/* * util.c * * some general memory functions * * a Net::DNS like library for C * * (c) NLnet Labs, 2004-2006 * * See the file LICENSE for the license */ #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_SSL #include #endif ldns_lookup_table * ldns_lookup_by_name(ldns_lookup_table *table, const char *name) { while (table->name != NULL) { if (strcasecmp(name, table->name) == 0) return table; table++; } return NULL; } ldns_lookup_table * ldns_lookup_by_id(ldns_lookup_table *table, int id) { while (table->name != NULL) { if (table->id == id) return table; table++; } return NULL; } int ldns_get_bit(uint8_t bits[], size_t index) { /* * The bits are counted from left to right, so bit #0 is the * left most bit. */ return (int) (bits[index / 8] & (1 << (7 - index % 8))); } int ldns_get_bit_r(uint8_t bits[], size_t index) { /* * The bits are counted from right to left, so bit #0 is the * right most bit. */ return (int) bits[index / 8] & (1 << (index % 8)); } void ldns_set_bit(uint8_t *byte, int bit_nr, bool value) { /* * The bits are counted from right to left, so bit #0 is the * right most bit. */ if (bit_nr >= 0 && bit_nr < 8) { if (value) { *byte = *byte | (0x01 << bit_nr); } else { *byte = *byte & ~(0x01 << bit_nr); } } } int ldns_hexdigit_to_int(char ch) { switch (ch) { case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; case 'a': case 'A': return 10; case 'b': case 'B': return 11; case 'c': case 'C': return 12; case 'd': case 'D': return 13; case 'e': case 'E': return 14; case 'f': case 'F': return 15; default: return -1; } } char ldns_int_to_hexdigit(int i) { switch (i) { case 0: return '0'; case 1: return '1'; case 2: return '2'; case 3: return '3'; case 4: return '4'; case 5: return '5'; case 6: return '6'; case 7: return '7'; case 8: return '8'; case 9: return '9'; case 10: return 'a'; case 11: return 'b'; case 12: return 'c'; case 13: return 'd'; case 14: return 'e'; case 15: return 'f'; default: abort(); } } int ldns_hexstring_to_data(uint8_t *data, const char *str) { size_t i; if (!str || !data) { return -1; } if (strlen(str) % 2 != 0) { return -2; } for (i = 0; i < strlen(str) / 2; i++) { data[i] = 16 * (uint8_t) ldns_hexdigit_to_int(str[i*2]) + (uint8_t) ldns_hexdigit_to_int(str[i*2 + 1]); } return (int) i; } const char * ldns_version(void) { return (char*)LDNS_VERSION; } /* Number of days per month (except for February in leap years). */ static const int mdays[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; #define LDNS_MOD(x,y) (((x) % (y) < 0) ? ((x) % (y) + (y)) : ((x) % (y))) #define LDNS_DIV(x,y) (((x) % (y) < 0) ? ((x) / (y) - 1 ) : ((x) / (y))) static int is_leap_year(int year) { return LDNS_MOD(year, 4) == 0 && (LDNS_MOD(year, 100) != 0 || LDNS_MOD(year, 400) == 0); } static int leap_days(int y1, int y2) { --y1; --y2; return (LDNS_DIV(y2, 4) - LDNS_DIV(y1, 4)) - (LDNS_DIV(y2, 100) - LDNS_DIV(y1, 100)) + (LDNS_DIV(y2, 400) - LDNS_DIV(y1, 400)); } /* * Code adapted from Python 2.4.1 sources (Lib/calendar.py). */ time_t ldns_mktime_from_utc(const struct tm *tm) { int year = 1900 + tm->tm_year; time_t days = 365 * ((time_t) year - 1970) + leap_days(1970, year); time_t hours; time_t minutes; time_t seconds; int i; for (i = 0; i < tm->tm_mon; ++i) { days += mdays[i]; } if (tm->tm_mon > 1 && is_leap_year(year)) { ++days; } days += tm->tm_mday - 1; hours = days * 24 + tm->tm_hour; minutes = hours * 60 + tm->tm_min; seconds = minutes * 60 + tm->tm_sec; return seconds; } time_t mktime_from_utc(const struct tm *tm) { return ldns_mktime_from_utc(tm); } #if SIZEOF_TIME_T <= 4 static void ldns_year_and_yday_from_days_since_epoch(int64_t days, struct tm *result) { int year = 1970; int new_year; while (days < 0 || days >= (int64_t) (is_leap_year(year) ? 