From 3fba7d16b41dfbefe3b1be6bc0ab94c017728f79 Mon Sep 17 00:00:00 2001
From: rdivacky <rdivacky@FreeBSD.org>
Date: Fri, 15 Jan 2010 15:37:28 +0000
Subject: Update LLVM to 93512.

---
 lib/Transforms/InstCombine/CMakeLists.txt          |   17 +
 lib/Transforms/InstCombine/InstCombine.h           |  349 +++
 lib/Transforms/InstCombine/InstCombineAddSub.cpp   |  740 ++++++
 lib/Transforms/InstCombine/InstCombineAndOrXor.cpp | 1990 ++++++++++++++++
 lib/Transforms/InstCombine/InstCombineCalls.cpp    | 1142 +++++++++
 lib/Transforms/InstCombine/InstCombineCasts.cpp    | 1301 ++++++++++
 lib/Transforms/InstCombine/InstCombineCompares.cpp | 2475 ++++++++++++++++++++
 .../InstCombine/InstCombineLoadStoreAlloca.cpp     |  613 +++++
 .../InstCombine/InstCombineMulDivRem.cpp           |  695 ++++++
 lib/Transforms/InstCombine/InstCombinePHI.cpp      |  841 +++++++
 lib/Transforms/InstCombine/InstCombineSelect.cpp   |  703 ++++++
 lib/Transforms/InstCombine/InstCombineShifts.cpp   |  427 ++++
 .../InstCombine/InstCombineSimplifyDemanded.cpp    | 1106 +++++++++
 .../InstCombine/InstCombineVectorOps.cpp           |  560 +++++
 lib/Transforms/InstCombine/InstCombineWorklist.h   |  105 +
 .../InstCombine/InstructionCombining.cpp           | 1274 ++++++++++
 lib/Transforms/InstCombine/Makefile                |   15 +
 17 files changed, 14353 insertions(+)
 create mode 100644 lib/Transforms/InstCombine/CMakeLists.txt
 create mode 100644 lib/Transforms/InstCombine/InstCombine.h
 create mode 100644 lib/Transforms/InstCombine/InstCombineAddSub.cpp
 create mode 100644 lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
 create mode 100644 lib/Transforms/InstCombine/InstCombineCalls.cpp
 create mode 100644 lib/Transforms/InstCombine/InstCombineCasts.cpp
 create mode 100644 lib/Transforms/InstCombine/InstCombineCompares.cpp
 create mode 100644 lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
 create mode 100644 lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
 create mode 100644 lib/Transforms/InstCombine/InstCombinePHI.cpp
 create mode 100644 lib/Transforms/InstCombine/InstCombineSelect.cpp
 create mode 100644 lib/Transforms/InstCombine/InstCombineShifts.cpp
 create mode 100644 lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
 create mode 100644 lib/Transforms/InstCombine/InstCombineVectorOps.cpp
 create mode 100644 lib/Transforms/InstCombine/InstCombineWorklist.h
 create mode 100644 lib/Transforms/InstCombine/InstructionCombining.cpp
 create mode 100644 lib/Transforms/InstCombine/Makefile

(limited to 'lib/Transforms/InstCombine')

diff --git a/lib/Transforms/InstCombine/CMakeLists.txt b/lib/Transforms/InstCombine/CMakeLists.txt
new file mode 100644
index 0000000..5b1ff3e
--- /dev/null
+++ b/lib/Transforms/InstCombine/CMakeLists.txt
@@ -0,0 +1,17 @@
+add_llvm_library(LLVMInstCombine
+  InstructionCombining.cpp
+  InstCombineAddSub.cpp
+  InstCombineAndOrXor.cpp
+  InstCombineCalls.cpp
+  InstCombineCasts.cpp
+  InstCombineCompares.cpp
+  InstCombineLoadStoreAlloca.cpp
+  InstCombineMulDivRem.cpp
+  InstCombinePHI.cpp
+  InstCombineSelect.cpp
+  InstCombineShifts.cpp 
+  InstCombineSimplifyDemanded.cpp
+  InstCombineVectorOps.cpp
+  )
+
+target_link_libraries (LLVMInstCombine LLVMTransformUtils)
diff --git a/lib/Transforms/InstCombine/InstCombine.h b/lib/Transforms/InstCombine/InstCombine.h
new file mode 100644
index 0000000..5367900
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombine.h
@@ -0,0 +1,349 @@
+//===- InstCombine.h - Main InstCombine pass definition -------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef INSTCOMBINE_INSTCOMBINE_H
+#define INSTCOMBINE_INSTCOMBINE_H
+
+#include "InstCombineWorklist.h"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Support/IRBuilder.h"
+#include "llvm/Support/InstVisitor.h"
+#include "llvm/Support/TargetFolder.h"
+
+namespace llvm {
+  class CallSite;
+  class TargetData;
+  class DbgDeclareInst;
+  class MemIntrinsic;
+  class MemSetInst;
+  
+/// SelectPatternFlavor - We can match a variety of different patterns for
+/// select operations.
+enum SelectPatternFlavor {
+  SPF_UNKNOWN = 0,
+  SPF_SMIN, SPF_UMIN,
+  SPF_SMAX, SPF_UMAX
+  //SPF_ABS - TODO.
+};
+  
+/// getComplexity:  Assign a complexity or rank value to LLVM Values...
+///   0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
+static inline unsigned getComplexity(Value *V) {
+  if (isa<Instruction>(V)) {
+    if (BinaryOperator::isNeg(V) ||
+        BinaryOperator::isFNeg(V) ||
+        BinaryOperator::isNot(V))
+      return 3;
+    return 4;
+  }
+  if (isa<Argument>(V)) return 3;
+  return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
+}
+
+  
+/// InstCombineIRInserter - This is an IRBuilder insertion helper that works
+/// just like the normal insertion helper, but also adds any new instructions
+/// to the instcombine worklist.
+class VISIBILITY_HIDDEN InstCombineIRInserter 
+    : public IRBuilderDefaultInserter<true> {
+  InstCombineWorklist &Worklist;
+public:
+  InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
+  
+  void InsertHelper(Instruction *I, const Twine &Name,
+                    BasicBlock *BB, BasicBlock::iterator InsertPt) const {
+    IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
+    Worklist.Add(I);
+  }
+};
+  
+/// InstCombiner - The -instcombine pass.
+class VISIBILITY_HIDDEN InstCombiner
+                             : public FunctionPass,
+                               public InstVisitor<InstCombiner, Instruction*> {
+  TargetData *TD;
+  bool MustPreserveLCSSA;
+  bool MadeIRChange;
+public:
+  /// Worklist - All of the instructions that need to be simplified.
+  InstCombineWorklist Worklist;
+
+  /// Builder - This is an IRBuilder that automatically inserts new
+  /// instructions into the worklist when they are created.
+  typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
+  BuilderTy *Builder;
+      
+  static char ID; // Pass identification, replacement for typeid
+  InstCombiner() : FunctionPass(&ID), TD(0), Builder(0) {}
+
+public:
+  virtual bool runOnFunction(Function &F);
+  
+  bool DoOneIteration(Function &F, unsigned ItNum);
+
+  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+                                 
+  TargetData *getTargetData() const { return TD; }
+
+  // Visitation implementation - Implement instruction combining for different
+  // instruction types.  The semantics are as follows:
+  // Return Value:
+  //    null        - No change was made
+  //     I          - Change was made, I is still valid, I may be dead though
+  //   otherwise    - Change was made, replace I with returned instruction
+  //
+  Instruction *visitAdd(BinaryOperator &I);
+  Instruction *visitFAdd(BinaryOperator &I);
+  Value *OptimizePointerDifference(Value *LHS, Value *RHS, const Type *Ty);
+  Instruction *visitSub(BinaryOperator &I);
+  Instruction *visitFSub(BinaryOperator &I);
+  Instruction *visitMul(BinaryOperator &I);
+  Instruction *visitFMul(BinaryOperator &I);
+  Instruction *visitURem(BinaryOperator &I);
+  Instruction *visitSRem(BinaryOperator &I);
+  Instruction *visitFRem(BinaryOperator &I);
+  bool SimplifyDivRemOfSelect(BinaryOperator &I);
+  Instruction *commonRemTransforms(BinaryOperator &I);
+  Instruction *commonIRemTransforms(BinaryOperator &I);
+  Instruction *commonDivTransforms(BinaryOperator &I);
+  Instruction *commonIDivTransforms(BinaryOperator &I);
+  Instruction *visitUDiv(BinaryOperator &I);
+  Instruction *visitSDiv(BinaryOperator &I);
+  Instruction *visitFDiv(BinaryOperator &I);
+  Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
+  Instruction *FoldAndOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
+  Instruction *visitAnd(BinaryOperator &I);
+  Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
+  Instruction *FoldOrOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
+  Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
+                                   Value *A, Value *B, Value *C);
+  Instruction *visitOr (BinaryOperator &I);
+  Instruction *visitXor(BinaryOperator &I);
+  Instruction *visitShl(BinaryOperator &I);
+  Instruction *visitAShr(BinaryOperator &I);
+  Instruction *visitLShr(BinaryOperator &I);
+  Instruction *commonShiftTransforms(BinaryOperator &I);
+  Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
+                                    Constant *RHSC);
+  Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
+                                            GlobalVariable *GV, CmpInst &ICI,
+                                            ConstantInt *AndCst = 0);
+  Instruction *visitFCmpInst(FCmpInst &I);
+  Instruction *visitICmpInst(ICmpInst &I);
+  Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
+  Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
+                                              Instruction *LHS,
+                                              ConstantInt *RHS);
+  Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
+                              ConstantInt *DivRHS);
+  Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI,
+                                ICmpInst::Predicate Pred, Value *TheAdd);
+  Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
+                           ICmpInst::Predicate Cond, Instruction &I);
+  Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
+                                   BinaryOperator &I);
+  Instruction *commonCastTransforms(CastInst &CI);
+  Instruction *commonPointerCastTransforms(CastInst &CI);
+  Instruction *visitTrunc(TruncInst &CI);
+  Instruction *visitZExt(ZExtInst &CI);
+  Instruction *visitSExt(SExtInst &CI);
+  Instruction *visitFPTrunc(FPTruncInst &CI);
+  Instruction *visitFPExt(CastInst &CI);
+  Instruction *visitFPToUI(FPToUIInst &FI);
+  Instruction *visitFPToSI(FPToSIInst &FI);
+  Instruction *visitUIToFP(CastInst &CI);
+  Instruction *visitSIToFP(CastInst &CI);
+  Instruction *visitPtrToInt(PtrToIntInst &CI);
+  Instruction *visitIntToPtr(IntToPtrInst &CI);
+  Instruction *visitBitCast(BitCastInst &CI);
+  Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
+                              Instruction *FI);
+  Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*);
+  Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
+                            Value *A, Value *B, Instruction &Outer,
+                            SelectPatternFlavor SPF2, Value *C);
+  Instruction *visitSelectInst(SelectInst &SI);
+  Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
+  Instruction *visitCallInst(CallInst &CI);
+  Instruction *visitInvokeInst(InvokeInst &II);
+
+  Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
+  Instruction *visitPHINode(PHINode &PN);
+  Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
+  Instruction *visitAllocaInst(AllocaInst &AI);
+  Instruction *visitFree(Instruction &FI);
+  Instruction *visitLoadInst(LoadInst &LI);
+  Instruction *visitStoreInst(StoreInst &SI);
+  Instruction *visitBranchInst(BranchInst &BI);
+  Instruction *visitSwitchInst(SwitchInst &SI);
+  Instruction *visitInsertElementInst(InsertElementInst &IE);
+  Instruction *visitExtractElementInst(ExtractElementInst &EI);
+  Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
+  Instruction *visitExtractValueInst(ExtractValueInst &EV);
+
+  // visitInstruction - Specify what to return for unhandled instructions...
+  Instruction *visitInstruction(Instruction &I) { return 0; }
+
+private:
+  bool ShouldChangeType(const Type *From, const Type *To) const;
+  Value *dyn_castNegVal(Value *V) const;
+  Value *dyn_castFNegVal(Value *V) const;
+  const Type *FindElementAtOffset(const Type *Ty, int64_t Offset, 
+                                  SmallVectorImpl<Value*> &NewIndices);
+  Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
+                                 
+  /// ValueRequiresCast - Return true if the cast from "V to Ty" actually
+  /// results in any code being generated.  It does not require codegen if V is
+  /// simple enough or if the cast can be folded into other casts.
+  bool ValueRequiresCast(Instruction::CastOps opcode,const Value *V,
+                         const Type *Ty);
+
+  Instruction *visitCallSite(CallSite CS);
+  bool transformConstExprCastCall(CallSite CS);
+  Instruction *transformCallThroughTrampoline(CallSite CS);
+  Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
+                                 bool DoXform = true);
+  bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
+  DbgDeclareInst *hasOneUsePlusDeclare(Value *V);
+  Value *EmitGEPOffset(User *GEP);
+
+public:
+  // InsertNewInstBefore - insert an instruction New before instruction Old
+  // in the program.  Add the new instruction to the worklist.
+  //
+  Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
+    assert(New && New->getParent() == 0 &&
+           "New instruction already inserted into a basic block!");
+    BasicBlock *BB = Old.getParent();
+    BB->getInstList().insert(&Old, New);  // Insert inst
+    Worklist.Add(New);
+    return New;
+  }
+      
+  // ReplaceInstUsesWith - This method is to be used when an instruction is
+  // found to be dead, replacable with another preexisting expression.  Here
+  // we add all uses of I to the worklist, replace all uses of I with the new
+  // value, then return I, so that the inst combiner will know that I was
+  // modified.
+  //
+  Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
+    Worklist.AddUsersToWorkList(I);   // Add all modified instrs to worklist.
+    
+    // If we are replacing the instruction with itself, this must be in a
+    // segment of unreachable code, so just clobber the instruction.
+    if (&I == V) 
+      V = UndefValue::get(I.getType());
+      
+    I.replaceAllUsesWith(V);
+    return &I;
+  }
+
+  // EraseInstFromFunction - When dealing with an instruction that has side
+  // effects or produces a void value, we can't rely on DCE to delete the
+  // instruction.  Instead, visit methods should return the value returned by
+  // this function.
+  Instruction *EraseInstFromFunction(Instruction &I) {
+    DEBUG(errs() << "IC: ERASE " << I << '\n');
+
+    assert(I.use_empty() && "Cannot erase instruction that is used!");
+    // Make sure that we reprocess all operands now that we reduced their
+    // use counts.
+    if (I.getNumOperands() < 8) {
+      for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
+        if (Instruction *Op = dyn_cast<Instruction>(*i))
+          Worklist.Add(Op);
+    }
+    Worklist.Remove(&I);
+    I.eraseFromParent();
+    MadeIRChange = true;
+    return 0;  // Don't do anything with FI
+  }
+      
+  void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
+                         APInt &KnownOne, unsigned Depth = 0) const {
+    return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
+  }
+  
+  bool MaskedValueIsZero(Value *V, const APInt &Mask, 
+                         unsigned Depth = 0) const {
+    return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
+  }
+  unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
+    return llvm::ComputeNumSignBits(Op, TD, Depth);
+  }
+
+private:
+
+  /// SimplifyCommutative - This performs a few simplifications for 
+  /// commutative operators.
+  bool SimplifyCommutative(BinaryOperator &I);
+
+  /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
+  /// based on the demanded bits.
+  Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 
+                                 APInt& KnownZero, APInt& KnownOne,
+                                 unsigned Depth);
+  bool SimplifyDemandedBits(Use &U, APInt DemandedMask, 
+                            APInt& KnownZero, APInt& KnownOne,
+                            unsigned Depth=0);
+      
+  /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
+  /// SimplifyDemandedBits knows about.  See if the instruction has any
+  /// properties that allow us to simplify its operands.
+  bool SimplifyDemandedInstructionBits(Instruction &Inst);
+      
+  Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
+                                    APInt& UndefElts, unsigned Depth = 0);
+    
+  // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
+  // which has a PHI node as operand #0, see if we can fold the instruction
+  // into the PHI (which is only possible if all operands to the PHI are
+  // constants).
+  //
+  // If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
+  // that would normally be unprofitable because they strongly encourage jump
+  // threading.
+  Instruction *FoldOpIntoPhi(Instruction &I, bool AllowAggressive = false);
+
+  // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
+  // operator and they all are only used by the PHI, PHI together their
+  // inputs, and do the operation once, to the result of the PHI.
+  Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
+  Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
+  Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
+  Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
+
+  
+  Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
+                        ConstantInt *AndRHS, BinaryOperator &TheAnd);
+  
+  Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
+                            bool isSub, Instruction &I);
+  Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
+                               bool isSigned, bool Inside, Instruction &IB);
+  Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
+  Instruction *MatchBSwap(BinaryOperator &I);
+  bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
+  Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
+  Instruction *SimplifyMemSet(MemSetInst *MI);
+
+
+  Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
+
+  unsigned GetOrEnforceKnownAlignment(Value *V,
+                                      unsigned PrefAlign = 0);
+
+};
+
+      
+  
+} // end namespace llvm.
+
+#endif
diff --git a/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/lib/Transforms/InstCombine/InstCombineAddSub.cpp
new file mode 100644
index 0000000..4891ff0
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -0,0 +1,740 @@
+//===- InstCombineAddSub.cpp ----------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for add, fadd, sub, and fsub.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+/// AddOne - Add one to a ConstantInt.
+static Constant *AddOne(Constant *C) {
+  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
+}
+/// SubOne - Subtract one from a ConstantInt.
+static Constant *SubOne(ConstantInt *C) {
+  return ConstantInt::get(C->getContext(), C->getValue()-1);
+}
+
+
+// dyn_castFoldableMul - If this value is a multiply that can be folded into
+// other computations (because it has a constant operand), return the
+// non-constant operand of the multiply, and set CST to point to the multiplier.
+// Otherwise, return null.
+//
+static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
+  if (!V->hasOneUse() || !V->getType()->isInteger())
+    return 0;
+  
+  Instruction *I = dyn_cast<Instruction>(V);
+  if (I == 0) return 0;
+  
+  if (I->getOpcode() == Instruction::Mul)
+    if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
+      return I->getOperand(0);
+  if (I->getOpcode() == Instruction::Shl)
+    if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
+      // The multiplier is really 1 << CST.
