//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements a simple loop unroller. It works best when loops have // been canonicalized by the -indvars pass, allowing it to determine the trip // counts of loops easily. //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/SetVector.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Metadata.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/UnrollLoop.h" #include using namespace llvm; #define DEBUG_TYPE "loop-unroll" static cl::opt UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden, cl::desc("The cut-off point for automatic loop unrolling")); static cl::opt UnrollMaxIterationsCountToAnalyze( "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden, cl::desc("Don't allow loop unrolling to simulate more than this number of" "iterations when checking full unroll profitability")); static cl::opt UnrollMinPercentOfOptimized( "unroll-percent-of-optimized-for-complete-unroll", cl::init(20), cl::Hidden, cl::desc("If complete unrolling could trigger further optimizations, and, " "by that, remove the given percent of instructions, perform the " "complete unroll even if it's beyond the threshold")); static cl::opt UnrollAbsoluteThreshold( "unroll-absolute-threshold", cl::init(2000), cl::Hidden, cl::desc("Don't unroll if the unrolled size is bigger than this threshold," " even if we can remove big portion of instructions later.")); static cl::opt UnrollCount("unroll-count", cl::init(0), cl::Hidden, cl::desc("Use this unroll count for all loops including those with " "unroll_count pragma values, for testing purposes")); static cl::opt UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden, cl::desc("Allows loops to be partially unrolled until " "-unroll-threshold loop size is reached.")); static cl::opt UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden, cl::desc("Unroll loops with run-time trip counts")); static cl::opt PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, cl::desc("Unrolled size limit for loops with an unroll(full) or " "unroll_count pragma.")); namespace { class LoopUnroll : public LoopPass { public: static char ID; // Pass ID, replacement for typeid LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) { CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T); CurrentAbsoluteThreshold = UnrollAbsoluteThreshold; CurrentMinPercentOfOptimized = UnrollMinPercentOfOptimized; CurrentCount = (C == -1) ? UnrollCount : unsigned(C); CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P; CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R; UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0); UserAbsoluteThreshold = (UnrollAbsoluteThreshold.getNumOccurrences() > 0); UserPercentOfOptimized = (UnrollMinPercentOfOptimized.getNumOccurrences() > 0); UserAllowPartial = (P != -1) || (UnrollAllowPartial.getNumOccurrences() > 0); UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0); UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0); initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); } /// A magic value for use with the Threshold parameter to indicate /// that the loop unroll should be performed regardless of how much /// code expansion would result. static const unsigned NoThreshold = UINT_MAX; // Threshold to use when optsize is specified (and there is no // explicit -unroll-threshold). static const unsigned OptSizeUnrollThreshold = 50; // Default unroll count for loops with run-time trip count if // -unroll-count is not set static const unsigned UnrollRuntimeCount = 8; unsigned CurrentCount; unsigned CurrentThreshold; unsigned CurrentAbsoluteThreshold; unsigned CurrentMinPercentOfOptimized; bool CurrentAllowPartial; bool CurrentRuntime; bool UserCount; // CurrentCount is user-specified. bool UserThreshold; // CurrentThreshold is user-specified. bool UserAbsoluteThreshold; // CurrentAbsoluteThreshold is // user-specified. bool UserPercentOfOptimized; // CurrentMinPercentOfOptimized is // user-specified. bool UserAllowPartial; // CurrentAllowPartial is user-specified. bool UserRuntime; // CurrentRuntime is user-specified. bool runOnLoop(Loop *L, LPPassManager &LPM) override; /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG... /// void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addPreservedID(LCSSAID); AU.addRequired(); AU.addPreserved(); AU.addRequired(); // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info. // If loop unroll does not preserve dom info then LCSSA pass on next // loop will receive invalid dom info. // For now, recreate dom info, if loop is unrolled. AU.addPreserved(); } // Fill in the UnrollingPreferences parameter with values from the // TargetTransformationInfo. void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI, TargetTransformInfo::UnrollingPreferences &UP) { UP.Threshold = CurrentThreshold; UP.AbsoluteThreshold = CurrentAbsoluteThreshold; UP.MinPercentOfOptimized = CurrentMinPercentOfOptimized; UP.OptSizeThreshold = OptSizeUnrollThreshold; UP.PartialThreshold = CurrentThreshold; UP.PartialOptSizeThreshold = OptSizeUnrollThreshold; UP.Count = CurrentCount; UP.MaxCount = UINT_MAX; UP.Partial = CurrentAllowPartial; UP.Runtime = CurrentRuntime; UP.AllowExpensiveTripCount = false; TTI.getUnrollingPreferences(L, UP); } // Select and return an unroll count based on parameters from // user, unroll preferences, unroll pragmas, or a heuristic. // SetExplicitly is set to true if the unroll count is is set by // the user or a pragma rather than selected heuristically. unsigned selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll, unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP, bool &SetExplicitly); // Select threshold values used to limit unrolling based on a // total unrolled size. Parameters Threshold and PartialThreshold // are set to the maximum unrolled size for fully and partially // unrolled loops respectively. void selectThresholds(const Loop *L, bool HasPragma, const TargetTransformInfo::UnrollingPreferences &UP, unsigned &Threshold, unsigned &PartialThreshold, unsigned &AbsoluteThreshold, unsigned &PercentOfOptimizedForCompleteUnroll) { // Determine the current unrolling threshold. While this is // normally set from UnrollThreshold, it is overridden to a // smaller value if the current function is marked as // optimize-for-size, and the unroll threshold was not user // specified. Threshold = UserThreshold ? CurrentThreshold : UP.Threshold; PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold; AbsoluteThreshold = UserAbsoluteThreshold ? CurrentAbsoluteThreshold : UP.AbsoluteThreshold; PercentOfOptimizedForCompleteUnroll = UserPercentOfOptimized ? CurrentMinPercentOfOptimized : UP.MinPercentOfOptimized; if (!UserThreshold && L->getHeader()->getParent()->hasFnAttribute( Attribute::OptimizeForSize)) { Threshold = UP.OptSizeThreshold; PartialThreshold = UP.PartialOptSizeThreshold; } if (HasPragma) { // If the loop has an unrolling pragma, we want to be more // aggressive with unrolling limits. Set thresholds to at // least the PragmaTheshold value which is larger than the // default limits. if (Threshold != NoThreshold) Threshold = std::max(Threshold, PragmaUnrollThreshold); if (PartialThreshold != NoThreshold) PartialThreshold = std::max(PartialThreshold, PragmaUnrollThreshold); } } bool canUnrollCompletely(Loop *L, unsigned Threshold, unsigned AbsoluteThreshold, uint64_t UnrolledSize, unsigned NumberOfOptimizedInstructions, unsigned PercentOfOptimizedForCompleteUnroll); }; } char LoopUnroll::ID = 0; INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(LCSSA) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, int Runtime) { return new LoopUnroll(Threshold, Count, AllowPartial, Runtime); } Pass *llvm::createSimpleLoopUnrollPass() { return llvm::createLoopUnrollPass(-1, -1, 0, 0); } namespace { /// \brief SCEV expressions visitor used for finding expressions that would /// become constants if the loop L is unrolled. struct FindConstantPointers { /// \brief Shows whether the expression is ConstAddress+Constant or not. bool IndexIsConstant; /// \brief Used for filtering out SCEV expressions with two or more AddRec /// subexpressions. /// /// Used to filter out complicated SCEV expressions, having several AddRec /// sub-expressions. We don't handle