366 : 365)) { new_year = year + (int) LDNS_DIV(days, 365); days -= (new_year - year) * 365; days -= leap_days(year, new_year); year = new_year; } result->tm_year = year; result->tm_yday = (int) days; } /* Number of days per month in a leap year. */ static const int leap_year_mdays[] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; static void ldns_mon_and_mday_from_year_and_yday(struct tm *result) { int idays = result->tm_yday; const int *mon_lengths = is_leap_year(result->tm_year) ? leap_year_mdays : mdays; result->tm_mon = 0; while (idays >= mon_lengths[result->tm_mon]) { idays -= mon_lengths[result->tm_mon++]; } result->tm_mday = idays + 1; } static void ldns_wday_from_year_and_yday(struct tm *result) { result->tm_wday = 4 /* 1-1-1970 was a thursday */ + LDNS_MOD((result->tm_year - 1970), 7) * LDNS_MOD(365, 7) + leap_days(1970, result->tm_year) + result->tm_yday; result->tm_wday = LDNS_MOD(result->tm_wday, 7); if (result->tm_wday < 0) { result->tm_wday += 7; } } static struct tm * ldns_gmtime64_r(int64_t clock, struct tm *result) { result->tm_isdst = 0; result->tm_sec = (int) LDNS_MOD(clock, 60); clock = LDNS_DIV(clock, 60); result->tm_min = (int) LDNS_MOD(clock, 60); clock = LDNS_DIV(clock, 60); result->tm_hour = (int) LDNS_MOD(clock, 24); clock = LDNS_DIV(clock, 24); ldns_year_and_yday_from_days_since_epoch(clock, result); ldns_mon_and_mday_from_year_and_yday(result); ldns_wday_from_year_and_yday(result); result->tm_year -= 1900; return result; } #endif /* SIZEOF_TIME_T <= 4 */ static int64_t ldns_serial_arithmitics_time(int32_t time, time_t now) { int32_t offset = time - (int32_t) now; return (int64_t) now + offset; } struct tm * ldns_serial_arithmitics_gmtime_r(int32_t time, time_t now, struct tm *result) { #if SIZEOF_TIME_T <= 4 int64_t secs_since_epoch = ldns_serial_arithmitics_time(time, now); return ldns_gmtime64_r(secs_since_epoch, result); #else time_t secs_since_epoch = ldns_serial_arithmitics_time(time, now); return gmtime_r(&secs_since_epoch, result); #endif } /** * Init the random source * applications should call this if they need entropy data within ldns * If openSSL is available, it is automatically seeded from /dev/urandom * or /dev/random * * If you need more entropy, or have no openssl available, this function * MUST be called at the start of the program * * If openssl *is* available, this function just adds more entropy **/ int ldns_init_random(FILE *fd, unsigned int size) { /* if fp is given, seed srandom with data from file otherwise use /dev/urandom */ FILE *rand_f; uint8_t *seed; size_t read = 0; unsigned int seed_i; struct timeval tv; /* we'll need at least sizeof(unsigned int) bytes for the standard prng seed */ if (size < (unsigned int) sizeof(seed_i)){ size = (unsigned int) sizeof(seed_i); } seed = LDNS_XMALLOC(uint8_t, size); if(!seed) { return 