+      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
+      uint32_t CSTVal = CST->getLimitedValue(BitWidth);
+      CST = ConstantInt::get(V->getType()->getContext(),
+                             APInt(BitWidth, 1).shl(CSTVal));
+      return I->getOperand(0);
+    }
+  return 0;
+}
+
+
+/// WillNotOverflowSignedAdd - Return true if we can prove that:
+///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
+/// This basically requires proving that the add in the original type would not
+/// overflow to change the sign bit or have a carry out.
+bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
+  // There are different heuristics we can use for this.  Here are some simple
+  // ones.
+  
+  // Add has the property that adding any two 2's complement numbers can only 
+  // have one carry bit which can change a sign.  As such, if LHS and RHS each
+  // have at least two sign bits, we know that the addition of the two values
+  // will sign extend fine.
+  if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
+    return true;
+  
+  
+  // If one of the operands only has one non-zero bit, and if the other operand
+  // has a known-zero bit in a more significant place than it (not including the
+  // sign bit) the ripple may go up to and fill the zero, but won't change the
+  // sign.  For example, (X & ~4) + 1.
+  
+  // TODO: Implement.
+  
+  return false;
+}
+
+Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
+  bool Changed = SimplifyCommutative(I);
+  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+
+  if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
+                                 I.hasNoUnsignedWrap(), TD))
+    return ReplaceInstUsesWith(I, V);
+
+  
+  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
+      // X + (signbit) --> X ^ signbit
+      const APInt& Val = CI->getValue();
+      uint32_t BitWidth = Val.getBitWidth();
+      if (Val == APInt::getSignBit(BitWidth))
+        return BinaryOperator::CreateXor(LHS, RHS);
+      
+      // See if SimplifyDemandedBits can simplify this.  This handles stuff like
+      // (X & 254)+1 -> (X&254)|1
+      if (SimplifyDemandedInstructionBits(I))
+        return &I;
+
+      // zext(bool) + C -> bool ? C + 1 : C
+      if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
+        if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext()))
+          return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
+    }
+
+    if (isa<PHINode>(LHS))
+      if (Instruction *NV = FoldOpIntoPhi(I))
+        return NV;
+    
+    ConstantInt *XorRHS = 0;
+    Value *XorLHS = 0;
+    if (isa<ConstantInt>(RHSC) &&
+        match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
+      uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
+      const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
+      
+      uint32_t Size = TySizeBits / 2;
+      APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
+      APInt CFF80Val(-C0080Val);
+      do {
+        if (TySizeBits > Size) {
+          // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
+          // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
+          if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
+              (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
+            // This is a sign extend if the top bits are known zero.
+            if (!MaskedValueIsZero(XorLHS, 
+                   APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
+              Size = 0;  // Not a sign ext, but can't be any others either.
+            break;
+          }
+        }
+        Size >>= 1;
+        C0080Val = APIntOps::lshr(C0080Val, Size);
+        CFF80Val = APIntOps::ashr(CFF80Val, Size);
+      } while (Size >= 1);
+      
+      // FIXME: This shouldn't be necessary. When the backends can handle types
+      // with funny bit widths then this switch statement should be removed. It
+      // is just here to get the size of the "middle" type back up to something
+      // that the back ends can handle.
+      const Type *MiddleType = 0;
+      switch (Size) {
+        default: break;
+        case 32:
+        case 16:
+        case  8: MiddleType = IntegerType::get(I.getContext(), Size); break;
+      }
+      if (MiddleType) {
+        Value *NewTrunc = Builder->CreateTrunc(XorLHS, MiddleType, "sext");
+        return new SExtInst(NewTrunc, I.getType(), I.getName());
+      }
+    }
+  }
+
+  if (I.getType()->isInteger(1))
+    return BinaryOperator::CreateXor(LHS, RHS);
+
+  if (I.getType()->isInteger()) {
+    // X + X --> X << 1
+    if (LHS == RHS)
+      return BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
+
+    if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
+      if (RHSI->getOpcode() == Instruction::Sub)
+        if (LHS == RHSI->getOperand(1))                   // A + (B - A) --> B
+          return ReplaceInstUsesWith(I, RHSI->getOperand(0));
+    }
+    if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
+      if (LHSI->getOpcode() == Instruction::Sub)
+        if (RHS == LHSI->getOperand(1))                   // (B - A) + A --> B
+          return ReplaceInstUsesWith(I, LHSI->getOperand(0));
+    }
+  }
+
+  // -A + B  -->  B - A
+  // -A + -B  -->  -(A + B)
+  if (Value *LHSV = dyn_castNegVal(LHS)) {
+    if (LHS->getType()->isIntOrIntVector()) {
+      if (Value *RHSV = dyn_castNegVal(RHS)) {
+        Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
+        return BinaryOperator::CreateNeg(NewAdd);
+      }
+    }
+    
+    return BinaryOperator::CreateSub(RHS, LHSV);
+  }
+
+  // A + -B  -->  A - B
+  if (!isa<Constant>(RHS))
+    if (Value *V = dyn_castNegVal(RHS))
+      return BinaryOperator::CreateSub(LHS, V);
+
+
+  ConstantInt *C2;
+  if (Value *X = dyn_castFoldableMul(LHS, C2)) {
+    if (X == RHS)   // X*C + X --> X * (C+1)
+      return BinaryOperator::CreateMul(RHS, AddOne(C2));
+
+    // X*C1 + X*C2 --> X * (C1+C2)
+    ConstantInt *C1;
+    if (X == dyn_castFoldableMul(RHS, C1))
+      return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
+  }
+
+  // X + X*C --> X * (C+1)
+  if (dyn_castFoldableMul(RHS, C2) == LHS)
+    return BinaryOperator::CreateMul(LHS, AddOne(C2));
+
+  // X + ~X --> -1   since   ~X = -X-1
+  if (match(LHS, m_Not(m_Specific(RHS))) ||
+      match(RHS, m_Not(m_Specific(LHS))))
+    return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
+
+  // A+B --> A|B iff A and B have no bits set in common.
+  if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
+    APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
+    APInt LHSKnownOne(IT->getBitWidth(), 0);
+    APInt LHSKnownZero(IT->getBitWidth(), 0);
+    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
+    if (LHSKnownZero != 0) {
+      APInt RHSKnownOne(IT->getBitWidth(), 0);
+      APInt RHSKnownZero(IT->getBitWidth(), 0);
+      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
+      
+      // No bits in common -> bitwise or.
+      if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
+        return BinaryOperator::CreateOr(LHS, RHS);
+    }
+  }
+
+  // W*X + Y*Z --> W * (X+Z)  iff W == Y
+  if (I.getType()->isIntOrIntVector()) {
+    Value *W, *X, *Y, *Z;
+    if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
+        match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
+      if (W != Y) {
+        if (W == Z) {
+          std::swap(Y, Z);
+        } else if (Y == X) {
+          std::swap(W, X);
+        } else if (X == Z) {
+          std::swap(Y, Z);
+          std::swap(W, X);
+        }
+      }
+
+      if (W == Y) {
+        Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
+        return BinaryOperator::CreateMul(W, NewAdd);
+      }
+    }
+  }
+
+  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
+    Value *X = 0;
+    if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
+      return BinaryOperator::CreateSub(SubOne(CRHS), X);
+
+    // (X & FF00) + xx00  -> (X+xx00) & FF00
+    if (LHS->hasOneUse() &&
+        match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
+      Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
+      if (Anded == CRHS) {
+        // See if all bits from the first bit set in the Add RHS up are included
+        // in the mask.  First, get the rightmost bit.
+        const APInt &AddRHSV = CRHS->getValue();
+
+        // Form a mask of all bits from the lowest bit added through the top.
+        APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
+
+        // See if the and mask includes all of these bits.
+        APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
+
+        if (AddRHSHighBits == AddRHSHighBitsAnd) {
+          // Okay, the xform is safe.  Insert the new add pronto.
+          Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
+          return BinaryOperator::CreateAnd(NewAdd, C2);
+        }
+      }
+    }
+
+    // Try to fold constant add into select arguments.
+    if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
+      if (Instruction *R = FoldOpIntoSelect(I, SI))
+        return R;
+  }
+
+  // add (select X 0 (sub n A)) A  -->  select X A n
+  {
+    SelectInst *SI = dyn_cast<SelectInst>(LHS);
+    Value *A = RHS;
+    if (!SI) {
+      SI = dyn_cast<SelectInst>(RHS);
+      A = LHS;
+    }
+    if (SI && SI->hasOneUse()) {
+      Value *TV = SI->getTrueValue();
+      Value *FV = SI->getFalseValue();
+      Value *N;
+
+      // Can we fold the add into the argument of the select?
+      // We check both true and false select arguments for a matching subtract.
+      if (match(FV, m_Zero()) &&
+          match(TV, m_Sub(m_Value(N), m_Specific(A))))
+        // Fold the add into the true select value.
+        return SelectInst::Create(SI->getCondition(), N, A);
+      if (match(TV, m_Zero()) &&
+          match(FV, m_Sub(m_Value(N), m_Specific(A))))
+        // Fold the add into the false select value.
+        return SelectInst::Create(SI->getCondition(), A, N);
+    }
+  }
+
+  // Check for (add (sext x), y), see if we can merge this into an
+  // integer add followed by a sext.
+  if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
+    // (add (sext x), cst) --> (sext (add x, cst'))
+    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
+      Constant *CI = 
+        ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
+      if (LHSConv->hasOneUse() &&
+          ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
+          WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
+        // Insert the new, smaller add.
+        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 
+                                              CI, "addconv");
+        return new SExtInst(NewAdd, I.getType());
+      }
+    }
+    
+    // (add (sext x), (sext y)) --> (sext (add int x, y))
+    if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
+      // Only do this if x/y have the same type, if at last one of them has a
+      // single use (so we don't increase the number of sexts), and if the
+      // integer add will not overflow.
+      if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
+          (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
+          WillNotOverflowSignedAdd(LHSConv->getOperand(0),
+                                   RHSConv->getOperand(0))) {
+        // Insert the new integer add.
+        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 
+                                             RHSConv->getOperand(0), "addconv");
+        return new SExtInst(NewAdd, I.getType());
+      }
+    }
+  }
+
+  return Changed ? &I : 0;
+}
+
+Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
+  bool Changed = SimplifyCommutative(I);
+  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+
+  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
+    // X + 0 --> X
+    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
+      if (CFP->isExactlyValue(ConstantFP::getNegativeZero
+                              (I.getType())->getValueAPF()))
+        return ReplaceInstUsesWith(I, LHS);
+    }
+
+    if (isa<PHINode>(LHS))
+      if (Instruction *NV = FoldOpIntoPhi(I))
+        return NV;
+  }
+
+  // -A + B  -->  B - A
+  // -A + -B  -->  -(A + B)
+  if (Value *LHSV = dyn_castFNegVal(LHS))
+    return BinaryOperator::CreateFSub(RHS, LHSV);
+
+  // A + -B  -->  A - B
+  if (!isa<Constant>(RHS))
+    if (Value *V = dyn_castFNegVal(RHS))
+      return BinaryOperator::CreateFSub(LHS, V);
+
+  // Check for X+0.0.  Simplify it to X if we know X is not -0.0.
+  if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
+    if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
+      return ReplaceInstUsesWith(I, LHS);
+
+  // Check for (add double (sitofp x), y), see if we can merge this into an
+  // integer add followed by a promotion.
+  if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
+    // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
+    // ... if the constant fits in the integer value.  This is useful for things
+    // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
+    // requires a constant pool load, and generally allows the add to be better
+    // instcombined.
+    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
+      Constant *CI = 
+      ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
+      if (LHSConv->hasOneUse() &&
+          ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
+          WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
+        // Insert the new integer add.
+        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+                                              CI, "addconv");
+        return new SIToFPInst(NewAdd, I.getType());
+      }
+    }
+    
+    // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
+    if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
+      // Only do this if x/y have the same type, if at last one of them has a
+      // single use (so we don't increase the number of int->fp conversions),
+      // and if the integer add will not overflow.
+      if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
+          (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
+          WillNotOverflowSignedAdd(LHSConv->getOperand(0),
+                                   RHSConv->getOperand(0))) {
+        // Insert the new integer add.
+        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 
+                                              RHSConv->getOperand(0),"addconv");
+        return new SIToFPInst(NewAdd, I.getType());
+      }
+    }
+  }
+  
+  return Changed ? &I : 0;
+}
+
+
+/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
+/// code necessary to compute the offset from the base pointer (without adding
+/// in the base pointer).  Return the result as a signed integer of intptr size.
+Value *InstCombiner::EmitGEPOffset(User *GEP) {
+  TargetData &TD = *getTargetData();
+  gep_type_iterator GTI = gep_type_begin(GEP);
+  const Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
+  Value *Result = Constant::getNullValue(IntPtrTy);
+
+  // Build a mask for high order bits.
+  unsigned IntPtrWidth = TD.getPointerSizeInBits();
+  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
+
+  for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
+       ++i, ++GTI) {
+    Value *Op = *i;
+    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
+    if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
+      if (OpC->isZero()) continue;
+      
+      // Handle a struct index, which adds its field offset to the pointer.
+      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+        Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
+        
+        Result = Builder->CreateAdd(Result,
+                                    ConstantInt::get(IntPtrTy, Size),
+                                    GEP->getName()+".offs");
+        continue;
+      }
+      
+      Constant *Scale = ConstantInt::get(IntPtrTy, Size);
+      Constant *OC =
+              ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
+      Scale = ConstantExpr::getMul(OC, Scale);
+      // Emit an add instruction.
+      Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
+      continue;
+    }
+    // Convert to correct type.
+    if (Op->getType() != IntPtrTy)
+      Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
+    if (Size != 1) {
+      Constant *Scale = ConstantInt::get(IntPtrTy, Size);
+      // We'll let instcombine(mul) convert this to a shl if possible.
+      Op = Builder->CreateMul(Op, Scale, GEP->getName()+".idx");
+    }
+
+    // Emit an add instruction.
+    Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
+  }
+  return Result;
+}
+
+
+
+
+/// Optimize pointer differences into the same array into a size.  Consider:
+///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
+/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
+///
+Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
+                                               const Type *Ty) {
+  assert(TD && "Must have target data info for this");
+  
+  // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
+  // this.
+  bool Swapped = false;
+  GetElementPtrInst *GEP = 0;
+  ConstantExpr *CstGEP = 0;
+  
+  // TODO: Could also optimize &A[i] - &A[j] -> "i-j", and "&A.foo[i] - &A.foo".
+  // For now we require one side to be the base pointer "A" or a constant
+  // expression derived from it.
+  if (GetElementPtrInst *LHSGEP = dyn_cast<GetElementPtrInst>(LHS)) {
+    // (gep X, ...) - X
+    if (LHSGEP->getOperand(0) == RHS) {
+      GEP = LHSGEP;
+      Swapped = false;
+    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(RHS)) {
+      // (gep X, ...) - (ce_gep X, ...)
+      if (CE->getOpcode() == Instruction::GetElementPtr &&
+          LHSGEP->getOperand(0) == CE->getOperand(0)) {
+        CstGEP = CE;
+        GEP = LHSGEP;
+        Swapped = false;
+      }
+    }
+  }
+  
+  if (GetElementPtrInst *RHSGEP = dyn_cast<GetElementPtrInst>(RHS)) {
+    // X - (gep X, ...)
+    if (RHSGEP->getOperand(0) == LHS) {
+      GEP = RHSGEP;
+      Swapped = true;
+    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(LHS)) {
+      // (ce_gep X, ...) - (gep X, ...)
+      if (CE->getOpcode() == Instruction::GetElementPtr &&
+          RHSGEP->getOperand(0) == CE->getOperand(0)) {
+        CstGEP = CE;
+        GEP = RHSGEP;
+        Swapped = true;
+      }
+    }
+  }
+  
+  if (GEP == 0)
+    return 0;
+  
+  // Emit the offset of the GEP and an intptr_t.
+  Value *Result = EmitGEPOffset(GEP);
+  
+  // If we had a constant expression GEP on the other side offsetting the
+  // pointer, subtract it from the offset we have.
+  if (CstGEP) {
+    Value *CstOffset = EmitGEPOffset(CstGEP);
+    Result = Builder->CreateSub(Result, CstOffset);
+  }
+  
+
+  // If we have p - gep(p, ...)  then we have to negate the result.
+  if (Swapped)
+    Result = Builder->CreateNeg(Result, "diff.neg");
+
+  return Builder->CreateIntCast(Result, Ty, true);
+}
+
+
+Instruction *InstCombiner::visitSub(BinaryOperator &I) {
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  if (Op0 == Op1)                        // sub X, X  -> 0
+    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+
+  // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
+  if (Value *V = dyn_castNegVal(Op1)) {
+    BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
+    Res->setHasNoSignedWrap(I.hasNoSignedWrap());
+    Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
+    return Res;
+  }
+
+  if (isa<UndefValue>(Op0))
+    return ReplaceInstUsesWith(I, Op0);    // undef - X -> undef
+  if (isa<UndefValue>(Op1))
+    return ReplaceInstUsesWith(I, Op1);    // X - undef -> undef
+  if (I.getType()->isInteger(1))
+    return BinaryOperator::CreateXor(Op0, Op1);
+  
+  if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
+    // Replace (-1 - A) with (~A).
+    if (C->isAllOnesValue())
+      return BinaryOperator::CreateNot(Op1);
+
+    // C - ~X == X + (1+C)
+    Value *X = 0;
+    if (match(Op1, m_Not(m_Value(X))))
+      return BinaryOperator::CreateAdd(X, AddOne(C));
+
+    // -(X >>u 31) -> (X >>s 31)
+    // -(X >>s 31) -> (X >>u 31)
+    if (C->isZero()) {
+      if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
+        if (SI->getOpcode() == Instruction::LShr) {
+          if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
+            // Check to see if we are shifting out everything but the sign bit.
+            if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
+                SI->getType()->getPrimitiveSizeInBits()-1) {
+              // Ok, the transformation is safe.  Insert AShr.
+              return BinaryOperator::Create(Instruction::AShr, 
+                                          SI->getOperand(0), CU, SI->getName());
+            }
+          }
+        } else if (SI->getOpcode() == Instruction::AShr) {
+          if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
+            // Check to see if we are shifting out everything but the sign bit.
+            if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
+                SI->getType()->getPrimitiveSizeInBits()-1) {
+              // Ok, the transformation is safe.  Insert LShr. 
