctionPointer(CXXMethodDecl *MD) { assert(MD->isInstance() && "Member function must not be static!"); MD = MD->getCanonicalDecl(); const llvm::Type *PtrDiffTy = CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); llvm::Constant *Values[2]; // Get the function pointer (or index if this is a virtual function). if (MD->isVirtual()) { uint64_t Index = CGM.getVTables().getMethodVTableIndex(MD); // FIXME: We shouldn't use / 8 here. uint64_t PointerWidthInBytes = CGM.getContext().Target.getPointerWidth(0) / 8; // Itanium C++ ABI 2.3: // For a non-virtual function, this field is a simple function pointer. // For a virtual function, it is 1 plus the virtual table offset // (in bytes) of the function, represented as a ptrdiff_t. Values[0] = llvm::ConstantInt::get(PtrDiffTy, (Index * PointerWidthInBytes) + 1); } else { const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); const llvm::Type *Ty = CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD), FPT->isVariadic()); llvm::Constant *FuncPtr = CGM.GetAddrOfFunction(MD, Ty); Values[0] = llvm::ConstantExpr::getPtrToInt(FuncPtr, PtrDiffTy); } // The adjustment will always be 0. Values[1] = llvm::ConstantInt::get(PtrDiffTy, 0); return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2, /*Packed=*/false); } llvm::Constant *VisitUnaryAddrOf(UnaryOperator *E) { if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { QualType T = MPT->getPointeeType(); DeclRefExpr *DRE = cast<DeclRefExpr>(E->getSubExpr()); NamedDecl *ND = DRE->getDecl(); if (T->isFunctionProtoType()) return EmitMemberFunctionPointer(cast<CXXMethodDecl>(ND)); // We have a pointer to data member. return CGM.EmitPointerToDataMember(cast<FieldDecl>(ND)); } return 0; } llvm::Constant *VisitBinSub(BinaryOperator *E) { // This must be a pointer/pointer subtraction. This only happens for // address of label. if (!isa<AddrLabelExpr>(E->getLHS()->IgnoreParenNoopCasts(CGM.getContext())) || !isa<AddrLabelExpr>(E->getRHS()->IgnoreParenNoopCasts(CGM.getContext()))) return 0; llvm::Constant *LHS = CGM.EmitConstantExpr(E->getLHS(), E->getLHS()->getType(), CGF); llvm::Constant *RHS = CGM.EmitConstantExpr(E->getRHS(), E->getRHS()->getType(), CGF); const llvm::Type *ResultType = ConvertType(E->getType()); LHS = llvm::ConstantExpr::getPtrToInt(LHS, ResultType); RHS = llvm::ConstantExpr::getPtrToInt(RHS, ResultType); // No need to divide by element size, since addr of label is always void*, // which has size 1 in GNUish. return llvm::ConstantExpr::getSub(LHS, RHS); } llvm::Constant *VisitCastExpr(CastExpr* E) { switch (E->getCastKind()) { case CastExpr::CK_ToUnion: { // GCC cast to union extension assert(E->getType()->isUnionType() && "Destination type is not union type!"); const llvm::Type *Ty = ConvertType(E->getType()); Expr *SubExpr = E->getSubExpr(); llvm::Constant *C = CGM.EmitConstantExpr(SubExpr, SubExpr->getType(), CGF); if (!C) return 0; // Build a struct with the union sub-element as the first member, // and padded to the appropriate size std::vector<llvm::Constant*> Elts; std::vector<const llvm::Type*> Types; Elts.push_back(C); Types.push_back(C->getType()); unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType()); unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(Ty); assert(CurSize <= TotalSize && "Union size mismatch!"); if (unsigned NumPadBytes = TotalSize - CurSize) { const llvm::Type *Ty = llvm::Type::getInt8Ty(VMContext); if (NumPadBytes > 1) Ty = llvm::ArrayType::get(Ty, NumPadBytes); Elts.push_back(llvm::UndefValue::get(Ty)); Types.push_back(Ty); } llvm::StructType* STy = llvm::StructType::get(C->getType()->getContext(), Types, false); return llvm::ConstantStruct::get(STy, Elts); } case CastExpr::CK_NullToMemberPointer: return CGM.EmitNullConstant(E->getType()); case CastExpr::CK_BaseToDerivedMemberPointer: { Expr *SubExpr = E->getSubExpr(); const MemberPointerType *SrcTy = SubExpr->getType()->getAs<MemberPointerType>(); const MemberPointerType *DestTy = E->getType()->getAs<MemberPointerType>(); const CXXRecordDecl *DerivedClass = cast<CXXRecordDecl>(cast<RecordType>(DestTy->getClass())->getDecl()); if (SrcTy->getPointeeType()->isFunctionProtoType()) { llvm::Constant *C = CGM.EmitConstantExpr(SubExpr, SubExpr->getType(), CGF); if (!C) return 0; llvm::ConstantStruct *CS = cast<llvm::ConstantStruct>(C); // Check if we need to update the adjustment. if (llvm::Constant *Offset = CGM.GetNonVirtualBaseClassOffset(DerivedClass, E->getBasePath())) { llvm::Constant *Values[2]; Values[0] = CS->getOperand(0); Values[1] = llvm::ConstantExpr::getAdd(CS->getOperand(1), Offset); return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2, /*Packed=*/false); } return CS; } } case CastExpr::CK_BitCast: // This must be a member function pointer cast. return Visit(E->getSubExpr()); default: { // FIXME: This should be handled by the CK_NoOp cast kind. // Explicit and implicit no-op casts QualType Ty = E->getType(), SubTy = E->getSubExpr()->getType(); if (CGM.getContext().hasSameUnqualifiedType(Ty, SubTy)) return Visit(E->getSubExpr()); // Handle integer->integer casts for address-of-label differences. if (Ty->isIntegerType() && SubTy->isIntegerType() && CGF) { llvm::Value *Src = Visit(E->getSubExpr()); if (Src == 0) return 0; // Use EmitScalarConversion to perform the conversion. return cast<llvm::Constant>(CGF->EmitScalarConversion(Src, SubTy, Ty)); } return 0; } } } llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { return Visit(DAE->getExpr()); } llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) { unsigned NumInitElements = ILE->getNumInits(); if (NumInitElements == 1 && (isa<StringLiteral>(ILE->getInit(0)) || isa<ObjCEncodeExpr>(ILE->getInit(0)))) return Visit(ILE->getInit(0)); std::vector<llvm::Constant*> Elts; const llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(ILE->getType())); const llvm::Type *ElemTy = AType->getElementType(); unsigned NumElements = AType->getNumElements(); // Initialising an array requires us to automatically // initialise any elements that have not been initialised explicitly unsigned NumInitableElts = std::min(NumInitElements, NumElements); // Copy initializer elements. unsigned i = 0; bool RewriteType = false; for (; i < NumInitableElts; ++i) { Expr *Init = ILE->getInit(i); llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); if (!C) return 0; RewriteType |= (C->getType() != ElemTy); Elts.push_back(C); } // Initialize remaining array elements. // FIXME: This doesn't handle member pointers correctly! for (; i < NumElements; ++i) Elts.push_back(llvm::Constant::getNullValue(ElemTy)); if (RewriteType) { // FIXME: Try to avoid packing the array std::vector<const llvm::Type*> Types; for (unsigned i = 0; i < Elts.size(); ++i) Types.push_back(Elts[i]->getType()); const llvm::StructType *SType = llvm::StructType::get(AType->getContext(), Types, true); return llvm::ConstantStruct::get(SType, Elts); } return llvm::ConstantArray::get(AType, Elts); } llvm::Constant *EmitStructInitialization(InitListExpr *ILE) { return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); } llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) { return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); } llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) { return CGM.EmitNullConstant(E->getType()); } llvm::Constant *VisitInitListExpr(InitListExpr *ILE) { if (ILE->getType()->isScalarType()) { // We have a scalar in braces. Just use the first element. if (ILE->getNumInits() > 0) { Expr *Init = ILE->getInit(0); return CGM.EmitConstantExpr(Init, Init->getType(), CGF); } return CGM.EmitNullConstant(ILE->getType()); } if (ILE->getType()->isArrayType()) return EmitArrayInitialization(ILE); if (ILE->getType()->isRecordType()) return EmitStructInitialization(ILE); if (ILE->getType()->isUnionType()) return EmitUnionInitialization(ILE); // If ILE was a constant vector, we would have handled it already. if (ILE->getType()->isVectorType()) return 0; assert(0 && "Unable to handle InitListExpr"); // Get rid of control reaches end of void function warning. // Not reached. return 0; } llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) { if (!E->getConstructor()->isTrivial()) return 0; QualType Ty = E->getType(); // FIXME: We should not have to call getBaseElementType here. const RecordType *RT = CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>(); const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); // If the class doesn't have a trivial destructor, we can't emit it as a // constant expr. if (!RD->hasTrivialDestructor()) return 0; // Only copy and default constructors can be trivial. if (E->getNumArgs()) { assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); assert(E->getConstructor()->isCopyConstructor() && "trivial ctor has argument but isn't a copy ctor"); Expr *Arg = E->getArg(0); assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && "argument to copy ctor is of wrong type"); return Visit(Arg); } return CGM.EmitNullConstant(Ty); } llvm::Constant *VisitStringLiteral(StringLiteral *E) { assert(!E->getType()->isPointerType() && "Strings