//===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a TargetTransformInfo analysis pass specific to the
// SystemZ target machine. It uses the target's detailed information to provide
// more precise answers to certain TTI queries, while letting the target
// independent and default TTI implementations handle the rest.
//
//===----------------------------------------------------------------------===//

#include "SystemZTargetTransformInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;

#define DEBUG_TYPE "systemztti"

//===----------------------------------------------------------------------===//
//
// SystemZ cost model.
//
//===----------------------------------------------------------------------===//

int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;
  // No cost model for operations on integers larger than 64 bit implemented yet.
  if (BitSize > 64)
    return TTI::TCC_Free;

  if (Imm == 0)
    return TTI::TCC_Free;

  if (Imm.getBitWidth() <= 64) {
    // Constants loaded via lgfi.
    if (isInt<32>(Imm.getSExtValue()))
      return TTI::TCC_Basic;
    // Constants loaded via llilf.
    if (isUInt<32>(Imm.getZExtValue()))
      return TTI::TCC_Basic;
    // Constants loaded via llihf:
    if ((Imm.getZExtValue() & 0xffffffff) == 0)
      return TTI::TCC_Basic;

    return 2 * TTI::TCC_Basic;
  }

  return 4 * TTI::TCC_Basic;
}

int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
                                  const APInt &Imm, Type *Ty) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;
  // No cost model for operations on integers larger than 64 bit implemented yet.
  if (BitSize > 64)
    return TTI::TCC_Free;

  switch (Opcode) {
  default:
    return TTI::TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr. This prevents the
    // creation of new constants for every base constant that gets constant
    // folded with the offset.
    if (Idx == 0)
      return 2 * TTI::TCC_Basic;
    return TTI::TCC_Free;
  case Instruction::Store:
    if (Idx == 0 && Imm.getBitWidth() <= 64) {
      // Any 8-bit immediate store can by implemented via mvi.
      if (BitSize == 8)
        return TTI::TCC_Free;
      // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
      if (isInt<16>(Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::ICmp:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // Comparisons against signed 32-bit immediates implemented via cgfi.
      if (isInt<32>(Imm.getSExtValue()))
        return TTI::TCC_Free;
      // Comparisons against unsigned 32-bit immediates implemented via clgfi.
      if (isUInt<32>(Imm.getZExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::Add:
  case Instruction::Sub:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
      if (isUInt<32>(Imm.getZExtValue()))
        return TTI::TCC_Free;
      // Or their negation, by swapping addition vs. subtraction.
      if (isUInt<32>(-Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::Mul:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // We use msgfi to multiply by 32-bit signed immediates.
      if (isInt<32>(Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::Or:
  case Instruction::Xor:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // Masks supported by oilf/xilf.
      if (isUInt<32>(Imm.getZExtValue()))
        return TTI::TCC_Free;
      // Masks supported by oihf/xihf.
      if ((Imm.getZExtValue() & 0xffffffff) == 0)
        return TTI::TCC_Free;
    }
    break;
  case Instruction::And:
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      // Any 32-bit AND operation can by implemented via nilf.
      if (BitSize <= 32)
        return TTI::TCC_Free;
      // 64-bit masks supported by nilf.
      if (isUInt<32>(~Imm.getZExtValue()))
        return TTI::TCC_Free;
      // 64-bit masks supported by nilh.
      if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
        return TTI::TCC_Free;
      // Some 64-bit AND operations can be implemented via risbg.
      const SystemZInstrInfo *TII = ST->getInstrInfo();
      unsigned Start, End;
      if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
        return TTI::TCC_Free;
    }
    break;
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    // Always return TCC_Free for the shift value of a shift instruction.
    if (Idx == 1)
      return TTI::TCC_Free;
    break;
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::IntToPtr:
  case Instruction::PtrToInt:
  case Instruction::BitCast:
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Select:
  case Instruction::Ret:
  case Instruction::Load:
    break;
  }

  return SystemZTTIImpl::getIntImmCost(Imm, Ty);
}

int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
                                  const APInt &Imm, Type *Ty) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;
  // No cost model for operations on integers larger than 64 bit implemented yet.
  if (BitSize > 64)
    return TTI::TCC_Free;

