/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "apr_private.h" #include "apr_general.h" #include "apr_pools.h" #include "apr_time.h" #include "apr_hash.h" #if APR_HAVE_STDLIB_H #include #endif #if APR_HAVE_STRING_H #include #endif #if APR_POOL_DEBUG && APR_HAVE_STDIO_H #include #endif /* * The internal form of a hash table. * * The table is an array indexed by the hash of the key; collisions * are resolved by hanging a linked list of hash entries off each * element of the array. Although this is a really simple design it * isn't too bad given that pools have a low allocation overhead. */ typedef struct apr_hash_entry_t apr_hash_entry_t; struct apr_hash_entry_t { apr_hash_entry_t *next; unsigned int hash; const void *key; apr_ssize_t klen; const void *val; }; /* * Data structure for iterating through a hash table. * * We keep a pointer to the next hash entry here to allow the current * hash entry to be freed or otherwise mangled between calls to * apr_hash_next(). */ struct apr_hash_index_t { apr_hash_t *ht; apr_hash_entry_t *this, *next; unsigned int index; }; /* * The size of the array is always a power of two. We use the maximum * index rather than the size so that we can use bitwise-AND for * modular arithmetic. * The count of hash entries may be greater depending on the chosen * collision rate. */ struct apr_hash_t { apr_pool_t *pool; apr_hash_entry_t **array; apr_hash_index_t iterator; /* For apr_hash_first(NULL, ...) */ unsigned int count, max, seed; apr_hashfunc_t hash_func; apr_hash_entry_t *free; /* List of recycled entries */ }; #define INITIAL_MAX 15 /* tunable == 2^n - 1 */ /* * Hash creation functions. */ static apr_hash_entry_t **alloc_array(apr_hash_t *ht, unsigned int max) { return apr_pcalloc(ht->pool, sizeof(*ht->array) * (max + 1)); } APR_DECLARE(apr_hash_t *) apr_hash_make(apr_pool_t *pool) { apr_hash_t *ht; apr_time_t now = apr_time_now(); ht = apr_palloc(pool, sizeof(apr_hash_t)); ht->pool = pool; ht->free = NULL; ht->count = 0; ht->max = INITIAL_MAX; ht->seed = (unsigned int)((now >> 32) ^ now ^ (apr_uintptr_t)pool ^ (apr_uintptr_t)ht ^ (apr_uintptr_t)&now) - 1; ht->array = alloc_array(ht, ht->max); ht->hash_func = NULL; return ht; } APR_DECLARE(apr_hash_t *) apr_hash_make_custom(apr_pool_t *pool, apr_hashfunc_t hash_func) { apr_hash_t *ht = apr_hash_make(pool); ht->hash_func = hash_func; return ht; } /* * Hash iteration functions. */ APR_DECLARE(apr_hash_index_t *) apr_hash_next(apr_hash_index_t *hi) { hi->this = hi->next; while (!hi->this) { if (hi->index > hi->ht->max) return NULL; hi->this = hi->ht->array[hi->index++]; } hi->next = hi->this->next; return hi; } APR_DECLARE(apr_hash_index_t *) apr_hash_first(apr_pool_t *p, apr_hash_t *ht) { apr_hash_index_t *hi; if (p) hi = apr_palloc(p, sizeof(*hi)); else hi = &ht->iterator; hi->ht = ht; hi->index = 0; hi->this = NULL; hi->next = NULL; return apr_hash_next(hi); } APR_DECLARE(void) apr_hash_this(apr_hash_index_t *hi, const void **key, apr_ssize_t *klen, void **val) { if (key) *key = hi->this->key; if (klen) *klen = hi->this->klen; if (val) *val = (void *)hi->this->val; } APR_DECLARE(const void *) apr_hash_this_key(apr_hash_index_t *hi) { const void *key; apr_hash_this(hi, &key, NULL, NULL); return key; } APR_DECLARE(apr_ssize_t) apr_hash_this_key_len(apr_hash_index_t *hi) { apr_ssize_t klen; apr_hash_this(hi, NULL, &klen, NULL); return klen; } APR_DECLARE(void *) apr_hash_this_val(apr_hash_index_t *hi) { void *val; apr_hash_this(hi, NULL, NULL, &val); return val; } /* * Expanding a hash table */ static void expand_array(apr_hash_t *ht) { apr_hash_index_t *hi; apr_hash_entry_t **new_array; unsigned int new_max; new_max = ht->max * 2 + 1; new_array = alloc_array(ht, new_max); for (hi = apr_hash_first(NULL, ht); hi; hi = apr_hash_next(hi)) { unsigned int i = hi->this->hash & new_max; hi->this->next = new_array[i]; new_array[i] = hi->this; } ht->array = new_array; ht->max = new_max; } static unsigned int hashfunc_default(const char *char_key, apr_ssize_t *klen, unsigned int hash) { const unsigned char *key = (const unsigned char *)char_key; const unsigned char *p; apr_ssize_t i; /* * This is the popular `times 33' hash algorithm