are always arrays"); // This must be a string initializing an array in a static initializer. // Don't emit it as the address of the string, emit the string data itself // as an inline array. return llvm::ConstantArray::get(VMContext, CGM.GetStringForStringLiteral(E), false); } llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) { // This must be an @encode initializing an array in a static initializer. // Don't emit it as the address of the string, emit the string data itself // as an inline array. std::string Str; CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType()); // Resize the string to the right size, adding zeros at the end, or // truncating as needed. Str.resize(CAT->getSize().getZExtValue(), '\0'); return llvm::ConstantArray::get(VMContext, Str, false); } llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) { return Visit(E->getSubExpr()); } // Utility methods const llvm::Type *ConvertType(QualType T) { return CGM.getTypes().ConvertType(T); } public: llvm::Constant *EmitLValue(Expr *E) { switch (E->getStmtClass()) { default: break; case Expr::CompoundLiteralExprClass: { // Note that due to the nature of compound literals, this is guaranteed // to be the only use of the variable, so we just generate it here. CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); llvm::Constant* C = Visit(CLE->getInitializer()); // FIXME: "Leaked" on failure. if (C) C = new llvm::GlobalVariable(CGM.getModule(), C->getType(), E->getType().isConstant(CGM.getContext()), llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", 0, false, E->getType().getAddressSpace()); return C; } case Expr::DeclRefExprClass: { ValueDecl *Decl = cast<DeclRefExpr>(E)->getDecl(); if (Decl->hasAttr<WeakRefAttr>()) return CGM.GetWeakRefReference(Decl); if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl)) return CGM.GetAddrOfFunction(FD); if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) { // We can never refer to a variable with local storage. if (!VD->hasLocalStorage()) { if (VD->isFileVarDecl() || VD->hasExternalStorage()) return CGM.GetAddrOfGlobalVar(VD); else if (VD->isBlockVarDecl()) { assert(CGF && "Can't access static local vars without CGF"); return CGF->GetAddrOfStaticLocalVar(VD); } } } break; } case Expr::StringLiteralClass: return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E)); case Expr::ObjCEncodeExprClass: return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E)); case Expr::ObjCStringLiteralClass: { ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E); llvm::Constant *C = CGM.getObjCRuntime().GenerateConstantString(SL->getString()); return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); } case Expr::PredefinedExprClass: { unsigned Type = cast<PredefinedExpr>(E)->getIdentType(); if (CGF) { LValue Res = CGF->EmitPredefinedFunctionName(Type); return cast<llvm::Constant>(Res.getAddress()); } else if (Type == PredefinedExpr::PrettyFunction) { return CGM.GetAddrOfConstantCString("top level", ".tmp"); } return CGM.GetAddrOfConstantCString("", ".tmp"); } case Expr::AddrLabelExprClass: { assert(CGF && "Invalid address of label expression outside function."); llvm::Constant *Ptr = CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel()); return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType())); } case Expr::CallExprClass: { CallExpr* CE = cast<CallExpr>(E); unsigned builtin = CE->isBuiltinCall(CGM.getContext()); if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && builtin != Builtin::BI__builtin___NSStringMakeConstantString) break; const Expr *Arg = CE->getArg(0)->IgnoreParenCasts(); const StringLiteral *Literal = cast<StringLiteral>(Arg); if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { return CGM.getObjCRuntime().GenerateConstantString(Literal); } // FIXME: need to deal with UCN conversion issues. return CGM.GetAddrOfConstantCFString(Literal); } case Expr::BlockExprClass: { std::string FunctionName; if (CGF) FunctionName = CGF->CurFn->getName(); else FunctionName = "global"; return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str()); } } return 0; } }; } // end anonymous namespace. llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E, QualType DestType, CodeGenFunction *CGF) { Expr::EvalResult Result; bool Success = false; if (DestType->isReferenceType()) Success = E->EvaluateAsLValue(Result, Context); else Success = E->Evaluate(Result, Context); if (Success && !Result.HasSideEffects) { switch (Result.Val.getKind()) { case APValue::Uninitialized: assert(0 && "Constant expressions should be initialized."); return 0; case APValue::LValue: { const llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType); llvm::Constant *Offset = llvm::ConstantInt::get(llvm::Type::getInt64Ty(VMContext), Result.Val.getLValueOffset().getQuantity()); llvm::Constant *C; if (const Expr *LVBase = Result.Val.getLValueBase()) { C = ConstExprEmitter(*this, CGF).EmitLValue(const_cast<Expr*>(LVBase)); // Apply offset if necessary. if (!Offset->isNullValue()) { const llvm::Type *Type = llvm::Type::getInt8PtrTy(VMContext); llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Type); Casted = llvm::ConstantExpr::getGetElementPtr(Casted, &Offset, 1); C = llvm::ConstantExpr::getBitCast(Casted, C->getType()); } // Convert to the appropriate type; this could be an lvalue for // an integer. if (isa<llvm::PointerType>(DestTy)) return llvm::ConstantExpr::getBitCast(C, DestTy); return llvm::ConstantExpr::getPtrToInt(C, DestTy); } else { C = Offset; // Convert to the appropriate type; this could be an lvalue for // an integer. if (isa<llvm::PointerType>(DestTy)) return llvm::ConstantExpr::getIntToPtr(C, DestTy); // If the types don't match this should only be a truncate. if (C->getType() != DestTy) return llvm::ConstantExpr::getTrunc(C, DestTy); return C; } } case APValue::Int: { llvm::Constant *C = llvm::ConstantInt::get(VMContext, Result.Val.getInt()); if (C->getType() == llvm::Type::getInt1Ty(VMContext)) { const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); C = llvm::ConstantExpr::getZExt(C, BoolTy); } return C; } case APValue::ComplexInt: { llvm::Constant *Complex[2]; Complex[0] = llvm::ConstantInt::get(VMContext, Result.Val.getComplexIntReal()); Complex[1] = llvm::ConstantInt::get(VMContext, Result.Val.getComplexIntImag()); // FIXME: the target may want to specify that this is packed. return llvm::ConstantStruct::get(VMContext, Complex, 2, false); } case APValue::Float: return llvm::ConstantFP::get(VMContext, Result.Val.getFloat()); case APValue::ComplexFloat: { llvm::Constant *Complex[2]; Complex[0] = llvm::ConstantFP::get(VMContext, Result.Val.getComplexFloatReal()); Complex[1] = llvm::ConstantFP::get(VMContext, Result.Val.getComplexFloatImag()); // FIXME: the target may want to specify that this is packed. return llvm::ConstantStruct::get(VMContext, Complex, 2, false); } case APValue::Vector: { llvm::SmallVector<llvm::Constant *, 4> Inits; unsigned NumElts = Result.Val.getVectorLength(); for (unsigned i = 0; i != NumElts; ++i) { APValue &Elt = Result.Val.getVectorElt(i); if (Elt.isInt()) Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt())); else Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat())); } return llvm::ConstantVector::get(&Inits[0], Inits.size()); } } } llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E)); if (C && C->getType() == llvm::Type::getInt1Ty(VMContext)) { const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); C = llvm::ConstantExpr::getZExt(C, BoolTy); } return C; } static void FillInNullDataMemberPointers(CodeGenModule &CGM, QualType T, std::vector<llvm::Constant *> &Elements, uint64_t StartOffset) { assert(StartOffset % 8 == 0 && "StartOffset not byte aligned!"); if (!CGM.getTypes().ContainsPointerToDataMember(T)) return; if (const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T)) { QualType ElementTy = CAT->getElementType(); uint64_t ElementSize = CGM.getContext().getTypeSize(ElementTy); for (uint64_t I = 0, E = CAT->getSize().getZExtValue(); I != E; ++I) { FillInNullDataMemberPointers(CGM, ElementTy, Elements, StartOffset + I * ElementSize); } } else if (const RecordType *RT = T->getAs<RecordType>()) { const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); // Go through all bases and fill in any null pointer to data members. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { assert(!I->isVirtual() && "Should not see virtual bases here!"); const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl()); // Ignore empty bases. if (BaseDecl->isEmpty()) continue; // Ignore bases that don't have any pointer to data members. if (!CGM.getTypes().ContainsPointerToDataMember(BaseDecl)) continue; uint64_t BaseOffset = Layout.getBaseClassOffset(BaseDecl); FillInNullDataMemberPointers(CGM, I->getType(), Elements, StartOffset + BaseOffset); } // Visit all fields. unsigned FieldNo = 0; for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++FieldNo) { QualType FieldType = I->getType(); if (!CGM.getTypes().ContainsPointerToDataMember(FieldType)) continue; uint64_t