@c Copyright (C) 2002 Free Software Foundation, Inc. @c This is part of the GCC manual. @c For copying conditions, see the file gcc.texi. @node Source Tree @chapter Source Tree Structure and Build System This chapter describes the structure of the GCC source tree, and how GCC is built. The user documentation for building and installing GCC is in a separate manual (@uref{http://gcc.gnu.org/install/}), with which it is presumed that you are familiar. @menu * Configure Terms:: Configuration terminology and history. * Top Level:: The top level source directory. * gcc Directory:: The @file{gcc} subdirectory. * Test Suites:: The GCC test suites. @end menu @include configterms.texi @node Top Level @section Top Level Source Directory The top level source directory in a GCC distribution contains several files and directories that are shared with other software distributions such as that of GNU Binutils. It also contains several subdirectories that contain parts of GCC and its runtime libraries: @table @file @item boehm-gc The Boehm conservative garbage collector, used as part of the Java runtime library. @item contrib Contributed scripts that may be found useful in conjunction with GCC@. One of these, @file{contrib/texi2pod.pl}, is used to generate man pages from Texinfo manuals as part of the GCC build process. @item fastjar An implementation of the @command{jar} command, used with the Java front end. @item gcc The main sources of GCC itself (except for runtime libraries), including optimizers, support for different target architectures, language front ends, and test suites. @xref{gcc Directory, , The @file{gcc} Subdirectory}, for details. @item include Headers for the @code{libiberty} library. @item libf2c The Fortran runtime library. @item libffi The @code{libffi} library, used as part of the Java runtime library. @item libiberty The @code{libiberty} library, used for portability and for some generally useful data structures and algorithms. @xref{Top, , Introduction, libiberty, @sc{gnu} libiberty}, for more information about this library. @item libjava The Java runtime library. @item libobjc The Objective-C runtime library. @item libstdc++-v3 The C++ runtime library. @item maintainer-scripts Scripts used by the @code{gccadmin} account on @code{gcc.gnu.org}. @item zlib The @code{zlib} compression library, used by the Java front end and as part of the Java runtime library. @end table The build system in the top level directory, including how recursion into subdirectories works and how building runtime libraries for multilibs is handled, is documented in a separate manual, included with GNU Binutils. @xref{Top, , GNU configure and build system, configure, The GNU configure and build system}, for details. @node gcc Directory @section The @file{gcc} Subdirectory The @file{gcc} directory contains many files that are part of the C sources of GCC, other files used as part of the configuration and build process, and subdirectories including documentation and a test suite. The files that are sources of GCC are documented in a separate chapter. @xref{Passes, , Passes and Files of the Compiler}. @menu * Subdirectories:: Subdirectories of @file{gcc}. * Configuration:: The configuration process, and the files it uses. * Build:: The build system in the @file{gcc} directory. * Makefile:: Targets in @file{gcc/Makefile}. * Library Files:: Library source files and headers under @file{gcc/}. * Headers:: Headers installed by GCC. * Documentation:: Building documentation in GCC. * Front End:: Anatomy of a language front end. * Back End:: Anatomy of a target back end. @end menu @node Subdirectories @subsection Subdirectories of @file{gcc} The @file{gcc} directory contains the following subdirectories: @table @file @item @var{language} Subdirectories for various languages. Directories containing a file @file{config-lang.in} are language subdirectories. The contents of the subdirectories @file{cp} (for C++) and @file{objc} (for Objective-C) are documented in this manual (@pxref{Passes, , Passes and Files of the Compiler}); those for other languages are not. @xref{Front End, , Anatomy of a Language Front End}, for details of the files in these directories. @item config Configuration files for supported architectures and operating systems. @xref{Back End, , Anatomy of a Target Back End}, for details of the files in thie directory. @item doc Texinfo documentation for GCC, together with automatically generated man pages and support for converting the installation manual to HTML@. @xref{Documentation}. @item fixinc The support for fixing system headers to work with GCC@. See @file{fixinc/README} for more information. The headers fixed by this mechanism are installed in @file{@var{libsubdir}/include}. Along with those headers, @file{README-fixinc} is also installed, as @file{@var{libsubdir}/include/README}. @item ginclude System headers installed by GCC, mainly those required by the C standard of freestanding implementations. @xref{Headers, , Headers Installed by GCC}, for details of when these and other headers are installed. @item intl GNU @code{libintl}, from GNU @code{gettext}, for systems which do