//=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines malloc/free checker, which checks for potential memory // leaks, double free, and use-after-free problems. // //===----------------------------------------------------------------------===// #include "GRExprEngineExperimentalChecks.h" #include "clang/Checker/BugReporter/BugType.h" #include "clang/Checker/PathSensitive/CheckerVisitor.h" #include "clang/Checker/PathSensitive/GRState.h" #include "clang/Checker/PathSensitive/GRStateTrait.h" #include "clang/Checker/PathSensitive/SymbolManager.h" #include "llvm/ADT/ImmutableMap.h" using namespace clang; namespace { class RefState { enum Kind { AllocateUnchecked, AllocateFailed, Released, Escaped } K; const Stmt *S; public: RefState(Kind k, const Stmt *s) : K(k), S(s) {} bool isAllocated() const { return K == AllocateUnchecked; } bool isReleased() const { return K == Released; } bool isEscaped() const { return K == Escaped; } bool operator==(const RefState &X) const { return K == X.K && S == X.S; } static RefState getAllocateUnchecked(const Stmt *s) { return RefState(AllocateUnchecked, s); } static RefState getAllocateFailed() { return RefState(AllocateFailed, 0); } static RefState getReleased(const Stmt *s) { return RefState(Released, s); } static RefState getEscaped(const Stmt *s) { return RefState(Escaped, s); } void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(K); ID.AddPointer(S); } }; class RegionState {}; class MallocChecker : public CheckerVisitor { BuiltinBug *BT_DoubleFree; BuiltinBug *BT_Leak; BuiltinBug *BT_UseFree; BuiltinBug *BT_BadFree; IdentifierInfo *II_malloc, *II_free, *II_realloc, *II_calloc; public: MallocChecker() : BT_DoubleFree(0), BT_Leak(0), BT_UseFree(0), BT_BadFree(0), II_malloc(0), II_free(0), II_realloc(0), II_calloc(0) {} static void *getTag(); bool EvalCallExpr(CheckerContext &C, const CallExpr *CE); void EvalDeadSymbols(CheckerContext &C, SymbolReaper &SymReaper); void EvalEndPath(GREndPathNodeBuilder &B, void *tag, GRExprEngine &Eng); void PreVisitReturnStmt(CheckerContext &C, const ReturnStmt *S); const GRState *EvalAssume(const GRState *state, SVal Cond, bool Assumption); void VisitLocation(CheckerContext &C, const Stmt *S, SVal l); private: void MallocMem(CheckerContext &C, const CallExpr *CE); const GRState *MallocMemAux(CheckerContext &C, const CallExpr *CE, const Expr *SizeEx, SVal Init, const GRState *state) { return MallocMemAux(C, CE, state->getSVal(SizeEx), Init, state); } const GRState *MallocMemAux(CheckerContext &C, const CallExpr *CE, SVal SizeEx, SVal Init, const GRState *state); void FreeMem(CheckerContext &C, const CallExpr *CE); const GRState *FreeMemAux(CheckerContext &C, const CallExpr *CE, const GRState *state); void ReallocMem(CheckerContext &C, const CallExpr *CE); void CallocMem(CheckerContext &C, const CallExpr *CE); bool SummarizeValue(llvm::raw_ostream& os, SVal V); bool SummarizeRegion(llvm::raw_ostream& os, const MemRegion *MR); void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange range); }; } // end anonymous namespace typedef llvm::ImmutableMap RegionStateTy; namespace clang { template <> struct GRStateTrait : public GRStatePartialTrait > { static void *GDMIndex() { return MallocChecker::getTag(); } }; } void clang::RegisterMallocChecker(GRExprEngine &Eng) { Eng.registerCheck(new MallocChecker()); } void *MallocChecker::getTag() { static int x; return &x; } bool MallocChecker::EvalCallExpr(CheckerContext &C, const CallExpr *CE) { const GRState *state = C.getState(); const Expr *Callee = CE->getCallee(); SVal L = state->getSVal(Callee); const FunctionDecl *FD = L.getAsFunctionDecl(); if (!FD) return false; ASTContext &Ctx = C.getASTContext(); if (!II_malloc) II_malloc = &Ctx.Idents.get("malloc"); if (!II_free) II_free = &Ctx.Idents.get("free"); if (!II_realloc) II_realloc = &Ctx.Idents.get("realloc"); if (!II_calloc) II_calloc = &Ctx.Idents.get("calloc"); if (FD->getIdentifier() == II_malloc) { MallocMem(C, CE); return