them, because unrolling one loop /// would help to replace only one of these inductions with a constant, and /// consequently, the expression would remain non-constant. bool HaveSeenAR; /// \brief If the SCEV expression becomes ConstAddress+Constant, this value /// holds ConstAddress. Otherwise, it's nullptr. Value *BaseAddress; /// \brief The loop, which we try to completely unroll. const Loop *L; ScalarEvolution &SE; FindConstantPointers(const Loop *L, ScalarEvolution &SE) : IndexIsConstant(true), HaveSeenAR(false), BaseAddress(nullptr), L(L), SE(SE) {} /// Examine the given expression S and figure out, if it can be a part of an /// expression, that could become a constant after the loop is unrolled. /// The routine sets IndexIsConstant and HaveSeenAR according to the analysis /// results. /// \returns true if we need to examine subexpressions, and false otherwise. bool follow(const SCEV *S) { if (const SCEVUnknown *SC = dyn_cast(S)) { // We've reached the leaf node of SCEV, it's most probably just a // variable. // If it's the only one SCEV-subexpression, then it might be a base // address of an index expression. // If we've already recorded base address, then just give up on this SCEV // - it's too complicated. if (BaseAddress) { IndexIsConstant = false; return false; } BaseAddress = SC->getValue(); return false; } if (isa(S)) return false; if (const SCEVAddRecExpr *AR = dyn_cast(S)) { // If the current SCEV expression is AddRec, and its loop isn't the loop // we are about to unroll, then we won't get a constant address after // unrolling, and thus, won't be able to eliminate the load. if (AR->getLoop() != L) { IndexIsConstant = false; return false; } // We don't handle multiple AddRecs here, so give up in this case. if (HaveSeenAR) { IndexIsConstant = false; return false; } HaveSeenAR = true; } // Continue traversal. return true; } bool isDone() const { return !IndexIsConstant; } }; } // End anonymous namespace. namespace { /// \brief A cache of SCEV results used to optimize repeated queries to SCEV on /// the same set of instructions. /// /// The primary cost this saves is the cost of checking the validity of a SCEV /// every time it is looked up. However, in some cases we can provide a reduced /// and especially useful model for an instruction based upon SCEV that is /// non-trivial to compute but more useful to clients. class SCEVCache { public: /// \brief Struct to represent a GEP whose start and step are known fixed /// offsets from a base address due to SCEV's analysis. struct GEPDescriptor { Value *BaseAddr = nullptr; unsigned Start = 0; unsigned Step = 0; }; Optional getGEPDescriptor(GetElementPtrInst *GEP); SCEVCache(const Loop &L, ScalarEvolution &SE) : L(L), SE(SE) {} private: const Loop &L; ScalarEvolution &SE; SmallDenseMap GEPDescriptors; }; } // End anonymous namespace. /// \brief Get a simplified descriptor for a GEP instruction. /// /// Where possible, this produces a simplified descriptor for a GEP instruction /// using SCEV analysis of the containing loop. If this isn't possible, it /// returns an empty optional. /// /// The model is a base address, an initial offset, and a per-iteration step. /// This fits very common patterns of GEPs inside loops and is something we can /// use to simulate the behavior of a particular iteration of a loop. /// /// This is a cached interface. The first call may do non-trivial work to /// compute the result, but all subsequent calls will return a fast answer /// based on a cached result. This includes caching negative results. Optional SCEVCache::getGEPDescriptor(GetElementPtrInst *GEP) { decltype(GEPDescriptors)::iterator It; bool Inserted; std::tie(It, Inserted) = GEPDescriptors.insert({GEP, {}}); if (!Inserted) { if (!It->second.BaseAddr) return None; return It->second; } // We've inserted a new record into the cache, so compute the GEP descriptor // if possible. Value *V = cast(GEP); if (!SE.isSCEVable(V->getType())) return None; const SCEV *S = SE.getSCEV(V); // FIXME: It'd be nice if the worklist and set used by the // SCEVTraversal could be re-used between loop iterations, but the // interface