+              return BinaryOperator::CreateLShr(
+                                          SI->getOperand(0), CU, SI->getName());
+            }
+          }
+        }
+      }
+    }
+
+    // Try to fold constant sub into select arguments.
+    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
+      if (Instruction *R = FoldOpIntoSelect(I, SI))
+        return R;
+
+    // C - zext(bool) -> bool ? C - 1 : C
+    if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
+      if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext()))
+        return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
+  }
+
+  if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
+    if (Op1I->getOpcode() == Instruction::Add) {
+      if (Op1I->getOperand(0) == Op0)              // X-(X+Y) == -Y
+        return BinaryOperator::CreateNeg(Op1I->getOperand(1),
+                                         I.getName());
+      else if (Op1I->getOperand(1) == Op0)         // X-(Y+X) == -Y
+        return BinaryOperator::CreateNeg(Op1I->getOperand(0),
+                                         I.getName());
+      else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
+        if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
+          // C1-(X+C2) --> (C1-C2)-X
+          return BinaryOperator::CreateSub(
+            ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0));
+      }
+    }
+
+    if (Op1I->hasOneUse()) {
+      // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
+      // is not used by anyone else...
+      //
+      if (Op1I->getOpcode() == Instruction::Sub) {
+        // Swap the two operands of the subexpr...
+        Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
+        Op1I->setOperand(0, IIOp1);
+        Op1I->setOperand(1, IIOp0);
+
+        // Create the new top level add instruction...
+        return BinaryOperator::CreateAdd(Op0, Op1);
+      }
+
+      // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
+      //
+      if (Op1I->getOpcode() == Instruction::And &&
+          (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
+        Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
+
+        Value *NewNot = Builder->CreateNot(OtherOp, "B.not");
+        return BinaryOperator::CreateAnd(Op0, NewNot);
+      }
+
+      // 0 - (X sdiv C)  -> (X sdiv -C)
+      if (Op1I->getOpcode() == Instruction::SDiv)
+        if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
+          if (CSI->isZero())
+            if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
+              return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
+                                          ConstantExpr::getNeg(DivRHS));
+
+      // X - X*C --> X * (1-C)
+      ConstantInt *C2 = 0;
+      if (dyn_castFoldableMul(Op1I, C2) == Op0) {
+        Constant *CP1 = 
+          ConstantExpr::getSub(ConstantInt::get(I.getType(), 1),
+                                             C2);
+        return BinaryOperator::CreateMul(Op0, CP1);
+      }
+    }
+  }
+
+  if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
+    if (Op0I->getOpcode() == Instruction::Add) {
+      if (Op0I->getOperand(0) == Op1)             // (Y+X)-Y == X
+        return ReplaceInstUsesWith(I, Op0I->getOperand(1));
+      else if (Op0I->getOperand(1) == Op1)        // (X+Y)-Y == X
+        return ReplaceInstUsesWith(I, Op0I->getOperand(0));
+    } else if (Op0I->getOpcode() == Instruction::Sub) {
+      if (Op0I->getOperand(0) == Op1)             // (X-Y)-X == -Y
+        return BinaryOperator::CreateNeg(Op0I->getOperand(1),
+                                         I.getName());
+    }
+  }
+
+  ConstantInt *C1;
+  if (Value *X = dyn_castFoldableMul(Op0, C1)) {
+    if (X == Op1)  // X*C - X --> X * (C-1)
+      return BinaryOperator::CreateMul(Op1, SubOne(C1));
+
+    ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
+    if (X == dyn_castFoldableMul(Op1, C2))
+      return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
+  }
+  
+  // Optimize pointer differences into the same array into a size.  Consider:
+  //  &A[10] - &A[0]: we should compile this to "10".
+  if (TD) {
+    Value *LHSOp, *RHSOp;
+    if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
+        match(Op1, m_PtrToInt(m_Value(RHSOp))))
+      if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
+        return ReplaceInstUsesWith(I, Res);
+    
+    // trunc(p)-trunc(q) -> trunc(p-q)
+    if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
+        match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
+      if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
+        return ReplaceInstUsesWith(I, Res);
+  }
+  
+  return 0;
+}
+
+Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  // If this is a 'B = x-(-A)', change to B = x+A...
+  if (Value *V = dyn_castFNegVal(Op1))
+    return BinaryOperator::CreateFAdd(Op0, V);
+
+  return 0;
+}
diff --git a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
new file mode 100644
index 0000000..af300fc
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -0,0 +1,1990 @@
+//===- InstCombineAndOrXor.cpp --------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitAnd, visitOr, and visitXor functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+
+/// AddOne - Add one to a ConstantInt.
+static Constant *AddOne(Constant *C) {
+  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
+}
+/// SubOne - Subtract one from a ConstantInt.
+static Constant *SubOne(ConstantInt *C) {
+  return ConstantInt::get(C->getContext(), C->getValue()-1);
+}
+
+/// isFreeToInvert - Return true if the specified value is free to invert (apply
+/// ~ to).  This happens in cases where the ~ can be eliminated.
+static inline bool isFreeToInvert(Value *V) {
+  // ~(~(X)) -> X.
+  if (BinaryOperator::isNot(V))
+    return true;
+  
+  // Constants can be considered to be not'ed values.
+  if (isa<ConstantInt>(V))
+    return true;
+  
+  // Compares can be inverted if they have a single use.
+  if (CmpInst *CI = dyn_cast<CmpInst>(V))
+    return CI->hasOneUse();
+  
+  return false;
+}
+
+static inline Value *dyn_castNotVal(Value *V) {
+  // If this is not(not(x)) don't return that this is a not: we want the two
+  // not's to be folded first.
+  if (BinaryOperator::isNot(V)) {
+    Value *Operand = BinaryOperator::getNotArgument(V);
+    if (!isFreeToInvert(Operand))
+      return Operand;
+  }
+  
+  // Constants can be considered to be not'ed values...
+  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
+    return ConstantInt::get(C->getType(), ~C->getValue());
+  return 0;
+}
+
+
+/// getICmpCode - Encode a icmp predicate into a three bit mask.  These bits
+/// are carefully arranged to allow folding of expressions such as:
+///
+///      (A < B) | (A > B) --> (A != B)
+///
+/// Note that this is only valid if the first and second predicates have the
+/// same sign. Is illegal to do: (A u< B) | (A s> B) 
+///
+/// Three bits are used to represent the condition, as follows:
+///   0  A > B
+///   1  A == B
+///   2  A < B
+///
+/// <=>  Value  Definition
+/// 000     0   Always false
+/// 001     1   A >  B
+/// 010     2   A == B
+/// 011     3   A >= B
+/// 100     4   A <  B
+/// 101     5   A != B
+/// 110     6   A <= B
+/// 111     7   Always true
+///  
+static unsigned getICmpCode(const ICmpInst *ICI) {
+  switch (ICI->getPredicate()) {
+    // False -> 0
+  case ICmpInst::ICMP_UGT: return 1;  // 001
+  case ICmpInst::ICMP_SGT: return 1;  // 001
+  case ICmpInst::ICMP_EQ:  return 2;  // 010
+  case ICmpInst::ICMP_UGE: return 3;  // 011
+  case ICmpInst::ICMP_SGE: return 3;  // 011
+  case ICmpInst::ICMP_ULT: return 4;  // 100
+  case ICmpInst::ICMP_SLT: return 4;  // 100
+  case ICmpInst::ICMP_NE:  return 5;  // 101
+  case ICmpInst::ICMP_ULE: return 6;  // 110
+  case ICmpInst::ICMP_SLE: return 6;  // 110
+    // True -> 7
+  default:
+    llvm_unreachable("Invalid ICmp predicate!");
+    return 0;
+  }
+}
+
+/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
+/// predicate into a three bit mask. It also returns whether it is an ordered
+/// predicate by reference.
+static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
+  isOrdered = false;
+  switch (CC) {
+  case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
+  case FCmpInst::FCMP_UNO:                   return 0;  // 000
+  case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
+  case FCmpInst::FCMP_UGT:                   return 1;  // 001
+  case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
+  case FCmpInst::FCMP_UEQ:                   return 2;  // 010
+  case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
+  case FCmpInst::FCMP_UGE:                   return 3;  // 011
+  case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
+  case FCmpInst::FCMP_ULT:                   return 4;  // 100
+  case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
+  case FCmpInst::FCMP_UNE:                   return 5;  // 101
+  case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
+  case FCmpInst::FCMP_ULE:                   return 6;  // 110
+    // True -> 7
+  default:
+    // Not expecting FCMP_FALSE and FCMP_TRUE;
+    llvm_unreachable("Unexpected FCmp predicate!");
+    return 0;
+  }
+}
+
+/// getICmpValue - This is the complement of getICmpCode, which turns an
+/// opcode and two operands into either a constant true or false, or a brand 
+/// new ICmp instruction. The sign is passed in to determine which kind
+/// of predicate to use in the new icmp instruction.
+static Value *getICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS) {
+  switch (Code) {
+  default: assert(0 && "Illegal ICmp code!");
+  case 0:
+    return ConstantInt::getFalse(LHS->getContext());
+  case 1: 
+    if (Sign)
+      return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
+    return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
+  case 2:
+    return new ICmpInst(ICmpInst::ICMP_EQ,  LHS, RHS);
+  case 3: 
+    if (Sign)
+      return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
+    return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
+  case 4: 
+    if (Sign)
+      return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
+    return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
+  case 5:
+    return new ICmpInst(ICmpInst::ICMP_NE,  LHS, RHS);
+  case 6: 
+    if (Sign)
+      return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
+    return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
+  case 7:
+    return ConstantInt::getTrue(LHS->getContext());
+  }
+}
+
+/// getFCmpValue - This is the complement of getFCmpCode, which turns an
+/// opcode and two operands into either a FCmp instruction. isordered is passed
+/// in to determine which kind of predicate to use in the new fcmp instruction.
+static Value *getFCmpValue(bool isordered, unsigned code,
+                           Value *LHS, Value *RHS) {
+  switch (code) {
+  default: llvm_unreachable("Illegal FCmp code!");
+  case  0:
+    if (isordered)
+      return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
+    else
+      return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
+  case  1: 
+    if (isordered)
+      return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
+    else
+      return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
+  case  2: 
+    if (isordered)
+      return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
+    else
+      return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
+  case  3: 
+    if (isordered)
+      return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
+    else
+      return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
+  case  4: 
+    if (isordered)
+      return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
+    else
+      return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
+  case  5: 
+    if (isordered)
+      return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
+    else
+      return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
+  case  6: 
+    if (isordered)
+      return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
+    else
+      return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
+  case  7: return ConstantInt::getTrue(LHS->getContext());
+  }
+}
+
+/// PredicatesFoldable - Return true if both predicates match sign or if at
+/// least one of them is an equality comparison (which is signless).
+static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
+  return (CmpInst::isSigned(p1) == CmpInst::isSigned(p2)) ||
+         (CmpInst::isSigned(p1) && ICmpInst::isEquality(p2)) ||
+         (CmpInst::isSigned(p2) && ICmpInst::isEquality(p1));
+}
+
+// OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
+// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
+// guaranteed to be a binary operator.
+Instruction *InstCombiner::OptAndOp(Instruction *Op,
+                                    ConstantInt *OpRHS,
+                                    ConstantInt *AndRHS,
+                                    BinaryOperator &TheAnd) {
+  Value *X = Op->getOperand(0);
+  Constant *Together = 0;
+  if (!Op->isShift())
+    Together = ConstantExpr::getAnd(AndRHS, OpRHS);
+
+  switch (Op->getOpcode()) {
+  case Instruction::Xor:
+    if (Op->hasOneUse()) {
+      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
+      Value *And = Builder->CreateAnd(X, AndRHS);
+      And->takeName(Op);
+      return BinaryOperator::CreateXor(And, Together);
+    }
+    break;
+  case Instruction::Or:
+    if (Together == AndRHS) // (X | C) & C --> C
+      return ReplaceInstUsesWith(TheAnd, AndRHS);
+
+    if (Op->hasOneUse() && Together != OpRHS) {
+      // (X | C1) & C2 --> (X | (C1&C2)) & C2
+      Value *Or = Builder->CreateOr(X, Together);
+      Or->takeName(Op);
+      return BinaryOperator::CreateAnd(Or, AndRHS);
+    }
+    break;
+  case Instruction::Add:
+    if (Op->hasOneUse()) {
+      // Adding a one to a single bit bit-field should be turned into an XOR
+      // of the bit.  First thing to check is to see if this AND is with a
+      // single bit constant.
+      const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
+
+      // If there is only one bit set.
+      if (AndRHSV.isPowerOf2()) {
+        // Ok, at this point, we know that we are masking the result of the
+        // ADD down to exactly one bit.  If the constant we are adding has
+        // no bits set below this bit, then we can eliminate the ADD.
+        const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
+
+        // Check to see if any bits below the one bit set in AndRHSV are set.
+        if ((AddRHS & (AndRHSV-1)) == 0) {
+          // If not, the only thing that can effect the output of the AND is
+          // the bit specified by AndRHSV.  If that bit is set, the effect of
+          // the XOR is to toggle the bit.  If it is clear, then the ADD has
+          // no effect.
+          if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
+            TheAnd.setOperand(0, X);
+            return &TheAnd;
+          } else {
+            // Pull the XOR out of the AND.
+            Value *NewAnd = Builder->CreateAnd(X, AndRHS);
+            NewAnd->takeName(Op);
+            return BinaryOperator::CreateXor(NewAnd, AndRHS);
+          }
+        }
+      }
+    }
+    break;
+
+  case Instruction::Shl: {
+    // We know that the AND will not produce any of the bits shifted in, so if
+    // the anded constant includes them, clear them now!
+    //
+    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
+    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
+    APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
+    ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
+                                       AndRHS->getValue() & ShlMask);
+
+    if (CI->getValue() == ShlMask) { 
+    // Masking out bits that the shift already masks
+      return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
+    } else if (CI != AndRHS) {                  // Reducing bits set in and.
+      TheAnd.setOperand(1, CI);
+      return &TheAnd;
+    }
+    break;
+  }
+  case Instruction::LShr: {
+    // We know that the AND will not produce any of the bits shifted in, so if
+    // the anded constant includes them, clear them now!  This only applies to
+    // unsigned shifts, because a signed shr may bring in set bits!
+    //
+    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
+    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
+    APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
+    ConstantInt *CI = ConstantInt::get(Op->getContext(),
+                                       AndRHS->getValue() & ShrMask);
+
+    if (CI->getValue() == ShrMask) {   
+    // Masking out bits that the shift already masks.
+      return ReplaceInstUsesWith(TheAnd, Op);
+    } else if (CI != AndRHS) {
+      TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
+      return &TheAnd;
+    }
+    break;
+  }
+  case Instruction::AShr:
+    // Signed shr.
+    // See if this is shifting in some sign extension, then masking it out
+    // with an and.
+    if (Op->hasOneUse()) {
+      uint32_t BitWidth = AndRHS->getType()->getBitWidth();
+      uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
+      APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
+      Constant *C = ConstantInt::get(Op->getContext(),
+                                     AndRHS->getValue() & ShrMask);
+      if (C == AndRHS) {          // Masking out bits shifted in.
+        // (Val ashr C1) & C2 -> (Val lshr C1) & C2
+        // Make the argument unsigned.
+        Value *ShVal = Op->getOperand(0);
+        ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
+        return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
+      }
+    }
+    break;
+  }
+  return 0;
+}
+
+
+/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
+/// true, otherwise (V < Lo || V >= Hi).  In pratice, we emit the more efficient
+/// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
+/// whether to treat the V, Lo and HI as signed or not. IB is the location to
+/// insert new instructions.
+Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
+                                           bool isSigned, bool Inside, 
+                                           Instruction &IB) {
+  assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ? 
+            ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
+         "Lo is not <= Hi in range emission code!");
+    
+  if (Inside) {
+    if (Lo == Hi)  // Trivially false.
+      return new ICmpInst(ICmpInst::ICMP_NE, V, V);
+
+    // V >= Min && V < Hi --> V < Hi
+    if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
+      ICmpInst::Predicate pred = (isSigned ? 
+        ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
+      return new ICmpInst(pred, V, Hi);
+    }
+
+    // Emit V-Lo <u Hi-Lo
+    Constant *NegLo = ConstantExpr::getNeg(Lo);
+    Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
+    Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
+    return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
+  }
+
+  if (Lo == Hi)  // Trivially true.
+    return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
+
+  // V < Min || V >= Hi -> V > Hi-1
+  Hi = SubOne(cast<ConstantInt>(Hi));
+  if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
+    ICmpInst::Predicate pred = (isSigned ? 
+        ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
+    return new ICmpInst(pred, V, Hi);
+  }
+
+  // Emit V-Lo >u Hi-1-Lo
+  // Note that Hi has already had one subtracted from it, above.
+  ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
+  Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
+  Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
+  return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
+}
+
+// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
+// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
+// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
+// not, since all 1s are not contiguous.
+static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
+  const APInt& V = Val->getValue();
+  uint32_t BitWidth = Val->getType()->getBitWidth();
+  if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
+
+  // look for the first zero bit after the run of ones
+  MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
+  // look for the first non-zero bit
+  ME = V.getActiveBits(); 
+  return true;
+}
+
+/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
+/// where isSub determines whether the operator is a sub.  If we can fold one of
+/// the following xforms:
+/// 
+/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
+/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
+/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
+///
+/// return (A +/- B).
+///
+Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
+                                        ConstantInt *Mask, bool isSub,
+                                        Instruction &I) {
+  Instruction *LHSI = dyn_cast<Instruction>(LHS);
+  if (!LHSI || LHSI->getNumOperands() != 2 ||
+      !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
+
+  ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
+
+  switch (LHSI->getOpcode()) {
+  default: return 0;
+  case Instruction::And:
+    if (ConstantExpr::getAnd(N, Mask) == Mask) {
+      // If the AndRHS is a power of two minus one (0+1+), this is simple.
+      if ((Mask->getValue().countLeadingZeros() + 
+           Mask->getValue().countPopulation()) == 
+          Mask->getValue().getBitWidth())
+        break;
+
+      // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
+      // part, we don't need any explicit masks to take them out of A.  If that
+      // is all N is, ignore it.
