#===- cindex.py - Python Indexing Library Bindings -----------*- python -*--===# # # The LLVM Compiler Infrastructure # # This file is distributed under the University of Illinois Open Source # License. See LICENSE.TXT for details. # #===------------------------------------------------------------------------===# r""" Clang Indexing Library Bindings =============================== This module provides an interface to the Clang indexing library. It is a low-level interface to the indexing library which attempts to match the Clang API directly while also being "pythonic". Notable differences from the C API are: * string results are returned as Python strings, not CXString objects. * null cursors are translated to None. * access to child cursors is done via iteration, not visitation. The major indexing objects are: Index The top-level object which manages some global library state. TranslationUnit High-level object encapsulating the AST for a single translation unit. These can be loaded from .ast files or parsed on the fly. Cursor Generic object for representing a node in the AST. SourceRange, SourceLocation, and File Objects representing information about the input source. Most object information is exposed using properties, when the underlying API call is efficient. """ # TODO # ==== # # o API support for invalid translation units. Currently we can't even get the # diagnostics on failure because they refer to locations in an object that # will have been invalidated. # # o fix memory management issues (currently client must hold on to index and # translation unit, or risk crashes). # # o expose code completion APIs. # # o cleanup ctypes wrapping, would be nice to separate the ctypes details more # clearly, and hide from the external interface (i.e., help(cindex)). # # o implement additional SourceLocation, SourceRange, and File methods. from ctypes import * def get_cindex_library(): # FIXME: It's probably not the case that the library is actually found in # this location. We need a better system of identifying and loading the # CIndex library. It could be on path or elsewhere, or versioned, etc. import platform name = platform.system() if name == 'Darwin': return cdll.LoadLibrary('libclang.dylib') elif name == 'Windows': return cdll.LoadLibrary('libclang.dll') else: return cdll.LoadLibrary('libclang.so') # ctypes doesn't implicitly convert c_void_p to the appropriate wrapper # object. This is a problem, because it means that from_parameter will see an # integer and pass the wrong value on platforms where int != void*. Work around # this by marshalling object arguments as void**. c_object_p = POINTER(c_void_p) lib = get_cindex_library() ### Structures and Utility Classes ### class _CXString(Structure): """Helper for transforming CXString results.""" _fields_ = [("spelling", c_char_p), ("free", c_int)] def __del__(self): _CXString_dispose(self) @staticmethod def from_result(res, fn, args): assert isinstance(res, _CXString) return _CXString_getCString(res) class SourceLocation(Structure): """ A SourceLocation represents a particular location within a source file. """ _fields_ = [("ptr_data", c_void_p * 2), ("int_data", c_uint)] _data = None def _get_instantiation(self): if self._data is None: f, l, c, o = c_object_p(), c_uint(), c_uint(), c_uint() SourceLocation_loc(self, byref(f), byref(l), byref(c), byref(o)) f = File(f) if f else None self._data = (f, int(l.value), int(c.value), int(c.value)) return self._data @property def file(self): """Get the file represented by this source location.""" return self._get_instantiation()[0] @property def line(self): """Get the line represented by this source location.""" return self._get_instantiation()[1] @property def column(self): """Get the column represented by this source location.""" return self._get_instantiation()[2] @property def offset(self): """Get the file offset represented by this source location.""" return self._get_instantiation()[3] def __repr__(self): return "" % ( self.file.name if self.file else None, self.line, self.column) class SourceRange(Structure): """ A SourceRange describes a range of source locations within the source code. """ _fields_ = [ ("ptr_data", c_void_p * 2), ("begin_int_data", c_uint), ("end_int_data", c_uint)] # FIXME: Eliminate this and make normal constructor? Requires hiding ctypes # object. @staticmethod def from_locations(start, end): return SourceRange_getRange(start, end) @property def start(self): """ Return a SourceLocation representing the first character within a source range. """ return SourceRange_start(self) @property def end(self): """ Return a SourceLocation representing the last character within a source range. """ return SourceRange_end(self) def __repr__(self): return "" % (self.start, self.end) class Diagnostic(object): """ A Diagnostic is a single instance of a Clang diagnostic. It includes the diagnostic severity, the message, the location the diagnostic occurred, as well as additional source ranges and associated fix-it hints. """ Ignored = 0 Note = 1 Warning = 2 Error = 3 Fatal = 4 def __init__(self, ptr): self.ptr = ptr def __del__(self): _clang_disposeDiagnostic(self) @property def severity(self): return _clang_getDiagnosticSeverity(self) @property def location(self): return _clang_getDiagnosticLocation(self) @property def spelling(self): return _clang_getDiagnosticSpelling(self) @property def ranges(self): class RangeIterator: def __init__(self, diag): self.diag = diag def __len__(self): return int(_clang_getDiagnosticNumRanges(self.diag)) def __getitem__(self, key): if (key >= len(self)): raise IndexError return _clang_getDiagnosticRange(self.diag, key) return RangeIterator(self) @property def fixits(self): class FixItIterator: def __init__(self, diag): self.diag = diag def __len__(self): return int(_clang_getDiagnosticNumFixIts(self.diag)) def __getitem__(self, key): range = SourceRange() value = _clang_getDiagnosticFixIt(self.diag, key, byref(range)) if len(value) == 0: raise IndexError return FixIt(range, value) return FixItIterator(self) def __repr__(self): return "" % ( self.severity, self.location, self.spelling) def from_param(self): return self.ptr class FixIt(object): """ A FixIt represents a transformation to be applied to the source to "fix-it". The fix-it shouldbe applied by replacing the given source range with the given value. """ def __init__(self, range, value): self.range = range self.value = value def __repr__(self): return "" % (self.range, self.value) ### Cursor Kinds ### class CursorKind(object): """ A CursorKind describes the kind of entity that a cursor points to. """ # The unique kind objects, indexed by id. _kinds = [] _name_map = None def __init__(self, value): if value >= len(CursorKind._kinds): CursorKind._kinds += [None] * (value - len(CursorKind._kinds) + 1) if CursorKind._kinds[value] is not None: raise ValueError,'CursorKind already loaded' self.value = value CursorKind._kinds[value] = self CursorKind._name_map = None def from_param(self): return self.value @property def name(self): """Get the enumeration name of this cursor kind.""" if self._name_map is None: self._name_map = {} for key,value in CursorKind.__dict__.items(): if isinstance(value,CursorKind): self._name_map[value] = key return self._name_map[self] @staticmethod def from_id(id): if id >= len(CursorKind._kinds) or CursorKind._kinds[id] is None: raise ValueError,'Unknown cursor kind' return CursorKind._kinds[id] @staticmethod def get_all_kinds(): """Return all CursorKind enumeration instances.""" return filter(None, CursorKind._kinds) def is_declaration(self): """Test if this is a declaration kind.""" return CursorKind_is_decl(self) def is_reference(self): """Test if this is a reference kind.""" return CursorKind_is_ref(self) def is_expression(self): """Test if this is an expression kind.""" return CursorKind_is_expr(self) def is_statement(self): """Test if this is a statement kind.""" return CursorKind_is_stmt(self) def is_invalid(self): """Test if this is an invalid kind.""" return CursorKind_is_inv(self) def __repr__(self): return 'CursorKind.%s' % (self.name,) # FIXME: Is there a nicer way to expose this enumeration? We could potentially # represent the nested structure, or even build a class hierarchy. The main # things we want for sure are (a) simple external access to kinds, (b) a place # to hang a description and name, (c) easy to keep in sync with Index.h. ### # Declaration Kinds # A declaration whose specific kind is not exposed via this interface. # # Unexposed declarations have the same operations as any other kind of # declaration; one can extract their location information, spelling, find their # definitions, etc. However, the specific kind of the declaration is not # reported. CursorKind.UNEXPOSED_DECL = CursorKind(1) # A C or C++ struct. CursorKind.STRUCT_DECL = CursorKind(2) # A C or C++ union. CursorKind.UNION_DECL = CursorKind(3) # A C++ class. CursorKind.CLASS_DECL = CursorKind(4) # An enumeration. CursorKind.ENUM_DECL = CursorKind(5) # A field (in C) or non-static data member (in C++) in a struct, union, or C++ # class. CursorKind.FIELD_DECL = CursorKind(6) # An enumerator constant. CursorKind.ENUM_CONSTANT_DECL = CursorKind(7) # A function. CursorKind.FUNCTION_DECL = CursorKind(8) # A variable. CursorKind.VAR_DECL = CursorKind(9) # A function or method parameter. CursorKind.PARM_DECL = CursorKind(10) # An Objective-C @interface. CursorKind.OBJC_INTERFACE_DECL = CursorKind(11) # An Objective-C @interface for a category. CursorKind.OBJC_CATEGORY_DECL = CursorKind(12) # An Objective-C @protocol declaration. CursorKind.OBJC_PROTOCOL_DECL = CursorKind(13) # An Objective-C @property declaration. CursorKind.OBJC_PROPERTY_DECL = CursorKind(14) # An Objective-C instance variable. CursorKind.OBJC_IVAR_DECL = CursorKind(15) # An Objective-C instance method. CursorKind.OBJC_INSTANCE_METHOD_DECL = CursorKind(16) # An Objective-C class method. CursorKind.OBJC_CLASS_METHOD_DECL = CursorKind(17) # An Objective-C @implementation. CursorKind.OBJC_IMPLEMENTATION_DECL = CursorKind(18) # An Objective-C @implementation for a category. CursorKind.OBJC_CATEGORY_IMPL_DECL = CursorKind(19) # A typedef. CursorKind.TYPEDEF_DECL = CursorKind(20) # A C++ class method. CursorKind.CXX_METHOD = CursorKind(21) # A C++ namespace. CursorKind.NAMESPACE = CursorKind(22) # A linkage specification, e.g. 'extern "C"'. CursorKind.LINKAGE_SPEC = CursorKind(23) # A C++ constructor. CursorKind.CONSTRUCTOR = CursorKind(24) # A C++ destructor. CursorKind.DESTRUCTOR = CursorKind(25) # A C++ conversion function. CursorKind.CONVERSION_FUNCTION = CursorKind(26) # A C++ template type parameter CursorKind.TEMPLATE_TYPE_PARAMETER = CursorKind(27) # A C++ non-type template paramater. CursorKind.TEMPLATE_NON_TYPE_PARAMETER = CursorKind(28) # A C++ template template parameter. CursorKind.TEMPLATE_TEMPLATE_PARAMTER = CursorKind(29) # A C++ function template. CursorKind.FUNCTION_TEMPLATE = CursorKind(30) # A C++ class template. CursorKind.CLASS_TEMPLATE = CursorKind(31) # A C++ class template partial specialization. CursorKind.CLASS_TEMPLATE_PARTIAL_SPECIALIZATION = CursorKind(32) # A C++ namespace alias declaration. CursorKind.NAMESPACE_ALIAS = CursorKind(33) # A C++ using directive CursorKind.USING_DIRECTIVE = CursorKind(34) # A C++ using declaration CursorKind.USING_DECLARATION = CursorKind(35) ### # Reference Kinds CursorKind.OBJC_SUPER_CLASS_REF = CursorKind(40) CursorKind.OBJC_PROTOCOL_REF = CursorKind(41) CursorKind.OBJC_CLASS_REF = CursorKind(42) # A reference to a type declaration. # # A type reference occurs anywhere where a type is named but not # declared. For example, given: # typedef unsigned size_type; # size_type size; # # The typedef is a declaration of size_type (CXCursor_TypedefDecl), # while the type of the variable "size" is referenced. The cursor # referenced by the type of size is the typedef for size_type. CursorKind.TYPE_REF = CursorKind(43) CursorKind.CXX_BASE_SPECIFIER = CursorKind(44) # A reference to a class template, function template, template # template parameter, or class template partial specialization. CursorKind.TEMPLATE_REF = CursorKind(45) # A reference to a namespace or namepsace alias. CursorKind.NAMESPACE_REF = CursorKind(46) # A reference to a member of a struct, union, or class that occurs in # some non-expression context, e.g., a designated initializer. CursorKind.MEMBER_REF = CursorKind(47) # A reference to a labeled statement. CursorKind.LABEL_REF = CursorKind(48) # A reference toa a set of overloaded functions or function templates # that has not yet been resolved to a specific function or function template. CursorKind.OVERLOADED_DECL_REF = CursorKind(49) ### # Invalid/Error Kinds CursorKind.INVALID_FILE = CursorKind(70) CursorKind.NO_DECL_FOUND = CursorKind(71) CursorKind.NOT_IMPLEMENTED = CursorKind(72) CursorKind.INVALID_CODE = CursorKind(73) ### # Expression Kinds # An expression whose specific kind is not exposed via this interface. # # Unexposed expressions have the same operations as any other kind of # expression; one can extract their location information, spelling, children, # etc. However, the specific kind of the expression is not reported. CursorKind.UNEXPOSED_EXPR = CursorKind(100) # An expression that refers to some value declaration, such as a function, # varible, or enumerator. CursorKind.DECL_REF_EXPR = CursorKind(101) # An expression that refers to a member of a struct, union, class, Objective-C # class, etc. CursorKind.MEMBER_REF_EXPR = CursorKind(102) # An expression that calls a function. CursorKind.CALL_EXPR = CursorKind(103) # An expression that sends a message to an Objective-C object or class. CursorKind.OBJC_MESSAGE_EXPR = CursorKind(104) # An expression that represents a block literal. CursorKind.BLOCK_EXPR = CursorKind(105) # A statement whose specific kind is not exposed via this interface. # # Unexposed statements have the same operations as any other kind of statement; # one can extract their location information, spelling, children, etc. However, # the specific kind of the statement is not reported. CursorKind.UNEXPOSED_STMT = CursorKind(200) # A labelled statement in a function. CursorKind.LABEL_STMT = CursorKind(201) ### # Other Kinds # Cursor that represents the translation unit itself. # # The translation unit cursor exists primarily to act as the root cursor for # traversing the contents of a translation unit. CursorKind.TRANSLATION_UNIT = CursorKind(300) ### # Attributes # An attribute whoe specific kind is note exposed via this interface CursorKind.UNEXPOSED_ATTR = CursorKind(400) CursorKind.IB_ACTION_ATTR = CursorKind(401) CursorKind.IB_OUTLET_ATTR = CursorKind(402) CursorKind.IB_OUTLET_COLLECTION_ATTR = CursorKind(403) ### # Preprocessing CursorKind.PREPROCESSING_DIRECTIVE = CursorKind(500) CursorKind.MACRO_DEFINITION = CursorKind(501) CursorKind.MACRO_INSTANTIATION = CursorKind(502) CursorKind.INCLUSION_DIRECTIVE = CursorKind(503) ### Cursors ### class Cursor(Structure): """ The Cursor class represents a reference to an element within the AST. It acts as a kind of iterator. """ _fields_ = [("_kind_id", c_int), ("data", c_void_p * 3)] def __eq__(self, other): return Cursor_eq(self, other) def __ne__(self, other): return not Cursor_eq(self, other) def is_definition(self): """ Returns true if the declaration pointed at by the cursor is also a definition of that entity. """ return Cursor_is_def(self) def get_definition(self): """ If the cursor is a reference to a declaration or a declaration of some entity, return a cursor that points to the definition of that entity. """ # TODO: Should probably check that this is either a reference or # declaration prior to issuing the lookup. return Cursor_def(self) def get_usr(self): """Return the Unified Symbol Resultion (USR) for the entity referenced by the given cursor (or None). A Unified Symbol Resolution (USR) is a string that identifies a particular entity (function, class, variable, etc.) within a program. USRs can be compared across translation units to determine, e.g., when references in one translation refer to an entity defined in another translation unit.""" return Cursor_usr(self) @property def kind(self): """Return the kind of this cursor.""" return CursorKind.from_id(self._kind_id) @property def spelling(self): """Return the spelling of the entity pointed at by the cursor.""" if not self.kind.is_declaration(): # FIXME: clang_getCursorSpelling should be fixed to not assert on # this, for consistency with clang_getCursorUSR. return None return Cursor_spelling(self) @property def location(self): """ Return the source location (the starting character) of the entity pointed at by the cursor. """ return Cursor_loc(self) @property def extent(self): """ Return the source range (the range of text) occupied by the entity pointed at by the cursor. """ return Cursor_extent(self) def get_children(self): """Return an iterator for accessing the children of this cursor.""" # FIXME: Expose iteration from CIndex, PR6125. def visitor(child, parent, children): # FIXME: Document this assertion in API. # FIXME: There should just be an isNull method. assert child != Cursor_null() children.append(child) return 1 # continue children = [] Cursor_visit(self, Cursor_visit_callback(visitor), children) return iter(children) @staticmethod def from_result(res, fn, args): assert isinstance(res, Cursor) # FIXME: There should just be an isNull method. if res == Cursor_null(): return None return res ## CIndex Objects ## # CIndex objects (derived from ClangObject) are essentially lightweight # wrappers attached to some underlying object, which is exposed via CIndex as # a void*. class ClangObject(object): """ A helper for Clang objects. This class helps act as an intermediary for the ctypes library and the Clang CIndex library. """ def __init__(self, obj): assert isinstance(obj, c_object_p) and obj self.obj = self._as_parameter_ = obj def from_param(self): return self._as_parameter_ class _CXUnsavedFile(Structure): """Helper for passing unsaved file arguments.""" _fields_ = [("name", c_char_p), ("contents", c_char_p), ('length', c_ulong)] ## Diagnostic Conversion ## _clang_getNumDiagnostics = lib.clang_getNumDiagnostics _clang_getNumDiagnostics.argtypes = [c_object_p] _clang_getNumDiagnostics.restype = c_uint _clang_getDiagnostic = lib.clang_getDiagnostic _clang_getDiagnostic.argtypes = [c_object_p, c_uint] _clang_getDiagnostic.restype = c_object_p _clang_disposeDiagnostic = lib.clang_disposeDiagnostic _clang_disposeDiagnostic.argtypes = [Diagnostic] _clang_getDiagnosticSeverity = lib.clang_getDiagnosticSeverity _clang_getDiagnosticSeverity.argtypes = [Diagnostic] _clang_getDiagnosticSeverity.restype = c_int _clang_getDiagnosticLocation = lib.clang_getDiagnosticLocation _clang_getDiagnosticLocation.argtypes = [Diagnostic] _clang_getDiagnosticLocation.restype = SourceLocation _clang_getDiagnosticSpelling = lib.clang_getDiagnosticSpelling _clang_getDiagnosticSpelling.argtypes = [Diagnostic] _clang_getDiagnosticSpelling.restype = _CXString _clang_getDiagnosticSpelling.errcheck = _CXString.from_result _clang_getDiagnosticNumRanges = lib.clang_getDiagnosticNumRanges _clang_getDiagnosticNumRanges.argtypes = [Diagnostic] _clang_getDiagnosticNumRanges.restype = c_uint _clang_getDiagnosticRange = lib.clang_getDiagnosticRange _clang_getDiagnosticRange.argtypes = [Diagnostic, c_uint] _clang_getDiagnosticRange.restype = SourceRange _clang_getDiagnosticNumFixIts = lib.clang_getDiagnosticNumFixIts _clang_getDiagnosticNumFixIts.argtypes = [Diagnostic] _clang_getDiagnosticNumFixIts.restype = c_uint _clang_getDiagnosticFixIt = lib.clang_getDiagnosticFixIt _clang_getDiagnosticFixIt.argtypes = [Diagnostic, c_uint, POINTER(SourceRange)] _clang_getDiagnosticFixIt.restype = _CXString _clang_getDiagnosticFixIt.errcheck = _CXString.from_result ### class CompletionChunk: class Kind: def __init__(self, name): self.name = name def __str__(self): return self.name def __repr__(self): return "" % self def __init__(self, completionString, key): self.cs = completionString self.key = key def __repr__(self): return "{'" + self.spelling + "', " + str(self.kind) + "}" @property def spelling(self): return _clang_getCompletionChunkText(self.cs, self.key).spelling @property def kind(self): res = _clang_getCompletionChunkKind(self.cs, self.key) return completionChunkKindMap[res] @property def string(self): res = _clang_getCompletionChunkCompletionString(self.cs, self.key) if (res): return CompletionString(res) else: None def isKindOptional(self): return self.kind == completionChunkKindMap[0] def isKindTypedText(self): return self.kind == completionChunkKindMap[1] def isKindPlaceHolder(self): return self.kind == completionChunkKindMap[3] def isKindInformative(self): return self.kind == completionChunkKindMap[4] def isKindResultType(self): return self.kind == completionChunkKindMap[15] completionChunkKindMap = { 0: CompletionChunk.Kind("Optional"), 1: CompletionChunk.Kind("TypedText"), 2: CompletionChunk.Kind("Text"), 3: CompletionChunk.Kind("Placeholder"), 4: CompletionChunk.Kind("Informative"), 5: CompletionChunk.Kind("CurrentParameter"), 6: CompletionChunk.Kind("LeftParen"), 7: CompletionChunk.Kind("RightParen"), 8: CompletionChunk.Kind("LeftBracket"), 9: CompletionChunk.Kind("RightBracket"), 10: CompletionChunk.Kind("LeftBrace"), 11: CompletionChunk.Kind("RightBrace"), 12: CompletionChunk.Kind("LeftAngle"), 13: CompletionChunk.Kind("RightAngle"), 14: CompletionChunk.Kind("Comma"), 15: CompletionChunk.Kind("ResultType"), 16: CompletionChunk.Kind("Colon"), 17: CompletionChunk.Kind("SemiColon"), 18: CompletionChunk.Kind("Equal"), 19: CompletionChunk.Kind("HorizontalSpace"), 20: CompletionChunk.Kind("VerticalSpace")} class CompletionString(ClangObject): class Availability: def __init__(self, name): self.name = name def __str__(self): return self.name def __repr__(self): return "" % self def __len__(self): return _clang_getNumCompletionChunks(self.obj) def __getitem__(self, key): if len(self) <= key: raise IndexError return CompletionChunk(self.obj, key) @property def priority(self): return _clang_getCompletionPriority(self.obj) @property def availability(self): res = _clang_getCompletionAvailability(self.obj) return availabilityKinds[res] def __repr__(self): return " | ".join([str(a) for a in self]) \ + " || Priority: " + str(self.priority) \ + " || Availability: " + str(self.availability) availabilityKinds = { 0: CompletionChunk.Kind("Available"), 1: CompletionChunk.Kind("Deprecated"), 2: CompletionChunk.Kind("NotAvailable")} class CodeCompletionResult(Structure): _fields_ = [('cursorKind', c_int), ('completionString', c_object_p)] def __repr__(self): return str(CompletionString(self.completionString)) @property def kind(self): return CursorKind.from_id(self.cursorKind) @property def string(self): return CompletionString(self.completionString) class CCRStructure(Structure): _fields_ = [('results', POINTER(CodeCompletionResult)), ('numResults', c_int)] def __len__(self): return self.numResults def __getitem__(self, key): if len(self) <= key: raise IndexError return self.results[key] class CodeCompletionResults(ClangObject): def __init__(self, ptr): assert isinstance(ptr, POINTER(CCRStructure)) and ptr self.ptr = self._as_parameter_ = ptr def from_param(self): return self._as_parameter_ def __del__(self): CodeCompletionResults_dispose(self) @property def results(self): return self.ptr.contents @property def diagnostics(self): class DiagnosticsItr: def __init__(self, ccr): self.ccr= ccr def __len__(self): return int(_clang_codeCompleteGetNumDiagnostics(self.ccr)) def __getitem__(self, key): return _clang_codeCompleteGetDiagnostic(self.ccr, key) return DiagnosticsItr(self) class Index(ClangObject): """ The Index type provides the primary interface to the Clang CIndex library, primarily by providing an interface for reading and parsing translation units. """ @staticmethod def create(excludeDecls=False): """ Create a new Index. Parameters: excludeDecls -- Exclude local declarations from translation units. """ return Index(Index_create(excludeDecls, 0)) def __del__(self): Index_dispose(self) def read(self, path): """Load the translation unit from the given AST file.""" ptr = TranslationUnit_read(self, path) return TranslationUnit(ptr) if ptr else None def parse(self, path, args = [], unsaved_files = [], options = 0): """ Load the translation unit from the given source code file by running clang and generating the AST before loading. Additional command line parameters can be passed to clang via the args parameter. In-memory contents for files can be provided by passing a list of pairs to as unsaved_files, the first item should be the filenames to be mapped and the second should be the contents to be substituted for the file. The contents may be passed as strings or file objects. """ arg_array = 0 if len(args): arg_array = (c_char_p * len(args))(* args) unsaved_files_array = 0 if len(unsaved_files): unsaved_files_array = (_CXUnsavedFile * len(unsaved_files))() for i,(name,value) in enumerate(unsaved_files): if not isinstance(value, str): # FIXME: It would be great to support an efficient version # of this, one day. value = value.read() print value if not isinstance(value, str): raise TypeError,'Unexpected unsaved file contents.' unsaved_files_array[i].name = name unsaved_files_array[i].contents = value unsaved_files_array[i].length = len(value) ptr = TranslationUnit_parse(self, path, arg_array, len(args), unsaved_files_array, len(unsaved_files), options) return TranslationUnit(ptr) if ptr else None class TranslationUnit(ClangObject): """ The TranslationUnit class represents a source code translation unit and provides read-only access to its top-level declarations. """ def __init__(self, ptr): ClangObject.__init__(self, ptr) def __del__(self): TranslationUnit_dispose(self) @property def cursor(self): """Retrieve the cursor that represents the given translation unit.""" return TranslationUnit_cursor(self) @property def spelling(self): """Get the original translation unit source file name.""" return TranslationUnit_spelling(self) def get_includes(self): """ Return an iterable sequence of FileInclusion objects that describe the sequence of inclusions in a translation unit. The first object in this sequence is always the input file. Note that this method will not recursively iterate over header files included through precompiled headers. """ def visitor(fobj, lptr, depth, includes): loc = lptr.contents includes.append(FileInclusion(loc.file, File(fobj), loc, depth)) # Automatically adapt CIndex/ctype pointers to python objects includes = [] TranslationUnit_includes(self, TranslationUnit_includes_callback(visitor), includes) return iter(includes) @property def diagnostics(self): """ Return an iterable (and indexable) object containing the diagnostics. """ class DiagIterator: def __init__(self, tu): self.tu = tu def __len__(self): return int(_clang_getNumDiagnostics(self.tu)) def __getitem__(self, key): diag = _clang_getDiagnostic(self.tu, key) if not diag: raise IndexError return Diagnostic(diag) return DiagIterator(self) def reparse(self, unsaved_files = [], options = 0): """ Reparse an already parsed translation unit. In-memory contents for files can be provided by passing a list of pairs as unsaved_files, the first items should be the filenames to be mapped and the second should be the contents to be substituted for the file. The contents may be passed as strings or file objects. """ unsaved_files_array = 0 if len(unsaved_files): unsaved_files_array = (_CXUnsavedFile * len(unsaved_files))() for i,(name,value) in enumerate(unsaved_files): if not isinstance(value, str): # FIXME: It would be great to support an efficient version # of this, one day. value = value.read() print value if not isinstance(value, str): raise TypeError,'Unexpected unsaved file contents.' unsaved_files_array[i].name = name unsaved_files_array[i].contents = value unsaved_files_array[i].length = len(value) ptr = TranslationUnit_reparse(self, len(unsaved_files), unsaved_files_array, options) def codeComplete(self, path, line, column, unsaved_files = [], options = 0): """ Code complete in this translation unit. In-memory contents for files can be provided by passing a list of pairs as unsaved_files, the first items should be the filenames to be mapped and the second should be the contents to be substituted for the file. The contents may be passed as strings or file objects. """ unsaved_files_array = 0 if len(unsaved_files): unsaved_files_array = (_CXUnsavedFile * len(unsaved_files))() for i,(name,value) in enumerate(unsaved_files): if not isinstance(value, str): # FIXME: It would be great to support an efficient version # of this, one day. value = value.read() print value if not isinstance(value, str): raise TypeError,'Unexpected unsaved file contents.' unsaved_files_array[i].name = name unsaved_files_array[i].contents = value unsaved_files_array[i].length = len(value) ptr = TranslationUnit_codeComplete(self, path, line, column, unsaved_files_array, len(unsaved_files), options) return CodeCompletionResults(ptr) if ptr else None class File(ClangObject): """ The File class represents a particular source file that is part of a translation unit. """ @property def name(self): """Return the complete file and path name of the file.""" return File_name(self) @property def time(self): """Return the last modification time of the file.""" return File_time(self) class FileInclusion(object): """ The FileInclusion class represents the inclusion of one source file by another via a '#include' directive or as the input file for the translation unit. This class provides information about the included file, the including file, the location of the '#include' directive and the depth of the included file in the stack. Note that the input file has depth 0. """ def __init__(self, src, tgt, loc, depth): self.source = src self.include = tgt self.location = loc self.depth = depth @property def is_input_file(self): """True if the included file is the input file.""" return self.depth == 0 # Additional Functions and Types # String Functions _CXString_dispose = lib.clang_disposeString _CXString_dispose.argtypes = [_CXString] _CXString_getCString = lib.clang_getCString _CXString_getCString.argtypes = [_CXString] _CXString_getCString.restype = c_char_p # Source Location Functions SourceLocation_loc = lib.clang_getInstantiationLocation SourceLocation_loc.argtypes = [SourceLocation, POINTER(c_object_p), POINTER(c_uint), POINTER(c_uint), POINTER(c_uint)] # Source Range Functions SourceRange_getRange = lib.clang_getRange SourceRange_getRange.argtypes = [SourceLocation, SourceLocation] SourceRange_getRange.restype = SourceRange SourceRange_start = lib.clang_getRangeStart SourceRange_start.argtypes = [SourceRange] SourceRange_start.restype = SourceLocation SourceRange_end = lib.clang_getRangeEnd SourceRange_end.argtypes = [SourceRange] SourceRange_end.restype = SourceLocation # CursorKind Functions CursorKind_is_decl = lib.clang_isDeclaration CursorKind_is_decl.argtypes = [CursorKind] CursorKind_is_decl.restype = bool CursorKind_is_ref = lib.clang_isReference CursorKind_is_ref.argtypes = [CursorKind] CursorKind_is_ref.restype = bool CursorKind_is_expr = lib.clang_isExpression CursorKind_is_expr.argtypes = [CursorKind] CursorKind_is_expr.restype = bool CursorKind_is_stmt = lib.clang_isStatement CursorKind_is_stmt.argtypes = [CursorKind] CursorKind_is_stmt.restype = bool CursorKind_is_inv = lib.clang_isInvalid CursorKind_is_inv.argtypes = [CursorKind] CursorKind_is_inv.restype = bool # Cursor Functions # TODO: Implement this function Cursor_get = lib.clang_getCursor Cursor_get.argtypes = [TranslationUnit, SourceLocation] Cursor_get.restype = Cursor Cursor_null = lib.clang_getNullCursor Cursor_null.restype = Cursor Cursor_usr = lib.clang_getCursorUSR Cursor_usr.argtypes = [Cursor] Cursor_usr.restype = _CXString Cursor_usr.errcheck = _CXString.from_result Cursor_is_def = lib.clang_isCursorDefinition Cursor_is_def.argtypes = [Cursor] Cursor_is_def.restype = bool Cursor_def = lib.clang_getCursorDefinition Cursor_def.argtypes = [Cursor] Cursor_def.restype = Cursor