  switch (IID) {
  default:
    return TTI::TCC_Free;
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
    // These get expanded to include a normal addition/subtraction.
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      if (isUInt<32>(Imm.getZExtValue()))
        return TTI::TCC_Free;
      if (isUInt<32>(-Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Intrinsic::smul_with_overflow:
  case Intrinsic::umul_with_overflow:
    // These get expanded to include a normal multiplication.
    if (Idx == 1 && Imm.getBitWidth() <= 64) {
      if (isInt<32>(Imm.getSExtValue()))
        return TTI::TCC_Free;
    }
    break;
  case Intrinsic::experimental_stackmap:
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_patchpoint_void:
  case Intrinsic::experimental_patchpoint_i64:
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  }
  return SystemZTTIImpl::getIntImmCost(Imm, Ty);
}

TargetTransformInfo::PopcntSupportKind
SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
  assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
  if (ST->hasPopulationCount() && TyWidth <= 64)
    return TTI::PSK_FastHardware;
  return TTI::PSK_Software;
}

void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                             TTI::UnrollingPreferences &UP) {
  // Find out if L contains a call, what the machine instruction count
  // estimate is, and how many stores there are.
  bool HasCall = false;
  unsigned NumStores = 0;
  for (auto &BB : L->blocks())
    for (auto &I : *BB) {
      if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
        ImmutableCallSite CS(&I);
        if (const Function *F = CS.getCalledFunction()) {
          if (isLoweredToCall(F))
            HasCall = true;
          if (F->getIntrinsicID() == Intrinsic::memcpy ||
              F->getIntrinsicID() == Intrinsic::memset)
            NumStores++;
        } else { // indirect call.
          HasCall = true;
        }
      }
      if (isa<StoreInst>(&I)) {
        Type *MemAccessTy = I.getOperand(0)->getType();
        NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
      }
    }

  // The z13 processor will run out of store tags if too many stores
  // are fed into it too quickly. Therefore make sure there are not
  // too many stores in the resulting unrolled loop.
  unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);

  if (HasCall) {
    // Only allow full unrolling if loop has any calls.
    UP.FullUnrollMaxCount = Max;
    UP.MaxCount = 1;
    return;
  }

  UP.MaxCount = Max;
  if (UP.MaxCount <= 1)
    return;

  // Allow partial and runtime trip count unrolling.
  UP.Partial = UP.Runtime = true;

  UP.PartialThreshold = 75;
  UP.DefaultUnrollRuntimeCount = 4;

  // Allow expensive instructions in the pre-header of the loop.
  UP.AllowExpensiveTripCount = true;

  UP.Force = true;
}

unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) {
  if (!Vector)
    // Discount the stack pointer.  Also leave out %r0, since it can't
    // be used in an address.
    return 14;
  if (ST->hasVector())
    return 32;
  return 0;
}

unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
  if (!Vector)
    return 64;
  if (ST->hasVector())
    return 128;
  return 0;
}

int SystemZTTIImpl::getArithmeticInstrCost(
    unsigned Opcode, Type *Ty,  
    TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
    TTI::OperandValueProperties Opd1PropInfo,
    TTI::OperandValueProperties Opd2PropInfo,
    ArrayRef<const Value *> Args) {

  // TODO: return a good value for BB-VECTORIZER that includes the
  // immediate loads, which we do not want to count for the loop
  // vectorizer, since they are hopefully hoisted out of the loop. This
  // would require a new parameter 'InLoop', but not sure if constant
  // args are common enough to motivate this.

  unsigned ScalarBits = Ty->getScalarSizeInBits();

  // Div with a constant which is a power of 2 will be converted by
  // DAGCombiner to use shifts. With vector shift-element instructions, a
  // vector sdiv costs about as much as a scalar one.
  const unsigned SDivCostEstimate = 4;
  bool SDivPow2 = false;
  bool UDivPow2 = false;
  if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv) &&
      Args.size() == 2) {
    const ConstantInt *CI = nullptr;
    if (const Constant *C = dyn_cast<Constant>(Args[1])) {
      if (C->getType()->isVectorTy())
        CI = dyn_cast_or_null<const ConstantInt>(C->getSplatValue());
      else
        CI = dyn_cast<const ConstantInt>(C);
    }
    if (CI != nullptr &&
        (CI->getValue().isPowerOf2() || (-CI->getValue()).isPowerOf2())) {
      if (Opcode == Instruction::SDiv)
        SDivPow2 = true;
      else
        UDivPow2 = true;
    }
  }

  if (Ty->isVectorTy()) {
    assert (ST->hasVector() && "getArithmeticInstrCost() called with vector type.");
    unsigned VF = Ty->getVectorNumElements();
    unsigned NumVectors = getNumberOfParts(Ty);