+      uint32_t MB = 0, ME = 0;
+      if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
+        uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
+        APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
+        if (MaskedValueIsZero(RHS, Mask))
+          break;
+      }
+    }
+    return 0;
+  case Instruction::Or:
+  case Instruction::Xor:
+    // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
+    if ((Mask->getValue().countLeadingZeros() + 
+         Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
+        && ConstantExpr::getAnd(N, Mask)->isNullValue())
+      break;
+    return 0;
+  }
+  
+  if (isSub)
+    return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
+  return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
+}
+
+/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
+Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
+                                          ICmpInst *LHS, ICmpInst *RHS) {
+  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
+
+  // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
+  if (PredicatesFoldable(LHSCC, RHSCC)) {
+    if (LHS->getOperand(0) == RHS->getOperand(1) &&
+        LHS->getOperand(1) == RHS->getOperand(0))
+      LHS->swapOperands();
+    if (LHS->getOperand(0) == RHS->getOperand(0) &&
+        LHS->getOperand(1) == RHS->getOperand(1)) {
+      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
+      unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
+      bool isSigned = LHS->isSigned() || RHS->isSigned();
+      Value *RV = getICmpValue(isSigned, Code, Op0, Op1);
+      if (Instruction *I = dyn_cast<Instruction>(RV))
+        return I;
+      // Otherwise, it's a constant boolean value.
+      return ReplaceInstUsesWith(I, RV);
+    }
+  }
+  
+  // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
+  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
+  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
+  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
+  if (LHSCst == 0 || RHSCst == 0) return 0;
+  
+  if (LHSCst == RHSCst && LHSCC == RHSCC) {
+    // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
+    // where C is a power of 2
+    if (LHSCC == ICmpInst::ICMP_ULT &&
+        LHSCst->getValue().isPowerOf2()) {
+      Value *NewOr = Builder->CreateOr(Val, Val2);
+      return new ICmpInst(LHSCC, NewOr, LHSCst);
+    }
+    
+    // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
+    if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
+      Value *NewOr = Builder->CreateOr(Val, Val2);
+      return new ICmpInst(LHSCC, NewOr, LHSCst);
+    }
+  }
+  
+  // From here on, we only handle:
+  //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
+  if (Val != Val2) return 0;
+  
+  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
+  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
+      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
+      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
+      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
+    return 0;
+  
+  // We can't fold (ugt x, C) & (sgt x, C2).
+  if (!PredicatesFoldable(LHSCC, RHSCC))
+    return 0;
+    
+  // Ensure that the larger constant is on the RHS.
+  bool ShouldSwap;
+  if (CmpInst::isSigned(LHSCC) ||
+      (ICmpInst::isEquality(LHSCC) && 
+       CmpInst::isSigned(RHSCC)))
+    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
+  else
+    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
+    
+  if (ShouldSwap) {
+    std::swap(LHS, RHS);
+    std::swap(LHSCst, RHSCst);
+    std::swap(LHSCC, RHSCC);
+  }
+
+  // At this point, we know we have have two icmp instructions
+  // comparing a value against two constants and and'ing the result
+  // together.  Because of the above check, we know that we only have
+  // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know 
+  // (from the icmp folding check above), that the two constants 
+  // are not equal and that the larger constant is on the RHS
+  assert(LHSCst != RHSCst && "Compares not folded above?");
+
+  switch (LHSCC) {
+  default: llvm_unreachable("Unknown integer condition code!");
+  case ICmpInst::ICMP_EQ:
+    switch (RHSCC) {
+    default: llvm_unreachable("Unknown integer condition code!");
+    case ICmpInst::ICMP_EQ:         // (X == 13 & X == 15) -> false
+    case ICmpInst::ICMP_UGT:        // (X == 13 & X >  15) -> false
+    case ICmpInst::ICMP_SGT:        // (X == 13 & X >  15) -> false
+      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+    case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
+    case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
+    case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
+      return ReplaceInstUsesWith(I, LHS);
+    }
+  case ICmpInst::ICMP_NE:
+    switch (RHSCC) {
+    default: llvm_unreachable("Unknown integer condition code!");
+    case ICmpInst::ICMP_ULT:
+      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
+        return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
+      break;                        // (X != 13 & X u< 15) -> no change
+    case ICmpInst::ICMP_SLT:
+      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
+        return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
+      break;                        // (X != 13 & X s< 15) -> no change
+    case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
+    case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
+    case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
+      return ReplaceInstUsesWith(I, RHS);
+    case ICmpInst::ICMP_NE:
+      if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
+        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
+        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
+        return new ICmpInst(ICmpInst::ICMP_UGT, Add,
+                            ConstantInt::get(Add->getType(), 1));
+      }
+      break;                        // (X != 13 & X != 15) -> no change
+    }
+    break;
+  case ICmpInst::ICMP_ULT:
+    switch (RHSCC) {
+    default: llvm_unreachable("Unknown integer condition code!");
+    case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
+    case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
+      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+    case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
+      break;
+    case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
+    case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
+      return ReplaceInstUsesWith(I, LHS);
+    case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
+      break;
+    }
+    break;
+  case ICmpInst::ICMP_SLT:
+    switch (RHSCC) {
+    default: llvm_unreachable("Unknown integer condition code!");
+    case ICmpInst::ICMP_EQ:         // (X s< 13 & X == 15) -> false
+    case ICmpInst::ICMP_SGT:        // (X s< 13 & X s> 15) -> false
+      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+    case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
+      break;
+    case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
+    case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
+      return ReplaceInstUsesWith(I, LHS);
+    case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
+      break;
+    }
+    break;
+  case ICmpInst::ICMP_UGT:
+    switch (RHSCC) {
+    default: llvm_unreachable("Unknown integer condition code!");
+    case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
+    case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
+      return ReplaceInstUsesWith(I, RHS);
+    case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
+      break;
+    case ICmpInst::ICMP_NE:
+      if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
+        return new ICmpInst(LHSCC, Val, RHSCst);
+      break;                        // (X u> 13 & X != 15) -> no change
+    case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
+      return InsertRangeTest(Val, AddOne(LHSCst),
+                             RHSCst, false, true, I);
+    case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
+      break;
+    }
+    break;
+  case ICmpInst::ICMP_SGT:
+    switch (RHSCC) {
+    default: llvm_unreachable("Unknown integer condition code!");
+    case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
+    case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
+      return ReplaceInstUsesWith(I, RHS);
+    case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
+      break;
+    case ICmpInst::ICMP_NE:
+      if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
+        return new ICmpInst(LHSCC, Val, RHSCst);
+      break;                        // (X s> 13 & X != 15) -> no change
+    case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
+      return InsertRangeTest(Val, AddOne(LHSCst),
+                             RHSCst, true, true, I);
+    case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
+      break;
+    }
+    break;
+  }
+ 
+  return 0;
+}
+
+Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS,
+                                          FCmpInst *RHS) {
+  
+  if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
+      RHS->getPredicate() == FCmpInst::FCMP_ORD) {
+    // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
+    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
+      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
+        // If either of the constants are nans, then the whole thing returns
+        // false.
+        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
+          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+        return new FCmpInst(FCmpInst::FCMP_ORD,
+                            LHS->getOperand(0), RHS->getOperand(0));
+      }
+    
+    // Handle vector zeros.  This occurs because the canonical form of
+    // "fcmp ord x,x" is "fcmp ord x, 0".
+    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
+        isa<ConstantAggregateZero>(RHS->getOperand(1)))
+      return new FCmpInst(FCmpInst::FCMP_ORD,
+                          LHS->getOperand(0), RHS->getOperand(0));
+    return 0;
+  }
+  
+  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
+  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
+  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
+  
+  
+  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
+    // Swap RHS operands to match LHS.
+    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
+    std::swap(Op1LHS, Op1RHS);
+  }
+  
+  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
+    // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
+    if (Op0CC == Op1CC)
+      return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
+    
+    if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
+      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+    if (Op0CC == FCmpInst::FCMP_TRUE)
+      return ReplaceInstUsesWith(I, RHS);
+    if (Op1CC == FCmpInst::FCMP_TRUE)
+      return ReplaceInstUsesWith(I, LHS);
+    
+    bool Op0Ordered;
+    bool Op1Ordered;
+    unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
+    unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
+    if (Op1Pred == 0) {
+      std::swap(LHS, RHS);
+      std::swap(Op0Pred, Op1Pred);
+      std::swap(Op0Ordered, Op1Ordered);
+    }
+    if (Op0Pred == 0) {
+      // uno && ueq -> uno && (uno || eq) -> ueq
+      // ord && olt -> ord && (ord && lt) -> olt
+      if (Op0Ordered == Op1Ordered)
+        return ReplaceInstUsesWith(I, RHS);
+      
+      // uno && oeq -> uno && (ord && eq) -> false
+      // uno && ord -> false
+      if (!Op0Ordered)
+        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+      // ord && ueq -> ord && (uno || eq) -> oeq
+      return cast<Instruction>(getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS));
+    }
+  }
+
+  return 0;
+}
+
+
+Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
+  bool Changed = SimplifyCommutative(I);
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  if (Value *V = SimplifyAndInst(Op0, Op1, TD))
+    return ReplaceInstUsesWith(I, V);
+
+  // See if we can simplify any instructions used by the instruction whose sole 
+  // purpose is to compute bits we don't care about.
+  if (SimplifyDemandedInstructionBits(I))
+    return &I;  
+
+  if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
+    const APInt &AndRHSMask = AndRHS->getValue();
+    APInt NotAndRHS(~AndRHSMask);
+
+    // Optimize a variety of ((val OP C1) & C2) combinations...
+    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
+      Value *Op0LHS = Op0I->getOperand(0);
+      Value *Op0RHS = Op0I->getOperand(1);
+      switch (Op0I->getOpcode()) {
+      default: break;
+      case Instruction::Xor:
+      case Instruction::Or:
+        // If the mask is only needed on one incoming arm, push it up.
+        if (!Op0I->hasOneUse()) break;
+          
+        if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
+          // Not masking anything out for the LHS, move to RHS.
+          Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
+                                             Op0RHS->getName()+".masked");
+          return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
+        }
+        if (!isa<Constant>(Op0RHS) &&
+            MaskedValueIsZero(Op0RHS, NotAndRHS)) {
+          // Not masking anything out for the RHS, move to LHS.
+          Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
+                                             Op0LHS->getName()+".masked");
+          return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
+        }
+
+        break;
+      case Instruction::Add:
+        // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
+        // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
+        // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
+        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
+          return BinaryOperator::CreateAnd(V, AndRHS);
+        if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
+          return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
+        break;
+
+      case Instruction::Sub:
+        // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
+        // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
+        // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
+        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
+          return BinaryOperator::CreateAnd(V, AndRHS);
+
+        // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
+        // has 1's for all bits that the subtraction with A might affect.
+        if (Op0I->hasOneUse()) {
+          uint32_t BitWidth = AndRHSMask.getBitWidth();
+          uint32_t Zeros = AndRHSMask.countLeadingZeros();
+          APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
+
+          ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
+          if (!(A && A->isZero()) &&               // avoid infinite recursion.
+              MaskedValueIsZero(Op0LHS, Mask)) {
+            Value *NewNeg = Builder->CreateNeg(Op0RHS);
+            return BinaryOperator::CreateAnd(NewNeg, AndRHS);
+          }
+        }
+        break;
+
+      case Instruction::Shl:
+      case Instruction::LShr:
+        // (1 << x) & 1 --> zext(x == 0)
+        // (1 >> x) & 1 --> zext(x == 0)
+        if (AndRHSMask == 1 && Op0LHS == AndRHS) {
+          Value *NewICmp =
+            Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
+          return new ZExtInst(NewICmp, I.getType());
+        }
+        break;
+      }
+
+      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
+        if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
+          return Res;
+    } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
+      // If this is an integer truncation or change from signed-to-unsigned, and
+      // if the source is an and/or with immediate, transform it.  This
+      // frequently occurs for bitfield accesses.
+      if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
+        if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
+            CastOp->getNumOperands() == 2)
+          if (ConstantInt *AndCI =dyn_cast<ConstantInt>(CastOp->getOperand(1))){
+            if (CastOp->getOpcode() == Instruction::And) {
+              // Change: and (cast (and X, C1) to T), C2
+              // into  : and (cast X to T), trunc_or_bitcast(C1)&C2
+              // This will fold the two constants together, which may allow 
+              // other simplifications.
+              Value *NewCast = Builder->CreateTruncOrBitCast(
+                CastOp->getOperand(0), I.getType(), 
+                CastOp->getName()+".shrunk");
+              // trunc_or_bitcast(C1)&C2
+              Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
+              C3 = ConstantExpr::getAnd(C3, AndRHS);
+              return BinaryOperator::CreateAnd(NewCast, C3);
+            } else if (CastOp->getOpcode() == Instruction::Or) {
+              // Change: and (cast (or X, C1) to T), C2
+              // into  : trunc(C1)&C2 iff trunc(C1)&C2 == C2
+              Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
+              if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS)
+                // trunc(C1)&C2
+                return ReplaceInstUsesWith(I, AndRHS);
+            }
+          }
+      }
+    }
+
+    // Try to fold constant and into select arguments.
+    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+      if (Instruction *R = FoldOpIntoSelect(I, SI))
+        return R;
+    if (isa<PHINode>(Op0))
+      if (Instruction *NV = FoldOpIntoPhi(I))
+        return NV;
+  }
+
+
+  // (~A & ~B) == (~(A | B)) - De Morgan's Law
+  if (Value *Op0NotVal = dyn_castNotVal(Op0))
+    if (Value *Op1NotVal = dyn_castNotVal(Op1))
+      if (Op0->hasOneUse() && Op1->hasOneUse()) {
+        Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
+                                      I.getName()+".demorgan");
+        return BinaryOperator::CreateNot(Or);
+      }
+
+  {
+    Value *A = 0, *B = 0, *C = 0, *D = 0;
+    // (A|B) & ~(A&B) -> A^B
+    if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
+        match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
+        ((A == C && B == D) || (A == D && B == C)))
+      return BinaryOperator::CreateXor(A, B);
+    
+    // ~(A&B) & (A|B) -> A^B
+    if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
+        match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
+        ((A == C && B == D) || (A == D && B == C)))
+      return BinaryOperator::CreateXor(A, B);
+    
+    if (Op0->hasOneUse() &&
+        match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
+      if (A == Op1) {                                // (A^B)&A -> A&(A^B)
+        I.swapOperands();     // Simplify below
+        std::swap(Op0, Op1);
+      } else if (B == Op1) {                         // (A^B)&B -> B&(B^A)
+        cast<BinaryOperator>(Op0)->swapOperands();
+        I.swapOperands();     // Simplify below
+        std::swap(Op0, Op1);
+      }
+    }
+
+    if (Op1->hasOneUse() &&
+        match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
+      if (B == Op0) {                                // B&(A^B) -> B&(B^A)
+        cast<BinaryOperator>(Op1)->swapOperands();
+        std::swap(A, B);
+      }
+      if (A == Op0)                                // A&(A^B) -> A & ~B
+        return BinaryOperator::CreateAnd(A, Builder->CreateNot(B, "tmp"));
+    }
+
+    // (A&((~A)|B)) -> A&B
+    if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
+        match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
+      return BinaryOperator::CreateAnd(A, Op1);
+    if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
+        match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
+      return BinaryOperator::CreateAnd(A, Op0);
+  }
+  
+  if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
+    if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
+      if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
+        return Res;
+
+  // fold (and (cast A), (cast B)) -> (cast (and A, B))
+  if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
+    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
+      if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
+        const Type *SrcTy = Op0C->getOperand(0)->getType();
+        if (SrcTy == Op1C->getOperand(0)->getType() &&
+            SrcTy->isIntOrIntVector() &&
+            // Only do this if the casts both really cause code to be generated.
+            ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
+                              I.getType()) &&
+            ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
+                              I.getType())) {
+          Value *NewOp = Builder->CreateAnd(Op0C->getOperand(0),
+                                            Op1C->getOperand(0), I.getName());
+          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
+        }
+      }
+    
+  // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
+  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
+    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
+      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && 
+          SI0->getOperand(1) == SI1->getOperand(1) &&
+          (SI0->hasOneUse() || SI1->hasOneUse())) {
+        Value *NewOp =
+          Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
+                             SI0->getName());
+        return BinaryOperator::Create(SI1->getOpcode(), NewOp, 
+                                      SI1->getOperand(1));
+      }
+  }
+
+  // If and'ing two fcmp, try combine them into one.
+  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
+    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
+      if (Instruction *Res = FoldAndOfFCmps(I, LHS, RHS))
+        return Res;
+  }
+
+  return Changed ? &I : 0;
+}
+
+/// CollectBSwapParts - Analyze the specified subexpression and see if it is
+/// capable of providing pieces of a bswap.  The subexpression provides pieces
+/// of a bswap if it is proven that each of the non-zero bytes in the output of
+/// the expression came from the corresponding "byte swapped" byte in some other
+/// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
+/// we know that the expression deposits the low byte of %X into the high byte
+/// of the bswap result and that all other bytes are zero.  This expression is
+/// accepted, the high byte of ByteValues is set to X to indicate a correct
+/// match.
+///
+/// This function returns true if the match was unsuccessful and false if so.
+/// On entry to the function the "OverallLeftShift" is a signed integer value
+/// indicating the number of bytes that the subexpression is later shifted.  For
+/// example, if the expression is later right shifted by 16 bits, the
+/// OverallLeftShift value would be -2 on entry.  This is used to specify which
+/// byte of ByteValues is actually being set.
+///
+/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
+/// byte is masked to zero by a user.  For example, in (X & 255), X will be
+/// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
+/// this function to working on up to 32-byte (256 bit) values.  ByteMask is
+/// always in the local (OverallLeftShift) coordinate space.
+///
+static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
+                              SmallVector<Value*, 8> &ByteValues) {
+  if (Instruction *I = dyn_cast<Instruction>(V)) {
+    // If this is an or instruction, it may be an inner node of the bswap.
+    if (I->getOpcode() == Instruction::Or) {
+      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
+                               ByteValues) ||
+             CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
+                               ByteValues);
+    }
+  
+    // If this is a logical shift by a constant multiple of 8, recurse with
+    // OverallLeftShift and ByteMask adjusted.
+    if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
+      unsigned ShAmt = 
+        cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
+      // Ensure the shift amount is defined and of a byte value.