doesn't support that. There is no way to clear the visited // sets between uses. FindConstantPointers Visitor(&L, SE); SCEVTraversal T(Visitor); // Try to find (BaseAddress+Step+Offset) tuple. // If succeeded, save it to the cache - it might help in folding // loads. T.visitAll(S); if (!Visitor.IndexIsConstant || !Visitor.BaseAddress) return None; const SCEV *BaseAddrSE = SE.getSCEV(Visitor.BaseAddress); if (BaseAddrSE->getType() != S->getType()) return None; const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE); const SCEVAddRecExpr *AR = dyn_cast(OffSE); if (!AR) return None; const SCEVConstant *StepSE = dyn_cast(AR->getStepRecurrence(SE)); const SCEVConstant *StartSE = dyn_cast(AR->getStart()); if (!StepSE || !StartSE) return None; // Check and skip caching if doing so would require lots of bits to // avoid overflow. APInt Start = StartSE->getValue()->getValue(); APInt Step = StepSE->getValue()->getValue(); if (Start.getActiveBits() > 32 || Step.getActiveBits() > 32) return None; // We found a cacheable SCEV model for the GEP. It->second.BaseAddr = Visitor.BaseAddress; It->second.Start = Start.getLimitedValue(); It->second.Step = Step.getLimitedValue(); return It->second; } namespace { // This class is used to get an estimate of the optimization effects that we // could get from complete loop unrolling. It comes from the fact that some // loads might be replaced with concrete constant values and that could trigger // a chain of instruction simplifications. // // E.g. we might have: // int a[] = {0, 1, 0}; // v = 0; // for (i = 0; i < 3; i ++) // v += b[i]*a[i]; // If we completely unroll the loop, we would get: // v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2] // Which then will be simplified to: // v = b[0]* 0 + b[1]* 1 + b[2]* 0 // And finally: // v = b[1] class UnrolledInstAnalyzer : private InstVisitor { typedef InstVisitor Base; friend class InstVisitor; public: UnrolledInstAnalyzer(unsigned Iteration, DenseMap &SimplifiedValues, SCEVCache &SC) : Iteration(Iteration), SimplifiedValues(SimplifiedValues), SC(SC) {} // Allow access to the initial visit method. using Base::visit; private: /// \brief Number of currently simulated iteration. /// /// If an expression is ConstAddress+Constant, then the Constant is /// Start + Iteration*Step, where Start and Step could be obtained from /// SCEVGEPCache. unsigned Iteration; // While we walk the loop instructions, we we build up and maintain a mapping // of simplified values specific to this iteration. The idea is to propagate // any special information we have about loads that can be replaced with // constants after complete unrolling, and account for likely simplifications // post-unrolling. DenseMap &SimplifiedValues; // We use a cache to wrap all our SCEV queries. SCEVCache &SC; /// Base case for the instruction visitor. bool visitInstruction(Instruction &I) { return false; }; /// TODO: Add visitors for other instruction types, e.g. ZExt, SExt. /// Try to simplify binary operator I. /// /// TODO: Probaly it's worth to hoist the code for estimating the /// simplifications effects to a separate class, since we have a very similar /// code in InlineCost already. bool visitBinaryOperator(BinaryOperator &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); if (!isa(LHS)) if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) LHS = SimpleLHS; if (!isa(RHS)) if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) RHS = SimpleRHS; Value *SimpleV = nullptr; const DataLayout &DL = I.getModule()->getDataLayout(); if (auto FI = dyn_cast(&I)) SimpleV = SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL); else SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL); if (Constant *C = dyn_cast_or_null(SimpleV)) SimplifiedValues[&I] = C; return SimpleV; } /// Try to fold load I. bool visitLoad(LoadInst &I) { Value *AddrOp = I.getPointerOperand(); if (!isa(AddrOp)) if (Constant *SimplifiedAddrOp = SimplifiedValues.lookup(AddrOp)) AddrOp = SimplifiedAddrOp; auto *GEP = dyn_cast(AddrOp); if (!GEP) return false; auto OptionalGEPDesc = SC.getGEPDescriptor(GEP); if (!OptionalGEPDesc) return false; auto GV = dyn_cast(OptionalGEPDesc->BaseAddr); // We're only interested in loads that can be completely folded to a // constant. if (!GV || !GV->hasInitializer()) return false; ConstantDataSequential *CDS = dyn_cast(GV->getInitializer()); if (!CDS) return false; // This calculation should never overflow because we bound Iteration quite // low and both the start and step are 32-bit integers. We use signed // integers so that UBSan will catch if a bug sneaks into the code. int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U; int64_t Index = ((int64_t)OptionalGEPDesc->Start + (int64_t)OptionalGEPDesc->Step * (int64_t)Iteration) / ElemSize; if (Index >= CDS->getNumElements()) { // FIXME: For now we conservatively ignore out of bound accesses, but // we're allowed to perform the optimization in this case. return false; } Constant *CV = CDS->getElementAsConstant(Index); assert(CV && "Constant expected."); SimplifiedValues[&I] = CV; return true; } }; } // namespace namespace { struct EstimatedUnrollCost { /// \brief Count the number of optimized instructions. unsigned NumberOfOptimizedInstructions; /// \brief Count the total number of instructions. unsigned UnrolledLoopSize; }; } /// \brief Figure out if the loop is worth full unrolling. /// /// Complete loop unrolling can make some loads constant, and we need to know /// if that would expose any further optimization opportunities. This routine /// estimates this optimization. It assigns computed number of instructions, /// that potentially might be optimized away, to /// NumberOfOptimizedInstructions, and total number of instructions to /// UnrolledLoopSize (not counting blocks that won't be reached, if we were /// able to compute the condition). /// \returns false if we can't analyze the loop, or if we discovered that /// unrolling won't give anything. Otherwise, returns true. Optional analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, ScalarEvolution &SE, const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { // We want to be able to scale offsets by the trip count and add more offsets // to them without checking for overflows, and we already don't want to // analyze *massive* trip counts, so we force the max to be reasonably small. assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && "The unroll iterations max is too large!"); // Don't simulate loops with a big or unknown tripcount if (!UnrollMaxIterationsCountToAnalyze || !TripCount || TripCount > UnrollMaxIterationsCountToAnalyze) return None; SmallSetVector BBWorklist; DenseMap SimplifiedValues; // Use a cache to access SCEV expressions so that we don't pay the cost on // each iteration. This cache is lazily self-populating. SCEVCache SC(*L, SE); unsigned NumberOfOptimizedInstructions = 0; unsigned UnrolledLoopSize = 0; // Simulate execution of each iteration of the loop counting instructions, // which would be simplified. // Since the same load will take different values on different iterations, // we literally have to go through all loop's iterations. for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { SimplifiedValues.clear(); UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SC); BBWorklist.clear(); BBWorklist.insert(L->getHeader()); // Note that we *must not* cache the size, this loop grows the worklist. for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { BasicBlock *BB = BBWorklist[Idx]; // Visit all instructions in the given basic block and try to simplify // it. We don't change the actual IR, just count optimization // opportunities. for (Instruction &I : *BB) { UnrolledLoopSize += TTI.getUserCost(&I); // Visit the instruction to analyze its loop cost after unrolling, // and if the visitor returns true, then we can optimize this // instruction away. if (Analyzer.visit(I)) NumberOfOptimizedInstructions += TTI.getUserCost(&I); // If unrolled body turns out to be too big, bail out. if (UnrolledLoopSize - NumberOfOptimizedInstructions > MaxUnrolledLoopSize) return None; } // Add BB's successors to the worklist. for (BasicBlock *Succ : successors(BB)) if (L->contains(Succ)) BBWorklist.insert(Succ); } // If we found no