    // These vector operations are custom handled, but are still supported
    // with one instruction per vector, regardless of element size.
    if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
        Opcode == Instruction::AShr || UDivPow2) {
      return NumVectors;
    }

    if (SDivPow2)
      return (NumVectors * SDivCostEstimate);

    // These FP operations are supported with a single vector instruction for
    // double (base implementation assumes float generally costs 2). For
    // FP128, the scalar cost is 1, and there is no overhead since the values
    // are already in scalar registers.
    if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
        Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
      switch (ScalarBits) {
      case 32: {
        // The vector enhancements facility 1 provides v4f32 instructions.
        if (ST->hasVectorEnhancements1())
          return NumVectors;
        // Return the cost of multiple scalar invocation plus the cost of
        // inserting and extracting the values.
        unsigned ScalarCost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
        unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
        // FIXME: VF 2 for these FP operations are currently just as
        // expensive as for VF 4.
        if (VF == 2)
          Cost *= 2;
        return Cost;
      }
      case 64:
      case 128:
        return NumVectors;
      default:
        break;
      }
    }

    // There is no native support for FRem.
    if (Opcode == Instruction::FRem) {
      unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
      // FIXME: VF 2 for float is currently just as expensive as for VF 4.
      if (VF == 2 && ScalarBits == 32)
        Cost *= 2;
      return Cost;
    }
  }
  else {  // Scalar:
    // These FP operations are supported with a dedicated instruction for
    // float, double and fp128 (base implementation assumes float generally
    // costs 2).
    if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
        Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
      return 1;

    // There is no native support for FRem.
    if (Opcode == Instruction::FRem)
      return LIBCALL_COST;

    if (Opcode == Instruction::LShr || Opcode == Instruction::AShr)
      return (ScalarBits >= 32 ? 1 : 2 /*ext*/);

    // Or requires one instruction, although it has custom handling for i64.
    if (Opcode == Instruction::Or)
      return 1;

    if (Opcode == Instruction::Xor && ScalarBits == 1)
      // 2 * ipm sequences ; xor ; shift ; compare
      return 7;

    if (UDivPow2)
      return 1;
    if (SDivPow2)
      return SDivCostEstimate;

    // An extra extension for narrow types is needed.
    if ((Opcode == Instruction::SDiv || Opcode == Instruction::SRem))
      // sext of op(s) for narrow types
      return (ScalarBits < 32 ? 4 : (ScalarBits == 32 ? 2 : 1));

    if (Opcode == Instruction::UDiv || Opcode == Instruction::URem)
      // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r
      return (ScalarBits < 32 ? 4 : 2);
  }

  // Fallback to the default implementation.
  return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
                                       Opd1PropInfo, Opd2PropInfo, Args);
}


int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
                                   Type *SubTp) {
  assert (Tp->isVectorTy());
  assert (ST->hasVector() && "getShuffleCost() called.");
  unsigned NumVectors = getNumberOfParts(Tp);
  
  // TODO: Since fp32 is expanded, the shuffle cost should always be 0.

  // FP128 values are always in scalar registers, so there is no work
  // involved with a shuffle, except for broadcast. In that case register
  // moves are done with a single instruction per element.
  if (Tp->getScalarType()->isFP128Ty())
    return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);

  switch (Kind) {
  case  TargetTransformInfo::SK_ExtractSubvector:
    // ExtractSubvector Index indicates start offset.