+      if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
+        return true;
+
+      unsigned ByteShift = ShAmt >> 3;
+      if (I->getOpcode() == Instruction::Shl) {
+        // X << 2 -> collect(X, +2)
+        OverallLeftShift += ByteShift;
+        ByteMask >>= ByteShift;
+      } else {
+        // X >>u 2 -> collect(X, -2)
+        OverallLeftShift -= ByteShift;
+        ByteMask <<= ByteShift;
+        ByteMask &= (~0U >> (32-ByteValues.size()));
+      }
+
+      if (OverallLeftShift >= (int)ByteValues.size()) return true;
+      if (OverallLeftShift <= -(int)ByteValues.size()) return true;
+
+      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, 
+                               ByteValues);
+    }
+
+    // If this is a logical 'and' with a mask that clears bytes, clear the
+    // corresponding bytes in ByteMask.
+    if (I->getOpcode() == Instruction::And &&
+        isa<ConstantInt>(I->getOperand(1))) {
+      // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
+      unsigned NumBytes = ByteValues.size();
+      APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
+      const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
+      
+      for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
+        // If this byte is masked out by a later operation, we don't care what
+        // the and mask is.
+        if ((ByteMask & (1 << i)) == 0)
+          continue;
+        
+        // If the AndMask is all zeros for this byte, clear the bit.
+        APInt MaskB = AndMask & Byte;
+        if (MaskB == 0) {
+          ByteMask &= ~(1U << i);
+          continue;
+        }
+        
+        // If the AndMask is not all ones for this byte, it's not a bytezap.
+        if (MaskB != Byte)
+          return true;
+
+        // Otherwise, this byte is kept.
+      }
+
+      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, 
+                               ByteValues);
+    }
+  }
+  
+  // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
+  // the input value to the bswap.  Some observations: 1) if more than one byte
+  // is demanded from this input, then it could not be successfully assembled
+  // into a byteswap.  At least one of the two bytes would not be aligned with
+  // their ultimate destination.
+  if (!isPowerOf2_32(ByteMask)) return true;
+  unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
+  
+  // 2) The input and ultimate destinations must line up: if byte 3 of an i32
+  // is demanded, it needs to go into byte 0 of the result.  This means that the
+  // byte needs to be shifted until it lands in the right byte bucket.  The
+  // shift amount depends on the position: if the byte is coming from the high
+  // part of the value (e.g. byte 3) then it must be shifted right.  If from the
+  // low part, it must be shifted left.
+  unsigned DestByteNo = InputByteNo + OverallLeftShift;
+  if (InputByteNo < ByteValues.size()/2) {
+    if (ByteValues.size()-1-DestByteNo != InputByteNo)
+      return true;
+  } else {
+    if (ByteValues.size()-1-DestByteNo != InputByteNo)
+      return true;
+  }
+  
+  // If the destination byte value is already defined, the values are or'd
+  // together, which isn't a bswap (unless it's an or of the same bits).
+  if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
+    return true;
+  ByteValues[DestByteNo] = V;
+  return false;
+}
+
+/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
+/// If so, insert the new bswap intrinsic and return it.
+Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
+  const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
+  if (!ITy || ITy->getBitWidth() % 16 || 
+      // ByteMask only allows up to 32-byte values.
+      ITy->getBitWidth() > 32*8) 
+    return 0;   // Can only bswap pairs of bytes.  Can't do vectors.
+  
+  /// ByteValues - For each byte of the result, we keep track of which value
+  /// defines each byte.
+  SmallVector<Value*, 8> ByteValues;
+  ByteValues.resize(ITy->getBitWidth()/8);
+    
+  // Try to find all the pieces corresponding to the bswap.
+  uint32_t ByteMask = ~0U >> (32-ByteValues.size());
+  if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
+    return 0;
+  
+  // Check to see if all of the bytes come from the same value.
+  Value *V = ByteValues[0];
+  if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
+  
+  // Check to make sure that all of the bytes come from the same value.
+  for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
+    if (ByteValues[i] != V)
+      return 0;
+  const Type *Tys[] = { ITy };
+  Module *M = I.getParent()->getParent()->getParent();
+  Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
+  return CallInst::Create(F, V);
+}
+
+/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
+/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
+/// we can simplify this expression to "cond ? C : D or B".
+static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
+                                         Value *C, Value *D) {
+  // If A is not a select of -1/0, this cannot match.
+  Value *Cond = 0;
+  if (!match(A, m_SelectCst<-1, 0>(m_Value(Cond))))
+    return 0;
+
+  // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
+  if (match(D, m_SelectCst<0, -1>(m_Specific(Cond))))
+    return SelectInst::Create(Cond, C, B);
+  if (match(D, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond)))))
+    return SelectInst::Create(Cond, C, B);
+  // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
+  if (match(B, m_SelectCst<0, -1>(m_Specific(Cond))))
+    return SelectInst::Create(Cond, C, D);
+  if (match(B, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond)))))
+    return SelectInst::Create(Cond, C, D);
+  return 0;
+}
+
+/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
+Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
+                                         ICmpInst *LHS, ICmpInst *RHS) {
+  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
+
+  // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
+  if (PredicatesFoldable(LHSCC, RHSCC)) {
+    if (LHS->getOperand(0) == RHS->getOperand(1) &&
+        LHS->getOperand(1) == RHS->getOperand(0))
+      LHS->swapOperands();
+    if (LHS->getOperand(0) == RHS->getOperand(0) &&
+        LHS->getOperand(1) == RHS->getOperand(1)) {
+      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
+      unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
+      bool isSigned = LHS->isSigned() || RHS->isSigned();
+      Value *RV = getICmpValue(isSigned, Code, Op0, Op1);
+      if (Instruction *I = dyn_cast<Instruction>(RV))
+        return I;
+      // Otherwise, it's a constant boolean value.
+      return ReplaceInstUsesWith(I, RV);
+    }
+  }
+  
+  // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
+  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
+  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
+  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
+  if (LHSCst == 0 || RHSCst == 0) return 0;
+
+  // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
+  if (LHSCst == RHSCst && LHSCC == RHSCC &&
+      LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
+    Value *NewOr = Builder->CreateOr(Val, Val2);
+    return new ICmpInst(LHSCC, NewOr, LHSCst);
+  }
+  
+  // From here on, we only handle:
+  //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
+  if (Val != Val2) return 0;
+  
+  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
+  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
+      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
+      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
+      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
+    return 0;
+  
+  // We can't fold (ugt x, C) | (sgt x, C2).
+  if (!PredicatesFoldable(LHSCC, RHSCC))
+    return 0;
+  
+  // Ensure that the larger constant is on the RHS.
+  bool ShouldSwap;
+  if (CmpInst::isSigned(LHSCC) ||
+      (ICmpInst::isEquality(LHSCC) && 
+       CmpInst::isSigned(RHSCC)))
+    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
+  else
+    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
+  
+  if (ShouldSwap) {
+    std::swap(LHS, RHS);
+    std::swap(LHSCst, RHSCst);
+    std::swap(LHSCC, RHSCC);
+  }
+  
+  // At this point, we know we have have two icmp instructions
+  // comparing a value against two constants and or'ing the result
+  // together.  Because of the above check, we know that we only have
+  // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
+  // icmp folding check above), that the two constants are not
+  // equal.
+  assert(LHSCst != RHSCst && "Compares not folded above?");
+
+  switch (LHSCC) {
+  default: llvm_unreachable("Unknown integer condition code!");
+  case ICmpInst::ICMP_EQ:
+    switch (RHSCC) {
+    default: llvm_unreachable("Unknown integer condition code!");
+    case ICmpInst::ICMP_EQ:
+      if (LHSCst == SubOne(RHSCst)) {
+        // (X == 13 | X == 14) -> X-13 <u 2
+        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
+        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
+        AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
+        return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
+      }
+      break;                         // (X == 13 | X == 15) -> no change
+    case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
+    case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
+      break;
+    case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
+    case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
+    case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
+      return ReplaceInstUsesWith(I, RHS);
+    }
+    break;
+  case ICmpInst::ICMP_NE:
+    switch (RHSCC) {
+    default: llvm_unreachable("Unknown integer condition code!");
+    case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
+    case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
+    case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
+      return ReplaceInstUsesWith(I, LHS);
+    case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
+    case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
+    case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
+      return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+    }
+    break;
+  case ICmpInst::ICMP_ULT:
+    switch (RHSCC) {
+    default: llvm_unreachable("Unknown integer condition code!");
+    case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
+      break;
+    case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
+      // If RHSCst is [us]MAXINT, it is always false.  Not handling
+      // this can cause overflow.
+      if (RHSCst->isMaxValue(false))
+        return ReplaceInstUsesWith(I, LHS);
+      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
+                             false, false, I);
+    case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
+      break;
+    case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
+    case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
+      return ReplaceInstUsesWith(I, RHS);
+    case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
+      break;
+    }
+    break;
+  case ICmpInst::ICMP_SLT:
+    switch (RHSCC) {
+    default: llvm_unreachable("Unknown integer condition code!");
+    case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
+      break;
+    case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
+      // If RHSCst is [us]MAXINT, it is always false.  Not handling
+      // this can cause overflow.
+      if (RHSCst->isMaxValue(true))
+        return ReplaceInstUsesWith(I, LHS);
+      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
+                             true, false, I);
+    case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
+      break;
+    case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
+    case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
+      return ReplaceInstUsesWith(I, RHS);
+    case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
+      break;
+    }
+    break;
+  case ICmpInst::ICMP_UGT:
+    switch (RHSCC) {
+    default: llvm_unreachable("Unknown integer condition code!");
+    case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
+    case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
+      return ReplaceInstUsesWith(I, LHS);
+    case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
+      break;
+    case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
+    case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
+      return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+    case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
+      break;
+    }
+    break;
+  case ICmpInst::ICMP_SGT:
+    switch (RHSCC) {
+    default: llvm_unreachable("Unknown integer condition code!");
+    case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
+    case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
+      return ReplaceInstUsesWith(I, LHS);
+    case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
+      break;
+    case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
+    case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
+      return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+    case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
+      break;
+    }
+    break;
+  }
+  return 0;
+}
+
+Instruction *InstCombiner::FoldOrOfFCmps(Instruction &I, FCmpInst *LHS,
+                                         FCmpInst *RHS) {
+  if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
+      RHS->getPredicate() == FCmpInst::FCMP_UNO && 
+      LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
+    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
+      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
+        // If either of the constants are nans, then the whole thing returns
+        // true.
+        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
+          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+        
+        // Otherwise, no need to compare the two constants, compare the
+        // rest.
+        return new FCmpInst(FCmpInst::FCMP_UNO,
+                            LHS->getOperand(0), RHS->getOperand(0));
+      }
+    
+    // Handle vector zeros.  This occurs because the canonical form of
+    // "fcmp uno x,x" is "fcmp uno x, 0".
+    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
+        isa<ConstantAggregateZero>(RHS->getOperand(1)))
+      return new FCmpInst(FCmpInst::FCMP_UNO,
+                          LHS->getOperand(0), RHS->getOperand(0));
+    
+    return 0;
+  }
+  
+  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
+  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
+  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
+  
+  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
+    // Swap RHS operands to match LHS.
+    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
+    std::swap(Op1LHS, Op1RHS);
+  }
+  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
+    // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
+    if (Op0CC == Op1CC)
+      return new FCmpInst((FCmpInst::Predicate)Op0CC,
+                          Op0LHS, Op0RHS);
+    if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
+      return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+    if (Op0CC == FCmpInst::FCMP_FALSE)
+      return ReplaceInstUsesWith(I, RHS);
+    if (Op1CC == FCmpInst::FCMP_FALSE)
+      return ReplaceInstUsesWith(I, LHS);
+    bool Op0Ordered;
+    bool Op1Ordered;
+    unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
+    unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
+    if (Op0Ordered == Op1Ordered) {
+      // If both are ordered or unordered, return a new fcmp with
+      // or'ed predicates.
+      Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS);
+      if (Instruction *I = dyn_cast<Instruction>(RV))
+        return I;
+      // Otherwise, it's a constant boolean value...
+      return ReplaceInstUsesWith(I, RV);
+    }
+  }
+  return 0;
+}
+
+/// FoldOrWithConstants - This helper function folds:
+///
+///     ((A | B) & C1) | (B & C2)
+///
+/// into:
+/// 
+///     (A & C1) | B
+///
+/// when the XOR of the two constants is "all ones" (-1).
+Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
+                                               Value *A, Value *B, Value *C) {
+  ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
+  if (!CI1) return 0;
+
+  Value *V1 = 0;
+  ConstantInt *CI2 = 0;
+  if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
+
+  APInt Xor = CI1->getValue() ^ CI2->getValue();
+  if (!Xor.isAllOnesValue()) return 0;
+
+  if (V1 == A || V1 == B) {
+    Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
+    return BinaryOperator::CreateOr(NewOp, V1);
+  }
+
+  return 0;
+}
+
+Instruction *InstCombiner::visitOr(BinaryOperator &I) {
+  bool Changed = SimplifyCommutative(I);
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  if (Value *V = SimplifyOrInst(Op0, Op1, TD))
+    return ReplaceInstUsesWith(I, V);
+  
+  
+  // See if we can simplify any instructions used by the instruction whose sole 
+  // purpose is to compute bits we don't care about.
+  if (SimplifyDemandedInstructionBits(I))
+    return &I;
+
+  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+    ConstantInt *C1 = 0; Value *X = 0;
+    // (X & C1) | C2 --> (X | C2) & (C1|C2)
+    if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
+        Op0->hasOneUse()) {
+      Value *Or = Builder->CreateOr(X, RHS);
+      Or->takeName(Op0);
+      return BinaryOperator::CreateAnd(Or, 
+                         ConstantInt::get(I.getContext(),
+                                          RHS->getValue() | C1->getValue()));
+    }
+
+    // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
+    if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
+        Op0->hasOneUse()) {
+      Value *Or = Builder->CreateOr(X, RHS);
+      Or->takeName(Op0);
+      return BinaryOperator::CreateXor(Or,
+                 ConstantInt::get(I.getContext(),
+                                  C1->getValue() & ~RHS->getValue()));
+    }
+
+    // Try to fold constant and into select arguments.
+    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+      if (Instruction *R = FoldOpIntoSelect(I, SI))
+        return R;
+    if (isa<PHINode>(Op0))
+      if (Instruction *NV = FoldOpIntoPhi(I))
+        return NV;
+  }
+
+  Value *A = 0, *B = 0;
+  ConstantInt *C1 = 0, *C2 = 0;
+
+  // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
+  // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
+  if (match(Op0, m_Or(m_Value(), m_Value())) ||
+      match(Op1, m_Or(m_Value(), m_Value())) ||
+      (match(Op0, m_Shift(m_Value(), m_Value())) &&
+       match(Op1, m_Shift(m_Value(), m_Value())))) {
+    if (Instruction *BSwap = MatchBSwap(I))
+      return BSwap;
+  }
+  
+  // (X^C)|Y -> (X|Y)^C iff Y&C == 0
+  if (Op0->hasOneUse() &&
+      match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
+      MaskedValueIsZero(Op1, C1->getValue())) {
+    Value *NOr = Builder->CreateOr(A, Op1);
+    NOr->takeName(Op0);
+    return BinaryOperator::CreateXor(NOr, C1);
+  }
+
+  // Y|(X^C) -> (X|Y)^C iff Y&C == 0
+  if (Op1->hasOneUse() &&
+      match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
+      MaskedValueIsZero(Op0, C1->getValue())) {
+    Value *NOr = Builder->CreateOr(A, Op0);
+    NOr->takeName(Op0);
+    return BinaryOperator::CreateXor(NOr, C1);
+  }
+
+  // (A & C)|(B & D)
+  Value *C = 0, *D = 0;
+  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
+      match(Op1, m_And(m_Value(B), m_Value(D)))) {
+    Value *V1 = 0, *V2 = 0, *V3 = 0;
+    C1 = dyn_cast<ConstantInt>(C);
+    C2 = dyn_cast<ConstantInt>(D);
+    if (C1 && C2) {  // (A & C1)|(B & C2)
+      // If we have: ((V + N) & C1) | (V & C2)
+      // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
+      // replace with V+N.
+      if (C1->getValue() == ~C2->getValue()) {
+        if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
+            match(A, m_Add(m_Value(V1), m_Value(V2)))) {
+          // Add commutes, try both ways.
+          if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
+            return ReplaceInstUsesWith(I, A);
+          if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
+            return ReplaceInstUsesWith(I, A);
+        }
+        // Or commutes, try both ways.
+        if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
+            match(B, m_Add(m_Value(V1), m_Value(V2)))) {
+          // Add commutes, try both ways.
+          if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
+            return ReplaceInstUsesWith(I, B);
+          if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
+            return ReplaceInstUsesWith(I, B);
+        }
+      }
+      
+      if ((C1->getValue() & C2->getValue()) == 0) {
+        // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
+        // iff (C1&C2) == 0 and (N&~C1) == 0
+        if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
+            ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) ||  // (V|N)
+             (V2 == B && MaskedValueIsZero(V1, ~C1->getValue()))))   // (N|V)
+          return BinaryOperator::CreateAnd(A,
+                               ConstantInt::get(A->getContext(),
+                                                C1->getValue()|C2->getValue()));
+        // Or commutes, try both ways.
+        if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
+            ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) ||  // (V|N)
+             (V2 == A && MaskedValueIsZero(V1, ~C2->getValue()))))   // (N|V)
+          return BinaryOperator::CreateAnd(B,
+                               ConstantInt::get(B->getContext(),
+                                                C1->getValue()|C2->getValue()));
+        
+        // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
+        // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
+        ConstantInt *C3 = 0, *C4 = 0;
+        if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
+            (C3->getValue() & ~C1->getValue()) == 0 &&
+            match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
+            (C4->getValue() & ~C2->getValue()) == 0) {
+          V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
+          return BinaryOperator::CreateAnd(V2,
+                               ConstantInt::get(B->getContext(),
+                                                C1->getValue()|C2->getValue()));
+        }
+      }
+    }
+    
+    // Check to see if we have any common things being and'ed.  If so, find the
+    // terms for V1 & (V2|V3).