Cursor_def.errcheck = Cursor.from_result Cursor_eq = lib.clang_equalCursors Cursor_eq.argtypes = [Cursor, Cursor] Cursor_eq.restype = c_uint Cursor_spelling = lib.clang_getCursorSpelling Cursor_spelling.argtypes = [Cursor] Cursor_spelling.restype = _CXString Cursor_spelling.errcheck = _CXString.from_result Cursor_loc = lib.clang_getCursorLocation Cursor_loc.argtypes = [Cursor] Cursor_loc.restype = SourceLocation Cursor_extent = lib.clang_getCursorExtent Cursor_extent.argtypes = [Cursor] Cursor_extent.restype = SourceRange Cursor_ref = lib.clang_getCursorReferenced Cursor_ref.argtypes = [Cursor] Cursor_ref.restype = Cursor Cursor_ref.errcheck = Cursor.from_result Cursor_visit_callback = CFUNCTYPE(c_int, Cursor, Cursor, py_object) Cursor_visit = lib.clang_visitChildren Cursor_visit.argtypes = [Cursor, Cursor_visit_callback, py_object] Cursor_visit.restype = c_uint # Index Functions Index_create = lib.clang_createIndex Index_create.argtypes = [c_int, c_int] Index_create.restype = c_object_p Index_dispose = lib.clang_disposeIndex Index_dispose.argtypes = [Index] # Translation Unit Functions TranslationUnit_read = lib.clang_createTranslationUnit TranslationUnit_read.argtypes = [Index, c_char_p] TranslationUnit_read.restype = c_object_p TranslationUnit_parse = lib.clang_parseTranslationUnit TranslationUnit_parse.argtypes = [Index, c_char_p, c_void_p, c_int, c_void_p, c_int, c_int] TranslationUnit_parse.restype = c_object_p TranslationUnit_reparse = lib.clang_reparseTranslationUnit TranslationUnit_reparse.argtypes = [TranslationUnit, c_int, c_void_p, c_int] TranslationUnit_reparse.restype = c_int TranslationUnit_codeComplete = lib.clang_codeCompleteAt TranslationUnit_codeComplete.argtypes = [TranslationUnit, c_char_p, c_int, c_int, c_void_p, c_int, c_int] TranslationUnit_codeComplete.restype = POINTER(CCRStructure) TranslationUnit_cursor = lib.clang_getTranslationUnitCursor TranslationUnit_cursor.argtypes = [TranslationUnit] TranslationUnit_cursor.restype = Cursor TranslationUnit_cursor.errcheck = Cursor.from_result TranslationUnit_spelling = lib.clang_getTranslationUnitSpelling TranslationUnit_spelling.argtypes = [TranslationUnit] TranslationUnit_spelling.restype = _CXString TranslationUnit_spelling.errcheck = _CXString.from_result TranslationUnit_dispose = lib.clang_disposeTranslationUnit TranslationUnit_dispose.argtypes = [TranslationUnit] TranslationUnit_includes_callback = CFUNCTYPE(None, c_object_p, POINTER(SourceLocation), c_uint, py_object) TranslationUnit_includes = lib.clang_getInclusions TranslationUnit_includes.argtypes = [TranslationUnit, TranslationUnit_includes_callback, py_object] # File Functions File_name = lib.clang_getFileName File_name.argtypes = [File] File_name.restype = c_char_p File_time = lib.clang_getFileTime File_time.argtypes = [File] File_time.restype = c_uint # Code completion CodeCompletionResults_dispose = lib.clang_disposeCodeCompleteResults CodeCompletionResults_dispose.argtypes = [CodeCompletionResults] _clang_codeCompleteGetNumDiagnostics = lib.clang_codeCompleteGetNumDiagnostics _clang_codeCompleteGetNumDiagnostics.argtypes = [CodeCompletionResults] _clang_codeCompleteGetNumDiagnostics.restype = c_int _clang_codeCompleteGetDiagnostic = lib.clang_codeCompleteGetDiagnostic _clang_codeCompleteGetDiagnostic.argtypes = [CodeCompletionResults, c_int] _clang_codeCompleteGetDiagnostic.restype = Diagnostic _clang_getCompletionChunkText = lib.clang_getCompletionChunkText _clang_getCompletionChunkText.argtypes = [c_void_p, c_int] _clang_getCompletionChunkText.restype = _CXString _clang_getCompletionChunkKind = lib.clang_getCompletionChunkKind _clang_getCompletionChunkKind.argtypes = [c_void_p, c_int] _clang_getCompletionChunkKind.restype = c_int _clang_getCompletionChunkCompletionString = lib.clang_getCompletionChunkCompletionString _clang_getCompletionChunkCompletionString.argtypes = [c_void_p, c_int] _clang_getCompletionChunkCompletionString.restype = c_object_p _clang_getNumCompletionChunks = lib.clang_getNumCompletionChunks _clang_getNumCompletionChunks.argtypes = [c_void_p] _clang_getNumCompletionChunks.restype = c_int _clang_getCompletionAvailability = lib.clang_getCompletionAvailability _clang_getCompletionAvailability.argtypes = [c_void_p] _clang_getCompletionAvailability.restype = c_int _clang_getCompletionPriority = lib.clang_getCompletionPriority _clang_getCompletionPriority.argtypes = [c_void_p] _clang_getCompletionPriority.restype = c_int ### __all__ = ['Index', 'TranslationUnit', 'Cursor', 'CursorKind', 'Diagnostic', 'FixIt', 'CodeCompletionResults', 'SourceRange', 'SourceLocation', 'File']