    // Extracting a subvector from first index is a noop.
    return (Index == 0 ? 0 : NumVectors);

  case TargetTransformInfo::SK_Broadcast:
    // Loop vectorizer calls here to figure out the extra cost of
    // broadcasting a loaded value to all elements of a vector. Since vlrep
    // loads and replicates with a single instruction, adjust the returned
    // value.
    return NumVectors - 1;

  default:

    // SystemZ supports single instruction permutation / replication.
    return NumVectors;
  }

  return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}

// Return the log2 difference of the element sizes of the two vector types.
static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
  unsigned Bits0 = Ty0->getScalarSizeInBits();
  unsigned Bits1 = Ty1->getScalarSizeInBits();

  if (Bits1 >  Bits0)
    return (Log2_32(Bits1) - Log2_32(Bits0));

  return (Log2_32(Bits0) - Log2_32(Bits1));
}

// Return the number of instructions needed to truncate SrcTy to DstTy.
unsigned SystemZTTIImpl::
getVectorTruncCost(Type *SrcTy, Type *DstTy) {
  assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
  assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
          "Packing must reduce size of vector type.");
  assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
          "Packing should not change number of elements.");

  // TODO: Since fp32 is expanded, the extract cost should always be 0.

  unsigned NumParts = getNumberOfParts(SrcTy);
  if (NumParts <= 2)
    // Up to 2 vector registers can be truncated efficiently with pack or
    // permute. The latter requires an immediate mask to be loaded, which
    // typically gets hoisted out of a loop.  TODO: return a good value for
    // BB-VECTORIZER that includes the immediate loads, which we do not want
    // to count for the loop vectorizer.
    return 1;

  unsigned Cost = 0;
  unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
  unsigned VF = SrcTy->getVectorNumElements();
  for (unsigned P = 0; P < Log2Diff; ++P) {
    if (NumParts > 1)
      NumParts /= 2;
    Cost += NumParts;
  }

  // Currently, a general mix of permutes and pack instructions is output by
  // isel, which follow the cost computation above except for this case which
  // is one instruction less:
  if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
      DstTy->getScalarSizeInBits() == 8)
    Cost--;

  return Cost;
}

// Return the cost of converting a vector bitmask produced by a compare
// (SrcTy), to the type of the select or extend instruction (DstTy).
unsigned SystemZTTIImpl::
getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
  assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
          "Should only be called with vector types.");

  unsigned PackCost = 0;
  unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
  unsigned DstScalarBits = DstTy->getScalarSizeInBits();
  unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
  if (SrcScalarBits > DstScalarBits)
    // The bitmask will be truncated.
    PackCost = getVectorTruncCost(SrcTy, DstTy);
  else if (SrcScalarBits < DstScalarBits) {
    unsigned DstNumParts = getNumberOfParts(DstTy);
    // Each vector select needs its part of the bitmask unpacked.
    PackCost = Log2Diff * DstNumParts;
    // Extra cost for moving part of mask before unpacking.
    PackCost += DstNumParts - 1;
  }

  return PackCost;
}

// Return the type of the compared operands. This is needed to compute the
// cost for a Select / ZExt or SExt instruction.
static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
  Type *OpTy = nullptr;
  if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
    OpTy = CI->getOperand(0)->getType();
  else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
    if (LogicI->getNumOperands() == 2)
      if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
        if (isa<CmpInst>(LogicI->getOperand(1)))
          OpTy = CI0->getOperand(0)->getType();

  if (OpTy != nullptr) {
    if (VF == 1) {
      assert (!OpTy->isVectorTy() && "Expected scalar type");
      return OpTy;
    }
    // Return the potentially vectorized type based on 'I' and 'VF'.  'I' may
    // be either scalar or already vectorized with a same or lesser VF.
    Type *ElTy = OpTy->getScalarType();
    return VectorType::get(ElTy, VF);
  }

  return nullptr;
}

int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                                     const Instruction *I) {
  unsigned DstScalarBits = Dst->getScalarSizeInBits();
  unsigned SrcScalarBits = Src->getScalarSizeInBits();

  if (Src->isVectorTy()) {
    assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
    assert (Dst->isVectorTy());
    unsigned VF = Src->getVectorNumElements();
    unsigned NumDstVectors = getNumberOfParts(Dst);
    unsigned NumSrcVectors = getNumberOfParts(Src);

    if (Opcode == Instruction::Trunc) {
      if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
        return 0; // Check for NOOP conversions.
      return getVectorTruncCost(Src, Dst);
    }

    if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
      if (SrcScalarBits >= 8) {
        // ZExt/SExt will be handled with one unpack per doubling of width.
        unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);