+    if (Op0->hasOneUse() || Op1->hasOneUse()) {
+      V1 = 0;
+      if (A == B)      // (A & C)|(A & D) == A & (C|D)
+        V1 = A, V2 = C, V3 = D;
+      else if (A == D) // (A & C)|(B & A) == A & (B|C)
+        V1 = A, V2 = B, V3 = C;
+      else if (C == B) // (A & C)|(C & D) == C & (A|D)
+        V1 = C, V2 = A, V3 = D;
+      else if (C == D) // (A & C)|(B & C) == C & (A|B)
+        V1 = C, V2 = A, V3 = B;
+      
+      if (V1) {
+        Value *Or = Builder->CreateOr(V2, V3, "tmp");
+        return BinaryOperator::CreateAnd(V1, Or);
+      }
+    }
+
+    // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants
+    if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
+      return Match;
+    if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
+      return Match;
+    if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
+      return Match;
+    if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
+      return Match;
+
+    // ((A&~B)|(~A&B)) -> A^B
+    if ((match(C, m_Not(m_Specific(D))) &&
+         match(B, m_Not(m_Specific(A)))))
+      return BinaryOperator::CreateXor(A, D);
+    // ((~B&A)|(~A&B)) -> A^B
+    if ((match(A, m_Not(m_Specific(D))) &&
+         match(B, m_Not(m_Specific(C)))))
+      return BinaryOperator::CreateXor(C, D);
+    // ((A&~B)|(B&~A)) -> A^B
+    if ((match(C, m_Not(m_Specific(B))) &&
+         match(D, m_Not(m_Specific(A)))))
+      return BinaryOperator::CreateXor(A, B);
+    // ((~B&A)|(B&~A)) -> A^B
+    if ((match(A, m_Not(m_Specific(B))) &&
+         match(D, m_Not(m_Specific(C)))))
+      return BinaryOperator::CreateXor(C, B);
+  }
+  
+  // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
+  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
+    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
+      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && 
+          SI0->getOperand(1) == SI1->getOperand(1) &&
+          (SI0->hasOneUse() || SI1->hasOneUse())) {
+        Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
+                                         SI0->getName());
+        return BinaryOperator::Create(SI1->getOpcode(), NewOp, 
+                                      SI1->getOperand(1));
+      }
+  }
+
+  // ((A|B)&1)|(B&-2) -> (A&1) | B
+  if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
+      match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
+    Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C);
+    if (Ret) return Ret;
+  }
+  // (B&-2)|((A|B)&1) -> (A&1) | B
+  if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
+      match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
+    Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C);
+    if (Ret) return Ret;
+  }
+
+  // (~A | ~B) == (~(A & B)) - De Morgan's Law
+  if (Value *Op0NotVal = dyn_castNotVal(Op0))
+    if (Value *Op1NotVal = dyn_castNotVal(Op1))
+      if (Op0->hasOneUse() && Op1->hasOneUse()) {
+        Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
+                                        I.getName()+".demorgan");
+        return BinaryOperator::CreateNot(And);
+      }
+
+  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
+    if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
+      if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
+        return Res;
+    
+  // fold (or (cast A), (cast B)) -> (cast (or A, B))
+  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
+    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
+      if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
+        if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
+            !isa<ICmpInst>(Op1C->getOperand(0))) {
+          const Type *SrcTy = Op0C->getOperand(0)->getType();
+          if (SrcTy == Op1C->getOperand(0)->getType() &&
+              SrcTy->isIntOrIntVector() &&
+              // Only do this if the casts both really cause code to be
+              // generated.
+              ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), 
+                                I.getType()) &&
+              ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
+                                I.getType())) {
+            Value *NewOp = Builder->CreateOr(Op0C->getOperand(0),
+                                             Op1C->getOperand(0), I.getName());
+            return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
+          }
+        }
+      }
+  }
+  
+    
+  // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
+  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
+    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
+      if (Instruction *Res = FoldOrOfFCmps(I, LHS, RHS))
+        return Res;
+  }
+
+  return Changed ? &I : 0;
+}
+
+Instruction *InstCombiner::visitXor(BinaryOperator &I) {
+  bool Changed = SimplifyCommutative(I);
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  if (isa<UndefValue>(Op1)) {
+    if (isa<UndefValue>(Op0))
+      // Handle undef ^ undef -> 0 special case. This is a common
+      // idiom (misuse).
+      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+    return ReplaceInstUsesWith(I, Op1);  // X ^ undef -> undef
+  }
+
+  // xor X, X = 0
+  if (Op0 == Op1)
+    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+  
+  // See if we can simplify any instructions used by the instruction whose sole 
+  // purpose is to compute bits we don't care about.
+  if (SimplifyDemandedInstructionBits(I))
+    return &I;
+  if (isa<VectorType>(I.getType()))
+    if (isa<ConstantAggregateZero>(Op1))
+      return ReplaceInstUsesWith(I, Op0);  // X ^ <0,0> -> X
+
+  // Is this a ~ operation?
+  if (Value *NotOp = dyn_castNotVal(&I)) {
+    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
+      if (Op0I->getOpcode() == Instruction::And || 
+          Op0I->getOpcode() == Instruction::Or) {
+        // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
+        // ~(~X | Y) === (X & ~Y) - De Morgan's Law
+        if (dyn_castNotVal(Op0I->getOperand(1)))
+          Op0I->swapOperands();
+        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
+          Value *NotY =
+            Builder->CreateNot(Op0I->getOperand(1),
+                               Op0I->getOperand(1)->getName()+".not");
+          if (Op0I->getOpcode() == Instruction::And)
+            return BinaryOperator::CreateOr(Op0NotVal, NotY);
+          return BinaryOperator::CreateAnd(Op0NotVal, NotY);
+        }
+        
+        // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
+        // ~(X | Y) === (~X & ~Y) - De Morgan's Law
+        if (isFreeToInvert(Op0I->getOperand(0)) && 
+            isFreeToInvert(Op0I->getOperand(1))) {
+          Value *NotX =
+            Builder->CreateNot(Op0I->getOperand(0), "notlhs");
+          Value *NotY =
+            Builder->CreateNot(Op0I->getOperand(1), "notrhs");
+          if (Op0I->getOpcode() == Instruction::And)
+            return BinaryOperator::CreateOr(NotX, NotY);
+          return BinaryOperator::CreateAnd(NotX, NotY);
+        }
+      }
+    }
+  }
+  
+  
+  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+    if (RHS->isOne() && Op0->hasOneUse()) {
+      // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
+      if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
+        return new ICmpInst(ICI->getInversePredicate(),
+                            ICI->getOperand(0), ICI->getOperand(1));
+
+      if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
+        return new FCmpInst(FCI->getInversePredicate(),
+                            FCI->getOperand(0), FCI->getOperand(1));
+    }
+
+    // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
+    if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
+      if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
+        if (CI->hasOneUse() && Op0C->hasOneUse()) {
+          Instruction::CastOps Opcode = Op0C->getOpcode();
+          if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
+              (RHS == ConstantExpr::getCast(Opcode, 
+                                           ConstantInt::getTrue(I.getContext()),
+                                            Op0C->getDestTy()))) {
+            CI->setPredicate(CI->getInversePredicate());
+            return CastInst::Create(Opcode, CI, Op0C->getType());
+          }
+        }
+      }
+    }
+
+    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
+      // ~(c-X) == X-c-1 == X+(-c-1)
+      if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
+        if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
+          Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
+          Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
+                                      ConstantInt::get(I.getType(), 1));
+          return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
+        }
+          
+      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
+        if (Op0I->getOpcode() == Instruction::Add) {
+          // ~(X-c) --> (-c-1)-X
+          if (RHS->isAllOnesValue()) {
+            Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
+            return BinaryOperator::CreateSub(
+                           ConstantExpr::getSub(NegOp0CI,
+                                      ConstantInt::get(I.getType(), 1)),
+                                      Op0I->getOperand(0));
+          } else if (RHS->getValue().isSignBit()) {
+            // (X + C) ^ signbit -> (X + C + signbit)
+            Constant *C = ConstantInt::get(I.getContext(),
+                                           RHS->getValue() + Op0CI->getValue());
+            return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
+
+          }
+        } else if (Op0I->getOpcode() == Instruction::Or) {
+          // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
+          if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
+            Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
+            // Anything in both C1 and C2 is known to be zero, remove it from
+            // NewRHS.
+            Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
+            NewRHS = ConstantExpr::getAnd(NewRHS, 
+                                       ConstantExpr::getNot(CommonBits));
+            Worklist.Add(Op0I);
+            I.setOperand(0, Op0I->getOperand(0));
+            I.setOperand(1, NewRHS);
+            return &I;
+          }
+        }
+      }
+    }
+
+    // Try to fold constant and into select arguments.
+    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+      if (Instruction *R = FoldOpIntoSelect(I, SI))
+        return R;
+    if (isa<PHINode>(Op0))
+      if (Instruction *NV = FoldOpIntoPhi(I))
+        return NV;
+  }
+
+  if (Value *X = dyn_castNotVal(Op0))   // ~A ^ A == -1
+    if (X == Op1)
+      return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
+
+  if (Value *X = dyn_castNotVal(Op1))   // A ^ ~A == -1
+    if (X == Op0)
+      return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
+
+  
+  BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
+  if (Op1I) {
+    Value *A, *B;
+    if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
+      if (A == Op0) {              // B^(B|A) == (A|B)^B
+        Op1I->swapOperands();
+        I.swapOperands();
+        std::swap(Op0, Op1);
+      } else if (B == Op0) {       // B^(A|B) == (A|B)^B
+        I.swapOperands();     // Simplified below.
+        std::swap(Op0, Op1);
+      }
+    } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
+      return ReplaceInstUsesWith(I, B);                      // A^(A^B) == B
+    } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
+      return ReplaceInstUsesWith(I, A);                      // A^(B^A) == B
+    } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && 
+               Op1I->hasOneUse()){
+      if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
+        Op1I->swapOperands();
+        std::swap(A, B);
+      }
+      if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
+        I.swapOperands();     // Simplified below.
+        std::swap(Op0, Op1);
+      }
+    }
+  }
+  
+  BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
+  if (Op0I) {
+    Value *A, *B;
+    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
+        Op0I->hasOneUse()) {
+      if (A == Op1)                                  // (B|A)^B == (A|B)^B
+        std::swap(A, B);
+      if (B == Op1)                                  // (A|B)^B == A & ~B
+        return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1, "tmp"));
+    } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
+      return ReplaceInstUsesWith(I, B);                      // (A^B)^A == B
+    } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
+      return ReplaceInstUsesWith(I, A);                      // (B^A)^A == B
+    } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && 
+               Op0I->hasOneUse()){
+      if (A == Op1)                                        // (A&B)^A -> (B&A)^A
+        std::swap(A, B);
+      if (B == Op1 &&                                      // (B&A)^A == ~B & A
+          !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
+        return BinaryOperator::CreateAnd(Builder->CreateNot(A, "tmp"), Op1);
+      }
+    }
+  }
+  
+  // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
+  if (Op0I && Op1I && Op0I->isShift() && 
+      Op0I->getOpcode() == Op1I->getOpcode() && 
+      Op0I->getOperand(1) == Op1I->getOperand(1) &&
+      (Op1I->hasOneUse() || Op1I->hasOneUse())) {
+    Value *NewOp =
+      Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
+                         Op0I->getName());
+    return BinaryOperator::Create(Op1I->getOpcode(), NewOp, 
+                                  Op1I->getOperand(1));
+  }
+    
+  if (Op0I && Op1I) {
+    Value *A, *B, *C, *D;
+    // (A & B)^(A | B) -> A ^ B
+    if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
+        match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
+      if ((A == C && B == D) || (A == D && B == C)) 
+        return BinaryOperator::CreateXor(A, B);
+    }
+    // (A | B)^(A & B) -> A ^ B
+    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
+        match(Op1I, m_And(m_Value(C), m_Value(D)))) {
+      if ((A == C && B == D) || (A == D && B == C)) 
+        return BinaryOperator::CreateXor(A, B);
+    }
+    
+    // (A & B)^(C & D)
+    if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
+        match(Op0I, m_And(m_Value(A), m_Value(B))) &&
+        match(Op1I, m_And(m_Value(C), m_Value(D)))) {
+      // (X & Y)^(X & Y) -> (Y^Z) & X
+      Value *X = 0, *Y = 0, *Z = 0;
+      if (A == C)
+        X = A, Y = B, Z = D;
+      else if (A == D)
+        X = A, Y = B, Z = C;
+      else if (B == C)
+        X = B, Y = A, Z = D;
+      else if (B == D)
+        X = B, Y = A, Z = C;
+      
+      if (X) {
+        Value *NewOp = Builder->CreateXor(Y, Z, Op0->getName());
+        return BinaryOperator::CreateAnd(NewOp, X);
+      }
+    }
+  }
+    
+  // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
+  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
+    if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
+      if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
+        if (LHS->getOperand(0) == RHS->getOperand(1) &&
+            LHS->getOperand(1) == RHS->getOperand(0))
+          LHS->swapOperands();
+        if (LHS->getOperand(0) == RHS->getOperand(0) &&
+            LHS->getOperand(1) == RHS->getOperand(1)) {
+          Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
+          unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
+          bool isSigned = LHS->isSigned() || RHS->isSigned();
+          Value *RV = getICmpValue(isSigned, Code, Op0, Op1);
+          if (Instruction *I = dyn_cast<Instruction>(RV))
+            return I;
+          // Otherwise, it's a constant boolean value.
+          return ReplaceInstUsesWith(I, RV);
+        }
+      }
+
+  // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
+  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
+    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
+      if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
+        const Type *SrcTy = Op0C->getOperand(0)->getType();
+        if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
+            // Only do this if the casts both really cause code to be generated.
+            ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), 
+                              I.getType()) &&
+            ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
+                              I.getType())) {
+          Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
+                                            Op1C->getOperand(0), I.getName());
+          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
+        }
+      }
+  }
+
+  return Changed ? &I : 0;
+}
diff --git a/lib/Transforms/InstCombine/InstCombineCalls.cpp b/lib/Transforms/InstCombine/InstCombineCalls.cpp
new file mode 100644
index 0000000..47c37c4
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -0,0 +1,1142 @@
+//===- InstCombineCalls.cpp -----------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitCall and visitInvoke functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+using namespace llvm;
+
+/// getPromotedType - Return the specified type promoted as it would be to pass
+/// though a va_arg area.
+static const Type *getPromotedType(const Type *Ty) {
+  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
+    if (ITy->getBitWidth() < 32)
+      return Type::getInt32Ty(Ty->getContext());
+  }
+  return Ty;
+}
+
+/// EnforceKnownAlignment - If the specified pointer points to an object that
+/// we control, modify the object's alignment to PrefAlign. This isn't
+/// often possible though. If alignment is important, a more reliable approach
+/// is to simply align all global variables and allocation instructions to
+/// their preferred alignment from the beginning.
+///
+static unsigned EnforceKnownAlignment(Value *V,
+                                      unsigned Align, unsigned PrefAlign) {
+
+  User *U = dyn_cast<User>(V);
+  if (!U) return Align;
+
+  switch (Operator::getOpcode(U)) {
+  default: break;
+  case Instruction::BitCast:
+    return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
+  case Instruction::GetElementPtr: {
+    // If all indexes are zero, it is just the alignment of the base pointer.
+    bool AllZeroOperands = true;
+    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
+      if (!isa<Constant>(*i) ||
+          !cast<Constant>(*i)->isNullValue()) {
+        AllZeroOperands = false;
+        break;
+      }
+
+    if (AllZeroOperands) {
+      // Treat this like a bitcast.
+      return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
+    }
+    break;
+  }
+  }
+
+  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+    // If there is a large requested alignment and we can, bump up the alignment
+    // of the global.
+    if (!GV->isDeclaration()) {
+      if (GV->getAlignment() >= PrefAlign)
+        Align = GV->getAlignment();
+      else {
+        GV->setAlignment(PrefAlign);
+        Align = PrefAlign;
+      }
+    }
+  } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+    // If there is a requested alignment and if this is an alloca, round up.
+    if (AI->getAlignment() >= PrefAlign)
+      Align = AI->getAlignment();
+    else {
+      AI->setAlignment(PrefAlign);
+      Align = PrefAlign;
+    }
+  }
+
+  return Align;
+}
+
+/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
+/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
+/// and it is more than the alignment of the ultimate object, see if we can
+/// increase the alignment of the ultimate object, making this check succeed.
+unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
+                                                  unsigned PrefAlign) {
+  unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
+                      sizeof(PrefAlign) * CHAR_BIT;
+  APInt Mask = APInt::getAllOnesValue(BitWidth);
+  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+  ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
+  unsigned TrailZ = KnownZero.countTrailingOnes();
+  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
+
+  if (PrefAlign > Align)
+    Align = EnforceKnownAlignment(V, Align, PrefAlign);
+  
+    // We don't need to make any adjustment.
+  return Align;
+}
+
+Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
+  unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
+  unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
+  unsigned MinAlign = std::min(DstAlign, SrcAlign);
+  unsigned CopyAlign = MI->getAlignment();
+
+  if (CopyAlign < MinAlign) {
+    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), 
+                                             MinAlign, false));
+    return MI;
+  }
+  
+  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
+  // load/store.
+  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
+  if (MemOpLength == 0) return 0;
+  
+  // Source and destination pointer types are always "i8*" for intrinsic.  See
+  // if the size is something we can handle with a single primitive load/store.
+  // A single load+store correctly handles overlapping memory in the memmove
+  // case.
+  unsigned Size = MemOpLength->getZExtValue();
+  if (Size == 0) return MI;  // Delete this mem transfer.
+  
+  if (Size > 8 || (Size&(Size-1)))
+    return 0;  // If not 1/2/4/8 bytes, exit.
+  
+  // Use an integer load+store unless we can find something better.
+  Type *NewPtrTy =
+            PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
+  
+  // Memcpy forces the use of i8* for the source and destination.  That means
+  // that if you're using memcpy to move one double around, you'll get a cast
+  // from double* to i8*.  We'd much rather use a double load+store rather than
+  // an i64 load+store, here because this improves the odds that the source or
+  // dest address will be promotable.  See if we can find a better type than the
+  // integer datatype.
+  Value *StrippedDest = MI->getOperand(1)->stripPointerCasts();
+  if (StrippedDest != MI->getOperand(1)) {
+    const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
+                                    ->getElementType();
+    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
+      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
+      // down through these levels if so.
