From ece02cd5829cea836e9365b0845a8ef042d17b0a Mon Sep 17 00:00:00 2001
From: dim <dim@FreeBSD.org>
Date: Sun, 12 Jun 2011 15:42:51 +0000
Subject: Vendor import of llvm trunk r132879:
 http://llvm.org/svn/llvm-project/llvm/trunk@132879

---
 utils/TableGen/SetTheory.cpp | 270 +++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 270 insertions(+)
 create mode 100644 utils/TableGen/SetTheory.cpp

(limited to 'utils/TableGen/SetTheory.cpp')

diff --git a/utils/TableGen/SetTheory.cpp b/utils/TableGen/SetTheory.cpp
new file mode 100644
index 0000000..ade1825
--- /dev/null
+++ b/utils/TableGen/SetTheory.cpp
@@ -0,0 +1,270 @@
+//===- SetTheory.cpp - Generate ordered sets from DAG expressions ---------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SetTheory class that computes ordered sets of
+// Records from DAG expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SetTheory.h"
+#include "Record.h"
+#include "llvm/Support/Format.h"
+
+using namespace llvm;
+
+// Define the standard operators.
+namespace {
+
+typedef SetTheory::RecSet RecSet;
+typedef SetTheory::RecVec RecVec;
+
+// (add a, b, ...) Evaluate and union all arguments.
+struct AddOp : public SetTheory::Operator {
+  void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
+    ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts);
+  }
+};
+
+// (sub Add, Sub, ...) Set difference.
+struct SubOp : public SetTheory::Operator {
+  void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
+    if (Expr->arg_size() < 2)
+      throw "Set difference needs at least two arguments: " +
+        Expr->getAsString();
+    RecSet Add, Sub;
+    ST.evaluate(*Expr->arg_begin(), Add);
+    ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Sub);
+    for (RecSet::iterator I = Add.begin(), E = Add.end(); I != E; ++I)
+      if (!Sub.count(*I))
+        Elts.insert(*I);
+  }
+};
+
+// (and S1, S2) Set intersection.
+struct AndOp : public SetTheory::Operator {
+  void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
+    if (Expr->arg_size() != 2)
+      throw "Set intersection requires two arguments: " + Expr->getAsString();
+    RecSet S1, S2;
+    ST.evaluate(Expr->arg_begin()[0], S1);
+    ST.evaluate(Expr->arg_begin()[1], S2);
+    for (RecSet::iterator I = S1.begin(), E = S1.end(); I != E; ++I)
+      if (S2.count(*I))
+        Elts.insert(*I);
+  }
+};
+
+// SetIntBinOp - Abstract base class for (Op S, N) operators.
+struct SetIntBinOp : public SetTheory::Operator {
+  virtual void apply2(SetTheory &ST, DagInit *Expr,
+                     RecSet &Set, int64_t N,
+                     RecSet &Elts) =0;
+
+  void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
+    if (Expr->arg_size() != 2)
+      throw "Operator requires (Op Set, Int) arguments: " + Expr->getAsString();
+    RecSet Set;
+    ST.evaluate(Expr->arg_begin()[0], Set);
+    IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[1]);
+    if (!II)
+      throw "Second argument must be an integer: " + Expr->getAsString();
+    apply2(ST, Expr, Set, II->getValue(), Elts);
+  }
+};
+
+// (shl S, N) Shift left, remove the first N elements.
+struct ShlOp : public SetIntBinOp {
+  void apply2(SetTheory &ST, DagInit *Expr,
+             RecSet &Set, int64_t N,
+             RecSet &Elts) {
+    if (N < 0)
+      throw "Positive shift required: " + Expr->getAsString();
+    if (unsigned(N) < Set.size())
+      Elts.insert(Set.begin() + N, Set.end());
+  }
+};
+
+// (trunc S, N) Truncate after the first N elements.
+struct TruncOp : public SetIntBinOp {
+  void apply2(SetTheory &ST, DagInit *Expr,
+             RecSet &Set, int64_t N,
+             RecSet &Elts) {
+    if (N < 0)
+      throw "Positive length required: " + Expr->getAsString();
+    if (unsigned(N) > Set.size())
+      N = Set.size();
+    Elts.insert(Set.begin(), Set.begin() + N);
+  }
+};
+
+// Left/right rotation.
+struct RotOp : public SetIntBinOp {
+  const bool Reverse;
+
+  RotOp(bool Rev) : Reverse(Rev) {}
+
+  void apply2(SetTheory &ST, DagInit *Expr,
+             RecSet &Set, int64_t N,
+             RecSet &Elts) {
+    if (Reverse)
+      N = -N;
+    // N > 0 -> rotate left, N < 0 -> rotate right.
+    if (Set.empty())
+      return;
+    if (N < 0)
+      N = Set.size() - (-N % Set.size());
+    else
+      N %= Set.size();
+    Elts.insert(Set.begin() + N, Set.end());
+    Elts.insert(Set.begin(), Set.begin() + N);
+  }
+};
+
+// (decimate S, N) Pick every N'th element of S.
+struct DecimateOp : public SetIntBinOp {
+  void apply2(SetTheory &ST, DagInit *Expr,
+             RecSet &Set, int64_t N,