not include it in libc. Properly, this directory should be at top level, parallel to the @file{gcc} directory. @item po Message catalogs with translations of messages produced by GCC into various languages, @file{@var{language}.po}. This directory also contains @file{gcc.pot}, the template for these message catalogues, @file{exgettext}, a wrapper around @command{gettext} to extract the messages from the GCC sources and create @file{gcc.pot}, which is run by @command{make gcc.pot}, and @file{EXCLUDES}, a list of files from which messages should not be extracted. @item testsuite The GCC test suites (except for those for runtime libraries). @xref{Test Suites}. @end table @node Configuration @subsection Configuration in the @file{gcc} Directory The @file{gcc} directory is configured with an Autoconf-generated script @file{configure}. The @file{configure} script is generated from @file{configure.in} and @file{aclocal.m4}. From the files @file{configure.in} and @file{acconfig.h}, Autoheader generates the file @file{config.in}. The file @file{cstamp-h.in} is used as a timestamp. @menu * Config Fragments:: Scripts used by @file{configure}. * System Config:: The @file{config.gcc} file. * Configuration Files:: Files created by running @file{configure}. @end menu @node Config Fragments @subsubsection Scripts Used by @file{configure} @file{configure} uses some other scripts to help in its work: @itemize @bullet @item The standard GNU @file{config.sub} and @file{config.guess} files, kept in the top level directory, are used. FIXME: when is the @file{config.guess} file in the @file{gcc} directory (that just calls the top level one) used? @item The file @file{config.gcc} is used to handle configuration specific to the particular build, host or target machine. (In general, this should only be used for features that cannot reasonably be tested in Autoconf feature tests.) @xref{System Config, , The @file{config.gcc} File}, for details of the contents of this file. @item Each language subdirectory has a file @file{@var{language}/config-lang.in} that is used for front-end-specific configuration. @xref{Front End Config, , The Front End @file{config-lang.in} File}, for details of this file. @item A helper script @file{configure.frag} is used as part of creating the output of @file{configure}. @end itemize @node System Config @subsubsection The @file{config.gcc} File FIXME: document the contents of this file, and what variables should be set to control build, host and target configuration. @include configfiles.texi @node Build @subsection Build System in the @file{gcc} Directory FIXME: describe the build system, including what is built in what stages. Also list the various source files that are used in the build process but aren't source files of GCC itself and so aren't documented below (@pxref{Passes}). @include makefile.texi @node Library Files @subsection Library Source Files and Headers under the @file{gcc} Directory FIXME: list here, with explanation, all the C source files and headers under the @file{gcc} directory that aren't built into the GCC executable but rather are part of runtime libraries and object files, such as @file{crtstuff.c} and @file{unwind-dw2.c}. @xref{Headers, , Headers Installed by GCC}, for more information about the @file{ginclude} directory. @node Headers @subsection Headers Installed by GCC In general, GCC expects the system C library to provide most of the headers to be used with it. However, GCC will fix those headers if necessary to make them work with GCC, and will install some headers required of freestanding implementations. These headers are installed in @file{@var{libsubdir}/include}. Headers for non-C runtime libraries are also installed by GCC; these are not documented here. (FIXME: document them somewhere.) Several of the headers GCC installs are in the @file{ginclude} directory. These headers, @file{iso646.h}, @file{stdarg.h}, @file{stdbool.h}, @file{stddef.h} and @file{varargs.h}, are installed in @file{@var{libsubdir}/include}, unless the target Makefile fragment (@pxref{Target Fragment}) overrides this by setting @code{USER_H}. In addition to these headers and those generated by fixing system headers to work with GCC, some other headers may also be installed in @file{@var{libsubdir}/include}. @file{config.gcc} may set @code{extra_headers}; this specifies additional headers under @file{config} to be installed on some systems. GCC normally installs a @code{} file; these are kept as @file{config/float-@var{format}.h}, where @var{format} is specified by a @code{float_format} setting in @file{config.gcc}, and a setting @samp{float_format=none} disables installation of this header. GCC also installs its own version of @code{}; this is generated from @file{glimits.h}, together with @file{limitx.h} and @file{limity.h} if the system also has its own version of @code{}. (GCC provides its own header because it is required of ISO C freestanding implementations, but needs to include the system header from its own header as well because other standards such as POSIX specify additional values to be defined in @code{}.) The system's @code{} header is used via @file{@var{libsubdir}/include/syslimits.h}, which is copied from @file{gsyslimits.h} if it does not need fixing to work with GCC; if it needs fixing, @file{syslimits.h} is the fixed copy. @node Documentation @subsection Building Documentation The main GCC documentation is in the form of manuals in Texinfo format. These are installed in Info format, and DVI versions may be generated by @command{make dvi}. In addition, some man pages are generated from the Texinfo manuals, there are some other text files with miscellaneous documentation, and runtime libraries have their own documentation outside the @file{gcc} directory. FIXME: document the documentation for runtime libraries somewhere. @menu * Texinfo Manuals:: GCC manuals in Texinfo format. * Man Page Generation:: Generating man pages from Texinfo manuals. * Miscellaneous Docs:: Miscellaneous text files with documentation. @end menu @node Texinfo Manuals @subsubsection Texinfo Manuals The manuals for GCC as a whole, and the C and C++ front ends, are in files @file{doc/*.texi}. Other front ends have their own manuals in files @file{@var{language}/*.texi}. Common files @file{doc/include/*.texi} are provided which may be included in multiple manuals; the following files are in @file{doc/include}: @table @file @item fdl.texi The GNU Free Documentation License. @item funding.texi The section ``Funding Free Software''. @item gcc-common.texi Common definitions for manuals. @item gpl.texi The GNU General Public License. @item texinfo.tex A copy of @file{texinfo.tex} known to work with the GCC manuals. @end table DVI formatted manuals are generated by @command{make dvi}, which uses @command{texi2dvi} (via the Makefile macro @code{$(TEXI2DVI)}). Info manuals are generated by @command{make info} (which is run as part of a bootstrap); this generates the manuals in the source directory, using @command{makeinfo} via the Makefile macro @code{$(MAKEINFO)}, and they are included in release distributions. Manuals are also provided on the GCC web site, in both HTML and PostScript forms. This is done via the script @file{maintainer-scripts/update_web_docs}. Each manual to be provided online must be listed in the definition of @code{MANUALS} in that file; a file @file{@var{name}.texi} must only appear once in the source tree, and the output manual must have the same name as the source file. (However, other Texinfo files, included in manuals but not themselves the root files of manuals, may have names that appear more than once in the source tree.) The manual file @file{@var{name}.texi} should only include other files in its own directory or in @file{doc/include}. HTML manuals will be generated by @command{makeinfo --html} and PostScript manuals by @command{texi2dvi} and @command{dvips}. All Texinfo files that are parts of manuals must be checked into CVS, even if they are generated files, for the generation of online manuals to work. The installation manual, @file{doc/install.texi}, is also provided on the GCC web site. The HTML version is generated by the script @file{doc/install.texi2html}. @node Man Page Generation @subsubsection Man Page Generation Because of user demand, in addition to full Texinfo manuals, man pages are provided which contain extracts from those manuals. These man pages are generated from the Texinfo manuals using @file{contrib/texi2pod.pl} and @command{pod2man}. (The man page for @command{g++}, @file{cp/g++.1}, just contains a @samp{.so} reference to @file{gcc.1}, but all the other man pages are generated from Texinfo manuals.) Because many systems may not have the necessary tools installed to generate the man pages, they are only generated if the @file{configure} script detects that recent enough tools are installed, and the Makefiles allow generating man pages to fail without aborting the build. Man pages are also included in release distributions. They are generated in the source directory. Magic comments in Texinfo files starting @samp{@@c man} control what parts of a Texinfo file go into a man page. Only a subset of Texinfo is supported by @file{texi2pod.pl}, and it may be necessary to add support for more Texinfo features to this script when generating new man pages. To improve the man page output, some special Texinfo macros are provided in @file{doc/include/gcc-common.texi} which @file{texi2pod.pl} understands: @table @code @item @@gcctabopt Use in the form @samp{@@table @@gcctabopt} for tables of options, where for printed output the effect of @samp{@@code} is better than that of @samp{@@option} but for man page output a different effect is wanted. @item @@gccoptlist Use for summary lists of options in manuals. @item @@gol Use at the end of each line inside @samp{@@gccoptlist}. This is necessary to avoid problems with differences in how the @samp{@@gccoptlist} macro is handled by different Texinfo formatters. @end table FIXME: describe the @file{texi2pod.pl} input language and magic comments in more detail. @node Miscellaneous Docs @subsubsection Miscellaneous Documentation In addition to the formal documentation that is installed by GCC, there are several other text files with miscellaneous documentation: @table @file @item ABOUT-GCC-NLS Notes on GCC's Native Language Support. FIXME: this should be part of this manual rather than a separate file. @item ABOUT-NLS Notes on the Free Translation Project. @item COPYING The GNU General Public License. @item COPYING.LIB The GNU Lesser General Public License. @item *ChangeLog* @itemx */ChangeLog* Change log files for various parts of GCC@. @item LANGUAGES Details of a few changes to the GCC front-end interface. FIXME: the information in this file should be part of general documentation of the front-end interface in this manual. @item ONEWS Information about new features in old versions of GCC@. (For recent versions, the information is on the GCC web site.) @item README.Portability Information about portability issues when writing code in GCC@. FIXME: why isn't this part of this manual or of the GCC Coding Conventions? @item SERVICE A pointer to the GNU Service Directory. @end table FIXME: document such files in subdirectories, at least @file{config}, @file{cp}, @file{objc}, @file{testsuite}. @node Front End @subsection Anatomy of a Language Front End A front end for a language in GCC has the following parts: @itemize @bullet @item A directory @file{@var{language}} under @file{gcc} containing source files for that front end. @xref{Front End Directory, , The Front End @file{@var{language}} Directory}, for details. @item A mention of the language in the list of supported languages in @file{gcc/doc/install.texi}. @item Details of contributors to that front end in @file{gcc/doc/contrib.texi}. If the details are in that front end's own manual then there should be a link to that manual's list in @file{contrib.texi}. @item Information about support for that language in @file{gcc/doc/frontends.texi}. @item Information about standards for that language, and the front end's support for them, in @file{gcc/doc/standards.texi}. This may be a link to such information in the front end's own manual. @item Details of source file suffixes for that language and @option{-x @var{lang}} options supported, in @file{gcc/doc/invoke.texi}. @item Entries in @code{default_compilers} in @file{gcc.c} for source file suffixes for that language. @item Preferably test suites, which may be under @file{gcc/testsuite} or runtime library directories. FIXME: document somewhere how to write test suite harnesses. @item Probably a runtime library for the language, outside the @file{gcc} directory. FIXME: document this further. @item Details of the directories of any runtime libraries in @file{gcc/doc/sourcebuild.texi}. @end itemize If the front end is added to the official GCC CVS repository, the following are also necessary: @itemize @bullet @item At least one GNATS category for bugs in that front end and runtime libraries. This category needs to be mentioned in @file{gcc/gccbug.in}, and in @file{gnats.html} on the GCC web site, as well as being added to the GNATS database. @item Normally, one or more maintainers of that front end listed in @file{MAINTAINERS}. @item Mentions on the GCC web site in @file{index.html} and @file{frontends.html}, with any relevant links on @file{readings.html}. (Front ends that are not an official part of GCC may also be listed on @file{frontends.html}, with relevant links.) @item A news item on @file{index.html}, and possibly an announcement on the @email{gcc-announce@@gcc.gnu.org} mailing list. @item The front end's manuals should be mentioned in @file{maintainer-scripts/update_web_docs} (@pxref{Texinfo Manuals}) and the online manuals should be linked to from @file{onlinedocs/index.html}. @item Any old releases or CVS repositories of the front end, before its inclusion in GCC, should be made available on the GCC FTP site @uref{ftp://gcc.gnu.org/pub/gcc/old-releases/}. @item The release and snapshot script @file{maintainer-scripts/gcc_release} should be updated to generate appropriate tarballs for this front end. @item If this front end includes its own version files that include the current date, @file{maintainer-scripts/update_version} should be updated accordingly. @item @file{CVSROOT/modules} in the GCC CVS repository should be updated. @end itemize @menu * Front End Directory:: The front end @file{@var{language}} directory. * Front End Config:: The front end @file{config-lang.in} file. @end menu @node Front End Directory @subsubsection The Front End @file{@var{language}} Directory A front end @file{@var{language}} directory contains the source files of that front end (but not of any runtime libraries, which should be outside the @file{gcc} directory). This includes documentation, and possibly some subsidiary programs build alongside the front end. Certain files are special and other parts of the compiler depend on their names: @table @file @item config-lang.in This file is required in all language subdirectories. @xref{Front End Config, , The Front End @file{config-lang.in} File}, for details of its contents @item Make-lang.in This file is required in all language subdirectories. It contains targets @code{@var{lang}.