true; } if (FD->getIdentifier() == II_free) { FreeMem(C, CE); return true; } if (FD->getIdentifier() == II_realloc) { ReallocMem(C, CE); return true; } if (FD->getIdentifier() == II_calloc) { CallocMem(C, CE); return true; } return false; } void MallocChecker::MallocMem(CheckerContext &C, const CallExpr *CE) { const GRState *state = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), C.getState()); C.addTransition(state); } const GRState *MallocChecker::MallocMemAux(CheckerContext &C, const CallExpr *CE, SVal Size, SVal Init, const GRState *state) { unsigned Count = C.getNodeBuilder().getCurrentBlockCount(); ValueManager &ValMgr = C.getValueManager(); // Set the return value. SVal RetVal = ValMgr.getConjuredSymbolVal(NULL, CE, CE->getType(), Count); state = state->BindExpr(CE, RetVal); // Fill the region with the initialization value. state = state->bindDefault(RetVal, Init); // Set the region's extent equal to the Size parameter. const SymbolicRegion *R = cast(RetVal.getAsRegion()); DefinedOrUnknownSVal Extent = R->getExtent(ValMgr); DefinedOrUnknownSVal DefinedSize = cast(Size); SValuator &SVator = ValMgr.getSValuator(); DefinedOrUnknownSVal ExtentMatchesSize = SVator.EvalEQ(state, Extent, DefinedSize); state = state->Assume(ExtentMatchesSize, true); SymbolRef Sym = RetVal.getAsLocSymbol(); assert(Sym); // Set the symbol's state to Allocated. return state->set(Sym, RefState::getAllocateUnchecked(CE)); } void MallocChecker::FreeMem(CheckerContext &C, const CallExpr *CE) { const GRState *state = FreeMemAux(C, CE, C.getState()); if (state) C.addTransition(state); } const GRState *MallocChecker::FreeMemAux(CheckerContext &C, const CallExpr *CE, const GRState *state) { const Expr *ArgExpr = CE->getArg(0); SVal ArgVal = state->getSVal(ArgExpr); // If ptr is NULL, no operation is preformed. if (ArgVal.isZeroConstant()) return state; // Unknown values could easily be okay // Undefined values are handled elsewhere if (ArgVal.isUnknownOrUndef()) return state; const MemRegion *R = ArgVal.getAsRegion(); // Nonlocs can't be freed, of course. // Non-region locations (labels and fixed addresses) also shouldn't be freed. if (!R) { ReportBadFree(C, ArgVal, ArgExpr->getSourceRange()); return NULL; } R = R->StripCasts(); // Blocks might show up as heap data, but should not be free()d if (isa(R)) { ReportBadFree(C, ArgVal, ArgExpr->getSourceRange()); return NULL; } const MemSpaceRegion *MS = R->getMemorySpace(); // Parameters, locals, statics, and globals shouldn't be freed. if (!(isa(MS) || isa(MS))) { // FIXME: at the time this code was written, malloc() regions were // represented by conjured symbols, which are all in UnknownSpaceRegion. // This means that there isn't actually anything from HeapSpaceRegion // that should be freed, even though we allow it here. // Of course, free() can work on memory allocated outside the current // function, so UnknownSpaceRegion is always a possibility. // False negatives are better than false positives. ReportBadFree(C, ArgVal, ArgExpr->getSourceRange()); return NULL; } const SymbolicRegion *SR = dyn_cast(R); // Various cases could lead to non-symbol values here. // For now, ignore them. if (!SR) return state; SymbolRef Sym = SR->getSymbol(); const RefState *RS = state->get(Sym); // If the symbol has not been tracked, return. This is possible when free() is // called on a pointer that does not get its pointee directly from malloc(). // Full support of this requires inter-procedural analysis. if (!RS) return state; // Check double free. if (RS->isReleased()) { ExplodedNode *N = C.GenerateSink(); if (N) { if (!BT_DoubleFree) BT_DoubleFree = new BuiltinBug("Double free", "Try to free a memory block that has been released"); // FIXME: should find where it's freed last time. BugReport *R = new BugReport(*BT_DoubleFree, BT_DoubleFree->getDescription(), N); C.EmitReport(R); } return NULL; } // Normal free. return