optimization opportunities on the first iteration, we // won't find them on later ones too. if (!NumberOfOptimizedInstructions) return None; } return {{NumberOfOptimizedInstructions, UnrolledLoopSize}}; } /// ApproximateLoopSize - Approximate the size of the loop. static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, const TargetTransformInfo &TTI, AssumptionCache *AC) { SmallPtrSet EphValues; CodeMetrics::collectEphemeralValues(L, AC, EphValues); CodeMetrics Metrics; for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) Metrics.analyzeBasicBlock(*I, TTI, EphValues); NumCalls = Metrics.NumInlineCandidates; NotDuplicatable = Metrics.notDuplicatable; unsigned LoopSize = Metrics.NumInsts; // Don't allow an estimate of size zero. This would allows unrolling of loops // with huge iteration counts, which is a compile time problem even if it's // not a problem for code quality. Also, the code using this size may assume // that each loop has at least three instructions (likely a conditional // branch, a comparison feeding that branch, and some kind of loop increment // feeding that comparison instruction). LoopSize = std::max(LoopSize, 3u); return LoopSize; } // Returns the loop hint metadata node with the given name (for example, // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is // returned. static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { if (MDNode *LoopID = L->getLoopID()) return GetUnrollMetadata(LoopID, Name); return nullptr; } // Returns true if the loop has an unroll(full) pragma. static bool HasUnrollFullPragma(const Loop *L) { return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); } // Returns true if the loop has an unroll(disable) pragma. static bool HasUnrollDisablePragma(const Loop *L) { return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); } // Returns true if the loop has an runtime unroll(disable) pragma. static bool HasRuntimeUnrollDisablePragma(const Loop *L) { return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); } // If loop has an unroll_count pragma return the (necessarily // positive) value from the pragma. Otherwise return 0. static unsigned UnrollCountPragmaValue(const Loop *L) { MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); if (MD) { assert(MD->getNumOperands() == 2 && "Unroll count hint metadata should have two operands."); unsigned Count = mdconst::extract(MD->getOperand(1))->getZExtValue(); assert(Count >= 1 && "Unroll count must be positive."); return Count; } return 0; } // Remove existing unroll metadata and add unroll disable metadata to // indicate the loop has already been unrolled. This prevents a loop // from being unrolled more than is directed by a pragma if the loop // unrolling pass is run more than once (which it generally is). static void SetLoopAlreadyUnrolled(Loop *L) { MDNode *LoopID = L->getLoopID(); if (!LoopID) return; // First remove any existing loop unrolling metadata. SmallVector MDs; // Reserve first location for self reference to the LoopID metadata node. MDs.push_back(nullptr); for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { bool IsUnrollMetadata = false; MDNode *MD = dyn_cast(LoopID->getOperand(i)); if (MD) { const MDString *S = dyn_cast(MD->getOperand(0)); IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); } if (!IsUnrollMetadata) MDs.push_back(LoopID->getOperand(i)); } // Add unroll(disable) metadata to disable future unrolling. LLVMContext &Context = L->getHeader()->getContext(); SmallVector DisableOperands; DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); MDNode *DisableNode = MDNode::get(Context, DisableOperands); MDs.push_back(DisableNode); MDNode *NewLoopID = MDNode::get(Context, MDs); // Set operand 0 to refer to the loop id itself. NewLoopID->replaceOperandWith(0, NewLoopID); L->setLoopID(NewLoopID); } bool LoopUnroll::canUnrollCompletely( Loop *L, unsigned Threshold, unsigned AbsoluteThreshold, uint64_t UnrolledSize, unsigned NumberOfOptimizedInstructions, unsigned PercentOfOptimizedForCompleteUnroll) { if (Threshold == NoThreshold) { DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); return true; } if (UnrolledSize <= Threshold) { DEBUG(dbgs() << " Can fully unroll, because unrolled size: " << UnrolledSize << "<" << Threshold << "\n"); return true; } assert(UnrolledSize && "UnrolledSize can't be 0 at this point."); unsigned PercentOfOptimizedInstructions = (uint64_t)NumberOfOptimizedInstructions * 100ull / UnrolledSize; if (UnrolledSize <= AbsoluteThreshold && PercentOfOptimizedInstructions >= PercentOfOptimizedForCompleteUnroll) { DEBUG(dbgs() << " Can fully unroll, because unrolling will help removing " << PercentOfOptimizedInstructions << "% instructions (threshold: " << PercentOfOptimizedForCompleteUnroll << "%)\n"); DEBUG(dbgs() << " Unrolled size (" << UnrolledSize << ") is less than the threshold (" << AbsoluteThreshold << ").\n"); return true; } DEBUG(dbgs() << " Too large to fully unroll:\n"); DEBUG(dbgs() << " Unrolled size: " << UnrolledSize << "\n"); DEBUG(dbgs() << " Estimated number of optimized instructions: " << NumberOfOptimizedInstructions << "\n"); DEBUG(dbgs() << " Absolute threshold: " << AbsoluteThreshold << "\n"); DEBUG(dbgs() << " Minimum percent of removed instructions: " << PercentOfOptimizedForCompleteUnroll << "\n"); DEBUG(dbgs() << " Threshold for small loops: " << Threshold << "\n"); return false; } unsigned LoopUnroll::selectUnrollCount( const Loop *L, unsigned TripCount, bool PragmaFullUnroll, unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP, bool &SetExplicitly) { SetExplicitly = true; // User-specified count (either as a command-line option or // constructor parameter) has highest precedence. unsigned Count = UserCount ? CurrentCount : 0; // If there is no user-specified count, unroll pragmas have the next // highest precendence. if (Count == 0) { if (PragmaCount) { Count = PragmaCount; } else if (PragmaFullUnroll) { Count = TripCount; } } if (Count == 0) Count = UP.Count; if (Count == 0) { SetExplicitly = false; if (TripCount == 0) // Runtime trip count. Count = UnrollRuntimeCount; else // Conservative heuristic: if we know the trip count, see if we can // completely unroll (subject to the threshold, checked below); otherwise // try to find greatest modulo of the trip count which is still under // threshold value. Count = TripCount; } if (TripCount && Count > TripCount) return TripCount; return Count; } bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) { if (skipOptnoneFunction(L)) return false; Function &F = *L->getHeader()->getParent(); LoopInfo *LI = &getAnalysis().getLoopInfo(); ScalarEvolution *SE = &getAnalysis(); const TargetTransformInfo &TTI = getAnalysis().getTTI(F); auto &AC = getAnalysis().getAssumptionCache(F); BasicBlock *Header = L->getHeader(); DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName() << "] Loop %" << Header->getName() << "\n"); if (HasUnrollDisablePragma(L)) { return false; } bool PragmaFullUnroll = HasUnrollFullPragma(L); unsigned PragmaCount = UnrollCountPragmaValue(L); bool HasPragma = PragmaFullUnroll || PragmaCount > 0; TargetTransformInfo::UnrollingPreferences UP; getUnrollingPreferences(L, TTI, UP); // Find trip count and trip multiple if count is not available unsigned TripCount = 0; unsigned TripMultiple = 1; // If there are multiple exiting blocks but one of them is the latch, use the // latch for the trip count estimation. Otherwise insist on a single exiting // block for the trip count estimation. BasicBlock *ExitingBlock = L->getLoopLatch(); if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) ExitingBlock = L->getExitingBlock(); if (ExitingBlock) { TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); } // Select an initial unroll count. This may be reduced later based // on size thresholds. bool CountSetExplicitly; unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll, PragmaCount, UP, CountSetExplicitly); unsigned NumInlineCandidates; bool notDuplicatable; unsigned LoopSize = ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC); DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); // When computing the unrolled size, note that the conditional branch on the // backedge and the comparison feeding it are not replicated like the rest of // the loop body (which is why 2 is subtracted). uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2; if (notDuplicatable) { DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" << " instructions.