// Map implementation -*- C++ -*- // Copyright (C) 2001, 2002 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file stl_map.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _CPP_BITS_STL_MAP_H #define _CPP_BITS_STL_MAP_H 1 #include namespace std { /** * @brief A standard container made up of pairs (see std::pair in ) * which can be retrieved based on a key. * * This is an associative container. Values contained within it can be * quickly retrieved through a key element. Example: MyMap["First"] would * return the data associated with the key "First". */ template , class _Alloc = allocator > > class map { // concept requirements __glibcpp_class_requires(_Tp, _SGIAssignableConcept) __glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept); public: // typedefs: typedef _Key key_type; typedef _Tp data_type; typedef _Tp mapped_type; typedef pair value_type; typedef _Compare key_compare; class value_compare : public binary_function { friend class map<_Key,_Tp,_Compare,_Alloc>; protected : _Compare comp; value_compare(_Compare __c) : comp(__c) {} public: bool operator()(const value_type& __x, const value_type& __y) const { return comp(__x.first, __y.first); } }; private: typedef _Rb_tree, key_compare, _Alloc> _Rep_type; _Rep_type _M_t; // red-black tree representing map public: typedef typename _Rep_type::pointer pointer; typedef typename _Rep_type::const_pointer const_pointer; typedef typename _Rep_type::reference reference; typedef typename _Rep_type::const_reference const_reference; typedef typename _Rep_type::iterator iterator; typedef typename _Rep_type::const_iterator const_iterator; typedef typename _Rep_type::reverse_iterator reverse_iterator; typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; typedef typename _Rep_type::size_type size_type; typedef typename _Rep_type::difference_type difference_type; typedef typename _Rep_type::allocator_type allocator_type; // allocation/deallocation map() : _M_t(_Compare(), allocator_type()) {} explicit map(const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) {} template map(_InputIterator __first, _InputIterator __last) : _M_t(_Compare(), allocator_type()) { _M_t.insert_unique(__first, __last); } template map(_InputIterator __first, _InputIterator __last, const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { _M_t.insert_unique(__first, __last); } map(const map<_Key,_Tp,_Compare,_Alloc>& __x) : _M_t(__x._M_t) {} map<_Key,_Tp,_Compare,_Alloc>& operator=(const map<_Key, _Tp, _Compare, _Alloc>& __x) { _M_t = __x._M_t; return *this; } // accessors: key_compare key_comp() const { return _M_t.key_comp(); } value_compare value_comp() const { return value_compare(_M_t.key_comp()); } allocator_type get_allocator() const { return _M_t.get_allocator(); } /** * Returns a read/write iterator that points to the first pair in the map. * Iteration is done in ascending order according to the keys. */ iterator begin() { return _M_t.begin(); } /** * Returns a read-only (constant) iterator that points to the first pair * in the map. Iteration is done in ascending order according to the keys. */ const_iterator begin() const { return _M_t.begin(); } /** * Returns a read/write iterator that points one past the last pair in the * map. Iteration is done in ascending order according to the keys. */ iterator end() { return _M_t.end(); } /** * Returns a read-only (constant) iterator that points one past the last * pair in the map. Iteration is done in ascending order according to the * keys. */ const_iterator end() const { return _M_t.end(); } /** * Returns a read/write reverse iterator that points to the last pair in * the map. Iteration is done in descending order according to the keys. */ reverse_iterator rbegin() { return _M_t.rbegin(); } /** * Returns a read-only (constant) reverse iterator that points to the last * pair in the map. Iteration is done in descending order according to * the keys. */ const_reverse_iterator rbegin() const { return _M_t.rbegin(); } /** * Returns a read/write reverse iterator that points to one before the * first pair in the map. Iteration is done in descending order according * to the keys. */ reverse_iterator rend() { return _M_t.rend(); } /** * Returns a read-only (constant) reverse iterator that points to one * before the first pair in the map. Iteration is done in descending order * according to the keys. */ const_reverse_iterator rend() const { return _M_t.rend(); } /** Returns true if the map is empty. (Thus begin() would equal end().) */ bool empty() const { return _M_t.empty(); } /** Returns the size of the map. */ size_type size() const { return _M_t.size(); } /** Returns the maximum size of the map. */ size_type max_size() const { return _M_t.max_size(); } /** * @brief Subscript ( [] ) access to map data. * @param k The key for which data should be retrieved. * * Allows for easy lookup with the subscript ( [] ) operator. Returns the * data associated with the key specified in subscript. If the key does * not