which is used by * perl and also appears in Berkeley DB. This is one of the best * known hash functions for strings because it is both computed * very fast and distributes very well. * * The originator may be Dan Bernstein but the code in Berkeley DB * cites Chris Torek as the source. The best citation I have found * is "Chris Torek, Hash function for text in C, Usenet message * <27038@mimsy.umd.edu> in comp.lang.c , October, 1990." in Rich * Salz's USENIX 1992 paper about INN which can be found at * . * * The magic of number 33, i.e. why it works better than many other * constants, prime or not, has never been adequately explained by * anyone. So I try an explanation: if one experimentally tests all * multipliers between 1 and 256 (as I did while writing a low-level * data structure library some time ago) one detects that even * numbers are not useable at all. The remaining 128 odd numbers * (except for the number 1) work more or less all equally well. * They all distribute in an acceptable way and this way fill a hash * table with an average percent of approx. 86%. * * If one compares the chi^2 values of the variants (see * Bob Jenkins ``Hashing Frequently Asked Questions'' at * http://burtleburtle.net/bob/hash/hashfaq.html for a description * of chi^2), the number 33 not even has the best value. But the * number 33 and a few other equally good numbers like 17, 31, 63, * 127 and 129 have nevertheless a great advantage to the remaining * numbers in the large set of possible multipliers: their multiply * operation can be replaced by a faster operation based on just one * shift plus either a single addition or subtraction operation. And * because a hash function has to both distribute good _and_ has to * be very fast to compute, those few numbers should be preferred. * * -- Ralf S. Engelschall */ if (*klen == APR_HASH_KEY_STRING) { for (p = key; *p; p++) { hash = hash * 33 + *p; } *klen = p - key; } else { for (p = key, i = *klen; i; i--, p++) { hash = hash * 33 + *p; } } return hash; } APR_DECLARE_NONSTD(unsigned int) apr_hashfunc_default(const char *char_key, apr_ssize_t *klen) { return hashfunc_default(char_key, klen, 0); } /* * This is where we keep the details of the hash function and control * the maximum collision rate. * * If val is non-NULL it creates and initializes a new hash entry if * there isn't already one there; it returns an updatable pointer so * that hash entries can be removed. */ static apr_hash_entry_t **find_entry(apr_hash_t *ht, const void *key, apr_ssize_t klen, const void *val) { apr_hash_entry_t **hep, *he; unsigned int hash; if (ht->hash_func) hash = ht->hash_func(key, &klen); else hash = hashfunc_default(key, &klen, ht->seed); /* scan linked list */ for (hep = &ht->array[hash & ht->max], he = *hep; he; hep = &he->next, he = *hep) { if (he->hash == hash && he->klen == klen && memcmp(he->key, key, klen) == 0) break; } if (he || !val) return hep; /* add a new entry for non-NULL values */ if ((he = ht->free) != NULL) ht->free = he->next; else he = apr_palloc(ht->pool, sizeof(*he)); he->next = NULL; he->hash = hash; he->key = key; he->klen = klen; he->val = val; *hep = he; ht->count++; return hep; } APR_DECLARE(apr_hash_t *) apr_hash_copy(apr_pool_t *pool, const apr_hash_t *orig) { apr_hash_t *ht; apr_hash_entry_t *new_vals; unsigned int i, j; ht = apr_palloc(pool, sizeof(apr_hash_t) + sizeof(*ht->array) * (orig->max + 1) + sizeof(apr_hash_entry_t) * orig->count); ht->pool = pool; ht->free = NULL; ht->count = orig->count; ht->max = orig->max; ht->seed = orig->seed; ht->hash_func = orig->hash_func; ht->array = (apr_hash_entry_t **)((char *)ht + sizeof(apr_hash_t)); new_vals = (apr_hash_entry_t *)((char *)(ht) + sizeof(apr_hash_t) + sizeof(*ht->array) * (orig->max + 1)); j = 0; for (i = 0; i <= ht->max; i++) { apr_hash_entry_t **new_entry = &(ht->array[i]); apr_hash_entry_t *orig_entry = orig->array[i]; while (orig_entry) { *new_entry = &new_vals[j++]; (*new_entry)->hash = orig_entry->hash; (*new_entry)->key = orig_entry->key; (*new_entry)->klen = orig_entry->klen; (*new_entry)->val = orig_entry->val; new_entry = &((*new_entry)->next); orig_entry = orig_entry->next; } *new_entry = NULL; } return