@var{hook}} (where @code{@var{lang}} is the setting of @code{language} in @file{config-lang.in}) for the following values of @code{@var{hook}}, and any other Makefile rules required to build those targets (which may if necessary use other Makefiles specified in @code{outputs} in @file{config-lang.in}, although this is deprecated). @table @code @item all.build @itemx all.cross @itemx start.encap @itemx rest.encap FIXME: exactly what goes in each of these targets? @item info Build info documentation for the front end, in the source directory. This target is only called by @command{make bootstrap} if a suitable version of @command{makeinfo} is available, so does not need to check for this, and should fail if an error occurs. @item dvi Build DVI documentation for the front end, in the build directory. This should be done using @code{$(TEXI2DVI)}, with appropriate @option{-I} arguments pointing to directories of included files. @item generated-manpages Build generated man pages for the front end from Texinfo manuals (@pxref{Man Page Generation}), in the source directory. This target is only called if the necessary tools are available, but should ignore errors so as not to stop the build if errors occur; man pages are optional and the tools involved may be installed in a broken way. @item install-normal FIXME: what is this target for? @item install-common Install everything that is part of the front end, apart from the compiler executables listed in @code{compilers} in @file{config-lang.in} that are installed in @file{@var{libsubdir}} by the main @file{Makefile}. @item install-info Install info documentation for the front end, if it is present in the source directory. (It may not be present if a suitable version of @command{makeinfo} was not installed.) This target should run the command @command{install-info} to update the info directory, but should ignore errors when running that command. @item install-man Install man pages for the front end. This target should ignore errors. @item uninstall Uninstall files installed by installing the compiler. This is currently documented not to be supported, so the hook need not do anything. @item mostlyclean @itemx clean @itemx distclean @itemx extraclean @itemx maintainer-clean Except for @code{extraclean}, the language parts of the standard GNU @samp{*clean} targets. @xref{Standard Targets, , Standard Targets for Users, standards, GNU Coding Standards}, for details of the standard targets. @code{extraclean} does @code{distclean} and also deletes anything likely to be found in the source directory that shouldn't be in the distribution. For GCC, @code{maintainer-clean} should delete all generated files in the source directory that are not checked into CVS, but should not delete anything checked into CVS@. @item stage1 @itemx stage2 @itemx stage3 @itemx stage4 Move to the stage directory files not included in @code{stagestuff} in @file{config-lang.in} or otherwise moved by the main @file{Makefile}. @end table @item lang-options.h This file provides entries for @code{documented_lang_options} in @file{toplev.c} describing command-line options the front end accepts for @option{--help} output. @item lang-specs.h This file provides entries for @code{default_compilers} in @file{gcc.c} which override the default of giving an error that a compiler for that language is not installed. @item @var{language}-tree.def This file, which need not exist, defines any language-specific tree codes. @end table @node Front End Config @subsubsection The Front End @file{config-lang.in} File Each language subdirectory contains a @file{config-lang.in} file. This file is a shell script that may define some variables describing the language: @table @code @item language This definition must be present, and gives the name of the language for some purposes such as arguments to @option{--enable-languages}. @item lang_requires If defined, this variable lists (space-separated) language front ends other than C that this front end requires to be enabled (with the names given being their @code{language} settings). For example, the Java front end depends on the C++ front end, so sets @samp{lang_requires=c++}. @item target_libs If defined, this variable lists (space-separated) targets in the top level @file{Makefile} to build the runtime libraries for this language, such as @code{target-libobjc}. @item lang_dirs If defined, this variable lists (space-separated) top level directories (parallel to @file{gcc}), apart from the runtime libraries, that should not be configured if this front end is not built. @item build_by_default If defined to @samp{no}, this language front end is not built unless enabled in a @option{--enable-languages} argument. Otherwise, front ends are built by default, subject to any special logic in @file{configure.in} (as is present to disable the Ada front end if the Ada compiler is not already installed). @item boot_language If defined to @samp{yes}, this front end is built in stage 1 of the bootstrap. This is only relevant to front ends written in their own languages. @item compilers If defined, a space-separated list of compiler executables that should be installed in @file{@var{libsubdir}}. The names here will each end with @samp{\$(exeext)}. @item stagestuff If defined, a space-separated list of files that should be moved to the @file{stage@var{n}} directories in each stage of bootstrap. @item outputs If defined, a space-separated list of files that should be generated by @file{configure} substituting values in them. This mechanism can be used to create a file @file{@var{language}/Makefile} from @file{@var{language}/Makefile.in}, but this is deprecated, building everything from the single @file{gcc/Makefile} is preferred. @end table @node Back End @subsection Anatomy of a Target Back End A back end for a target architecture in GCC has the following parts: @itemize @bullet @item A directory @file{@var{machine}} under @file{gcc/config}, containing a machine description @file{@var{machine}.md} file (@pxref{Machine Desc, , Machine Descriptions}), header files @file{@var{machine}.h} and @file{@var{machine}-protos.h} and a source file @file{@var{machine}.c} (@pxref{Target Macros, , Target Description Macros and Functions}), possibly a target Makefile fragment @file{t-@var{machine}} (@pxref{Target Fragment, , The Target Makefile Fragment}), and maybe some other files. The names of these files may be changed from the defaults given by explicit specifications in @file{config.gcc}. @item Entries in @file{config.gcc} (@pxref{System Config, , The @file{config.gcc} File}) for the systems with this target architecture. @item Documentation in @file{gcc/doc/invoke.texi} for any command-line options supported by this target (@pxref{Run-time Target, , Run-time Target Specification}). This means both entries in the summary table of options and details of the individual options. @item Documentation in @file{gcc/doc/extend.texi} for any target-specific attributes supported (@pxref{Target Attributes, , Defining target-specific uses of @code{__attribute__}}), including where the same attribute is already supported on some targets, which are enumerated in the manual. @item Documentation in @file{gcc/doc/extend.texi} for any target-specific pragmas supported. @item Documentation in @file{gcc/doc/extend.texi} of any target-specific built-in functions supported. @item Documentation in @file{gcc/doc/md.texi} of any target-specific constraint letters (@pxref{Machine Constraints, , Constraints for Particular Machines}). @item A note in @file{gcc/doc/contrib.texi} under the person or people who contributed the target support. @item Entries in @file{gcc/doc/install.texi} for all target triplets supported with this target architecture, giving details of any special notes about installation for this target, or saying that there are no special notes if there are none. @item Possibly other support outside the @file{gcc} directory for runtime libraries. FIXME: reference docs for this. The libstdc++ porting manual needs to be installed as info for this to work, or to be a chapter of this manual. @end itemize If the back end is added to the official GCC CVS repository, the following are also necessary: @itemize @bullet @item An entry for the target architecture in @file{readings.html} on the GCC web site, with any relevant links. @item A news item about the contribution of support for that target architecture, in @file{index.html} on the GCC web site. @item Normally, one or more maintainers of that target listed in @file{MAINTAINERS}. Some existing architectures may be unmaintained, but it would be unusual to add support for a target that does not have a maintainer when support is added. @end itemize @node Test Suites @section Test Suites GCC contains several test suites to help maintain compiler quality. Most of the runtime libraries and language front ends in GCC have test suites. Currently only the C language test suites are documented here; FIXME: document the others. @menu * Test Idioms:: Idioms used in test suite code. * C Tests:: The C language test suites. * libgcj Tests:: The Java library test suites. @end menu @node Test Idioms @subsection Idioms Used in Test Suite Code In the @file{gcc.c-torture} test suites, test cases are commonly named after the date on which they were added. This allows people to tell at a glance whether a test failure is because of a recently found bug that has not yet been fixed, or whether it may be a regression. In other test suites, more descriptive names are used. In general C test cases have a trailing @file{-@var{n}.c}, starting with @file{-1.c}, in case other test cases with similar names are added later. Test cases should use @code{abort ()} to indicate failure and @code{exit (0)} for success; on some targets these may be redefined to indicate failure and success in other ways. In the @file{gcc.dg} test suite, it is often necessary to test that an error is indeed a hard error and not just a warning---for example, where it is a constraint violation in the C standard, which must become an error with @option{-pedantic-errors}. The following idiom, where the first line shown is line @var{line} of the file and the line that generates the error, is used for this: @smallexample /* @{ dg-bogus "warning" "warning in place of error" @} */ /* @{ dg-error "@var{regexp}" "@var{message}" @{ target *-*-* @} @var{line} @} */ @end smallexample It may be necessary to check that an expression is an integer constant expression and has a certain value. To check that @code{@var{E}} has value @code{@var{V}}, an idiom similar to the following is used: @smallexample char x[((E) == (V) ? 1 : -1)]; @end smallexample In @file{gcc.dg} tests, @code{__typeof__} is sometimes used to make assertions about the types of expressions. See, for example, @file{gcc.dg/c99-condexpr-1.c}. The more subtle uses depend on the exact rules for the types of conditional expressions in the C standard; see, for example, @file{gcc.dg/c99-intconst-1.c}. It is useful to be able to test that optimizations are being made properly. This cannot be done in all cases, but it can be done where the optimization will lead to code being optimized away (for example, where flow analysis or alias analysis should show that certain code cannot be called) or to functions not being called because they have been expanded as built-in functions. Such tests go in @file{gcc.c-torture/execute}. Where code should be optimized away, a call to a nonexistent function such as @code{link_failure ()} may be inserted; a definition @smallexample #ifndef __OPTIMIZE__ void link_failure (void) @{ abort (); @} #endif @end smallexample @noindent will also be needed so that linking still succeeds when the test is run without optimization. When all calls to a built-in function should have been optimized and no calls to the non-built-in version of the function should remain, that function may be defined as @code{static} to call @code{abort ()} (although redeclaring a function as static may not work on all targets). FIXME: discuss non-C test suites here. @node C Tests @subsection C Language Test Suites GCC contains the following C language test suites, in the @file{gcc/testsuite} directory: @table @file @item gcc.c-torture/compat FIXME: describe this. This directory should probably not be used for new tests. @item gcc.c-torture/compile This test suite contains test cases that should compile, but do not need to link or run. These test cases are compiled with several different combinations of optimization options. All warnings are disabled for these test cases, so this directory is not suitable if you wish to test for the presence or absence of compiler warnings. While special options can be set, and tests disabled on specific platforms, by the use of @file{.x} files, mostly these test cases should not contain platform dependencies. FIXME: discuss how defines such as @code{NO_LABEL_VALUES} and @code{STACK_SIZE} are used. @item gcc.c-torture/execute This test suite contains test cases that should compile, link and run; otherwise the same comments as for @file{gcc.c-torture/compile} apply. @item gcc.c-torture/unsorted FIXME: describe this. This directory should probably not be used for new tests. @item gcc.dg This test suite contains tests using the more modern @samp{dg} harness. Magic comments determine whether the file is preprocessed, compiled, linked or run. In these tests, error and warning message texts are compared against expected texts or regular expressions given in comments. These tests are run with the options @samp{-ansi -pedantic} unless other options are given in the test. Except as noted below they are not run with multiple optimization options. @item gcc.dg/cpp This subdirectory contains tests of the preprocessor. @item gcc.dg/debug This subdirectory contains tests for debug formats. Tests in this subdirectory are run for each debug format that the compiler supports. @item gcc.dg/format This subdirectory contains tests of the @option{-Wformat} format checking. Tests in this directory are run with and without @option{-DWIDE}. @item gcc.dg/noncompile This subdirectory contains tests of code that should not compile and does not need any special compilation options. They are run with multiple optimization options, since sometimes invalid code crashes the compiler with optimization. @item gcc.dg/special FIXME: describe this. @item gcc.c-torture/misc-tests FIXME: describe this, when it should be used for new tests and when it shouldn't. @end table FIXME: merge in @file{testsuite/README.gcc} and discuss the format of test cases and magic comments more. @node libgcj Tests @subsection The Java library test suites. Runtime tests are executed via @samp{make check} from the @samp{testsuite} directory of the libjava hierarchy in the build tree. Additional runtime tests can be checked into this testsuite. Regression testing of the core packages in libgcj is also covered by the Mauve test suite. The @uref{http://sources.redhat.com/mauve/,,Mauve Project} develops tests for the Java Class Libraries. These tests are run as part of libgcj testing by specifying the location of the Mauve tree when invoking @samp{make}, as in @samp{make MAUVEDIR=~/mauve check}. The @uref{http://oss.software.ibm.com/developerworks/opensource/jacks/,, Jacks} project provides a test suite for Java compilers that can be used to test changes that affect the GCJ front end. There is no automated mechanism to run the Jacks suite as part of GCJ testing. We encourage developers to contribute test cases to Mauve and Jacks.