        // For types that spans multiple vector registers, some additional
        // instructions are used to setup the unpacking.
        unsigned NumSrcVectorOps =
          (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
                          : (NumDstVectors / 2));

        return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
      }
      else if (SrcScalarBits == 1) {
        // This should be extension of a compare i1 result.
        // If we know what the widths of the compared operands, get the
        // cost of converting it to Dst. Otherwise assume same widths.
        unsigned Cost = 0;
        Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
        if (CmpOpTy != nullptr)
          Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
        if (Opcode == Instruction::ZExt)
          // One 'vn' per dst vector with an immediate mask.
          Cost += NumDstVectors;
        return Cost;
      }
    }
  
    if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
        Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
      // TODO: Fix base implementation which could simplify things a bit here
      // (seems to miss on differentiating on scalar/vector types).

      // Only 64 bit vector conversions are natively supported.
      if (SrcScalarBits == 64 && DstScalarBits == 64)
        return NumDstVectors;

      // Return the cost of multiple scalar invocation plus the cost of
      // inserting and extracting the values. Base implementation does not
      // realize float->int gets scalarized.
      unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
                                             Src->getScalarType());
      unsigned TotCost = VF * ScalarCost;
      bool NeedsInserts = true, NeedsExtracts = true;
      // FP128 registers do not get inserted or extracted.
      if (DstScalarBits == 128 &&
          (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
        NeedsInserts = false;
      if (SrcScalarBits == 128 &&
          (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
        NeedsExtracts = false;

      TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts);

      // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
      if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
        TotCost *= 2;

      return TotCost;
    }

    if (Opcode == Instruction::FPTrunc) {
      if (SrcScalarBits == 128)  // fp128 -> double/float + inserts of elements.
        return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
      else // double -> float
        return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
    }

    if (Opcode == Instruction::FPExt) {
      if (SrcScalarBits == 32 && DstScalarBits == 64) {
        // float -> double is very rare and currently unoptimized. Instead of
        // using vldeb, which can do two at a time, all conversions are
        // scalarized.
        return VF * 2;
      }
      // -> fp128.  VF * lxdb/lxeb + extraction of elements.
      return VF + getScalarizationOverhead(Src, false, true);
    }
  }
  else { // Scalar
    assert (!Dst->isVectorTy());

    if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)
      return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/);
    
    if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
        Src->isIntegerTy(1)) {
      // This should be extension of a compare i1 result, which is done with
      // ipm and a varying sequence of instructions.
      unsigned Cost = 0;
      if (Opcode == Instruction::SExt)
        Cost = (DstScalarBits < 64 ? 3 : 4);
      if (Opcode == Instruction::ZExt)
        Cost = 3;
      Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
      if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
        // If operands of an fp-type was compared, this costs +1.
        Cost++;

      return Cost;
    }
  }

  return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
}

int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
                                       const Instruction *I) {
  if (ValTy->isVectorTy()) {
    assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
    unsigned VF = ValTy->getVectorNumElements();

    // Called with a compare instruction.
    if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
      unsigned PredicateExtraCost = 0;
      if (I != nullptr) {
        // Some predicates cost one or two extra instructions.
        switch (dyn_cast<CmpInst>(I)->getPredicate()) {
        case CmpInst::Predicate::ICMP_NE:
        case CmpInst::Predicate::ICMP_UGE:
        case CmpInst::Predicate::ICMP_ULE:
        case CmpInst::Predicate::ICMP_SGE:
        case CmpInst::Predicate::ICMP_SLE:
          PredicateExtraCost = 1;
          break;
        case CmpInst::Predicate::FCMP_ONE:
        case CmpInst::Predicate::FCMP_ORD:
        case CmpInst::Predicate::FCMP_UEQ:
        case CmpInst::Predicate::FCMP_UNO:
          PredicateExtraCost = 2;
          break;
        default:
          break;
        }
      }

      // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
      // floats.  FIXME: <2 x float> generates same code as <4 x float>.
      unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
      unsigned NumVecs_cmp = getNumberOfParts(ValTy);

      unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
      return Cost;
    }
    else { // Called with a select instruction.
      assert (Opcode == Instruction::Select);