ht; } APR_DECLARE(void *) apr_hash_get(apr_hash_t *ht, const void *key, apr_ssize_t klen) { apr_hash_entry_t *he; he = *find_entry(ht, key, klen, NULL); if (he) return (void *)he->val; else return NULL; } APR_DECLARE(void) apr_hash_set(apr_hash_t *ht, const void *key, apr_ssize_t klen, const void *val) { apr_hash_entry_t **hep; hep = find_entry(ht, key, klen, val); if (*hep) { if (!val) { /* delete entry */ apr_hash_entry_t *old = *hep; *hep = (*hep)->next; old->next = ht->free; ht->free = old; --ht->count; } else { /* replace entry */ (*hep)->val = val; /* check that the collision rate isn't too high */ if (ht->count > ht->max) { expand_array(ht); } } } /* else key not present and val==NULL */ } APR_DECLARE(unsigned int) apr_hash_count(apr_hash_t *ht) { return ht->count; } APR_DECLARE(void) apr_hash_clear(apr_hash_t *ht) { apr_hash_index_t *hi; for (hi = apr_hash_first(NULL, ht); hi; hi = apr_hash_next(hi)) apr_hash_set(ht, hi->this->key, hi->this->klen, NULL); } APR_DECLARE(apr_hash_t*) apr_hash_overlay(apr_pool_t *p, const apr_hash_t *overlay, const apr_hash_t *base) { return apr_hash_merge(p, overlay, base, NULL, NULL); } APR_DECLARE(apr_hash_t *) apr_hash_merge(apr_pool_t *p, const apr_hash_t *overlay, const apr_hash_t *base, void * (*merger)(apr_pool_t *p, const void *key, apr_ssize_t klen, const void *h1_val, const void *h2_val, const void *data), const void *data) { apr_hash_t *res; apr_hash_entry_t *new_vals = NULL; apr_hash_entry_t *iter; apr_hash_entry_t *ent; unsigned int i, j, k, hash; #if APR_POOL_DEBUG /* we don't copy keys and values, so it's necessary that * overlay->a.pool and base->a.pool have a life span at least * as long as p */ if (!apr_pool_is_ancestor(overlay->pool, p)) { fprintf(stderr, "apr_hash_merge: overlay's pool is not an ancestor of p\n"); abort(); } if (!apr_pool_is_ancestor(base->pool, p)) { fprintf(stderr, "apr_hash_merge: base's pool is not an ancestor of p\n"); abort(); } #endif res = apr_palloc(p, sizeof(apr_hash_t)); res->pool = p; res->free = NULL; res->hash_func = base->hash_func; res->count = base->count; res->max = (overlay->max > base->max) ? overlay->max : base->max; if (base->count + overlay->count > res->max) { res->max = res->max * 2 + 1; } res->seed = base->seed; res->array = alloc_array(res, res->max); if (base->count + overlay->count) { new_vals = apr_palloc(p, sizeof(apr_hash_entry_t) * (base->count + overlay->count)); } j = 0; for (k = 0; k <= base->max; k++) { for (iter = base->array[k]; iter; iter = iter->next) { i = iter->hash & res->max; new_vals[j].klen = iter->klen; new_vals[j].key = iter->key; new_vals[j].val = iter->val; new_vals[j].hash = iter->hash; new_vals[j].next = res->array[i]; res->array[i] = &new_vals[j]; j++; } } for (k = 0; k <= overlay->max; k++) { for (iter = overlay->array[k]; iter; iter = iter->next) { if (res->hash_func) hash = res->hash_func(iter->key, &iter->klen); else hash = hashfunc_default(iter->key, &iter->klen, res->seed); i = hash & res->max; for (ent = res->array[i]; ent; ent = ent->next) { if ((ent->klen == iter->klen) && (memcmp(ent->key, iter->key, iter->klen) == 0)) { if (merger) { ent->val = (*merger)(p, iter->key, iter->klen, iter->val, ent->val, data); } else { ent->val = iter->val; } break; } } if (!ent) { new_vals[j].klen = iter->klen; new_vals[j].key = iter->key; new_vals[j].val = iter->val; new_vals[j].hash = hash; new_vals[j].next = res->array[i]; res->array[i] = &new_vals[j]; res->count++; j++; } } } return res; } /* This is basically the following... * for every element in hash table { * comp elemeny.key, element.value * } * * Like with apr_table_do, the comp callback is called for each and every * element of the hash table. */ APR_DECLARE(int) apr_hash_do(apr_hash_do_callback_fn_t *comp, void *rec, const apr_hash_t *ht) { apr_hash_index_t hix; apr_hash_index_t *hi; int rv, dorv = 1; hix.ht = (apr_hash_t *)ht; hix.index = 0; hix.this = NULL; hix.next = NULL; if ((hi = apr_hash_next(&hix))) { /* Scan the entire table */ do { rv = (*comp)(rec, hi->this->key, hi->this->klen, hi->this->val); } while (rv && (hi = apr_hash_next(hi))); if (rv == 0) { dorv = 0; } } return dorv; } APR_POOL_IMPLEMENT_ACCESSOR(hash)