exist a pair with that key is created with a default value, which * is then returned. */ _Tp& operator[](const key_type& __k) { iterator __i = lower_bound(__k); // __i->first is greater than or equivalent to __k. if (__i == end() || key_comp()(__k, (*__i).first)) __i = insert(__i, value_type(__k, _Tp())); return (*__i).second; } void swap(map<_Key,_Tp,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); } // insert/erase /** * @brief Attempts to insert a std::pair into the map. * @param x Pair to be inserted (see std::make_pair for easy creation of * pairs). * @return A pair of which the first element is an iterator that points * to the possibly inserted pair, a second element of type bool * to show if the pair was actually inserted. * * This function attempts to insert a (key, value) pair into the map. A * map relies on unique keys and thus a pair is only inserted if its first * element (the key) is not already present in the map. */ pair insert(const value_type& __x) { return _M_t.insert_unique(__x); } /** * @brief Attempts to insert a std::pair into the map. * @param position An iterator that serves as a hint as to where the * pair should be inserted. * @param x Pair to be inserted (see std::make_pair for easy creation of * pairs). * @return An iterator that points to the inserted (key,value) pair. * * This function is not concerned about whether the insertion took place * or not and thus does not return a boolean like the single-argument * insert() does. Note that the first parameter is only a hint and can * potentially improve the performance of the insertion process. A bad * hint would cause no gains in efficiency. */ iterator insert(iterator position, const value_type& __x) { return _M_t.insert_unique(position, __x); } /** * @brief A template function that attemps to insert elements from * another range (possibly another map). * @param first Iterator pointing to the start of the range to be inserted. * @param last Iterator pointing to the end of the range. */ template void insert(_InputIterator __first, _InputIterator __last) { _M_t.insert_unique(__first, __last); } /** * @brief Erases an element from a map. * @param position An iterator pointing to the element to be erased. * * This function erases an element, pointed to by the given iterator, from * a map. Note that this function only erases the element, and that if * the element is itself a pointer, the pointed-to memory is not touched * in any way. Managing the pointer is the user's responsibilty. */ void erase(iterator __position) { _M_t.erase(__position); } /** * @brief Erases an element according to the provided key. * @param x Key of element to be erased. * @return Doc me! (Number of elements that match key? Only makes sense * with multimap) * * This function erases an element, located by the given key, from a map. * Note that this function only erases the element, and that if * the element is itself a pointer, the pointed-to memory is not touched * in any way. Managing the pointer is the user's responsibilty. */ size_type erase(const key_type& __x) { return _M_t.erase(__x); } /** * @brief Erases a [first,last) range of elements from a map. * @param first Iterator pointing to the start of the range to be erased. * @param last Iterator pointing to the end of the range to be erased. * * This function erases a sequence of elements from a map. * Note that this function only erases the element, and that if * the element is itself a pointer, the pointed-to memory is not touched * in any way. Managing the pointer is the user's responsibilty. */ void erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); } /** Erases all elements in a map. Note that this function only erases * the elements, and that if the elements themselves are pointers, the * pointed-to memory is not touched in any way. Managing the pointer is * the user's responsibilty. */ void clear() { _M_t.clear(); } // map operations: /** * @brief Tries to locate an element in a map. * @param x Key of (key, value) pair to be located. * @return Iterator pointing to sought-after element, or end() if not * found. * * This function takes a key and tries to locate the element with which * the key matches. If successful the function returns an iterator * pointing to the sought after pair. If unsuccessful it returns the * one past the end ( end() ) iterator. */ iterator find(const key_type& __x) { return _M_t.find(__x); } /** * @brief Tries to locate an element in a map. * @param x Key of (key, value) pair to be located. * @return Read-only (constant) iterator pointing to sought-after * element, or end() if not found. * * This function takes a key and tries to locate the element with which * the key matches. If successful the function returns a constant iterator * pointing to the sought after pair. If unsuccessful it returns the * one past the end ( end() ) iterator. */ const_iterator find(const key_type& __x) const { return _M_t.find(__x); } /** * @brief Finds the number of elements