//===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// This file implements some simple delegations needed for call lowering. /// //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/CallLowering.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; bool CallLowering::lowerCall( MachineIRBuilder &MIRBuilder, const CallInst &CI, unsigned ResReg, ArrayRef ArgRegs, std::function GetCalleeReg) const { auto &DL = CI.getParent()->getParent()->getParent()->getDataLayout(); // First step is to marshall all the function's parameters into the correct // physregs and memory locations. Gather the sequence of argument types that // we'll pass to the assigner function. SmallVector OrigArgs; unsigned i = 0; for (auto &Arg : CI.arg_operands()) { ArgInfo OrigArg{ArgRegs[i], Arg->getType(), ISD::ArgFlagsTy{}}; setArgFlags(OrigArg, i + 1, DL, CI); OrigArgs.push_back(OrigArg); ++i; } MachineOperand Callee = MachineOperand::CreateImm(0); if (Function *F = CI.getCalledFunction()) Callee = MachineOperand::CreateGA(F, 0); else Callee = MachineOperand::CreateReg(GetCalleeReg(), false); ArgInfo OrigRet{ResReg, CI.getType(), ISD::ArgFlagsTy{}}; if (!OrigRet.Ty->isVoidTy()) setArgFlags(OrigRet, AttributeSet::ReturnIndex, DL, CI); return lowerCall(MIRBuilder, Callee, OrigRet, OrigArgs); } template void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL, const FuncInfoTy &FuncInfo) const { const AttributeSet &Attrs = FuncInfo.getAttributes(); if (Attrs.hasAttribute(OpIdx, Attribute::ZExt)) Arg.Flags.setZExt(); if (Attrs.hasAttribute(OpIdx, Attribute::SExt)) Arg.Flags.setSExt(); if (Attrs.hasAttribute(OpIdx, Attribute::InReg)) Arg.Flags.setInReg(); if (Attrs.hasAttribute(OpIdx, Attribute::StructRet)) Arg.Flags.setSRet(); if (Attrs.hasAttribute(OpIdx, Attribute::SwiftSelf)) Arg.Flags.setSwiftSelf(); if (Attrs.hasAttribute(OpIdx, Attribute::SwiftError)) Arg.Flags.setSwiftError(); if (Attrs.hasAttribute(OpIdx, Attribute::ByVal)) Arg.Flags.setByVal(); if (Attrs.hasAttribute(OpIdx, Attribute::InAlloca)) Arg.Flags.setInAlloca(); if (Arg.Flags.isByVal() || Arg.Flags.isInAlloca()) { Type *ElementTy = cast(Arg.Ty)->getElementType(); Arg.Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); // For ByVal, alignment should be passed from FE. BE will guess if // this info is not there but there are cases it cannot get right. unsigned FrameAlign; if (FuncInfo.getParamAlignment(OpIdx)) FrameAlign = FuncInfo.getParamAlignment(OpIdx); else FrameAlign = getTLI()->getByValTypeAlignment(ElementTy, DL); Arg.Flags.setByValAlign(FrameAlign); } if (Attrs.hasAttribute(OpIdx, Attribute::Nest)) Arg.Flags.setNest(); Arg.Flags.setOrigAlign(DL.getABITypeAlignment(Arg.Ty)); } template void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL, const Function &FuncInfo) const; template void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL, const CallInst &FuncInfo) const; bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder, CCAssignFn *AssignFn, ArrayRef Args, ValueHandler &Handler) const { MachineFunction &MF = MIRBuilder.getMF(); const Function &F = *MF.getFunction(); const DataLayout &DL = F.getParent()->getDataLayout(); SmallVector ArgLocs; CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); unsigned NumArgs = Args.size(); for (unsigned i = 0; i != NumArgs; ++i) { MVT CurVT = MVT::getVT(Args[i].Ty); if (AssignFn(i, CurVT, CurVT, CCValAssign::Full, Args[i].Flags, CCInfo)) return false; } for (unsigned i = 0, e = Args.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (VA.isRegLoc()) Handler.assignValueToReg(Args[i].Reg, VA.getLocReg(), VA); else if (VA.isMemLoc()) { unsigned Size = VA.getValVT() == MVT::iPTR ? DL.getPointerSize() : alignTo(VA.getValVT().getSizeInBits(), 8) / 8; unsigned Offset = VA.getLocMemOffset(); MachinePointerInfo MPO; unsigned StackAddr = Handler.getStackAddress(Size, Offset, MPO); Handler.assignValueToAddress(Args[i].Reg, StackAddr, Size, MPO, VA); } else { // FIXME: Support byvals and other weirdness return false; } } return true; } unsigned CallLowering::ValueHandler::extendRegister(unsigned ValReg, CCValAssign &VA) { LLT LocTy{VA.getLocVT()}; switch (VA.getLocInfo()) { default: break; case CCValAssign::Full: case CCValAssign::BCvt: // FIXME: bitconverting between vector types may or may not be a // nop in big-endian situations. return ValReg; case CCValAssign::AExt: assert(!VA.getLocVT().isVector() && "unexpected vector extend"); // Otherwise, it's a nop. return ValReg; case CCValAssign::SExt: { unsigned NewReg = MRI.createGenericVirtualRegister(LocTy); MIRBuilder.buildSExt(NewReg, ValReg); return NewReg; } case CCValAssign::ZExt: { unsigned NewReg = MRI.createGenericVirtualRegister(LocTy); MIRBuilder.buildZExt(NewReg, ValReg); return NewReg; } } llvm_unreachable("unable to extend register"); }