\n"); return false; } if (NumInlineCandidates != 0) { DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); return false; } unsigned Threshold, PartialThreshold; unsigned AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll; selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold, AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll); // Given Count, TripCount and thresholds determine the type of // unrolling which is to be performed. enum { Full = 0, Partial = 1, Runtime = 2 }; int Unrolling; if (TripCount && Count == TripCount) { Unrolling = Partial; // If the loop is really small, we don't need to run an expensive analysis. if (canUnrollCompletely( L, Threshold, AbsoluteThreshold, UnrolledSize, 0, 100)) { Unrolling = Full; } else { // The loop isn't that small, but we still can fully unroll it if that // helps to remove a significant number of instructions. // To check that, run additional analysis on the loop. if (Optional Cost = analyzeLoopUnrollCost(L, TripCount, *SE, TTI, AbsoluteThreshold)) if (canUnrollCompletely(L, Threshold, AbsoluteThreshold, Cost->UnrolledLoopSize, Cost->NumberOfOptimizedInstructions, PercentOfOptimizedForCompleteUnroll)) { Unrolling = Full; } } } else if (TripCount && Count < TripCount) { Unrolling = Partial; } else { Unrolling = Runtime; } // Reduce count based on the type of unrolling and the threshold values. unsigned OriginalCount = Count; bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime; if (HasRuntimeUnrollDisablePragma(L)) { AllowRuntime = false; } if (Unrolling == Partial) { bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial; if (!AllowPartial && !CountSetExplicitly) { DEBUG(dbgs() << " will not try to unroll partially because " << "-unroll-allow-partial not given\n"); return false; } if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) { // Reduce unroll count to be modulo of TripCount for partial unrolling. Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2); while (Count != 0 && TripCount % Count != 0) Count--; } } else if (Unrolling == Runtime) { if (!AllowRuntime && !CountSetExplicitly) { DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " << "-unroll-runtime not given\n"); return false; } // Reduce unroll count to be the largest power-of-two factor of // the original count which satisfies the threshold limit. while (Count != 0 && UnrolledSize > PartialThreshold) { Count >>= 1; UnrolledSize = (LoopSize-2) * Count + 2; } if (Count > UP.MaxCount) Count = UP.MaxCount; DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n"); } if (HasPragma) { if (PragmaCount != 0) // If loop has an unroll count pragma mark loop as unrolled to prevent // unrolling beyond that requested by the pragma. SetLoopAlreadyUnrolled(L); // Emit optimization remarks if we are unable to unroll the loop // as directed by a pragma. DebugLoc LoopLoc = L->getStartLoc(); Function *F = Header->getParent(); LLVMContext &Ctx = F->getContext(); if (PragmaFullUnroll && PragmaCount == 0) { if (TripCount && Count != TripCount) { emitOptimizationRemarkMissed( Ctx, DEBUG_TYPE, *F, LoopLoc, "Unable to fully unroll loop as directed by unroll(full) pragma " "because unrolled size is too large."); } else if (!TripCount) { emitOptimizationRemarkMissed( Ctx, DEBUG_TYPE, *F, LoopLoc, "Unable to fully unroll loop as directed by unroll(full) pragma " "because loop has a runtime trip count."); } } else if (PragmaCount > 0 && Count != OriginalCount) { emitOptimizationRemarkMissed( Ctx, DEBUG_TYPE, *F, LoopLoc, "Unable to unroll loop the number of times directed by " "unroll_count pragma because unrolled size is too large."); } } if (Unrolling != Full && Count < 2) { // Partial unrolling by 1 is a nop. For full unrolling, a factor // of 1 makes sense because loop control can be eliminated. return false; } // Unroll the loop. if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount, TripMultiple, LI, this, &LPM, &AC)) return false; return true; }