1; } if (!fd) { if ((rand_f = fopen("/dev/urandom", "r")) == NULL) { /* no readable /dev/urandom, try /dev/random */ if ((rand_f = fopen("/dev/random", "r")) == NULL) { /* no readable /dev/random either, and no entropy source given. we'll have to improvise */ for (read = 0; read < size; read++) { gettimeofday(&tv, NULL); seed[read] = (uint8_t) (tv.tv_usec % 256); } } else { read = fread(seed, 1, size, rand_f); } } else { read = fread(seed, 1, size, rand_f); } } else { rand_f = fd; read = fread(seed, 1, size, rand_f); } if (read < size) { LDNS_FREE(seed); if (!fd) fclose(rand_f); return 1; } else { #ifdef HAVE_SSL /* Seed the OpenSSL prng (most systems have it seeded automatically, in that case this call just adds entropy */ RAND_seed(seed, (int) size); #else /* Seed the standard prng, only uses the first * unsigned sizeof(unsiged int) bytes found in the entropy pool */ memcpy(&seed_i, seed, sizeof(seed_i)); srandom(seed_i); #endif LDNS_FREE(seed); } if (!fd) { if (rand_f) fclose(rand_f); } return 0; } /** * Get random number. * */ uint16_t ldns_get_random(void) { uint16_t rid = 0; #ifdef HAVE_SSL if (RAND_bytes((unsigned char*)&rid, 2) != 1) { rid = (uint16_t) random(); } #else rid = (uint16_t) random(); #endif return rid; } /* * BubbleBabble code taken from OpenSSH * Copyright (c) 2001 Carsten Raskgaard. All rights reserved. */ char * ldns_bubblebabble(uint8_t *data, size_t len) { char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' }; char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm', 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' }; size_t i, j = 0, rounds, seed = 1; char *retval; rounds = (len / 2) + 1; retval = LDNS_XMALLOC(char, rounds * 6); if(!retval) return NULL; retval[j++] = 'x'; for (i = 0; i < rounds; i++) { size_t idx0, idx1, idx2, idx3, idx4; if ((i + 1 < rounds) || (len % 2 != 0)) { idx0 = (((((size_t)(data[2 * i])) >> 6) & 3) + seed) % 6; idx1 = (((size_t)(data[2 * i])) >> 2) & 15; idx2 = ((((size_t)(data[2 * i])) & 3) + (seed / 6)) % 6; retval[j++] = vowels[idx0]; retval[j++] = consonants[idx1]; retval[j++] = vowels[idx2]; if ((i + 1) < rounds) { idx3 = (((size_t)(data[(2 * i) + 1])) >> 4) & 15; idx4 = (((size_t)(data[(2 * i) + 1]))) & 15; retval[j++] = consonants[idx3]; retval[j++] = '-'; retval[j++] = consonants[idx4]; seed = ((seed * 5) + ((((size_t)(data[2 * i])) * 7) + ((size_t)(data[(2 * i) + 1])))) % 36; } } else { idx0 = seed % 6; idx1 = 16; idx2 = seed / 6; retval[j++] = vowels[idx0]; retval[j++] = consonants[idx1]; retval[j++] = vowels[idx2]; } } retval[j++] = 'x'; retval[j++] = '\0'; return retval; } /* * For backwards compatibility, because we have always exported this symbol. */ #ifdef HAVE_B64_NTOP int ldns_b64_ntop(const uint8_t* src, size_t srclength, char *target, size_t targsize); { return b64_ntop(src, srclength, target, targsize); } #endif /* * For backwards compatibility, because we have always exported this symbol. */ #ifdef HAVE_B64_PTON int ldns_b64_pton(const char* src, uint8_t *target, size_t targsize) { return b64_pton(src, target, targsize); } #endif static int ldns_b32_ntop_base(const uint8_t* src, size_t src_sz, char* dst, size_t dst_sz, bool extended_hex, bool add_padding) { size_t ret_sz; const char* b32 = extended_hex ? "0123456789abcdefghijklmnopqrstuv" : "abcdefghijklmnopqrstuvwxyz234567"; size_t c = 0; /* c is used to carry partial base32 character over * byte boundaries for sizes with a remainder. * (i.e. src_sz % 5 != 0) */ ret_sz = add_padding ? ldns_b32_ntop_calculate_size(src_sz) : ldns_b32_ntop_calculate_size_no_padding(src_sz); /* Do we have enough space? */ if (dst_sz < ret_sz + 1) return -1; /* We know the size; terminate the string */ dst[ret_sz] = '\0'; /* First process all chunks of five */ while (src_sz >= 5) { /* 00000... ........ ........ ........ ........ */ dst[0] = b32[(src[0] ) >> 3]; /* .....111 11...... ........ ........ ........ */ dst[1] = b32[(src[0] & 0x07) << 2 | src[1] >> 6]; /* ........ ..22222. ........ ........ ........ */ dst[2] = b32[(src[1] & 0x3e) >> 1]; /* ........ .......3 3333.... ........ ........ */ dst[3] = b32[(src[1] & 0x01) << 4 | src[2] >> 4]; /* ........ ........ ....4444 4....... ........ */ dst[4] = b32[(src[2] & 0x0f) << 1 | src[3] >> 7]; /* ........ ........ ........ .55555.. ........ */ dst[5] = b32[(src[3] & 0x7c) >> 2]; /* ........ ........ ........ ......66 666..... */ dst[6] = b32[(src[3] & 0x03) << 3 | src[4] >> 5]; /* ........ ........ ........ ........ ...77777 */ dst[7] = b32[(src[4] & 0x1f) ]; src_sz -= 5; src += 5; dst += 8; } /* Process what remains */ switch (src_sz) { case 4: /* ........ ........ ........ ......66 666..... */ dst[6] = b32[(src[3] & 0x03) << 3]; /* ........ ........ ........ .55555.. ........ */ dst[5] = b32[(src[3] & 0x7c) >> 2]; /* ........ ........ ....4444 4....... ........ */ c = src[3] >> 7 ; case 3: dst[4] = b32[(src[2] & 0x0f) << 1 | c]; /* ........ .......3 3333.... ........ ........ */ c = src[2] >> 4 ; case 2: dst[3] = b32[(src[1] & 0x01) << 4 | c]; /* ........ ..22222. ........ ........ ........ */ dst[2] = b32[(src[1] & 0x3e) >> 1]; /* .....111 11...... ........ ........ ........ */ c = src[1] >> 6 ; case 1: dst[1] = b32[(src[0] & 0x07) << 2 | c]; /* 00000... ........ ........ ........ ........ */ dst[0] = b32[ src[0] >> 3]; } /* Add padding */ if (add_padding) { switch (src_sz) { case 1: dst[2] = '='; dst[3] = '='; case 2: dst[4] = '='; case 3: dst[5] = '='; dst[6] = '='; case 4: dst[7] = '='; } } return (int)ret_sz; } int ldns_b32_ntop(const uint8_t* src, size_t src_sz, char* dst, size_t dst_sz) { return ldns_b32_ntop_base(src, src_sz, dst, dst_sz, false, true); } int ldns_b32_ntop_extended_hex(const uint8_t* src, size_t src_sz, char* dst, size_t dst_sz) { return ldns_b32_ntop_base(src, src_sz, dst, dst_sz, true, true); } #ifndef HAVE_B32_NTOP int b32_ntop(const uint8_t* src, size_t src_sz, char* dst, size_t dst_sz) { return ldns_b32_ntop_base(src, src_sz, dst, dst_sz, false, true); } int b32_ntop_extended_hex(const uint8_t* src, size_t src_sz, char* dst, size_t dst_sz) { return ldns_b32_ntop_base(src, src_sz, dst, dst_sz, true, true); } #endif /* ! HAVE_B32_NTOP */ static int ldns_b32_pton_base(const char* src, size_t src_sz, uint8_t* dst, size_t dst_sz, bool extended_hex, bool check_padding) { size_t i = 0; char ch = '\0'; uint8_t buf[8]; uint8_t* start = dst; while (src_sz) { /* Collect 8 characters in buf (if possible) */ for (i = 0; i < 8; i++) { do { ch = *src++; --src_sz; } while (isspace(ch) && src_sz > 0); if (ch == '=' || ch == '\0') break; else if (extended_hex) if (ch >= '0' && ch <= '9') buf[i] = (uint8_t)ch - '0'; else if (ch >= 'a' && ch <= 'v') buf[i] = (uint8_t)ch - 'a' + 10; else if (ch >= 'A' && ch <= 'V') buf[i] = (uint8_t)ch - 'A' + 10; else return -1; else if (ch >= 'a' && ch <= 'z') buf[i] = (uint8_t)ch - 'a'; else if (ch >= 'A' && ch <= 'Z') buf[i] = (uint8_t)ch - 'A'; else if (ch >= '2' && ch <= '7') buf[i] = (uint8_t)ch - '2' + 26; else return -1; } /* Less that 8 characters. We're done. */ if (i < 8) break; /* Enough space available at the destination? */ if (dst_sz < 5) return -1; /* 00000... ........ ........ ........ ........ */ /* .....111 11...... ........ ........ ........ */ dst[0] = buf[0] << 3 | buf[1] >> 2; /* .....111 11...... ........ ........ ........ */ /* ........ ..22222. ........ ........ ........ */ /* ........ .......3 3333.... ........ ........ */ dst[1] = buf[1] << 6 | buf[2] << 1 | buf[3] >> 4; /* ........ .......3 3333.... ........ ........ */ /* ........ ........ ....4444 4....... ........ */ dst[2] = buf[3] << 4 | buf[4] >> 1; /* ........ ........ ....4444 4....... ........ */ /* ........ ........ ........ .55555.. ........ */ /* ........ ........ ........ ......66 666..... */ dst[3] = buf[4] << 7 | buf[5] << 2 | buf[6] >> 3; /* ........ ........ ........ ......66 666..... */ /* ........ ........ ........ ........ ...77777 */ dst[4] = buf[6] << 5 | buf[7]; dst += 5; dst_sz -= 5; } /* Not ending on a eight byte boundary? */ if (i > 0 && i < 8) { /* Enough space available at the destination? */ if (dst_sz < (i + 1) / 2) return -1; switch (i) { case 7: /* ........ ........ ........ ......66 666..... */ /* ........ ........ ........ .55555.. ........ */ /* ........ ........ ....4444 4....... ........ */ dst[3] = buf[4] << 7 | buf[5] << 2 | buf[6] >> 3; case 5: /* ........ ........ ....4444 4....... ........ */ /* ........ .......3 3333.... ........ ........ */ dst[2] = buf[3] << 4 | buf[4] >> 1; case 4: /* ........ .......3 3333.... ........ ........ */ /* ........ ..22222. ........ ........ ........ */ /* .....111 11...... ........ ........ ........ */ dst[1] = buf[1] << 6 | buf[2] << 1 | buf[3] >> 4; case 2: /* .....111 11...... ........ ........ ........ */ /* 00000... ........ ........ ........ ........ */ dst[0] = buf[0] << 3 | buf[1] >> 2; break; default: return -1; } dst += (i + 1) / 2; if (check_padding) { /* Check remaining padding characters */ if (ch != '=') return -1; /* One down, 8 - i - 1 more to come... */ for (i = 8 - i - 1; i > 0; i--) { do { if (src_sz == 0) return -1; ch = *src++; src_sz--; } while (isspace(ch)); if (ch != '=') return -1; } } } return dst - start; } int ldns_b32_pton(const char* src, size_t src_sz, uint8_t* dst, size_t dst_sz) { return ldns_b32_pton_base(src, src_sz, dst, dst_sz, false, true); } int ldns_b32_pton_extended_hex(const char* src, size_t src_sz, uint8_t* dst, size_t dst_sz) { return ldns_b32_pton_base(src, src_sz, dst, dst_sz, true, true); } #ifndef HAVE_B32_PTON int b32_pton(const char* src, size_t src_sz, uint8_t* dst, size_t dst_sz) { return ldns_b32_pton_base(src, src_sz, dst, dst_sz, false, true); } int b32_pton_extended_hex(const char* src, size_t src_sz, uint8_t* dst, size_t dst_sz) { return ldns_b32_pton_base(src, src_sz, dst, dst_sz, true, true); } #endif /* ! HAVE_B32_PTON */