//===-- LoopUtils.cpp - Loop Utility functions -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines common loop utility functions. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/Debug.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/IR/Module.h" #include "llvm/Transforms/Utils/LoopUtils.h" using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "loop-utils" bool ReductionDescriptor::areAllUsesIn(Instruction *I, SmallPtrSetImpl &Set) { for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) if (!Set.count(dyn_cast(*Use))) return false; return true; } bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind, Loop *TheLoop, bool HasFunNoNaNAttr, ReductionDescriptor &RedDes) { if (Phi->getNumIncomingValues() != 2) return false; // Reduction variables are only found in the loop header block. if (Phi->getParent() != TheLoop->getHeader()) return false; // Obtain the reduction start value from the value that comes from the loop // preheader. Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); // ExitInstruction is the single value which is used outside the loop. // We only allow for a single reduction value to be used outside the loop. // This includes users of the reduction, variables (which form a cycle // which ends in the phi node). Instruction *ExitInstruction = nullptr; // Indicates that we found a reduction operation in our scan. bool FoundReduxOp = false; // We start with the PHI node and scan for all of the users of this // instruction. All users must be instructions that can be used as reduction // variables (such as ADD). We must have a single out-of-block user. The cycle // must include the original PHI. bool FoundStartPHI = false; // To recognize min/max patterns formed by a icmp select sequence, we store // the number of instruction we saw from the recognized min/max pattern, // to make sure we only see exactly the two instructions. unsigned NumCmpSelectPatternInst = 0; ReductionInstDesc ReduxDesc(false, nullptr); SmallPtrSet VisitedInsts; SmallVector Worklist; Worklist.push_back(Phi); VisitedInsts.insert(Phi); // A value in the reduction can be used: // - By the reduction: // - Reduction operation: // - One use of reduction value (safe). // - Multiple use of reduction value (not safe). // - PHI: // - All uses of the PHI must be the reduction (safe). // - Otherwise, not safe. // - By one instruction outside of the loop (safe). // - By further instructions outside of the loop (not safe). // - By an instruction that is not part of the reduction (not safe). // This is either: // * An instruction type other than PHI or the reduction operation. // * A PHI in the header other than the initial PHI. while (!Worklist.empty()) { Instruction *Cur = Worklist.back(); Worklist.pop_back(); // No Users. // If the instruction has no users then this is a broken chain and can't be // a reduction variable. if (Cur->use_empty()) return false; bool IsAPhi = isa(Cur); // A header PHI use other than the original PHI. if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) return false; // Reductions of instructions such as Div, and Sub is only possible if the // LHS is the reduction variable. if (!Cur->isCommutative() && !IsAPhi && !isa(Cur) && !isa(Cur) && !isa(Cur) && !VisitedInsts.count(dyn_cast(Cur->getOperand(0)))) return false; // Any reduction instruction must be of one of the allowed kinds. ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); if (!ReduxDesc.isReduction()) return false; // A reduction operation must only have one use of the reduction value. if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts)) return false; // All inputs to a PHI node must be a reduction value. if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) return false; if (Kind == RK_IntegerMinMax && (isa(Cur) || isa(Cur))) ++NumCmpSelectPatternInst; if (Kind == RK_FloatMinMax && (isa(Cur) || isa(Cur))) ++NumCmpSelectPatternInst; // Check whether we found a reduction operator. FoundReduxOp |= !IsAPhi; // Process users of current instruction. Push non-PHI nodes after PHI nodes // onto the stack. This way we are going to have seen all inputs to PHI // nodes once we get to them. SmallVector NonPHIs; SmallVector PHIs; for (User *U : Cur->users()) { Instruction *UI = cast(U); // Check if we found the exit user. BasicBlock *Parent = UI->getParent(); if (!TheLoop->contains(Parent)) { // Exit if you find multiple outside users or if the header phi node is // being used. In this case the user uses the value of the previous // iteration, in which case we would loose "VF-1" iterations of the // reduction operation if we vectorize. if (ExitInstruction != nullptr || Cur == Phi) return false; // The instruction used by an outside user must be the last instruction // before we feed back to the reduction phi. Otherwise, we loose VF-1 // operations on the value. if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) return false; ExitInstruction = Cur; continue; } // Process instructions only once (termination). Each reduction cycle // value must only be used once, except by phi nodes and min/max // reductions which are represented as a cmp followed by a select. ReductionInstDesc IgnoredVal(false, nullptr); if (VisitedInsts.insert(UI).second) { if (isa(UI)) PHIs.push_back(UI); else NonPHIs.push_back(UI); } else if (!isa(UI) && ((!isa(UI) && !isa(UI) && !isa(UI)) || !isMinMaxSelectCmpPattern(UI, IgnoredVal).isReduction())) return false; // Remember that we completed the cycle. if (UI == Phi) FoundStartPHI = true; } Worklist.append(PHIs.begin(), PHIs.end()); Worklist.append(NonPHIs.begin(), NonPHIs.end()); } // This means we have seen one but not the other instruction of the // pattern or more than just a select and cmp. if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && NumCmpSelectPatternInst != 2) return false; if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) return false; // We found a reduction var if we have reached the original phi node and we // only have a single instruction with out-of-loop users. // The ExitInstruction(Instruction which is allowed to have out-of-loop users) // is saved as part of the ReductionDescriptor. // Save the description of this reduction variable. ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind()); RedDes = RD; return true; } /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction /// pattern corresponding to a min(X, Y) or max(X, Y). ReductionInstDesc ReductionDescriptor::isMinMaxSelectCmpPattern(Instruction *I, ReductionInstDesc &Prev) { assert((isa(I) || isa(I) || isa(I)) && "Expect a select instruction"); Instruction *Cmp = nullptr; SelectInst *Select = nullptr; // We must handle the select(cmp()) as a single instruction. Advance to the // select. if ((Cmp = dyn_cast(I)) || (Cmp = dyn_cast(I))) { if (!Cmp->hasOneUse() || !(Select = dyn_cast(*I->user_begin()))) return ReductionInstDesc(false, I); return ReductionInstDesc(Select, Prev.getMinMaxKind()); } // Only handle single use cases for now. if (!(Select = dyn_cast(I))) return ReductionInstDesc(false, I); if (!(Cmp = dyn_cast(I->getOperand(0))) && !(Cmp = dyn_cast(I->getOperand(0)))) return ReductionInstDesc(false, I); if (!Cmp->hasOneUse()) return ReductionInstDesc(false, I); Value *CmpLeft; Value *CmpRight; // Look for a min/max pattern. if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMin); else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMax); else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMax); else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMin); else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin); else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax); else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin); else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax); return ReductionInstDesc(false, I); } ReductionInstDesc ReductionDescriptor::isReductionInstr(Instruction *I, ReductionKind Kind, ReductionInstDesc &Prev, bool HasFunNoNaNAttr) { bool FP = I->getType()->isFloatingPointTy(); bool FastMath = FP && I->hasUnsafeAlgebra(); switch (I->getOpcode()) { default: return ReductionInstDesc(false, I); case Instruction::PHI: if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && Kind != RK_FloatMinMax)) return ReductionInstDesc(false, I); return ReductionInstDesc(I, Prev.getMinMaxKind()); case Instruction::Sub: case Instruction::Add: return ReductionInstDesc(Kind == RK_IntegerAdd, I); case Instruction::Mul: return ReductionInstDesc(Kind == RK_IntegerMult, I); case Instruction::And: return ReductionInstDesc(Kind == RK_IntegerAnd, I); case Instruction::Or: return ReductionInstDesc(Kind == RK_IntegerOr, I); case Instruction::Xor: return ReductionInstDesc(Kind == RK_IntegerXor, I); case Instruction::FMul: return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); case Instruction::FSub: case Instruction::FAdd: return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); case Instruction::FCmp: case Instruction::ICmp: case Instruction::Select: if (Kind != RK_IntegerMinMax && (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) return ReductionInstDesc(false, I); return isMinMaxSelectCmpPattern(I, Prev); } } bool ReductionDescriptor::hasMultipleUsesOf( Instruction *I, SmallPtrSetImpl &Insts) { unsigned NumUses = 0; for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { if (Insts.count(dyn_cast(*Use))) ++NumUses; if (NumUses > 1) return true; } return false; } bool ReductionDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, ReductionDescriptor &RedDes) { bool HasFunNoNaNAttr = false; BasicBlock *Header = TheLoop->getHeader(); Function &F = *Header->getParent(); if (F.hasFnAttribute("no-nans-fp-math")) HasFunNoNaNAttr = F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); return true; } // Not a reduction of known type. return false; } /// This function returns the identity element (or neutral element) for /// the operation K. Constant *ReductionDescriptor::getReductionIdentity(ReductionKind K, Type *Tp) { switch (K) { case RK_IntegerXor: case RK_IntegerAdd: case RK_IntegerOr: // Adding, Xoring, Oring zero to a number does not change it. return ConstantInt::get(Tp, 0); case RK_IntegerMult: // Multiplying a number by 1 does not change it. return ConstantInt::get(Tp, 1); case RK_IntegerAnd: // AND-ing a number with an all-1 value does not change it. return ConstantInt::get(Tp, -1, true); case RK_FloatMult: // Multiplying a number by 1 does not change it. return ConstantFP::get(Tp, 1.0L); case RK_FloatAdd: // Adding zero to a number does not change it. return ConstantFP::get(Tp, 0.0L); default: llvm_unreachable("Unknown reduction kind"); } } /// This function translates the reduction kind to an LLVM binary operator. unsigned ReductionDescriptor::getReductionBinOp(ReductionKind Kind) { switch (Kind) { case RK_IntegerAdd: return Instruction::Add; case RK_IntegerMult: return Instruction::Mul; case RK_IntegerOr: return Instruction::Or; case RK_IntegerAnd: return Instruction::And; case RK_IntegerXor: return Instruction::Xor; case RK_FloatMult: return Instruction::FMul; case RK_FloatAdd: return Instruction::FAdd; case RK_IntegerMinMax: return Instruction::ICmp; case RK_FloatMinMax: return Instruction::FCmp; default: llvm_unreachable("Unknown reduction operation"); } } Value * ReductionDescriptor::createMinMaxOp(IRBuilder<> &Builder, ReductionInstDesc::MinMaxReductionKind RK, Value *Left, Value *Right) { CmpInst::Predicate P = CmpInst::ICMP_NE; switch (RK) { default: llvm_unreachable("Unknown min/max reduction kind"); case ReductionInstDesc::MRK_UIntMin: P = CmpInst::ICMP_ULT; break; case ReductionInstDesc::MRK_UIntMax: P = CmpInst::ICMP_UGT; break; case ReductionInstDesc::MRK_SIntMin: P = CmpInst::ICMP_SLT; break; case ReductionInstDesc::MRK_SIntMax: P = CmpInst::ICMP_SGT; break; case ReductionInstDesc::MRK_FloatMin: P = CmpInst::FCMP_OLT; break; case ReductionInstDesc::MRK_FloatMax: P = CmpInst::FCMP_OGT; break; } Value *Cmp; if (RK == ReductionInstDesc::MRK_FloatMin || RK == ReductionInstDesc::MRK_FloatMax) Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); else Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); return Select; } bool llvm::isInductionPHI(PHINode *Phi, ScalarEvolution *SE, ConstantInt *&StepValue) { Type *PhiTy = Phi->getType(); // We only handle integer and pointer inductions variables. if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) return false; // Check that the PHI is consecutive. const SCEV *PhiScev = SE->getSCEV(Phi); const SCEVAddRecExpr *AR = dyn_cast(PhiScev); if (!AR) { DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); return false; } const SCEV *Step = AR->getStepRecurrence(*SE); // Calculate the pointer stride and check if it is consecutive. const SCEVConstant *C = dyn_cast(Step); if (!C) return false; ConstantInt *CV = C->getValue(); if (PhiTy->isIntegerTy()) { StepValue = CV; return true; } assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); Type *PointerElementType = PhiTy->getPointerElementType(); // The pointer stride cannot be determined if the pointer element type is not // sized. if (!PointerElementType->isSized()) return false; const DataLayout &DL = Phi->getModule()->getDataLayout(); int64_t Size = static_cast(DL.getTypeAllocSize(PointerElementType)); if (!Size) return false; int64_t CVSize = CV->getSExtValue(); if (CVSize % Size) return false; StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size); return true; }