//=- ARMScheduleSwift.td - Swift Scheduling Definitions -*- tablegen -*----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the itinerary class data for the Swift processor.. // //===----------------------------------------------------------------------===// // ===---------------------------------------------------------------------===// // This section contains legacy support for itineraries. This is // required until SD and PostRA schedulers are replaced by MachineScheduler. def SW_DIS0 : FuncUnit; def SW_DIS1 : FuncUnit; def SW_DIS2 : FuncUnit; def SW_ALU0 : FuncUnit; def SW_ALU1 : FuncUnit; def SW_LS : FuncUnit; def SW_IDIV : FuncUnit; def SW_FDIV : FuncUnit; // FIXME: Need bypasses. // FIXME: Model the multiple stages of IIC_iMOVix2, IIC_iMOVix2addpc, and // IIC_iMOVix2ld better. // FIXME: Model the special immediate shifts that are not microcoded. // FIXME: Do we need to model the fact that uses of r15 in a micro-op force it // to issue on pipe 1? // FIXME: Model the pipelined behavior of CMP / TST instructions. // FIXME: Better model the microcode stages of multiply instructions, especially // conditional variants. // FIXME: Add preload instruction when it is documented. // FIXME: Model non-pipelined nature of FP div / sqrt unit. def SwiftItineraries : ProcessorItineraries< [SW_DIS0, SW_DIS1, SW_DIS2, SW_ALU0, SW_ALU1, SW_LS, SW_IDIV, SW_FDIV], [], [ // // Move instructions, unconditional InstrItinData<IIC_iMOVi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData<IIC_iMOVr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData<IIC_iMOVsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData<IIC_iMOVsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData<IIC_iMOVix2 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2]>, InstrItinData<IIC_iMOVix2addpc,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>, InstrStage<1, [SW_ALU0, SW_ALU1]>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [3]>, InstrItinData<IIC_iMOVix2ld,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>, InstrStage<1, [SW_ALU0, SW_ALU1]>, InstrStage<1, [SW_LS]>], [5]>, // // MVN instructions InstrItinData<IIC_iMVNi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData<IIC_iMVNr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData<IIC_iMVNsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData<IIC_iMVNsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, // // No operand cycles InstrItinData<IIC_iALUx , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>]>, // // Binary Instructions that produce a result InstrItinData<IIC_iALUi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData<IIC_iALUr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1, 1]>, InstrItinData<IIC_iALUsi, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1]>, InstrItinData<IIC_iALUsir,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1]>, InstrItinData<IIC_iALUsr, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1, 1]>, // // Bitwise Instructions that produce a result InstrItinData<IIC_iBITi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData<IIC_iBITr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1, 1]>, InstrItinData<IIC_iBITsi, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1]>, InstrItinData<IIC_iBITsr, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1, 1]>, // // Unary Instructions that produce a result // CLZ, RBIT, etc. InstrItinData<IIC_iUNAr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, // BFC, BFI, UBFX, SBFX InstrItinData<IIC_iUNAsi, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1]>, // // Zero and sign extension instructions InstrItinData<IIC_iEXTr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData<IIC_iEXTAr, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1, 1]>, InstrItinData<IIC_iEXTAsr,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1, 1, 1]>, // // Compare instructions InstrItinData<IIC_iCMPi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData<IIC_iCMPr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData<IIC_iCMPsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<2, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData<IIC_iCMPsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<2, [SW_ALU0, SW_ALU1]>], [1, 1, 1]>, // // Test instructions InstrItinData<IIC_iTSTi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData<IIC_iTSTr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData<IIC_iTSTsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<2, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData<IIC_iTSTsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<2, [SW_ALU0, SW_ALU1]>], [1, 1, 1]>, // // Move instructions, conditional // FIXME: Correctly model the extra input dep on the destination. InstrItinData<IIC_iCMOVi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData<IIC_iCMOVr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData<IIC_iCMOVsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData<IIC_iCMOVsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1]>, InstrItinData<IIC_iCMOVix2, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2]>, // Integer multiply pipeline // InstrItinData<IIC_iMUL16 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [3, 1, 1]>, InstrItinData<IIC_iMAC16 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [3, 1, 1, 1]>, InstrItinData<IIC_iMUL32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, InstrItinData<IIC_iMAC32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1, 1]>, InstrItinData<IIC_iMUL64 , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0], 1>, InstrStage<1, [SW_ALU0], 3>, InstrStage<1, [SW_ALU0]>], [5, 5, 1, 1]>, InstrItinData<IIC_iMAC64 , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0], 1>, InstrStage<1, [SW_ALU0], 1>, InstrStage<1, [SW_ALU0, SW_ALU1], 3>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [5, 6, 1, 1]>, // // Integer divide InstrItinData<IIC_iDIV , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0], 0>, InstrStage<14, [SW_IDIV]>], [14, 1, 1]>, // Integer load pipeline // FIXME: The timings are some rough approximations // // Immediate offset InstrItinData<IIC_iLoad_i , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [3, 1]>, InstrItinData<IIC_iLoad_bh_i, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [3, 1]>, InstrItinData<IIC_iLoad_d_i , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 1>, InstrStage<1, [SW_LS]>], [3, 4, 1]>, // // Register offset InstrItinData<IIC_iLoad_r , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [3, 1, 1]>, InstrItinData<IIC_iLoad_bh_r, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [3, 1, 1]>, InstrItinData<IIC_iLoad_d_r , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_LS], 1>, InstrStage<1, [SW_LS], 3>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [3, 4, 1, 1]>, // // Scaled register offset InstrItinData<IIC_iLoad_si , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS]>], [5, 1, 1]>, InstrItinData<IIC_iLoad_bh_si,[InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS]>], [5, 1, 1]>, // // Immediate offset with update InstrItinData<IIC_iLoad_iu , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [3, 1, 1]>, InstrItinData<IIC_iLoad_bh_iu,[InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [3, 1, 1]>, // // Register offset with update InstrItinData<IIC_iLoad_ru , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0], 1>, InstrStage<1, [SW_LS]>], [3, 1, 1, 1]>, InstrItinData<IIC_iLoad_bh_ru,[InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0], 1>, InstrStage<1, [SW_LS]>], [3, 1, 1, 1]>, InstrItinData<IIC_iLoad_d_ru, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 0>, InstrStage<1, [SW_LS], 3>, InstrStage<1, [SW_LS], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [3, 4, 1, 1]>, // // Scaled register offset with update InstrItinData<IIC_iLoad_siu , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS], 3>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [5, 3, 1, 1]>, InstrItinData<IIC_iLoad_bh_siu,[InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [5, 3, 1, 1]>, // // Load multiple, def is the 5th operand. // FIXME: This assumes 3 to 4 registers. InstrItinData<IIC_iLoad_m , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1, 1, 3], [], -1>, // dynamic uops // // Load multiple + update, defs are the 1st and 5th operands. InstrItinData<IIC_iLoad_mu , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 0>, InstrStage<1, [SW_LS], 3>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1, 1, 3], [], -1>, // dynamic uops // // Load multiple plus branch InstrItinData<IIC_iLoad_mBr, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1, 1, 3], [], -1>, // dynamic uops // // Pop, def is the 3rd operand. InstrItinData<IIC_iPop , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 3], [], -1>, // dynamic uops // // Pop + branch, def is the 3rd operand. InstrItinData<IIC_iPop_Br, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 3], [], -1>, // dynamic uops // // iLoadi + iALUr for t2LDRpci_pic. InstrItinData<IIC_iLoadiALU, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS], 3>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [4, 1]>, // Integer store pipeline /// // Immediate offset InstrItinData<IIC_iStore_i , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [1, 1]>, InstrItinData<IIC_iStore_bh_i,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [1, 1]>, InstrItinData<IIC_iStore_d_i, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_LS], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1]>, // // Register offset InstrItinData<IIC_iStore_r , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [1, 1, 1]>, InstrItinData<IIC_iStore_bh_r,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [1, 1, 1]>, InstrItinData<IIC_iStore_d_r, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_LS], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1]>, // // Scaled register offset InstrItinData<IIC_iStore_si , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS]>], [1, 1, 1]>, InstrItinData<IIC_iStore_bh_si,[InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS]>], [1, 1, 1]>, // // Immediate offset with update InstrItinData<IIC_iStore_iu , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1]>, InstrItinData<IIC_iStore_bh_iu,[InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1]>, // // Register offset with update InstrItinData<IIC_iStore_ru , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1, 1]>, InstrItinData<IIC_iStore_bh_ru,[InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1, 1]>, InstrItinData<IIC_iStore_d_ru, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1, 1]>, // // Scaled register offset with update InstrItinData<IIC_iStore_siu, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>], [3, 1, 1, 1]>, InstrItinData<IIC_iStore_bh_siu, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>], [3, 1, 1, 1]>, // // Store multiple InstrItinData<IIC_iStore_m , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS], 1>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS], 1>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [], [], -1>, // dynamic uops // // Store multiple + update InstrItinData<IIC_iStore_mu, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS], 1>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS], 1>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [2], [], -1>, // dynamic uops // // Preload InstrItinData<IIC_Preload, [InstrStage<1, [SW_DIS0], 0>], [1, 1]>, // Branch // // no delay slots, so the latency of a branch is unimportant InstrItinData<IIC_Br , [InstrStage<1, [SW_DIS0], 0>]>, // FP Special Register to Integer Register File Move InstrItinData<IIC_fpSTAT , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, // // Single-precision FP Unary // // Most floating-point moves get issued on ALU0. InstrItinData<IIC_fpUNA32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1]>, // // Double-precision FP Unary InstrItinData<IIC_fpUNA64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1]>, // // Single-precision FP Compare InstrItinData<IIC_fpCMP32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [1, 1]>, // // Double-precision FP Compare InstrItinData<IIC_fpCMP64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [1, 1]>, // // Single to Double FP Convert InstrItinData<IIC_fpCVTSD , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1]>, // // Double to Single FP Convert InstrItinData<IIC_fpCVTDS , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1]>, // // Single to Half FP Convert InstrItinData<IIC_fpCVTSH , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU1], 4>, InstrStage<1, [SW_ALU1]>], [6, 1]>, // // Half to Single FP Convert InstrItinData<IIC_fpCVTHS , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1]>, // // Single-Precision FP to Integer Convert InstrItinData<IIC_fpCVTSI , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1]>, // // Double-Precision FP to Integer Convert InstrItinData<IIC_fpCVTDI , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1]>, // // Integer to Single-Precision FP Convert InstrItinData<IIC_fpCVTIS , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1]>, // // Integer to Double-Precision FP Convert InstrItinData<IIC_fpCVTID , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1]>, // // Single-precision FP ALU InstrItinData<IIC_fpALU32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Double-precision FP ALU InstrItinData<IIC_fpALU64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Single-precision FP Multiply InstrItinData<IIC_fpMUL32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1, 1]>, // // Double-precision FP Multiply InstrItinData<IIC_fpMUL64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [6, 1, 1]>, // // Single-precision FP MAC InstrItinData<IIC_fpMAC32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Double-precision FP MAC InstrItinData<IIC_fpMAC64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [12, 1, 1]>, // // Single-precision Fused FP MAC InstrItinData<IIC_fpFMAC32, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Double-precision Fused FP MAC InstrItinData<IIC_fpFMAC64, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [12, 1, 1]>, // // Single-precision FP DIV InstrItinData<IIC_fpDIV32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 0>, InstrStage<15, [SW_FDIV]>], [17, 1, 1]>, // // Double-precision FP DIV InstrItinData<IIC_fpDIV64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 0>, InstrStage<30, [SW_FDIV]>], [32, 1, 1]>, // // Single-precision FP SQRT InstrItinData<IIC_fpSQRT32, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 0>, InstrStage<15, [SW_FDIV]>], [17, 1]>, // // Double-precision FP SQRT InstrItinData<IIC_fpSQRT64, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 0>, InstrStage<30, [SW_FDIV]>], [32, 1, 1]>, // // Integer to Single-precision Move InstrItinData<IIC_fpMOVIS, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 4>, InstrStage<1, [SW_ALU0]>], [6, 1]>, // // Integer to Double-precision Move InstrItinData<IIC_fpMOVID, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [4, 1]>, // // Single-precision to Integer Move InstrItinData<IIC_fpMOVSI, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [3, 1]>, // // Double-precision to Integer Move InstrItinData<IIC_fpMOVDI, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 3>, InstrStage<1, [SW_LS]>], [3, 4, 1]>, // // Single-precision FP Load InstrItinData<IIC_fpLoad32, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [4, 1]>, // // Double-precision FP Load InstrItinData<IIC_fpLoad64, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [4, 1]>, // // FP Load Multiple // FIXME: Assumes a single Q register. InstrItinData<IIC_fpLoad_m, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [1, 1, 1, 4], [], -1>, // dynamic uops // // FP Load Multiple + update // FIXME: Assumes a single Q register. InstrItinData<IIC_fpLoad_mu,[InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 4>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1, 1, 4], [], -1>, // dynamic uops // // Single-precision FP Store InstrItinData<IIC_fpStore32,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [1, 1]>, // // Double-precision FP Store InstrItinData<IIC_fpStore64,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [1, 1]>, // // FP Store Multiple // FIXME: Assumes a single Q register. InstrItinData<IIC_fpStore_m,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [1, 1, 1], [], -1>, // dynamic uops // // FP Store Multiple + update // FIXME: Assumes a single Q register. InstrItinData<IIC_fpStore_mu,[InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 4>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1, 1], [], -1>, // dynamic uops // NEON // // Double-register Integer Unary InstrItinData<IIC_VUNAiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1]>, // // Quad-register Integer Unary InstrItinData<IIC_VUNAiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1]>, // // Double-register Integer Q-Unary InstrItinData<IIC_VQUNAiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1]>, // // Quad-register Integer CountQ-Unary InstrItinData<IIC_VQUNAiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1]>, // // Double-register Integer Binary InstrItinData<IIC_VBINiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Quad-register Integer Binary InstrItinData<IIC_VBINiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Double-register Integer Subtract InstrItinData<IIC_VSUBiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Quad-register Integer Subtract InstrItinData<IIC_VSUBiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Double-register Integer Shift InstrItinData<IIC_VSHLiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Quad-register Integer Shift InstrItinData<IIC_VSHLiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Double-register Integer Shift (4 cycle) InstrItinData<IIC_VSHLi4D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Quad-register Integer Shift (4 cycle) InstrItinData<IIC_VSHLi4Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Double-register Integer Binary (4 cycle) InstrItinData<IIC_VBINi4D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Quad-register Integer Binary (4 cycle) InstrItinData<IIC_VBINi4Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Double-register Integer Subtract (4 cycle) InstrItinData<IIC_VSUBi4D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Quad-register Integer Subtract (4 cycle) InstrItinData<IIC_VSUBi4Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Double-register Integer Count InstrItinData<IIC_VCNTiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Quad-register Integer Count InstrItinData<IIC_VCNTiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Double-register Absolute Difference and Accumulate InstrItinData<IIC_VABAD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1, 1]>, // // Quad-register Absolute Difference and Accumulate InstrItinData<IIC_VABAQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1, 1]>, // // Double-register Integer Pair Add Long InstrItinData<IIC_VPALiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Quad-register Integer Pair Add Long InstrItinData<IIC_VPALiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Double-register Integer Multiply (.8, .16) InstrItinData<IIC_VMULi16D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1, 1]>, // // Quad-register Integer Multiply (.8, .16) InstrItinData<IIC_VMULi16Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1, 1]>, // // Double-register Integer Multiply (.32) InstrItinData<IIC_VMULi32D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1, 1]>, // // Quad-register Integer Multiply (.32) InstrItinData<IIC_VMULi32Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1, 1]>, // // Double-register Integer Multiply-Accumulate (.8, .16) InstrItinData<IIC_VMACi16D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1, 1, 1]>, // // Double-register Integer Multiply-Accumulate (.32) InstrItinData<IIC_VMACi32D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1, 1, 1]>, // // Quad-register Integer Multiply-Accumulate (.8, .16) InstrItinData<IIC_VMACi16Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1, 1, 1]>, // // Quad-register Integer Multiply-Accumulate (.32) InstrItinData<IIC_VMACi32Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1, 1, 1]>, // // Move InstrItinData<IIC_VMOV, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1]>, // // Move Immediate InstrItinData<IIC_VMOVImm, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2]>, // // Double-register Permute Move InstrItinData<IIC_VMOVD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [2, 1]>, // // Quad-register Permute Move InstrItinData<IIC_VMOVQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [2, 1]>, // // Integer to Single-precision Move InstrItinData<IIC_VMOVIS , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 4>, InstrStage<1, [SW_ALU0]>], [6, 1]>, // // Integer to Double-precision Move InstrItinData<IIC_VMOVID , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [4, 1, 1]>, // // Single-precision to Integer Move InstrItinData<IIC_VMOVSI , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_LS]>], [3, 1]>, // // Double-precision to Integer Move InstrItinData<IIC_VMOVDI , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 3>, InstrStage<1, [SW_LS]>], [3, 4, 1]>, // // Integer to Lane Move // FIXME: I think this is correct, but it is not clear from the tuning guide. InstrItinData<IIC_VMOVISL , [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 4>, InstrStage<1, [SW_ALU0]>], [6, 1]>, // // Vector narrow move InstrItinData<IIC_VMOVN, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [2, 1]>, // // Double-register FP Unary // FIXME: VRECPE / VRSQRTE has a longer latency than VABS, which is used here, // and they issue on a different pipeline. InstrItinData<IIC_VUNAD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1]>, // // Quad-register FP Unary // FIXME: VRECPE / VRSQRTE has a longer latency than VABS, which is used here, // and they issue on a different pipeline. InstrItinData<IIC_VUNAQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [2, 1]>, // // Double-register FP Binary // FIXME: We're using this itin for many instructions. InstrItinData<IIC_VBIND, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // VPADD, etc. InstrItinData<IIC_VPBIND, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Double-register FP VMUL InstrItinData<IIC_VFMULD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1, 1]>, // // Quad-register FP Binary InstrItinData<IIC_VBINQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Quad-register FP VMUL InstrItinData<IIC_VFMULQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [4, 1, 1]>, // // Double-register FP Multiple-Accumulate InstrItinData<IIC_VMACD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Quad-register FP Multiple-Accumulate InstrItinData<IIC_VMACQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Double-register