FieldOffset = StartOffset + Layout.getFieldOffset(FieldNo); FillInNullDataMemberPointers(CGM, FieldType, Elements, FieldOffset); } } else { assert(T->isMemberPointerType() && "Should only see member pointers here!"); assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() && "Should only see pointers to data members here!"); uint64_t StartIndex = StartOffset / 8; uint64_t EndIndex = StartIndex + CGM.getContext().getTypeSize(T) / 8; llvm::Constant *NegativeOne = llvm::ConstantInt::get(llvm::Type::getInt8Ty(CGM.getLLVMContext()), -1ULL, /*isSigned=*/true); // Fill in the null data member pointer. for (uint64_t I = StartIndex; I != EndIndex; ++I) Elements[I] = NegativeOne; } } llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { if (!getTypes().ContainsPointerToDataMember(T)) return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { QualType ElementTy = CAT->getElementType(); llvm::Constant *Element = EmitNullConstant(ElementTy); unsigned NumElements = CAT->getSize().getZExtValue(); std::vector<llvm::Constant *> Array(NumElements); for (unsigned i = 0; i != NumElements; ++i) Array[i] = Element; const llvm::ArrayType *ATy = cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); return llvm::ConstantArray::get(ATy, Array); } if (const RecordType *RT = T->getAs<RecordType>()) { const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); const llvm::StructType *STy = cast<llvm::StructType>(getTypes().ConvertTypeForMem(T)); unsigned NumElements = STy->getNumElements(); std::vector<llvm::Constant *> Elements(NumElements); const CGRecordLayout &Layout = getTypes().getCGRecordLayout(RD); // Go through all bases and fill in any null pointer to data members. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { assert(!I->isVirtual() && "Should not see virtual bases here!"); const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl()); // Ignore empty bases. if (BaseDecl->isEmpty()) continue; // Ignore bases that don't have any pointer to data members. if (!getTypes().ContainsPointerToDataMember(BaseDecl)) continue; // Currently, all bases are arrays of i8. Figure out how many elements // this base array has. unsigned BaseFieldNo = Layout.getNonVirtualBaseLLVMFieldNo(BaseDecl); const llvm::ArrayType *BaseArrayTy = cast<llvm::ArrayType>(STy->getElementType(BaseFieldNo)); unsigned NumBaseElements = BaseArrayTy->getNumElements(); std::vector<llvm::Constant *> BaseElements(NumBaseElements); // Now fill in null data member pointers. FillInNullDataMemberPointers(*this, I->getType(), BaseElements, 0); // Now go through all other elements and zero them out. if (NumBaseElements) { llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::getInt8Ty(getLLVMContext()), 0); for (unsigned I = 0; I != NumBaseElements; ++I) { if (!BaseElements[I]) BaseElements[I] = Zero; } } Elements[BaseFieldNo] = llvm::ConstantArray::get(BaseArrayTy, BaseElements); } for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); I != E; ++I) { const FieldDecl *FD = *I; unsigned FieldNo = Layout.getLLVMFieldNo(FD); Elements[FieldNo] = EmitNullConstant(FD->getType()); } // Now go through all other fields and zero them out. for (unsigned i = 0; i != NumElements; ++i) { if (!Elements[i]) Elements[i] = llvm::Constant::getNullValue(STy->getElementType(i)); } return llvm::ConstantStruct::get(STy, Elements); } assert(T->isMemberPointerType() && "Should only see member pointers here!"); assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() && "Should only see pointers to data members here!"); // Itanium C++ ABI 2.3: // A NULL pointer is represented as -1. return llvm::ConstantInt::get(getTypes().ConvertTypeForMem(T), -1ULL, /*isSigned=*/true); } llvm::Constant * CodeGenModule::EmitPointerToDataMember(const FieldDecl *FD) { // Itanium C++ ABI 2.3: // A pointer to data member is an offset from the base address of the class // object containing it, represented as a ptrdiff_t const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(FD->getParent()); QualType ClassType = getContext().getTypeDeclType(const_cast<CXXRecordDecl *>(ClassDecl)); const llvm::StructType *ClassLTy = cast<llvm::StructType>(getTypes().ConvertType(ClassType)); const CGRecordLayout &RL = getTypes().getCGRecordLayout(FD->getParent()); unsigned FieldNo = RL.getLLVMFieldNo(FD); uint64_t Offset = getTargetData().getStructLayout(ClassLTy)->getElementOffset(FieldNo); const llvm::Type *PtrDiffTy = getTypes().ConvertType(getContext().getPointerDiffType()); return llvm::ConstantInt::get(PtrDiffTy, Offset); }