      // We can figure out the extra cost of packing / unpacking if the
      // instruction was passed and the compare instruction is found.
      unsigned PackCost = 0;
      Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
      if (CmpOpTy != nullptr)
        PackCost =
          getVectorBitmaskConversionCost(CmpOpTy, ValTy);

      return getNumberOfParts(ValTy) /*vsel*/ + PackCost;
    }
  }
  else { // Scalar
    switch (Opcode) {
    case Instruction::ICmp: {
      unsigned Cost = 1;
      if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
        Cost += 2; // extend both operands
      return Cost;
    }
    case Instruction::Select:
      if (ValTy->isFloatingPointTy())
        return 4; // No load on condition for FP, so this costs a conditional jump.
      return 1; // Load On Condition.
    }
  }

  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
}

int SystemZTTIImpl::
getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
  // vlvgp will insert two grs into a vector register, so only count half the
  // number of instructions.
  if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
    return ((Index % 2 == 0) ? 1 : 0);

  if (Opcode == Instruction::ExtractElement) {
    int Cost = ((Val->getScalarSizeInBits() == 1) ? 2 /*+test-under-mask*/ : 1);

    // Give a slight penalty for moving out of vector pipeline to FXU unit.
    if (Index == 0 && Val->isIntOrIntVectorTy())
      Cost += 1;

    return Cost;
  }

  return BaseT::getVectorInstrCost(Opcode, Val, Index);
}

int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
                                    unsigned Alignment, unsigned AddressSpace,
                                    const Instruction *I) {
  assert(!Src->isVoidTy() && "Invalid type");

  if (!Src->isVectorTy() && Opcode == Instruction::Load &&
      I != nullptr && I->hasOneUse()) {
      const Instruction *UserI = cast<Instruction>(*I->user_begin());
      unsigned Bits = Src->getScalarSizeInBits();
      bool FoldsLoad = false;
      switch (UserI->getOpcode()) {
      case Instruction::ICmp:
      case Instruction::Add:
      case Instruction::Sub:
      case Instruction::Mul:
      case Instruction::SDiv:
      case Instruction::UDiv:
      case Instruction::And:
      case Instruction::Or:
      case Instruction::Xor:
      // This also makes sense for float operations, but disabled for now due
      // to regressions.
      // case Instruction::FCmp:
      // case Instruction::FAdd:
      // case Instruction::FSub:
      // case Instruction::FMul:
      // case Instruction::FDiv:
        FoldsLoad = (Bits == 32 || Bits == 64);
        break;
      }

      if (FoldsLoad) {
        assert (UserI->getNumOperands() == 2 &&
                "Expected to only handle binops.");

        // UserI can't fold two loads, so in that case return 0 cost only
        // half of the time.
        for (unsigned i = 0; i < 2; ++i) {
          if (UserI->getOperand(i) == I)
            continue;
          if (LoadInst *LI = dyn_cast<LoadInst>(UserI->getOperand(i))) {
            if (LI->hasOneUse())
              return i == 0;
          }
        }

        return 0;
      }
  }

  unsigned NumOps = getNumberOfParts(Src);

  if (Src->getScalarSizeInBits() == 128)
    // 128 bit scalars are held in a pair of two 64 bit registers.
    NumOps *= 2;

  return  NumOps;
}

int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
                                               unsigned Factor,
                                               ArrayRef<unsigned> Indices,
                                               unsigned Alignment,
                                               unsigned AddressSpace) {
  assert(isa<VectorType>(VecTy) &&
         "Expect a vector type for interleaved memory op");

  unsigned WideBits = (VecTy->isPtrOrPtrVectorTy() ?
     (64U * VecTy->getVectorNumElements()) : VecTy->getPrimitiveSizeInBits());
  assert (WideBits > 0 && "Could not compute size of vector");
  int NumWideParts =
    ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));

  // How many source vectors are handled to produce a vectorized operand?
  int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts);
  int NumSrcParts =
    ((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts);

  // A Load group may have gaps.
  unsigned NumOperands =
    ((Opcode == Instruction::Load) ? Indices.size() : Factor);

  // Each needed permute takes two vectors as input.
  if (NumSrcParts > 1)
    NumSrcParts--;
  int NumPermutes = NumSrcParts * NumOperands;

  // Cost of load/store operations and the permutations needed.
  return NumWideParts + NumPermutes;
}