+             RecSet &Elts) {
+    if (N <= 0)
+      throw "Positive stride required: " + Expr->getAsString();
+    for (unsigned I = 0; I < Set.size(); I += N)
+      Elts.insert(Set[I]);
+  }
+};
+
+// (sequence "Format", From, To) Generate a sequence of records by name.
+struct SequenceOp : public SetTheory::Operator {
+  void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
+    if (Expr->arg_size() != 3)
+      throw "Bad args to (sequence \"Format\", From, To): " +
+        Expr->getAsString();
+    std::string Format;
+    if (StringInit *SI = dynamic_cast<StringInit*>(Expr->arg_begin()[0]))
+      Format = SI->getValue();
+    else
+      throw "Format must be a string: " + Expr->getAsString();
+
+    int64_t From, To;
+    if (IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[1]))
+      From = II->getValue();
+    else
+      throw "From must be an integer: " + Expr->getAsString();
+    if (IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[2]))
+      To = II->getValue();
+    else
+      throw "From must be an integer: " + Expr->getAsString();
+
+    RecordKeeper &Records =
+      dynamic_cast<DefInit&>(*Expr->getOperator()).getDef()->getRecords();
+
+    int Step = From <= To ? 1 : -1;
+    for (To += Step; From != To; From += Step) {
+      std::string Name;
+      raw_string_ostream OS(Name);
+      OS << format(Format.c_str(), From);
+      Record *Rec = Records.getDef(OS.str());
+      if (!Rec)
+        throw "No def named '" + Name + "': " + Expr->getAsString();
+      // Try to reevaluate Rec in case it is a set.
+      if (const RecVec *Result = ST.expand(Rec))
+        Elts.insert(Result->begin(), Result->end());
+      else
+        Elts.insert(Rec);
+    }
+  }
+};
+
+// Expand a Def into a set by evaluating one of its fields.
+struct FieldExpander : public SetTheory::Expander {
+  StringRef FieldName;
+
+  FieldExpander(StringRef fn) : FieldName(fn) {}
+
+  void expand(SetTheory &ST, Record *Def, RecSet &Elts) {
+    ST.evaluate(Def->getValueInit(FieldName), Elts);
+  }
+};
+} // end anonymous namespace
+
+SetTheory::SetTheory() {
+  addOperator("add", new AddOp);
+  addOperator("sub", new SubOp);
+  addOperator("and", new AndOp);
+  addOperator("shl", new ShlOp);
+  addOperator("trunc", new TruncOp);
+  addOperator("rotl", new RotOp(false));
+  addOperator("rotr", new RotOp(true));
+  addOperator("decimate", new DecimateOp);
+  addOperator("sequence", new SequenceOp);
+}
+
+void SetTheory::addOperator(StringRef Name, Operator *Op) {
+  Operators[Name] = Op;
+}
+
+void SetTheory::addExpander(StringRef ClassName, Expander *E) {
+  Expanders[ClassName] = E;
+}
+
+void SetTheory::addFieldExpander(StringRef ClassName, StringRef FieldName) {
+  addExpander(ClassName, new FieldExpander(FieldName));
+}
+
+void SetTheory::evaluate(Init *Expr, RecSet &Elts) {
+  // A def in a list can be a just an element, or it may expand.
+  if (DefInit *Def = dynamic_cast<DefInit*>(Expr)) {
+    if (const RecVec *Result = expand(Def->getDef()))
+      return Elts.insert(Result->begin(), Result->end());
+    Elts.insert(Def->getDef());
+    return;
+  }
+
+  // Lists simply expand.
+  if (ListInit *LI = dynamic_cast<ListInit*>(Expr))
+    return evaluate(LI->begin(), LI->end(), Elts);
+
+  // Anything else must be a DAG.
+  DagInit *DagExpr = dynamic_cast<DagInit*>(Expr);
+  if (!DagExpr)
+    throw "Invalid set element: " + Expr->getAsString();
+  DefInit *OpInit = dynamic_cast<DefInit*>(DagExpr->getOperator());
+  if (!OpInit)
+    throw "Bad set expression: " + Expr->getAsString();
+  Operator *Op = Operators.lookup(OpInit->getDef()->getName());
+  if (!Op)
+    throw "Unknown set operator: " + Expr->getAsString();
+  Op->apply(*this, DagExpr, Elts);
+}
+
+const RecVec *SetTheory::expand(Record *Set) {
+  // Check existing entries for Set and return early.
+  ExpandMap::iterator I = Expansions.find(Set);
+  if (I != Expansions.end())
+    return &I->second;
+
+  // This is the first time we see Set. Find a suitable expander.
+  try {
+    const std::vector<Record*> &SC = Set->getSuperClasses();
+    for (unsigned i = 0, e = SC.size(); i != e; ++i)
+      if (Expander *Exp = Expanders.lookup(SC[i]->getName())) {
+        // This breaks recursive definitions.
+        RecVec &EltVec = Expansions[Set];
+        RecSet Elts;
+        Exp->expand(*this, Set, Elts);
+        EltVec.assign(Elts.begin(), Elts.end());
+        return &EltVec;
+      }
+  } catch (const std::string &Error) {
+    throw TGError(Set->getLoc(), Error);
+  }
+
+  // Set is not expandable.
+  return 0;
+}
+
-- 
cgit v1.1