Fused FP Multiple-Accumulate InstrItinData<IIC_VFMACD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Quad-register FusedF P Multiple-Accumulate InstrItinData<IIC_VFMACQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Double-register Reciprical Step InstrItinData<IIC_VRECSD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Quad-register Reciprical Step InstrItinData<IIC_VRECSQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Double-register Permute // FIXME: The latencies are unclear from the documentation. InstrItinData<IIC_VPERMD, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [3, 4, 3, 4]>, // // Quad-register Permute // FIXME: The latencies are unclear from the documentation. InstrItinData<IIC_VPERMQ, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [3, 4, 3, 4]>, // // Quad-register Permute (3 cycle issue on A9) InstrItinData<IIC_VPERMQ3, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [3, 4, 3, 4]>, // // Double-register VEXT InstrItinData<IIC_VEXTD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [2, 1, 1]>, // // Quad-register VEXT InstrItinData<IIC_VEXTQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [2, 1, 1]>, // // VTB InstrItinData<IIC_VTB1, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [2, 1, 1]>, InstrItinData<IIC_VTB2, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [4, 1, 3, 3]>, InstrItinData<IIC_VTB3, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [6, 1, 3, 5, 5]>, InstrItinData<IIC_VTB4, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [8, 1, 3, 5, 7, 7]>, // // VTBX InstrItinData<IIC_VTBX1, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU1]>], [2, 1, 1]>, InstrItinData<IIC_VTBX2, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [4, 1, 3, 3]>, InstrItinData<IIC_VTBX3, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [6, 1, 3, 5, 5]>, InstrItinData<IIC_VTBX4, [InstrStage<1, [SW_DIS0], 0>, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [8, 1, 3, 5, 7, 7]> ]>; // ===---------------------------------------------------------------------===// // This following definitions describe the simple machine model which // will replace itineraries. // Swift machine model for scheduling and other instruction cost heuristics. def SwiftModel : SchedMachineModel { let IssueWidth = 3; // 3 micro-ops are dispatched per cycle. let MinLatency = 0; // Data dependencies are allowed within dispatch groups. let LoadLatency = 3; let MispredictPenalty = 14; // A branch direction mispredict. let Itineraries = SwiftItineraries; } // Swift predicates. def IsFastImmShiftSwiftPred : SchedPredicate<[{TII->isSwiftFastImmShift(MI)}]>; // Swift resource mapping. let SchedModel = SwiftModel in { // Processor resources. def SwiftUnitP01 : ProcResource<2>; // ALU unit. def SwiftUnitP0 : ProcResource<1> { let Super = SwiftUnitP01; } // Mul unit. def SwiftUnitP1 : ProcResource<1> { let Super = SwiftUnitP01; } // Br unit. def SwiftUnitP2 : ProcResource<1>; // LS unit. def SwiftUnitDiv : ProcResource<1>; // Generic resource requirements. def SwiftWriteP01TwoCycle : SchedWriteRes<[SwiftUnitP01]> { let Latency = 2; } def SwiftWriteP01ThreeCycleTwoUops : SchedWriteRes<[SwiftUnitP01, SwiftUnitP01]> { let Latency = 3; let NumMicroOps = 2; } def SwiftWriteP0ThreeCycleThreeUops : SchedWriteRes<[SwiftUnitP0]> { let Latency = 3; let NumMicroOps = 3; let ResourceCycles = [3]; } // 4.2.4 Arithmetic and Logical. // ALU operation register shifted by immediate variant. def SwiftWriteALUsi : SchedWriteVariant<[ // lsl #2, lsl #1, or lsr #1. SchedVar<IsFastImmShiftSwiftPred, [SwiftWriteP01TwoCycle]>, SchedVar<NoSchedPred, [WriteALU]> ]>; def SwiftWriteALUsr : SchedWriteVariant<[ SchedVar<IsPredicatedPred, [SwiftWriteP01ThreeCycleTwoUops]>, SchedVar<NoSchedPred, [SwiftWriteP01TwoCycle]> ]>; def SwiftWriteALUSsr : SchedWriteVariant<[ SchedVar<IsPredicatedPred, [SwiftWriteP0ThreeCycleThreeUops]>, SchedVar<NoSchedPred, [SwiftWriteP01TwoCycle]> ]>; def SwiftReadAdvanceALUsr : SchedReadVariant<[ SchedVar<IsPredicatedPred, [SchedReadAdvance<2>]>, SchedVar<NoSchedPred, [NoReadAdvance]> ]>; // ADC,ADD,NEG,RSB,RSC,SBC,SUB,ADR // AND,BIC,EOR,ORN,ORR // CLZ,RBIT,REV,REV16,REVSH,PKH def : WriteRes<WriteALU, [SwiftUnitP01]>; def : SchedAlias<WriteALUsi, SwiftWriteALUsi>; def : SchedAlias<WriteALUsr, SwiftWriteALUsr>; def : SchedAlias<WriteALUSsr, SwiftWriteALUSsr>; def : ReadAdvance<ReadALU, 0>; def : SchedAlias<ReadALUsr, SwiftReadAdvanceALUsr>; // 4.2.5 Integer comparison def : WriteRes<WriteCMP, [SwiftUnitP01]>; def : WriteRes<WriteCMPsi, [SwiftUnitP01]>; def : WriteRes<WriteCMPsr, [SwiftUnitP01]>; }