+      while (!SrcETy->isSingleValueType()) {
+        if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
+          if (STy->getNumElements() == 1)
+            SrcETy = STy->getElementType(0);
+          else
+            break;
+        } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
+          if (ATy->getNumElements() == 1)
+            SrcETy = ATy->getElementType();
+          else
+            break;
+        } else
+          break;
+      }
+      
+      if (SrcETy->isSingleValueType())
+        NewPtrTy = PointerType::getUnqual(SrcETy);
+    }
+  }
+  
+  
+  // If the memcpy/memmove provides better alignment info than we can
+  // infer, use it.
+  SrcAlign = std::max(SrcAlign, CopyAlign);
+  DstAlign = std::max(DstAlign, CopyAlign);
+  
+  Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
+  Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
+  Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
+  InsertNewInstBefore(L, *MI);
+  InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
+
+  // Set the size of the copy to 0, it will be deleted on the next iteration.
+  MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
+  return MI;
+}
+
+Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
+  unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
+  if (MI->getAlignment() < Alignment) {
+    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
+                                             Alignment, false));
+    return MI;
+  }
+  
+  // Extract the length and alignment and fill if they are constant.
+  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
+  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
+  if (!LenC || !FillC || !FillC->getType()->isInteger(8))
+    return 0;
+  uint64_t Len = LenC->getZExtValue();
+  Alignment = MI->getAlignment();
+  
+  // If the length is zero, this is a no-op
+  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
+  
+  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
+  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
+    const Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
+    
+    Value *Dest = MI->getDest();
+    Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
+
+    // Alignment 0 is identity for alignment 1 for memset, but not store.
+    if (Alignment == 0) Alignment = 1;
+    
+    // Extract the fill value and store.
+    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
+    InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
+                                      Dest, false, Alignment), *MI);
+    
+    // Set the size of the copy to 0, it will be deleted on the next iteration.
+    MI->setLength(Constant::getNullValue(LenC->getType()));
+    return MI;
+  }
+
+  return 0;
+}
+
+
+/// visitCallInst - CallInst simplification.  This mostly only handles folding 
+/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
+/// the heavy lifting.
+///
+Instruction *InstCombiner::visitCallInst(CallInst &CI) {
+  if (isFreeCall(&CI))
+    return visitFree(CI);
+
+  // If the caller function is nounwind, mark the call as nounwind, even if the
+  // callee isn't.
+  if (CI.getParent()->getParent()->doesNotThrow() &&
+      !CI.doesNotThrow()) {
+    CI.setDoesNotThrow();
+    return &CI;
+  }
+  
+  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
+  if (!II) return visitCallSite(&CI);
+  
+  // Intrinsics cannot occur in an invoke, so handle them here instead of in
+  // visitCallSite.
+  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
+    bool Changed = false;
+
+    // memmove/cpy/set of zero bytes is a noop.
+    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
+      if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
+
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
+        if (CI->getZExtValue() == 1) {
+          // Replace the instruction with just byte operations.  We would
+          // transform other cases to loads/stores, but we don't know if
+          // alignment is sufficient.
+        }
+    }
+
+    // If we have a memmove and the source operation is a constant global,
+    // then the source and dest pointers can't alias, so we can change this
+    // into a call to memcpy.
+    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
+      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
+        if (GVSrc->isConstant()) {
+          Module *M = CI.getParent()->getParent()->getParent();
+          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
+          const Type *Tys[1];
+          Tys[0] = CI.getOperand(3)->getType();
+          CI.setOperand(0, 
+                        Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
+          Changed = true;
+        }
+    }
+
+    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
+      // memmove(x,x,size) -> noop.
+      if (MTI->getSource() == MTI->getDest())
+        return EraseInstFromFunction(CI);
+    }
+
+    // If we can determine a pointer alignment that is bigger than currently
+    // set, update the alignment.
+    if (isa<MemTransferInst>(MI)) {
+      if (Instruction *I = SimplifyMemTransfer(MI))
+        return I;
+    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
+      if (Instruction *I = SimplifyMemSet(MSI))
+        return I;
+    }
+          
+    if (Changed) return II;
+  }
+  
+  switch (II->getIntrinsicID()) {
+  default: break;
+  case Intrinsic::bswap:
+    // bswap(bswap(x)) -> x
+    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
+      if (Operand->getIntrinsicID() == Intrinsic::bswap)
+        return ReplaceInstUsesWith(CI, Operand->getOperand(1));
+      
+    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
+    if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
+      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
+        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
+          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
+                       TI->getType()->getPrimitiveSizeInBits();
+          Value *CV = ConstantInt::get(Operand->getType(), C);
+          Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
+          return new TruncInst(V, TI->getType());
+        }
+    }
+      
+    break;
+  case Intrinsic::powi:
+    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
+      // powi(x, 0) -> 1.0
+      if (Power->isZero())
+        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
+      // powi(x, 1) -> x
+      if (Power->isOne())
+        return ReplaceInstUsesWith(CI, II->getOperand(1));
+      // powi(x, -1) -> 1/x
+      if (Power->isAllOnesValue())
+        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
+                                          II->getOperand(1));
+    }
+    break;
+  case Intrinsic::cttz: {
+    // If all bits below the first known one are known zero,
+    // this value is constant.
+    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
+    uint32_t BitWidth = IT->getBitWidth();
+    APInt KnownZero(BitWidth, 0);
+    APInt KnownOne(BitWidth, 0);
+    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
+                      KnownZero, KnownOne);
+    unsigned TrailingZeros = KnownOne.countTrailingZeros();
+    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
+    if ((Mask & KnownZero) == Mask)
+      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
+                                 APInt(BitWidth, TrailingZeros)));
+    
+    }
+    break;
+  case Intrinsic::ctlz: {
+    // If all bits above the first known one are known zero,
+    // this value is constant.
+    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
+    uint32_t BitWidth = IT->getBitWidth();
+    APInt KnownZero(BitWidth, 0);
+    APInt KnownOne(BitWidth, 0);
+    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
+                      KnownZero, KnownOne);
+    unsigned LeadingZeros = KnownOne.countLeadingZeros();
+    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
+    if ((Mask & KnownZero) == Mask)
+      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
+                                 APInt(BitWidth, LeadingZeros)));
+    
+    }
+    break;
+  case Intrinsic::uadd_with_overflow: {
+    Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
+    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
+    uint32_t BitWidth = IT->getBitWidth();
+    APInt Mask = APInt::getSignBit(BitWidth);
+    APInt LHSKnownZero(BitWidth, 0);
+    APInt LHSKnownOne(BitWidth, 0);
+    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
+    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
+    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
+
+    if (LHSKnownNegative || LHSKnownPositive) {
+      APInt RHSKnownZero(BitWidth, 0);
+      APInt RHSKnownOne(BitWidth, 0);
+      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
+      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
+      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
+      if (LHSKnownNegative && RHSKnownNegative) {
+        // The sign bit is set in both cases: this MUST overflow.
+        // Create a simple add instruction, and insert it into the struct.
+        Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
+        Worklist.Add(Add);
+        Constant *V[] = {
+          UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
+        };
+        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+        return InsertValueInst::Create(Struct, Add, 0);
+      }
+      
+      if (LHSKnownPositive && RHSKnownPositive) {
+        // The sign bit is clear in both cases: this CANNOT overflow.
+        // Create a simple add instruction, and insert it into the struct.
+        Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
+        Worklist.Add(Add);
+        Constant *V[] = {
+          UndefValue::get(LHS->getType()),
+          ConstantInt::getFalse(II->getContext())
+        };
+        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+        return InsertValueInst::Create(Struct, Add, 0);
+      }
+    }
+  }
+  // FALL THROUGH uadd into sadd
+  case Intrinsic::sadd_with_overflow:
+    // Canonicalize constants into the RHS.
+    if (isa<Constant>(II->getOperand(1)) &&
+        !isa<Constant>(II->getOperand(2))) {
+      Value *LHS = II->getOperand(1);
+      II->setOperand(1, II->getOperand(2));
+      II->setOperand(2, LHS);
+      return II;
+    }
+
+    // X + undef -> undef
+    if (isa<UndefValue>(II->getOperand(2)))
+      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+      
+    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
+      // X + 0 -> {X, false}
+      if (RHS->isZero()) {
+        Constant *V[] = {
+          UndefValue::get(II->getOperand(0)->getType()),
+          ConstantInt::getFalse(II->getContext())
+        };
+        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
+      }
+    }
+    break;
+  case Intrinsic::usub_with_overflow:
+  case Intrinsic::ssub_with_overflow:
+    // undef - X -> undef
+    // X - undef -> undef
+    if (isa<UndefValue>(II->getOperand(1)) ||
+        isa<UndefValue>(II->getOperand(2)))
+      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+      
+    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
+      // X - 0 -> {X, false}
+      if (RHS->isZero()) {
+        Constant *V[] = {
+          UndefValue::get(II->getOperand(1)->getType()),
+          ConstantInt::getFalse(II->getContext())
+        };
+        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
+      }
+    }
+    break;
+  case Intrinsic::umul_with_overflow:
+  case Intrinsic::smul_with_overflow:
+    // Canonicalize constants into the RHS.
+    if (isa<Constant>(II->getOperand(1)) &&
+        !isa<Constant>(II->getOperand(2))) {
+      Value *LHS = II->getOperand(1);
+      II->setOperand(1, II->getOperand(2));
+      II->setOperand(2, LHS);
+      return II;
+    }
+
+    // X * undef -> undef
+    if (isa<UndefValue>(II->getOperand(2)))
+      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+      
+    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
+      // X*0 -> {0, false}
+      if (RHSI->isZero())
+        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
+      
+      // X * 1 -> {X, false}
+      if (RHSI->equalsInt(1)) {
+        Constant *V[] = {
+          UndefValue::get(II->getOperand(1)->getType()),
+          ConstantInt::getFalse(II->getContext())
+        };
+        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
+      }
+    }
+    break;
+  case Intrinsic::ppc_altivec_lvx:
+  case Intrinsic::ppc_altivec_lvxl:
+  case Intrinsic::x86_sse_loadu_ps:
+  case Intrinsic::x86_sse2_loadu_pd:
+  case Intrinsic::x86_sse2_loadu_dq:
+    // Turn PPC lvx     -> load if the pointer is known aligned.
+    // Turn X86 loadups -> load if the pointer is known aligned.
+    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
+      Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
+                                         PointerType::getUnqual(II->getType()));
+      return new LoadInst(Ptr);
+    }
+    break;
+  case Intrinsic::ppc_altivec_stvx:
+  case Intrinsic::ppc_altivec_stvxl:
+    // Turn stvx -> store if the pointer is known aligned.
+    if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
+      const Type *OpPtrTy = 
+        PointerType::getUnqual(II->getOperand(1)->getType());
+      Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
+      return new StoreInst(II->getOperand(1), Ptr);
+    }
+    break;
+  case Intrinsic::x86_sse_storeu_ps:
+  case Intrinsic::x86_sse2_storeu_pd:
+  case Intrinsic::x86_sse2_storeu_dq:
+    // Turn X86 storeu -> store if the pointer is known aligned.
+    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
+      const Type *OpPtrTy = 
+        PointerType::getUnqual(II->getOperand(2)->getType());
+      Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
+      return new StoreInst(II->getOperand(2), Ptr);
+    }
+    break;
+    
+  case Intrinsic::x86_sse_cvttss2si: {
+    // These intrinsics only demands the 0th element of its input vector.  If
+    // we can simplify the input based on that, do so now.
+    unsigned VWidth =
+      cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
+    APInt DemandedElts(VWidth, 1);
+    APInt UndefElts(VWidth, 0);
+    if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
+                                              UndefElts)) {
+      II->setOperand(1, V);
+      return II;
+    }
+    break;
+  }
+    
+  case Intrinsic::ppc_altivec_vperm:
+    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
+    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
+      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
+      
+      // Check that all of the elements are integer constants or undefs.
+      bool AllEltsOk = true;
+      for (unsigned i = 0; i != 16; ++i) {
+        if (!isa<ConstantInt>(Mask->getOperand(i)) && 
+            !isa<UndefValue>(Mask->getOperand(i))) {
+          AllEltsOk = false;
+          break;
+        }
+      }
+      
+      if (AllEltsOk) {
+        // Cast the input vectors to byte vectors.
+        Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
+        Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
+        Value *Result = UndefValue::get(Op0->getType());
+        
+        // Only extract each element once.
+        Value *ExtractedElts[32];
+        memset(ExtractedElts, 0, sizeof(ExtractedElts));
+        
+        for (unsigned i = 0; i != 16; ++i) {
+          if (isa<UndefValue>(Mask->getOperand(i)))
+            continue;
+          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
+          Idx &= 31;  // Match the hardware behavior.
+          
+          if (ExtractedElts[Idx] == 0) {
+            ExtractedElts[Idx] = 
+              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1, 
+                  ConstantInt::get(Type::getInt32Ty(II->getContext()),
+                                   Idx&15, false), "tmp");
+          }
+        
+          // Insert this value into the result vector.
+          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
+                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
+                                          i, false), "tmp");
+        }
+        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
+      }
+    }
+    break;
+
+  case Intrinsic::stackrestore: {
+    // If the save is right next to the restore, remove the restore.  This can
+    // happen when variable allocas are DCE'd.
+    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
+      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
+        BasicBlock::iterator BI = SS;
+        if (&*++BI == II)
+          return EraseInstFromFunction(CI);
+      }
+    }
+    
+    // Scan down this block to see if there is another stack restore in the
+    // same block without an intervening call/alloca.
+    BasicBlock::iterator BI = II;
+    TerminatorInst *TI = II->getParent()->getTerminator();
+    bool CannotRemove = false;
+    for (++BI; &*BI != TI; ++BI) {
+      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
+        CannotRemove = true;
+        break;
+      }
+      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
+        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
+          // If there is a stackrestore below this one, remove this one.
+          if (II->getIntrinsicID() == Intrinsic::stackrestore)
+            return EraseInstFromFunction(CI);
+          // Otherwise, ignore the intrinsic.
+        } else {
+          // If we found a non-intrinsic call, we can't remove the stack
+          // restore.
+          CannotRemove = true;
+          break;
+        }
+      }
+    }
+    
+    // If the stack restore is in a return/unwind block and if there are no
+    // allocas or calls between the restore and the return, nuke the restore.
+    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
+      return EraseInstFromFunction(CI);
+    break;
+  }
+  case Intrinsic::objectsize: {
+    ConstantInt *Const = cast<ConstantInt>(II->getOperand(2));
+    const Type *Ty = CI.getType();
+
+    // 0 is maximum number of bytes left, 1 is minimum number of bytes left.
+    // TODO: actually add these values, the current return values are "don't
+    // know".
+    if (Const->getZExtValue() == 0)
+      return ReplaceInstUsesWith(CI, Constant::getAllOnesValue(Ty));
+    else
+      return ReplaceInstUsesWith(CI, ConstantInt::get(Ty, 0));
+  }
+  }
+
+  return visitCallSite(II);
+}
+
+// InvokeInst simplification
+//
+Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
+  return visitCallSite(&II);
+}
+
+/// isSafeToEliminateVarargsCast - If this cast does not affect the value 
+/// passed through the varargs area, we can eliminate the use of the cast.
+static bool isSafeToEliminateVarargsCast(const CallSite CS,
+                                         const CastInst * const CI,
+                                         const TargetData * const TD,
+                                         const int ix) {
+  if (!CI->isLosslessCast())
+    return false;
+
+  // The size of ByVal arguments is derived from the type, so we
+  // can't change to a type with a different size.  If the size were
+  // passed explicitly we could avoid this check.
+  if (!CS.paramHasAttr(ix, Attribute::ByVal))
+    return true;
+
+  const Type* SrcTy = 
+            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
+  const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
+  if (!SrcTy->isSized() || !DstTy->isSized())
+    return false;
+  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
+    return false;
+  return true;
+}
+
+// visitCallSite - Improvements for call and invoke instructions.
+//
+Instruction *InstCombiner::visitCallSite(CallSite CS) {
+  bool Changed = false;
+
+  // If the callee is a constexpr cast of a function, attempt to move the cast
+  // to the arguments of the call/invoke.
+  if (transformConstExprCastCall(CS)) return 0;
+
+  Value *Callee = CS.getCalledValue();
+
+  if (Function *CalleeF = dyn_cast<Function>(Callee))
+    if (CalleeF->getCallingConv() != CS.getCallingConv()) {
+      Instruction *OldCall = CS.getInstruction();
+      // If the call and callee calling conventions don't match, this call must
+      // be unreachable, as the call is undefined.
+      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
+                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), 
+                                  OldCall);
+      // If OldCall dues not return void then replaceAllUsesWith undef.
+      // This allows ValueHandlers and custom metadata to adjust itself.
+      if (!OldCall->getType()->isVoidTy())
+        OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
+      if (isa<CallInst>(OldCall))   // Not worth removing an invoke here.
+        return EraseInstFromFunction(*OldCall);
+      return 0;
+    }
+
+  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
+    // This instruction is not reachable, just remove it.  We insert a store to
+    // undef so that we know that this code is not reachable, despite the fact
+    // that we can't modify the CFG here.
+    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
+               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
+                  CS.getInstruction());
+
+    // If CS dues not return void then replaceAllUsesWith undef.
+    // This allows ValueHandlers and custom metadata to adjust itself.
+    if (!CS.getInstruction()->getType()->isVoidTy())
+      CS.getInstruction()->
+        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
+
+    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
+      // Don't break the CFG, insert a dummy cond branch.
+      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
+                         ConstantInt::getTrue(Callee->getContext()), II);
+    }
+    return EraseInstFromFunction(*CS.getInstruction());
+  }
+
+  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
+    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
+      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
+        return transformCallThroughTrampoline(CS);
+
+  const PointerType *PTy = cast<PointerType>(Callee->getType());
+  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+  if (FTy->isVarArg()) {
+    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
+    // See if we can optimize any arguments passed through the varargs area of
+    // the call.
+    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
+           E = CS.arg_end(); I != E; ++I, ++ix) {
+      CastInst *CI = dyn_cast<CastInst>(*I);
+      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
+        *I = CI->getOperand(0);
+        Changed = true;
+      }
+    }
+  }
+
+  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
+    // Inline asm calls cannot throw - mark them 'nounwind'.
+    CS.setDoesNotThrow();
+    Changed = true;
+  }
+
+  return Changed ? CS.getInstruction() : 0;
+}
+
+// transformConstExprCastCall - If the callee is a constexpr cast of a function,
+// attempt to move the cast to the arguments of the call/invoke.