with given key. * @param x Key of (key, value) pairs to be located. * @return Number of elements with specified key. * * This function only makes sense for multimaps. */ size_type count(const key_type& __x) const { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } /** * @brief Finds the beginning of a subsequence matching given key. * @param x Key of (key, value) pair to be located. * @return Iterator pointing to first element matching given key, or * end() if not found. * * This function is useful only with std::multimap. It returns the first * element of a subsequence of elements that matches the given key. If * unsuccessful it returns an iterator pointing to the first element that * has a greater value than given key or end() if no such element exists. */ iterator lower_bound(const key_type& __x) {return _M_t.lower_bound(__x); } /** * @brief Finds the beginning of a subsequence matching given key. * @param x Key of (key, value) pair to be located. * @return Read-only (constant) iterator pointing to first element * matching given key, or end() if not found. * * This function is useful only with std::multimap. It returns the first * element of a subsequence of elements that matches the given key. If * unsuccessful the iterator will point to the next greatest element or, * if no such greater element exists, to end(). */ const_iterator lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); } /** * @brief Finds the end of a subsequence matching given key. * @param x Key of (key, value) pair to be located. * @return Iterator pointing to last element matching given key. * * This function only makes sense with multimaps. */ iterator upper_bound(const key_type& __x) {return _M_t.upper_bound(__x); } /** * @brief Finds the end of a subsequence matching given key. * @param x Key of (key, value) pair to be located. * @return Read-only (constant) iterator pointing to last element matching * given key. * * This function only makes sense with multimaps. */ const_iterator upper_bound(const key_type& __x) const { return _M_t.upper_bound(__x); } /** * @brief Finds a subsequence matching given key. * @param x Key of (key, value) pairs to be located. * @return Pair of iterators that possibly points to the subsequence * matching given key. * * This function improves on lower_bound() and upper_bound() by giving a more * elegant and efficient solution. It returns a pair of which the first * element possibly points to the first element matching the given key * and the second element possibly points to the last element matching the * given key. If unsuccessful the first element of the returned pair will * contain an iterator pointing to the next greatest element or, if no such * greater element exists, to end(). * * This function only makes sense for multimaps. */ pair equal_range(const key_type& __x) { return _M_t.equal_range(__x); } /** * @brief Finds a subsequence matching given key. * @param x Key of (key, value) pairs to be located. * @return Pair of read-only (constant) iterators that possibly points to * the subsequence matching given key. * * This function improves on lower_bound() and upper_bound() by giving a more * elegant and efficient solution. It returns a pair of which the first * element possibly points to the first element matching the given key * and the second element possibly points to the last element matching the * given key. If unsuccessful the first element of the returned pair will * contain an iterator pointing to the next greatest element or, if no such * a greater element exists, to end(). * * This function only makes sense for multimaps. */ pair equal_range(const key_type& __x) const { return _M_t.equal_range(__x); } template friend bool operator== (const map<_K1, _T1, _C1, _A1>&, const map<_K1, _T1, _C1, _A1>&); template friend bool operator< (const map<_K1, _T1, _C1, _A1>&, const map<_K1, _T1, _C1, _A1>&); }; template inline bool operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x, const map<_Key,_Tp,_Compare,_Alloc>& __y) { return __x._M_t == __y._M_t; } template inline bool operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x, const map<_Key,_Tp,_Compare,_Alloc>& __y) { return __x._M_t < __y._M_t; } template inline bool operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x, const map<_Key,_Tp,_Compare,_Alloc>& __y) { return !(__x == __y); } template inline bool operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x, const map<_Key,_Tp,_Compare,_Alloc>& __y) { return __y < __x; } template inline bool operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x, const map<_Key,_Tp,_Compare,_Alloc>& __y) { return !(__y < __x); } template inline bool operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x, const map<_Key,_Tp,_Compare,_Alloc>& __y) { return !(__x < __y); } template inline void swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y) { __x.swap(__y); } } // namespace std #endif /* _CPP_BITS_STL_MAP_H */ // Local Variables: // mode:C++ // End: