/* Perform the semantic phase of parsing, i.e., the process of building tree structure, checking semantic consistency, and building RTL. These routines are used both during actual parsing and during the instantiation of template functions. Copyright (C) 1998, 1999 Free Software Foundation, Inc. Written by Mark Mitchell (mmitchell@usa.net) based on code found formerly in parse.y and pt.c. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "tree.h" #include "cp-tree.h" #include "except.h" #include "lex.h" #include "toplev.h" /* There routines provide a modular interface to perform many parsing operations. They may therefore be used during actual parsing, or during template instantiation, which may be regarded as a degenerate form of parsing. Since the current g++ parser is lacking in several respects, and will be reimplemented, we are attempting to move most code that is not directly related to parsing into this file; that will make implementing the new parser much easier since it will be able to make use of these routines. */ /* When parsing a template, LAST_TREE contains the last statement parsed. These are chained together through the TREE_CHAIN field, but often need to be re-organized since the parse is performed bottom-up. This macro makes LAST_TREE the indicated SUBSTMT of STMT. */ #define RECHAIN_STMTS(stmt, substmt, last) \ do { \ substmt = last; \ TREE_CHAIN (stmt) = NULL_TREE; \ last_tree = stmt; \ } while (0) #define RECHAIN_STMTS_FROM_LAST(stmt, substmt) \ RECHAIN_STMTS (stmt, substmt, last_tree) #define RECHAIN_STMTS_FROM_CHAIN(stmt, substmt) \ RECHAIN_STMTS (stmt, substmt, TREE_CHAIN (stmt)) /* Finish an expression-statement, whose EXPRESSION is as indicated. */ void finish_expr_stmt (expr) tree expr; { if (expr != NULL_TREE) { if (!processing_template_decl) { emit_line_note (input_filename, lineno); /* Do default conversion if safe and possibly important, in case within ({...}). */ if ((TREE_CODE (TREE_TYPE (expr)) == ARRAY_TYPE && lvalue_p (expr)) || TREE_CODE (TREE_TYPE (expr)) == FUNCTION_TYPE) expr = default_conversion (expr); } cplus_expand_expr_stmt (expr); clear_momentary (); } finish_stmt (); } /* Begin an if-statement. Returns a newly created IF_STMT if appropriate. */ tree begin_if_stmt () { tree r; if (processing_template_decl) { r = build_min_nt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE); add_tree (r); } else r = NULL_TREE; do_pushlevel (); return r; } /* Process the COND of an if-statement, which may be given by IF_STMT. */ void finish_if_stmt_cond (cond, if_stmt) tree cond; tree if_stmt; { if (processing_template_decl) { if (last_tree != if_stmt) RECHAIN_STMTS_FROM_LAST (if_stmt, IF_COND (if_stmt)); else IF_COND (if_stmt) = copy_to_permanent (cond); } else { emit_line_note (input_filename, lineno); expand_start_cond (condition_conversion (cond), 0); } } /* Finish the then-clause of an if-statement, which may be given by IF_STMT. */ tree finish_then_clause (if_stmt) tree if_stmt; { if (processing_template_decl) { RECHAIN_STMTS_FROM_CHAIN (if_stmt, THEN_CLAUSE (if_stmt)); last_tree = if_stmt; return if_stmt; } else return NULL_TREE; } /* Begin the else-clause of an if-statement. */ void begin_else_clause () { if (!processing_template_decl) expand_start_else (); } /* Finish the else-clause of an if-statement, which may be given by IF_STMT. */ void finish_else_clause (if_stmt) tree if_stmt; { if (processing_template_decl) RECHAIN_STMTS_FROM_CHAIN (if_stmt, ELSE_CLAUSE (if_stmt)); } /* Finsh an if-statement. */ void finish_if_stmt () { if (!processing_template_decl) expand_end_cond (); do_poplevel (); finish_stmt (); } /* Begin a while-statement. Returns a newly created WHILE_STMT if appropriate. */ tree begin_while_stmt () { tree r; if (processing_template_decl) { r = build_min_nt (WHILE_STMT, NULL_TREE, NULL_TREE); add_tree (r); } else { emit_nop (); emit_line_note (input_filename, lineno); expand_start_loop (1); r = NULL_TREE; } do_pushlevel (); return r; } /* Process the COND of an if-statement, which may be given by WHILE_STMT. */ void finish_while_stmt_cond (cond, while_stmt) tree cond; tree while_stmt; { if (processing_template_decl) { if (last_tree != while_stmt) RECHAIN_STMTS_FROM_LAST (while_stmt, WHILE_COND (while_stmt)); else TREE_OPERAND (while_stmt, 0) = copy_to_permanent (cond); } else { emit_line_note (input_filename, lineno); expand_exit_loop_if_false (0, condition_conversion (cond)); } /* If COND wasn't a declaration, clear out the block we made for it and start a new one here so the optimization in expand_end_loop will work. */ if (getdecls () == NULL_TREE) { do_poplevel (); do_pushlevel (); } } /* Finish a while-statement, which may be given by WHILE_STMT. */ void finish_while_stmt (while_stmt) tree while_stmt; { do_poplevel (); if (processing_template_decl) RECHAIN_STMTS_FROM_CHAIN (while_stmt, WHILE_BODY (while_stmt)); else expand_end_loop (); finish_stmt (); } /* Begin a do-statement. Returns a newly created DO_STMT if appropriate. */ tree begin_do_stmt () { if (processing_template_decl) { tree r = build_min_nt (DO_STMT, NULL_TREE, NULL_TREE); add_tree (r); return r; } else { emit_nop (); emit_line_note (input_filename, lineno); expand_start_loop_continue_elsewhere (1); return NULL_TREE; } } /* Finish the body of a do-statement, which may be given by DO_STMT. */ void finish_do_body (do_stmt) tree do_stmt; { if (processing_template_decl) RECHAIN_STMTS_FROM_CHAIN (do_stmt, DO_BODY (do_stmt)); else expand_loop_continue_here (); } /* Finish a do-statement, which may be given by DO_STMT, and whose COND is as indicated. */ void finish_do_stmt (cond, do_stmt) tree cond; tree do_stmt; { if (processing_template_decl) DO_COND (do_stmt) = copy_to_permanent (cond); else { emit_line_note (input_filename, lineno); expand_exit_loop_if_false (0, condition_conversion (cond)); expand_end_loop (); } clear_momentary (); finish_stmt (); } /* Finish a return-statement. The EXPRESSION returned, if any, is as indicated. */ void finish_return_stmt (expr) tree expr; { emit_line_note (input_filename, lineno); c_expand_return (expr); finish_stmt (); } /* Begin a for-statement. Returns a new FOR_STMT if appropriate. */ tree begin_for_stmt () { tree r; if (processing_template_decl) { r = build_min_nt (FOR_STMT, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE); add_tree (r); } else r = NULL_TREE; if (flag_new_for_scope > 0) { do_pushlevel (); note_level_for_for (); } return r; } /* Finish the for-init-statement of a for-statement, which may be given by FOR_STMT. */ void finish_for_init_stmt (for_stmt) tree for_stmt; { if (processing_template_decl) { if (last_tree != for_stmt) RECHAIN_STMTS_FROM_CHAIN (for_stmt, FOR_INIT_STMT (for_stmt)); } else { emit_nop (); emit_line_note (input_filename, lineno); expand_start_loop_continue_elsewhere (1); } do_pushlevel (); } /* Finish the COND of a for-statement, which may be given by FOR_STMT. */ void finish_for_cond (cond, for_stmt) tree cond; tree for_stmt; { if (processing_template_decl) { if (last_tree != for_stmt) RECHAIN_STMTS_FROM_LAST (for_stmt, FOR_COND (for_stmt)); else FOR_COND (for_stmt) = copy_to_permanent (cond); } else { emit_line_note (input_filename, lineno); if (cond) expand_exit_loop_if_false (0, condition_conversion (cond)); } /* If the cond wasn't a declaration, clear out the block we made for it and start a new one here so the optimization in expand_end_loop will work. */ if (getdecls () == NULL_TREE) { do_poplevel (); do_pushlevel (); } } /* Finish the increment-EXPRESSION in a for-statement, which may be given by FOR_STMT. */ void finish_for_expr (expr, for_stmt) tree expr; tree for_stmt; { if (processing_template_decl) FOR_EXPR (for_stmt) = expr; /* Don't let the tree nodes for EXPR be discarded by clear_momentary during the parsing of the next stmt. */ push_momentary (); } /* Finish the body of a for-statement, which may be given by FOR_STMT. The increment-EXPR for the loop must be provided. */ void finish_for_stmt (expr, for_stmt) tree expr; tree for_stmt; { /* Pop the scope for the body of the loop. */ do_poplevel (); if (processing_template_decl) RECHAIN_STMTS_FROM_CHAIN (for_stmt, FOR_BODY (for_stmt)); else { emit_line_note (input_filename, lineno); expand_loop_continue_here (); if (expr) cplus_expand_expr_stmt (expr); expand_end_loop (); } pop_momentary (); if (flag_new_for_scope > 0) do_poplevel (); finish_stmt (); } /* Finish a break-statement. */ void finish_break_stmt () { emit_line_note (input_filename, lineno); if (processing_template_decl) add_tree (build_min_nt (BREAK_STMT)); else if ( ! expand_exit_something ()) cp_error ("break statement not within loop or switch"); } /* Finish a continue-statement. */ void finish_continue_stmt () { emit_line_note (input_filename, lineno); if (processing_template_decl) add_tree (build_min_nt (CONTINUE_STMT)); else if (! expand_continue_loop (0)) cp_error ("continue statement not within a loop"); } /* Begin a switch-statement. */ void begin_switch_stmt () { do_pushlevel (); } /* Finish the cond of a switch-statement. Returns a new SWITCH_STMT if appropriate. */ tree finish_switch_cond (cond) tree cond; { tree r; if (processing_template_decl) { r = build_min_nt (SWITCH_STMT, cond, NULL_TREE); add_tree (r); } else if (cond != error_mark_node) { emit_line_note (input_filename, lineno); c_expand_start_case (cond); r = NULL_TREE; } else { /* The code is in error, but we don't want expand_end_case to crash. */ c_expand_start_case (boolean_false_node); r = NULL_TREE; } push_switch (); /* Don't let the tree nodes for COND be discarded by clear_momentary during the parsing of the next stmt. */ push_momentary (); return r; } /* Finish the body of a switch-statement, which may be given by SWITCH_STMT. The COND to switch on is indicated. */ void finish_switch_stmt (cond, switch_stmt) tree cond; tree switch_stmt; { if (processing_template_decl) RECHAIN_STMTS_FROM_CHAIN (switch_stmt, SWITCH_BODY (switch_stmt)); else expand_end_case (cond); pop_momentary (); pop_switch (); do_poplevel (); finish_stmt (); } /* Finish a case-label. */ void finish_case_label (low_value, high_value) tree low_value; tree high_value; { do_case (low_value, high_value); } /* Finish a goto-statement. */ void finish_goto_stmt (destination) tree destination; { if (processing_template_decl) add_tree (build_min_nt (GOTO_STMT, destination)); else { emit_line_note (input_filename, lineno); if (TREE_CODE (destination) == IDENTIFIER_NODE) { tree decl = lookup_label (destination); TREE_USED (decl) = 1; expand_goto (decl); } else expand_computed_goto (destination); } } /* Begin a try-block. Returns a newly-created TRY_BLOCK if appropriate. */ tree begin_try_block () { if (processing_template_decl) { tree r = build_min_nt (TRY_BLOCK, NULL_TREE, NULL_TREE); add_tree (r); return r; } else { emit_line_note (input_filename, lineno); expand_start_try_stmts (); return NULL_TREE; } } /* Finish a try-block, which may be given by TRY_BLOCK. */ void finish_try_block (try_block) tree try_block; { if (processing_template_decl) RECHAIN_STMTS_FROM_LAST (try_block, TRY_STMTS (try_block)); else { expand_start_all_catch (); } } /* Finish a handler-sequence for a try-block, which may be given by TRY_BLOCK. */ void finish_handler_sequence (try_block) tree try_block; { if (processing_template_decl) RECHAIN_STMTS_FROM_CHAIN (try_block, TRY_HANDLERS (try_block)); else { expand_end_all_catch (); } } /* Begin a handler. Returns a HANDLER if appropriate. */ tree begin_handler () { tree r; if (processing_template_decl) { r = build_min_nt (HANDLER, NULL_TREE, NULL_TREE); add_tree (r); } else r = NULL_TREE; do_pushlevel (); return r; } /* Finish the handler-parameters for a handler, which may be given by HANDLER. */ void finish_handler_parms (handler) tree handler; { if (processing_template_decl) RECHAIN_STMTS_FROM_CHAIN (handler, HANDLER_PARMS (handler)); } /* Finish a handler, which may be given by HANDLER. */ void finish_handler (handler) tree handler; { if (processing_template_decl) RECHAIN_STMTS_FROM_CHAIN (handler, HANDLER_BODY (handler)); else expand_end_catch_block (); do_poplevel (); } /* Begin a compound-statement. If HAS_NO_SCOPE is non-zero, the compound-statement does not define a scope. Returns a new COMPOUND_STMT if appropriate. */ tree begin_compound_stmt (has_no_scope) int has_no_scope; { tree r; if (processing_template_decl) { r = build_min_nt (COMPOUND_STMT, NULL_TREE); add_tree (r); if (has_no_scope) COMPOUND_STMT_NO_SCOPE (r) = 1; } else r = NULL_TREE; if (!has_no_scope) do_pushlevel (); return r; } /* Finish a compound-statement, which may be given by COMPOUND_STMT. If HAS_NO_SCOPE is non-zero, the compound statement does not define a scope. */ tree finish_compound_stmt (has_no_scope, compound_stmt) int has_no_scope; tree compound_stmt; { tree r; if (!has_no_scope) r = do_poplevel (); else r = NULL_TREE; if (processing_template_decl) RECHAIN_STMTS_FROM_CHAIN (compound_stmt, COMPOUND_BODY (compound_stmt)); finish_stmt (); return r; } /* Finish an asm-statement, whose components are a CV_QUALIFIER, a STRING, some OUTPUT_OPERANDS, some INPUT_OPERANDS, and some CLOBBERS. */ void finish_asm_stmt (cv_qualifier, string, output_operands, input_operands, clobbers) tree cv_qualifier; tree string; tree output_operands; tree input_operands; tree clobbers; { if (TREE_CHAIN (string)) string = combine_strings (string); if (processing_template_decl) { tree r = build_min_nt (ASM_STMT, cv_qualifier, string, output_operands, input_operands, clobbers); add_tree (r); } else { emit_line_note (input_filename, lineno); if (output_operands != NULL_TREE || input_operands != NULL_TREE || clobbers != NULL_TREE) { tree t; if (cv_qualifier != NULL_TREE && cv_qualifier != ridpointers[(int) RID_VOLATILE]) cp_warning ("%s qualifier ignored on asm", IDENTIFIER_POINTER (cv_qualifier)); for (t = input_operands; t; t = TREE_CHAIN (t)) TREE_VALUE (t) = decay_conversion (TREE_VALUE (t)); c_expand_asm_operands (string, output_operands, input_operands, clobbers, cv_qualifier == ridpointers[(int) RID_VOLATILE], input_filename, lineno); } else { /* Don't warn about redundant specification of 'volatile' here. */ if (cv_qualifier != NULL_TREE && cv_qualifier != ridpointers[(int) RID_VOLATILE]) cp_warning ("%s qualifier ignored on asm", IDENTIFIER_POINTER (cv_qualifier)); expand_asm (string); } finish_stmt (); } } /* Finish a parenthesized expression EXPR. */ tree finish_parenthesized_expr (expr) tree expr; { if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (expr)))) /* This inhibits warnings in truthvalue_conversion. */ C_SET_EXP_ORIGINAL_CODE (expr, ERROR_MARK); return expr; } /* Begin a statement-expression. The value returned must be passed to finish_stmt_expr. */ tree begin_stmt_expr () { keep_next_level (); /* If we're processing_template_decl, then the upcoming compound statement will be chained onto the tree structure, starting at last_tree. We return last_tree so that we can later unhook the compound statement. */ return processing_template_decl ? last_tree : expand_start_stmt_expr(); } /* Finish a statement-expression. RTL_EXPR should be the value returned by the previous begin_stmt_expr; EXPR is the statement-expression. Returns an expression representing the statement-expression. */ tree finish_stmt_expr (rtl_expr, expr) tree rtl_expr; tree expr; { tree result; if (!processing_template_decl) { rtl_expr = expand_end_stmt_expr (rtl_expr); /* The statements have side effects, so the group does. */ TREE_SIDE_EFFECTS (rtl_expr) = 1; } if (TREE_CODE (expr) == BLOCK) { /* Make a BIND_EXPR for the BLOCK already made. */ if (processing_template_decl) result = build_min_nt (BIND_EXPR, NULL_TREE, last_tree, NULL_TREE); else result = build (BIND_EXPR, TREE_TYPE (rtl_expr), NULL_TREE, rtl_expr, expr); /* Remove the block from the tree at this point. It gets put back at the proper place when the BIND_EXPR is expanded. */ delete_block (expr); } else result = expr; if (processing_template_decl) { /* Remove the compound statement from the tree structure; it is now saved in the BIND_EXPR. */ last_tree = rtl_expr; TREE_CHAIN (last_tree) = NULL_TREE; } return result; } /* Finish a call to FN with ARGS. Returns a representation of the call. */ tree finish_call_expr (fn, args, koenig) tree fn; tree args; int koenig; { tree result; if (koenig) { if (TREE_CODE (fn) == BIT_NOT_EXPR) fn = build_x_unary_op (BIT_NOT_EXPR, TREE_OPERAND (fn, 0)); else if (TREE_CODE (fn) != TEMPLATE_ID_EXPR) fn = do_identifier (fn, 2, args); } result = build_x_function_call (fn, args, current_class_ref); if (TREE_CODE (result) == CALL_EXPR && (! TREE_TYPE (result) || TREE_CODE (TREE_TYPE (result)) != VOID_TYPE)) result = require_complete_type (result); return result; } /* Finish a call to a postfix increment or decrement or EXPR. (Which is indicated by CODE, which should be POSTINCREMENT_EXPR or POSTDECREMENT_EXPR.) */ tree finish_increment_expr (expr, code) tree expr; enum tree_code code; { /* If we get an OFFSET_REF, turn it into what it really means (e.g., a COMPONENT_REF). This way if we've got, say, a reference to a static member that's being operated on, we don't end up trying to find a member operator for the class it's in. */ if (TREE_CODE (expr) == OFFSET_REF) expr = resolve_offset_ref (expr); return build_x_unary_op (code, expr); } /* Finish a use of `this'. Returns an expression for `this'. */ tree finish_this_expr () { tree result; if (current_class_ptr) { #ifdef WARNING_ABOUT_CCD TREE_USED (current_class_ptr) = 1; #endif result = current_class_ptr; } else if (current_function_decl && DECL_STATIC_FUNCTION_P (current_function_decl)) { error ("`this' is unavailable for static member functions"); result = error_mark_node; } else { if (current_function_decl) error ("invalid use of `this' in non-member function"); else error ("invalid use of `this' at top level"); result = error_mark_node; } return result; } /* Finish a member function call using OBJECT and ARGS as arguments to FN. Returns an expression for the call. */ tree finish_object_call_expr (fn, object, args) tree fn; tree object; tree args; { #if 0 /* This is a future direction of this code, but because build_x_function_call cannot always undo what is done in build_component_ref entirely yet, we cannot do this. */ tree real_fn = build_component_ref (object, fn, NULL_TREE, 1); return finish_call_expr (real_fn, args); #else if (TREE_CODE (fn) == TYPE_DECL) { if (processing_template_decl) /* This can happen on code like: class X; template void f(T t) { t.X(); } We just grab the underlying IDENTIFIER. */ fn = DECL_NAME (fn); else { cp_error ("calling type `%T' like a method", fn); return error_mark_node; } } return build_method_call (object, fn, args, NULL_TREE, LOOKUP_NORMAL); #endif } /* Finish a qualified member function call using OBJECT and ARGS as arguments to FN. Returns an expressino for the call. */ tree finish_qualified_object_call_expr (fn, object, args) tree fn; tree object; tree args; { if (IS_SIGNATURE (TREE_OPERAND (fn, 0))) { warning ("signature name in scope resolution ignored"); return finish_object_call_expr (TREE_OPERAND (fn, 1), object, args); } else return build_scoped_method_call (object, TREE_OPERAND (fn, 0), TREE_OPERAND (fn, 1), args); } /* Finish a pseudo-destructor call expression of OBJECT, with SCOPE being the scope, if any, of DESTRUCTOR. Returns an expression for the call. */ tree finish_pseudo_destructor_call_expr (object, scope, destructor) tree object; tree scope; tree destructor; { if (scope && scope != destructor) cp_error ("destructor specifier `%T::~%T()' must have matching names", scope, destructor); if ((scope == NULL_TREE || IDENTIFIER_GLOBAL_VALUE (destructor)) && (TREE_CODE (TREE_TYPE (object)) != TREE_CODE (TREE_TYPE (IDENTIFIER_GLOBAL_VALUE (destructor))))) cp_error ("`%E' is not of type `%T'", object, destructor); return cp_convert (void_type_node, object); } /* Finish a call to a globally qualified member function FN using ARGS. Returns an expression for the call. */ tree finish_qualified_call_expr (fn, args) tree fn; tree args; { if (processing_template_decl) return build_min_nt (CALL_EXPR, copy_to_permanent (fn), args, NULL_TREE); else return build_member_call (TREE_OPERAND (fn, 0), TREE_OPERAND (fn, 1), args); } /* Finish an expression taking the address of LABEL. Returns an expression for the address. */ tree finish_label_address_expr (label) tree label; { tree result; label = lookup_label (label); if (label == NULL_TREE) result = null_pointer_node; else { TREE_USED (label) = 1; result = build1 (ADDR_EXPR, ptr_type_node, label); TREE_CONSTANT (result) = 1; } return result; } /* Finish an expression of the form CODE EXPR. */ tree finish_unary_op_expr (code, expr) enum tree_code code; tree expr; { tree result = build_x_unary_op (code, expr); if (code == NEGATE_EXPR && TREE_CODE (expr) == INTEGER_CST) TREE_NEGATED_INT (result) = 1; overflow_warning (result); return result; } /* Finish an id-expression. */ tree finish_id_expr (expr) tree expr; { if (TREE_CODE (expr) == IDENTIFIER_NODE) expr = do_identifier (expr, 1, NULL_TREE); return expr; } /* Begin a new-placement. */ int begin_new_placement () { /* The arguments to a placement new might be passed to a deallocation function, in the event that the allocation throws an exception. Since we don't expand exception handlers until the end of a function, we must make sure the arguments stay around that long. */ return suspend_momentary (); } /* Finish a new-placement. The ARGS are the placement arguments. The COOKIE is the value returned by the previous call to begin_new_placement. */ tree finish_new_placement (args, cookie) tree args; int cookie; { resume_momentary (cookie); return args; } /* Begin a function defniition declared with DECL_SPECS and DECLARATOR. Returns non-zero if the function-declaration is legal. */ int begin_function_definition (decl_specs, declarator) tree decl_specs; tree declarator; { tree specs; tree attrs; split_specs_attrs (decl_specs, &specs, &attrs); if (!start_function (specs, declarator, attrs, 0)) return 0; reinit_parse_for_function (); /* The things we're about to see are not directly qualified by any template headers we've seen thus far. */ reset_specialization (); return 1; } /* Begin a constructor declarator of the form `SCOPE::NAME'. Returns a SCOPE_REF. */ tree begin_constructor_declarator (scope, name) tree scope; tree name; { tree result = build_parse_node (SCOPE_REF, scope, name); enter_scope_of (result); return result; } /* Finish an init-declarator. Returns a DECL. */ tree finish_declarator (declarator, declspecs, attributes, prefix_attributes, initialized) tree declarator; tree declspecs; tree attributes; tree prefix_attributes; int initialized; { return start_decl (declarator, declspecs, initialized, attributes, prefix_attributes); } /* Finish a translation unit. */ void finish_translation_unit () { /* In case there were missing closebraces, get us back to the global binding level. */ while (! toplevel_bindings_p ()) poplevel (0, 0, 0); while (current_namespace != global_namespace) pop_namespace (); finish_file (); } /* Finish a template type parameter, specified as AGGR IDENTIFIER. Returns the parameter. */ tree finish_template_type_parm (aggr, identifier) tree aggr; tree identifier; { if (aggr == signature_type_node) sorry ("signature as template type parameter"); else if (aggr != class_type_node) { pedwarn ("template type parameters must use the keyword `class' or `typename'"); aggr = class_type_node; } return build_tree_list (aggr, identifier); } /* Finish a template template parameter, specified as AGGR IDENTIFIER. Returns the parameter. */ tree finish_template_template_parm (aggr, identifier) tree aggr; tree identifier; { tree decl = build_decl (TYPE_DECL, identifier, NULL_TREE); tree tmpl = build_lang_decl (TEMPLATE_DECL, identifier, NULL_TREE); DECL_TEMPLATE_PARMS (tmpl) = current_template_parms; DECL_TEMPLATE_RESULT (tmpl) = decl; SET_DECL_ARTIFICIAL (decl); end_template_decl (); return finish_template_type_parm (aggr, tmpl); } /* Finish a parameter list, indicated by PARMS. If ELLIPSIS is non-zero, the parameter list was terminated by a `...'. */ tree finish_parmlist (parms, ellipsis) tree parms; int ellipsis; { if (!ellipsis) chainon (parms, void_list_node); /* We mark the PARMS as a parmlist so that declarator processing can disambiguate certain constructs. */ if (parms != NULL_TREE) TREE_PARMLIST (parms) = 1; return parms; } /* Begin a class definition, as indicated by T. */ tree begin_class_definition (t) tree t; { push_obstacks_nochange (); end_temporary_allocation (); if (t == error_mark_node || ! IS_AGGR_TYPE (t)) { t = make_lang_type (RECORD_TYPE); pushtag (make_anon_name (), t, 0); } /* In a definition of a member class template, we will get here with an implicit typename, a TYPENAME_TYPE with a type. */ if (TREE_CODE (t) == TYPENAME_TYPE) t = TREE_TYPE (t); /* If we generated a partial instantiation of this type, but now we're seeing a real definition, we're actually looking at a partial specialization. Consider: template struct Y {}; template struct X {}; template void f() { typename X >::A a; } template struct X > { }; We have to undo the effects of the previous partial instantiation. */ if (PARTIAL_INSTANTIATION_P (t)) { if (!pedantic) { /* Unfortunately, when we're not in pedantic mode, we attempt to actually fill in some of the fields of the partial instantiation, in order to support the implicit typename extension. Clear those fields now, in preparation for the definition here. The fields cleared here must match those set in instantiate_class_template. Look for a comment mentioning begin_class_definition there. */ TYPE_BINFO_BASETYPES (t) = NULL_TREE; TYPE_FIELDS (t) = NULL_TREE; TYPE_METHODS (t) = NULL_TREE; CLASSTYPE_TAGS (t) = NULL_TREE; TYPE_SIZE (t) = NULL_TREE; } /* This isn't a partial instantiation any more. */ PARTIAL_INSTANTIATION_P (t) = 0; } /* If this type was already complete, and we see another definition, that's an error. */ else if (TYPE_SIZE (t)) duplicate_tag_error (t); if (TYPE_BEING_DEFINED (t)) { t = make_lang_type (TREE_CODE (t)); pushtag (TYPE_IDENTIFIER (t), t, 0); } maybe_process_partial_specialization (t); pushclass (t, 1); TYPE_BEING_DEFINED (t) = 1; /* Reset the interface data, at the earliest possible moment, as it might have been set via a class foo; before. */ /* Don't change signatures. */ if (! IS_SIGNATURE (t)) { int needs_writing; tree name = TYPE_IDENTIFIER (t); if (! ANON_AGGRNAME_P (name)) { CLASSTYPE_INTERFACE_ONLY (t) = interface_only; SET_CLASSTYPE_INTERFACE_UNKNOWN_X (t, interface_unknown); } /* Record how to set the access of this class's virtual functions. If write_virtuals == 3, then inline virtuals are ``extern inline''. */ if (write_virtuals == 3) needs_writing = ! CLASSTYPE_INTERFACE_ONLY (t) && CLASSTYPE_INTERFACE_KNOWN (t); else needs_writing = 1; CLASSTYPE_VTABLE_NEEDS_WRITING (t) = needs_writing; } #if 0 tmp = TYPE_IDENTIFIER ($0); if (tmp && IDENTIFIER_TEMPLATE (tmp)) overload_template_name (tmp, 1); #endif reset_specialization(); /* In case this is a local class within a template function, we save the current tree structure so that we can get it back later. */ begin_tree (); /* Make a declaration for this class in its own scope. */ build_self_reference (); return t; } /* Finish the member declaration given by DECL. */ void finish_member_declaration (decl) tree decl; { if (decl == error_mark_node || decl == NULL_TREE) return; if (decl == void_type_node) /* The COMPONENT was a friend, not a member, and so there's nothing for us to do. */ return; /* We should see only one DECL at a time. */ my_friendly_assert (TREE_CHAIN (decl) == NULL_TREE, 0); /* Set up access control for DECL. */ TREE_PRIVATE (decl) = (current_access_specifier == access_private_node); TREE_PROTECTED (decl) = (current_access_specifier == access_protected_node); if (TREE_CODE (decl) == TEMPLATE_DECL) { TREE_PRIVATE (DECL_RESULT (decl)) = TREE_PRIVATE (decl); TREE_PROTECTED (DECL_RESULT (decl)) = TREE_PROTECTED (decl); } /* Mark the DECL as a member of the current class. */ if (TREE_CODE (decl) == FUNCTION_DECL || DECL_FUNCTION_TEMPLATE_P (decl)) /* Historically, DECL_CONTEXT was not set for a FUNCTION_DECL in finish_struct. Presumably it is already set as the function is parsed. Perhaps DECL_CLASS_CONTEXT is already set, too? */ DECL_CLASS_CONTEXT (decl) = current_class_type; else DECL_CONTEXT (decl) = current_class_type; /* Put functions on the TYPE_METHODS list and everything else on the TYPE_FIELDS list. Note that these are built up in reverse order. We reverse them (to obtain declaration order) in finish_struct. */ if (TREE_CODE (decl) == FUNCTION_DECL || DECL_FUNCTION_TEMPLATE_P (decl)) { /* We also need to add this function to the CLASSTYPE_METHOD_VEC. */ add_method (current_class_type, 0, decl); TREE_CHAIN (decl) = TYPE_METHODS (current_class_type); TYPE_METHODS (current_class_type) = decl; } else { /* All TYPE_DECLs go at the end of TYPE_FIELDS. Ordinary fields go at the beginning. The reason is that lookup_field_1 searches the list in order, and we want a field name to override a type name so that the "struct stat hack" will work. In particular: struct S { enum E { }; int E } s; s.E = 3; is legal. In addition, the FIELD_DECLs must be maintained in declaration order so that class layout works as expected. However, we don't need that order until class layout, so we save a little time by putting FIELD_DECLs on in reverse order here, and then reversing them in finish_struct_1. (We could also keep a pointer to the correct insertion points in the list.) */ if (TREE_CODE (decl) == TYPE_DECL) TYPE_FIELDS (current_class_type) = chainon (TYPE_FIELDS (current_class_type), decl); else { TREE_CHAIN (decl) = TYPE_FIELDS (current_class_type); TYPE_FIELDS (current_class_type) = decl; } /* Enter the DECL into the scope of the class. */ if (TREE_CODE (decl) != USING_DECL) pushdecl_class_level (decl); } } /* Finish a class definition T with the indicate ATTRIBUTES. If SEMI, the definition is immediately followed by a semicolon. Returns the type. */ tree finish_class_definition (t, attributes, semi, pop_scope_p) tree t; tree attributes; int semi; int pop_scope_p; { /* finish_struct nukes this anyway; if finish_exception does too, then it can go. */ if (semi) note_got_semicolon (t); /* If we got any attributes in class_head, xref_tag will stick them in TREE_TYPE of the type. Grab them now. */ attributes = chainon (TREE_TYPE (t), attributes); TREE_TYPE (t) = NULL_TREE; if (TREE_CODE (t) == ENUMERAL_TYPE) ; else { t = finish_struct (t, attributes, semi); if (semi) note_got_semicolon (t); } pop_obstacks (); if (! semi) check_for_missing_semicolon (t); if (pop_scope_p) pop_scope (CP_DECL_CONTEXT (TYPE_MAIN_DECL (t))); if (current_scope () == current_function_decl) do_pending_defargs (); return t; } /* Finish processing the default argument expressions cached during the processing of a class definition. */ void begin_inline_definitions () { if (pending_inlines && current_scope () == current_function_decl) do_pending_inlines (); } /* Finish processing the inline function definitions cached during the processing of a class definition. */ void finish_inline_definitions () { if (current_class_type == NULL_TREE) clear_inline_text_obstack (); /* Undo the begin_tree in begin_class_definition. */ end_tree (); } /* Finish processing the declaration of a member class template TYPES whose template parameters are given by PARMS. */ tree finish_member_class_template (types) tree types; { tree t; /* If there are declared, but undefined, partial specializations mixed in with the typespecs they will not yet have passed through maybe_process_partial_specialization, so we do that here. */ for (t = types; t != NULL_TREE; t = TREE_CHAIN (t)) if (IS_AGGR_TYPE_CODE (TREE_CODE (TREE_VALUE (t)))) maybe_process_partial_specialization (TREE_VALUE (t)); note_list_got_semicolon (types); grok_x_components (types); if (TYPE_CONTEXT (TREE_VALUE (types)) != current_class_type) /* The component was in fact a friend declaration. We avoid finish_member_template_decl performing certain checks by unsetting TYPES. */ types = NULL_TREE; finish_member_template_decl (types); /* As with other component type declarations, we do not store the new DECL on the list of component_decls. */ return NULL_TREE; } /* Finish processsing a complete template declaration. The PARMS are the template parameters. */ void finish_template_decl (parms) tree parms; { if (parms) end_template_decl (); else end_specialization (); } /* Finish processing a a template-id (which names a type) of the form NAME < ARGS >. Return the TYPE_DECL for the type named by the template-id. If ENTERING_SCOPE is non-zero we are about to enter the scope of template-id indicated. */ tree finish_template_type (name, args, entering_scope) tree name; tree args; int entering_scope; { tree decl; decl = lookup_template_class (name, args, NULL_TREE, NULL_TREE, entering_scope); if (decl != error_mark_node) decl = TYPE_STUB_DECL (decl); return decl; } /* SR is a SCOPE_REF node. Enter the scope of SR, whether it is a namespace scope or a class scope. */ void enter_scope_of (sr) tree sr; { tree scope = TREE_OPERAND (sr, 0); if (TREE_CODE (scope) == NAMESPACE_DECL) { push_decl_namespace (scope); TREE_COMPLEXITY (sr) = -1; } else if (scope != current_class_type) { if (TREE_CODE (scope) == TYPENAME_TYPE) { /* In a declarator for a template class member, the scope will get here as an implicit typename, a TYPENAME_TYPE with a type. */ scope = TREE_TYPE (scope); TREE_OPERAND (sr, 0) = scope; } push_nested_class (scope, 3); TREE_COMPLEXITY (sr) = current_class_depth; } } /* Finish processing a BASE_CLASS with the indicated ACCESS_SPECIFIER. Return a TREE_LIST containing the ACCESS_SPECIFIER and the BASE_CLASS, or NULL_TREE if an error occurred. The ACCESSS_SPECIFIER is one of access_{default,public,protected_private}[_virtual]_node.*/ tree finish_base_specifier (access_specifier, base_class, current_aggr_is_signature) tree access_specifier; tree base_class; int current_aggr_is_signature; { tree type; tree result; if (base_class == NULL_TREE) { error ("invalid base class"); type = error_mark_node; } else type = TREE_TYPE (base_class); if (current_aggr_is_signature && access_specifier) error ("access and source specifiers not allowed in signature"); if (! is_aggr_type (type, 1)) result = NULL_TREE; else if (current_aggr_is_signature && (! type) && (! IS_SIGNATURE (type))) { error ("class name not allowed as base signature"); result = NULL_TREE; } else if (current_aggr_is_signature) { sorry ("signature inheritance, base type `%s' ignored", IDENTIFIER_POINTER (access_specifier)); result = build_tree_list (access_public_node, type); } else if (type && IS_SIGNATURE (type)) { error ("signature name not allowed as base class"); result = NULL_TREE; } else result = build_tree_list (access_specifier, type); return result; } /* Called when multiple declarators are processed. If that is not premitted in this context, an error is issued. */ void check_multiple_declarators () { /* [temp] In a template-declaration, explicit specialization, or explicit instantiation the init-declarator-list in the declaration shall contain at most one declarator. We don't just use PROCESSING_TEMPLATE_DECL for the first condition since that would disallow the perfectly legal code, like `template struct S { int i, j; };'. */ tree scope = current_scope (); if (scope && TREE_CODE (scope) == FUNCTION_DECL) /* It's OK to write `template void f() { int i, j;}'. */ return; if (PROCESSING_REAL_TEMPLATE_DECL_P () || processing_explicit_instantiation || processing_specialization) cp_error ("multiple declarators in template declaration"); } tree finish_typeof (expr) tree expr; { if (processing_template_decl) { tree t; push_obstacks_nochange (); end_temporary_allocation (); t = make_lang_type (TYPEOF_TYPE); TYPE_FIELDS (t) = expr; pop_obstacks (); return t; } return TREE_TYPE (expr); }