state->set(Sym, RefState::getReleased(CE)); } bool MallocChecker::SummarizeValue(llvm::raw_ostream& os, SVal V) { if (nonloc::ConcreteInt *IntVal = dyn_cast(&V)) os << "an integer (" << IntVal->getValue() << ")"; else if (loc::ConcreteInt *ConstAddr = dyn_cast(&V)) os << "a constant address (" << ConstAddr->getValue() << ")"; else if (loc::GotoLabel *Label = dyn_cast(&V)) os << "the address of the label '" << Label->getLabel()->getID()->getName() << "'"; else return false; return true; } bool MallocChecker::SummarizeRegion(llvm::raw_ostream& os, const MemRegion *MR) { switch (MR->getKind()) { case MemRegion::FunctionTextRegionKind: { const FunctionDecl *FD = cast(MR)->getDecl(); if (FD) os << "the address of the function '" << FD << "'"; else os << "the address of a function"; return true; } case MemRegion::BlockTextRegionKind: os << "block text"; return true; case MemRegion::BlockDataRegionKind: // FIXME: where the block came from? os << "a block"; return true; default: { const MemSpaceRegion *MS = MR->getMemorySpace(); switch (MS->getKind()) { case MemRegion::StackLocalsSpaceRegionKind: { const VarRegion *VR = dyn_cast(MR); const VarDecl *VD; if (VR) VD = VR->getDecl(); else VD = NULL; if (VD) os << "the address of the local variable '" << VD->getName() << "'"; else os << "the address of a local stack variable"; return true; } case MemRegion::StackArgumentsSpaceRegionKind: { const VarRegion *VR = dyn_cast(MR); const VarDecl *VD; if (VR) VD = VR->getDecl(); else VD = NULL; if (VD) os << "the address of the parameter '" << VD->getName() << "'"; else os << "the address of a parameter"; return true; } case MemRegion::NonStaticGlobalSpaceRegionKind: case MemRegion::StaticGlobalSpaceRegionKind: { const VarRegion *VR = dyn_cast(MR); const VarDecl *VD; if (VR) VD = VR->getDecl(); else VD = NULL; if (VD) { if (VD->isStaticLocal()) os << "the address of the static variable '" << VD->getName() << "'"; else os << "the address of the global variable '" << VD->getName() << "'"; } else os << "the address of a global variable"; return true; } default: return false; } } } } void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange range) { ExplodedNode *N = C.GenerateSink(); if (N) { if (!BT_BadFree) BT_BadFree = new BuiltinBug("Bad free"); llvm::SmallString<100> buf; llvm::raw_svector_ostream os(buf); const MemRegion *MR = ArgVal.getAsRegion(); if (MR) { while (const ElementRegion *ER = dyn_cast(MR)) MR = ER->getSuperRegion(); // Special case for alloca() if (isa(MR)) os << "Argument to free() was allocated by alloca(), not malloc()"; else { os << "Argument to free() is "; if (SummarizeRegion(os, MR)) os << ", which is not memory allocated by malloc()"; else os << "not memory allocated by malloc()"; } } else { os << "Argument to free() is "; if (SummarizeValue(os, ArgVal)) os << ", which is not memory allocated by malloc()"; else os << "not memory allocated by malloc()"; } EnhancedBugReport *R = new EnhancedBugReport(*BT_BadFree, os.str(), N); R->addRange(range); C.EmitReport(R); } } void MallocChecker::ReallocMem(CheckerContext &C, const CallExpr *CE) { const GRState *state = C.getState(); const Expr *Arg0 = CE->getArg(0); DefinedOrUnknownSVal Arg0Val=cast(state->getSVal(Arg0)); ValueManager &ValMgr = C.getValueManager(); SValuator &SVator = C.getSValuator(); DefinedOrUnknownSVal PtrEQ = SVator.EvalEQ(state, Arg0Val, ValMgr.makeNull()); // If the ptr is NULL, the call is equivalent to malloc(size). if (const GRState *stateEqual = state->Assume(PtrEQ, true)) { // Hack: set the NULL symbolic region to released to suppress false warning. // In the future we should add more states for allocated regions, e.g., // CheckedNull, CheckedNonNull. SymbolRef Sym = Arg0Val.getAsLocSymbol(); if (Sym) stateEqual = stateEqual->set(Sym, RefState::getReleased(CE)); const GRState *stateMalloc = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), stateEqual); C.addTransition(stateMalloc); } if (const GRState *stateNotEqual = state->Assume(PtrEQ, false)) { const Expr *Arg1 = CE->getArg(1); DefinedOrUnknownSVal Arg1Val = cast(stateNotEqual->getSVal(Arg1)); DefinedOrUnknownSVal SizeZero = SVator.EvalEQ(stateNotEqual, Arg1Val, ValMgr.makeIntValWithPtrWidth(0, false)); if (const GRState *stateSizeZero = stateNotEqual->Assume(SizeZero, true)) { const GRState *stateFree = FreeMemAux(C, CE, stateSizeZero); if (stateFree) C.addTransition(stateFree->BindExpr(CE, UndefinedVal(), true)); } if (const GRState *stateSizeNotZero=stateNotEqual->Assume(SizeZero,false)) { const GRState *stateFree = FreeMemAux(C, CE, stateSizeNotZero); if (stateFree) { // FIXME: We should copy the content of the original buffer. const GRState *stateRealloc = MallocMemAux(C, CE, CE->getArg(1), UnknownVal(), stateFree); C.addTransition(stateRealloc); } } } } void MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE) { const GRState *state = C.getState(); ValueManager &ValMgr = C.getValueManager(); SValuator &SVator = C.getSValuator(); SVal Count = state->getSVal(CE->getArg(0)); SVal EleSize = state->getSVal(CE->getArg(1)); SVal TotalSize = SVator.EvalBinOp(state, BinaryOperator::Mul, Count, EleSize, ValMgr.getContext().getSizeType()); SVal Zero = ValMgr.makeZeroVal(ValMgr.getContext().CharTy); state = MallocMemAux(C, CE, TotalSize, Zero, state); C.addTransition(state); } void MallocChecker::EvalDeadSymbols(CheckerContext &C,SymbolReaper &SymReaper) { for (SymbolReaper::dead_iterator I = SymReaper.dead_begin(), E = SymReaper.dead_end(); I != E; ++I) { SymbolRef Sym = *I; const GRState *state = C.getState(); const RefState *RS = state->get(Sym); if (!RS) return; if (RS->isAllocated()) { ExplodedNode *N = C.GenerateSink(); if (N) { if (!BT_Leak) BT_Leak = new BuiltinBug("Memory leak", "Allocated memory never released. Potential memory leak."); // FIXME: where it is allocated. BugReport *R = new BugReport(*BT_Leak, BT_Leak->getDescription(), N); C.EmitReport(R); } } } } void MallocChecker::EvalEndPath(GREndPathNodeBuilder &B, void *tag, GRExprEngine &Eng) { SaveAndRestore OldHasGen(B.HasGeneratedNode); const GRState *state = B.getState(); typedef llvm::ImmutableMap SymMap; SymMap M = state->get(); for (SymMap::iterator I = M.begin(), E = M.end(); I != E; ++I) { RefState RS = I->second; if (RS.isAllocated()) { ExplodedNode *N = B.generateNode(state, tag, B.getPredecessor()); if (N) { if (!BT_Leak) BT_Leak = new BuiltinBug("Memory leak", "Allocated memory never released. Potential memory leak."); BugReport *R = new BugReport(*BT_Leak, BT_Leak->getDescription(), N); Eng.getBugReporter().EmitReport(R); } } } } void MallocChecker::PreVisitReturnStmt(CheckerContext &C, const ReturnStmt *S) { const Expr *RetE = S->getRetValue(); if (!RetE) return; const GRState *state = C.getState(); SymbolRef Sym = state->getSVal(RetE).getAsSymbol(); if (!Sym) return; const RefState *RS = state->get(Sym); if (!RS) return; // FIXME: check other cases. if (RS->isAllocated()) state = state->set(Sym, RefState::getEscaped(S)); C.addTransition(state); } const GRState *MallocChecker::EvalAssume(const GRState *state, SVal Cond, bool Assumption) { // If a symblic region is assumed to NULL, set its state to AllocateFailed. // FIXME: should also check symbols assumed to non-null. RegionStateTy RS = state->get(); for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { if (state->getSymVal(I.getKey())) state = state->set(I.getKey(),RefState::getAllocateFailed()); } return state; } // Check if the location is a freed symbolic region. void MallocChecker::VisitLocation(CheckerContext &C, const Stmt *S, SVal l) { SymbolRef Sym = l.getLocSymbolInBase(); if (Sym) { const RefState *RS = C.getState()->get(Sym); if (RS) if (RS->isReleased()) { ExplodedNode *N = C.GenerateSink(); if (!BT_UseFree) BT_UseFree = new BuiltinBug("Use dynamically allocated memory after" " it is freed."); BugReport *R = new BugReport(*BT_UseFree, BT_UseFree->getDescription(), N); C.EmitReport(R); } } }