//===--------- X86InterleavedAccess.cpp ----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===--------------------------------------------------------------------===// /// /// \file /// This file contains the X86 implementation of the interleaved accesses /// optimization generating X86-specific instructions/intrinsics for /// interleaved access groups. /// //===--------------------------------------------------------------------===// #include "X86ISelLowering.h" #include "X86TargetMachine.h" #include "llvm/Analysis/VectorUtils.h" using namespace llvm; namespace { /// \brief This class holds necessary information to represent an interleaved /// access group and supports utilities to lower the group into /// X86-specific instructions/intrinsics. /// E.g. A group of interleaving access loads (Factor = 2; accessing every /// other element) /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr /// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> /// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> class X86InterleavedAccessGroup { /// \brief Reference to the wide-load instruction of an interleaved access /// group. Instruction *const Inst; /// \brief Reference to the shuffle(s), consumer(s) of the (load) 'Inst'. ArrayRef<ShuffleVectorInst *> Shuffles; /// \brief Reference to the starting index of each user-shuffle. ArrayRef<unsigned> Indices; /// \brief Reference to the interleaving stride in terms of elements. const unsigned Factor; /// \brief Reference to the underlying target. const X86Subtarget &Subtarget; const DataLayout &DL; IRBuilder<> &Builder; /// \brief Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors. void decompose(Instruction *Inst, unsigned NumSubVectors, VectorType *T, SmallVectorImpl<Instruction *> &DecomposedVectors); /// \brief Performs matrix transposition on a 4x4 matrix \p InputVectors and /// returns the transposed-vectors in \p TransposedVectors. /// E.g. /// InputVectors: /// In-V0 = p1, p2, p3, p4 /// In-V1 = q1, q2, q3, q4 /// In-V2 = r1, r2, r3, r4 /// In-V3 = s1, s2, s3, s4 /// OutputVectors: /// Out-V0 = p1, q1, r1, s1 /// Out-V1 = p2, q2, r2, s2 /// Out-V2 = p3, q3, r3, s3 /// Out-V3 = P4, q4, r4, s4 void transpose_4x4(ArrayRef<Instruction *> InputVectors, SmallVectorImpl<Value *> &TrasposedVectors); public: /// In order to form an interleaved access group X86InterleavedAccessGroup /// requires a wide-load instruction \p 'I', a group of interleaved-vectors /// \p Shuffs, reference to the first indices of each interleaved-vector /// \p 'Ind' and the interleaving stride factor \p F. In order to generate /// X86-specific instructions/intrinsics it also requires the underlying /// target information \p STarget. explicit X86InterleavedAccessGroup(Instruction *I, ArrayRef<ShuffleVectorInst *> Shuffs, ArrayRef<unsigned> Ind, const unsigned F, const X86Subtarget &STarget, IRBuilder<> &B) : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget), DL(Inst->getModule()->getDataLayout()), Builder(B) {} /// \brief Returns true if this interleaved access group can be lowered into /// x86-specific instructions/intrinsics, false otherwise. bool isSupported() const; /// \brief Lowers this interleaved access group into X86-specific /// instructions/intrinsics. bool lowerIntoOptimizedSequence(); }; } // end anonymous namespace bool X86InterleavedAccessGroup::isSupported() const { VectorType *ShuffleVecTy = Shuffles[0]->getType(); uint64_t ShuffleVecSize = DL.getTypeSizeInBits(ShuffleVecTy); Type *ShuffleEltTy = ShuffleVecTy->getVectorElementType(); // Currently, lowering is supported for 4-element vectors of 64 bits on AVX. uint64_t ExpectedShuffleVecSize; if (isa<LoadInst>(Inst)) ExpectedShuffleVecSize = 256; else ExpectedShuffleVecSize = 1024; if (!Subtarget.hasAVX() || ShuffleVecSize != ExpectedShuffleVecSize || DL.getTypeSizeInBits(ShuffleEltTy) != 64 || Factor != 4) return false; return true; } void X86InterleavedAccessGroup::decompose( Instruction *VecInst, unsigned NumSubVectors, VectorType *SubVecTy, SmallVectorImpl<Instruction *> &DecomposedVectors) { assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) && "Expected Load or Shuffle"); Type *VecTy = VecInst->getType(); (void)VecTy; assert(VecTy->isVectorTy() && DL.getTypeSizeInBits(VecTy) >= DL.getTypeSizeInBits(SubVecTy) * NumSubVectors && "Invalid Inst-size!!!"); if (auto *SVI = dyn_cast<ShuffleVectorInst>(VecInst)) { Value *Op0 = SVI->getOperand(0); Value *Op1 = SVI->getOperand(1); // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type. for (unsigned i = 0; i < NumSubVectors; ++i) DecomposedVectors.push_back( cast<ShuffleVectorInst>(Builder.CreateShuffleVector( Op0, Op1, createSequentialMask(Builder, Indices[i], SubVecTy->getVectorNumElements(), 0)))); return; } // Decompose the load instruction. LoadInst *LI = cast<LoadInst>(VecInst); Type *VecBasePtrTy = SubVecTy->getPointerTo(LI->getPointerAddressSpace()); Value *VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy); // Generate N loads of T type. for (unsigned i = 0; i < NumSubVectors; i++) { // TODO: Support inbounds GEP. Value *NewBasePtr = Builder.CreateGEP(VecBasePtr, Builder.getInt32(i)); Instruction *NewLoad = Builder.CreateAlignedLoad(NewBasePtr, LI->getAlignment()); DecomposedVectors.push_back(NewLoad); } } void X86InterleavedAccessGroup::transpose_4x4( ArrayRef<Instruction *> Matrix, SmallVectorImpl<Value *> &TransposedMatrix) { assert(Matrix.size() == 4 && "Invalid matrix size"); TransposedMatrix.resize(4); // dst = src1[0,1],src2[0,1] uint32_t IntMask1[] = {0, 1, 4, 5}; ArrayRef<uint32_t> Mask = makeArrayRef(IntMask1, 4); Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); // dst = src1[2,3],src2[2,3] uint32_t IntMask2[] = {2, 3, 6, 7}; Mask = makeArrayRef(IntMask2, 4); Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); // dst = src1[0],src2[0],src1[2],src2[2] uint32_t IntMask3[] = {0, 4, 2, 6}; Mask = makeArrayRef(IntMask3, 4); TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); // dst = src1[1],src2[1],src1[3],src2[3] uint32_t IntMask4[] = {1, 5, 3, 7}; Mask = makeArrayRef(IntMask4, 4); TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); } // Lowers this interleaved access group into X86-specific // instructions/intrinsics. bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() { SmallVector<Instruction *, 4> DecomposedVectors; SmallVector<Value *, 4> TransposedVectors; VectorType *ShuffleTy = Shuffles[0]->getType(); if (isa<LoadInst>(Inst)) { // Try to generate target-sized register(/instruction). decompose(Inst, Factor, ShuffleTy, DecomposedVectors); // Perform matrix-transposition in order to compute interleaved // results by generating some sort of (optimized) target-specific // instructions. transpose_4x4(DecomposedVectors, TransposedVectors); // Now replace the unoptimized-interleaved-vectors with the // transposed-interleaved vectors. for (unsigned i = 0, e = Shuffles.size(); i < e; ++i) Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]); return true; } Type *ShuffleEltTy = ShuffleTy->getVectorElementType(); unsigned NumSubVecElems = ShuffleTy->getVectorNumElements() / Factor; // Lower the interleaved stores: // 1. Decompose the interleaved wide shuffle into individual shuffle // vectors. decompose(Shuffles[0], Factor, VectorType::get(ShuffleEltTy, NumSubVecElems), DecomposedVectors); // 2. Transpose the interleaved-vectors into vectors of contiguous // elements. transpose_4x4(DecomposedVectors, TransposedVectors); // 3. Concatenate the contiguous-vectors back into a wide vector. Value *WideVec = concatenateVectors(Builder, TransposedVectors); // 4. Generate a store instruction for wide-vec. StoreInst *SI = cast<StoreInst>(Inst); Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(), SI->getAlignment()); return true; } // Lower interleaved load(s) into target specific instructions/ // intrinsics. Lowering sequence varies depending on the vector-types, factor, // number of shuffles and ISA. // Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX. bool X86TargetLowering::lowerInterleavedLoad( LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, ArrayRef<unsigned> Indices, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); assert(!Shuffles.empty() && "Empty shufflevector input"); assert(Shuffles.size() == Indices.size() && "Unmatched number of shufflevectors and indices"); // Create an interleaved access group. IRBuilder<> Builder(LI); X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget, Builder); return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); } bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); assert(SVI->getType()->getVectorNumElements() % Factor == 0 && "Invalid interleaved store"); // Holds the indices of SVI that correspond to the starting index of each // interleaved shuffle. SmallVector<unsigned, 4> Indices; auto Mask = SVI->getShuffleMask(); for (unsigned i = 0; i < Factor; i++) Indices.push_back(Mask[i]); ArrayRef<ShuffleVectorInst *> Shuffles = makeArrayRef(SVI); // Create an interleaved access group. IRBuilder<> Builder(SI); X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget, Builder); return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); }