+//
+bool InstCombiner::transformConstExprCastCall(CallSite CS) {
+  if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
+  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
+  if (CE->getOpcode() != Instruction::BitCast || 
+      !isa<Function>(CE->getOperand(0)))
+    return false;
+  Function *Callee = cast<Function>(CE->getOperand(0));
+  Instruction *Caller = CS.getInstruction();
+  const AttrListPtr &CallerPAL = CS.getAttributes();
+
+  // Okay, this is a cast from a function to a different type.  Unless doing so
+  // would cause a type conversion of one of our arguments, change this call to
+  // be a direct call with arguments casted to the appropriate types.
+  //
+  const FunctionType *FT = Callee->getFunctionType();
+  const Type *OldRetTy = Caller->getType();
+  const Type *NewRetTy = FT->getReturnType();
+
+  if (isa<StructType>(NewRetTy))
+    return false; // TODO: Handle multiple return values.
+
+  // Check to see if we are changing the return type...
+  if (OldRetTy != NewRetTy) {
+    if (Callee->isDeclaration() &&
+        // Conversion is ok if changing from one pointer type to another or from
+        // a pointer to an integer of the same size.
+        !((isa<PointerType>(OldRetTy) || !TD ||
+           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
+          (isa<PointerType>(NewRetTy) || !TD ||
+           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
+      return false;   // Cannot transform this return value.
+
+    if (!Caller->use_empty() &&
+        // void -> non-void is handled specially
+        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
+      return false;   // Cannot transform this return value.
+
+    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
+      Attributes RAttrs = CallerPAL.getRetAttributes();
+      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
+        return false;   // Attribute not compatible with transformed value.
+    }
+
+    // If the callsite is an invoke instruction, and the return value is used by
+    // a PHI node in a successor, we cannot change the return type of the call
+    // because there is no place to put the cast instruction (without breaking
+    // the critical edge).  Bail out in this case.
+    if (!Caller->use_empty())
+      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
+        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
+             UI != E; ++UI)
+          if (PHINode *PN = dyn_cast<PHINode>(*UI))
+            if (PN->getParent() == II->getNormalDest() ||
+                PN->getParent() == II->getUnwindDest())
+              return false;
+  }
+
+  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
+  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
+
+  CallSite::arg_iterator AI = CS.arg_begin();
+  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
+    const Type *ParamTy = FT->getParamType(i);
+    const Type *ActTy = (*AI)->getType();
+
+    if (!CastInst::isCastable(ActTy, ParamTy))
+      return false;   // Cannot transform this parameter value.
+
+    if (CallerPAL.getParamAttributes(i + 1) 
+        & Attribute::typeIncompatible(ParamTy))
+      return false;   // Attribute not compatible with transformed value.
+
+    // Converting from one pointer type to another or between a pointer and an
+    // integer of the same size is safe even if we do not have a body.
+    bool isConvertible = ActTy == ParamTy ||
+      (TD && ((isa<PointerType>(ParamTy) ||
+      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
+              (isa<PointerType>(ActTy) ||
+              ActTy == TD->getIntPtrType(Caller->getContext()))));
+    if (Callee->isDeclaration() && !isConvertible) return false;
+  }
+
+  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
+      Callee->isDeclaration())
+    return false;   // Do not delete arguments unless we have a function body.
+
+  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
+      !CallerPAL.isEmpty())
+    // In this case we have more arguments than the new function type, but we
+    // won't be dropping them.  Check that these extra arguments have attributes
+    // that are compatible with being a vararg call argument.
+    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
+      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
+        break;
+      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
+      if (PAttrs & Attribute::VarArgsIncompatible)
+        return false;
+    }
+
+  // Okay, we decided that this is a safe thing to do: go ahead and start
+  // inserting cast instructions as necessary...
+  std::vector<Value*> Args;
+  Args.reserve(NumActualArgs);
+  SmallVector<AttributeWithIndex, 8> attrVec;
+  attrVec.reserve(NumCommonArgs);
+
+  // Get any return attributes.
+  Attributes RAttrs = CallerPAL.getRetAttributes();
+
+  // If the return value is not being used, the type may not be compatible
+  // with the existing attributes.  Wipe out any problematic attributes.
+  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
+
+  // Add the new return attributes.
+  if (RAttrs)
+    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
+
+  AI = CS.arg_begin();
+  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
+    const Type *ParamTy = FT->getParamType(i);
+    if ((*AI)->getType() == ParamTy) {
+      Args.push_back(*AI);
+    } else {
+      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
+          false, ParamTy, false);
+      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
+    }
+
+    // Add any parameter attributes.
+    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
+      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
+  }
+
+  // If the function takes more arguments than the call was taking, add them
+  // now.
+  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
+    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
+
+  // If we are removing arguments to the function, emit an obnoxious warning.
+  if (FT->getNumParams() < NumActualArgs) {
+    if (!FT->isVarArg()) {
+      errs() << "WARNING: While resolving call to function '"
+             << Callee->getName() << "' arguments were dropped!\n";
+    } else {
+      // Add all of the arguments in their promoted form to the arg list.
+      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
+        const Type *PTy = getPromotedType((*AI)->getType());
+        if (PTy != (*AI)->getType()) {
+          // Must promote to pass through va_arg area!
+          Instruction::CastOps opcode =
+            CastInst::getCastOpcode(*AI, false, PTy, false);
+          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
+        } else {
+          Args.push_back(*AI);
+        }
+
+        // Add any parameter attributes.
+        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
+          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
+      }
+    }
+  }
+
+  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
+    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
+
+  if (NewRetTy->isVoidTy())
+    Caller->setName("");   // Void type should not have a name.
+
+  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
+                                                     attrVec.end());
+
+  Instruction *NC;
+  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
+    NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
+                            Args.begin(), Args.end(),
+                            Caller->getName(), Caller);
+    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
+    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
+  } else {
+    NC = CallInst::Create(Callee, Args.begin(), Args.end(),
+                          Caller->getName(), Caller);
+    CallInst *CI = cast<CallInst>(Caller);
+    if (CI->isTailCall())
+      cast<CallInst>(NC)->setTailCall();
+    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
+    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
+  }
+
+  // Insert a cast of the return type as necessary.
+  Value *NV = NC;
+  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
+    if (!NV->getType()->isVoidTy()) {
+      Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, 
+                                                            OldRetTy, false);
+      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
+
+      // If this is an invoke instruction, we should insert it after the first
+      // non-phi, instruction in the normal successor block.
+      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
+        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
+        InsertNewInstBefore(NC, *I);
+      } else {
+        // Otherwise, it's a call, just insert cast right after the call instr
+        InsertNewInstBefore(NC, *Caller);
+      }
+      Worklist.AddUsersToWorkList(*Caller);
+    } else {
+      NV = UndefValue::get(Caller->getType());
+    }
+  }
+
+
+  if (!Caller->use_empty())
+    Caller->replaceAllUsesWith(NV);
+  
+  EraseInstFromFunction(*Caller);
+  return true;
+}
+
+// transformCallThroughTrampoline - Turn a call to a function created by the
+// init_trampoline intrinsic into a direct call to the underlying function.
+//
+Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
+  Value *Callee = CS.getCalledValue();
+  const PointerType *PTy = cast<PointerType>(Callee->getType());
+  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+  const AttrListPtr &Attrs = CS.getAttributes();
+
+  // If the call already has the 'nest' attribute somewhere then give up -
+  // otherwise 'nest' would occur twice after splicing in the chain.
+  if (Attrs.hasAttrSomewhere(Attribute::Nest))
+    return 0;
+
+  IntrinsicInst *Tramp =
+    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
+
+  Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
+  const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
+  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
+
+  const AttrListPtr &NestAttrs = NestF->getAttributes();
+  if (!NestAttrs.isEmpty()) {
+    unsigned NestIdx = 1;
+    const Type *NestTy = 0;
+    Attributes NestAttr = Attribute::None;
+
+    // Look for a parameter marked with the 'nest' attribute.
+    for (FunctionType::param_iterator I = NestFTy->param_begin(),
+         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
+      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
+        // Record the parameter type and any other attributes.
+        NestTy = *I;
+        NestAttr = NestAttrs.getParamAttributes(NestIdx);
+        break;
+      }
+
+    if (NestTy) {
+      Instruction *Caller = CS.getInstruction();
+      std::vector<Value*> NewArgs;
+      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
+
+      SmallVector<AttributeWithIndex, 8> NewAttrs;
+      NewAttrs.reserve(Attrs.getNumSlots() + 1);
+
+      // Insert the nest argument into the call argument list, which may
+      // mean appending it.  Likewise for attributes.
+
+      // Add any result attributes.
+      if (Attributes Attr = Attrs.getRetAttributes())
+        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
+
+      {
+        unsigned Idx = 1;
+        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
+        do {
+          if (Idx == NestIdx) {
+            // Add the chain argument and attributes.
+            Value *NestVal = Tramp->getOperand(3);
+            if (NestVal->getType() != NestTy)
+              NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
+            NewArgs.push_back(NestVal);
+            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
+          }
+
+          if (I == E)
+            break;
+
+          // Add the original argument and attributes.
+          NewArgs.push_back(*I);
+          if (Attributes Attr = Attrs.getParamAttributes(Idx))
+            NewAttrs.push_back
+              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
+
+          ++Idx, ++I;
+        } while (1);
+      }
+
+      // Add any function attributes.
+      if (Attributes Attr = Attrs.getFnAttributes())
+        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
+
+      // The trampoline may have been bitcast to a bogus type (FTy).
+      // Handle this by synthesizing a new function type, equal to FTy
+      // with the chain parameter inserted.
+
+      std::vector<const Type*> NewTypes;
+      NewTypes.reserve(FTy->getNumParams()+1);
+
+      // Insert the chain's type into the list of parameter types, which may
+      // mean appending it.
+      {
+        unsigned Idx = 1;
+        FunctionType::param_iterator I = FTy->param_begin(),
+          E = FTy->param_end();
+
+        do {
+          if (Idx == NestIdx)
+            // Add the chain's type.
+            NewTypes.push_back(NestTy);
+
+          if (I == E)
+            break;
+
+          // Add the original type.
+          NewTypes.push_back(*I);
+
+          ++Idx, ++I;
+        } while (1);
+      }
+
+      // Replace the trampoline call with a direct call.  Let the generic
+      // code sort out any function type mismatches.
+      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, 
+                                                FTy->isVarArg());
+      Constant *NewCallee =
+        NestF->getType() == PointerType::getUnqual(NewFTy) ?
+        NestF : ConstantExpr::getBitCast(NestF, 
+                                         PointerType::getUnqual(NewFTy));
+      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
+                                                   NewAttrs.end());
+
+      Instruction *NewCaller;
+      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
+        NewCaller = InvokeInst::Create(NewCallee,
+                                       II->getNormalDest(), II->getUnwindDest(),
+                                       NewArgs.begin(), NewArgs.end(),
+                                       Caller->getName(), Caller);
+        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
+        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
+      } else {
+        NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
+                                     Caller->getName(), Caller);
+        if (cast<CallInst>(Caller)->isTailCall())
+          cast<CallInst>(NewCaller)->setTailCall();
+        cast<CallInst>(NewCaller)->
+          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
+        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
+      }
+      if (!Caller->getType()->isVoidTy())
+        Caller->replaceAllUsesWith(NewCaller);
+      Caller->eraseFromParent();
+      Worklist.Remove(Caller);
+      return 0;
+    }
+  }
+
+  // Replace the trampoline call with a direct call.  Since there is no 'nest'
+  // parameter, there is no need to adjust the argument list.  Let the generic
+  // code sort out any function type mismatches.
+  Constant *NewCallee =
+    NestF->getType() == PTy ? NestF : 
+                              ConstantExpr::getBitCast(NestF, PTy);
+  CS.setCalledFunction(NewCallee);
+  return CS.getInstruction();
+}
+
diff --git a/lib/Transforms/InstCombine/InstCombineCasts.cpp b/lib/Transforms/InstCombine/InstCombineCasts.cpp
new file mode 100644
index 0000000..e018b35
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -0,0 +1,1301 @@
+//===- InstCombineCasts.cpp -----------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for cast operations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
+/// expression.  If so, decompose it, returning some value X, such that Val is
+/// X*Scale+Offset.
+///
+static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
+                                        int &Offset) {
+  assert(Val->getType()->isInteger(32) && "Unexpected allocation size type!");
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
+    Offset = CI->getZExtValue();
+    Scale  = 0;
+    return ConstantInt::get(Type::getInt32Ty(Val->getContext()), 0);
+  }
+  
+  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
+    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
+      if (I->getOpcode() == Instruction::Shl) {
+        // This is a value scaled by '1 << the shift amt'.
+        Scale = 1U << RHS->getZExtValue();
+        Offset = 0;
+        return I->getOperand(0);
+      }
+      
+      if (I->getOpcode() == Instruction::Mul) {
+        // This value is scaled by 'RHS'.
+        Scale = RHS->getZExtValue();
+        Offset = 0;
+        return I->getOperand(0);
+      }
+      
+      if (I->getOpcode() == Instruction::Add) {
+        // We have X+C.  Check to see if we really have (X*C2)+C1, 
+        // where C1 is divisible by C2.
+        unsigned SubScale;
+        Value *SubVal = 
+          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
+        Offset += RHS->getZExtValue();
+        Scale = SubScale;
+        return SubVal;
+      }
+    }
+  }
+
+  // Otherwise, we can't look past this.
+  Scale = 1;
+  Offset = 0;
+  return Val;
+}
+
+/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
+/// try to eliminate the cast by moving the type information into the alloc.
+Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
+                                                   AllocaInst &AI) {
+  // This requires TargetData to get the alloca alignment and size information.
+  if (!TD) return 0;
+
+  const PointerType *PTy = cast<PointerType>(CI.getType());
+  
+  BuilderTy AllocaBuilder(*Builder);
+  AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
+
+  // Get the type really allocated and the type casted to.
+  const Type *AllocElTy = AI.getAllocatedType();
+  const Type *CastElTy = PTy->getElementType();
+  if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
+
+  unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
+  unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
+  if (CastElTyAlign < AllocElTyAlign) return 0;
+
+  // If the allocation has multiple uses, only promote it if we are strictly
+  // increasing the alignment of the resultant allocation.  If we keep it the
+  // same, we open the door to infinite loops of various kinds.  (A reference
+  // from a dbg.declare doesn't count as a use for this purpose.)
+  if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
+      CastElTyAlign == AllocElTyAlign) return 0;
+
+  uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
+  uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
+  if (CastElTySize == 0 || AllocElTySize == 0) return 0;
+
+  // See if we can satisfy the modulus by pulling a scale out of the array
+  // size argument.
+  unsigned ArraySizeScale;
+  int ArrayOffset;
+  Value *NumElements = // See if the array size is a decomposable linear expr.
+    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
+ 
+  // If we can now satisfy the modulus, by using a non-1 scale, we really can
+  // do the xform.
+  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
+      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
+
+  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
+  Value *Amt = 0;
+  if (Scale == 1) {
+    Amt = NumElements;
+  } else {
+    Amt = ConstantInt::get(Type::getInt32Ty(CI.getContext()), Scale);
+    // Insert before the alloca, not before the cast.
+    Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
+  }
+  
+  if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
+    Value *Off = ConstantInt::get(Type::getInt32Ty(CI.getContext()),
+                                  Offset, true);
+    Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
+  }
+  
+  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
+  New->setAlignment(AI.getAlignment());
+  New->takeName(&AI);
+  
+  // If the allocation has one real use plus a dbg.declare, just remove the
+  // declare.
+  if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
+    EraseInstFromFunction(*(Instruction*)DI);
+  }
+  // If the allocation has multiple real uses, insert a cast and change all
+  // things that used it to use the new cast.  This will also hack on CI, but it
+  // will die soon.
+  else if (!AI.hasOneUse()) {
+    // New is the allocation instruction, pointer typed. AI is the original
+    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
+    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
+    AI.replaceAllUsesWith(NewCast);
+  }
+  return ReplaceInstUsesWith(CI, New);
+}
+
+
+
+/// EvaluateInDifferentType - Given an expression that 
+/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
+/// insert the code to evaluate the expression.
+Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty, 
+                                             bool isSigned) {
+  if (Constant *C = dyn_cast<Constant>(V)) {
+    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
+    // If we got a constantexpr back, try to simplify it with TD info.
+    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+      C = ConstantFoldConstantExpression(CE, TD);
+    return C;
+  }
+
+  // Otherwise, it must be an instruction.
+  Instruction *I = cast<Instruction>(V);
+  Instruction *Res = 0;
+  unsigned Opc = I->getOpcode();
+  switch (Opc) {
+  case Instruction::Add:
+  case Instruction::Sub:
+  case Instruction::Mul:
+  case Instruction::And:
+  case Instruction::Or:
+  case Instruction::Xor:
+  case Instruction::AShr:
+  case Instruction::LShr:
+  case Instruction::Shl:
+  case Instruction::UDiv:
+  case Instruction::URem: {
+    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
+    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
+    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
+    break;
+  }    
+  case Instruction::Trunc:
+  case Instruction::ZExt:
+  case Instruction::SExt:
+    // If the source type of the cast is the type we're trying for then we can
+    // just return the source.  There's no need to insert it because it is not
+    // new.
+    if (I->getOperand(0)->getType() == Ty)
+      return I->getOperand(0);
+    
+    // Otherwise, must be the same type of cast, so just reinsert a new one.
+    // This also handles the case of zext(trunc(x)) -> zext(x).
+    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
+                                      Opc == Instruction::SExt);
+    break;
+  case Instruction::Select: {
+    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
+    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
+    Res = SelectInst::Create(I->getOperand(0), True, False);
+    break;
+  }
+  case Instruction::PHI: {
+    PHINode *OPN = cast<PHINode>(I);
+    PHINode *NPN = PHINode::Create(Ty);
+    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
+      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
+      NPN->addIncoming(V, OPN->getIncomingBlock(i));
+    }
+    Res = NPN;
+    break;
+  }
+  default: 
+    // TODO: Can handle more cases here.
+    llvm_unreachable("Unreachable!");
+    break;
+  }
+  
+  Res->takeName(I);
+  return InsertNewInstBefore(Res, *I);
+}
+
+
+/// This function is a wrapper around CastInst::isEliminableCastPair. It
+/// simply extracts arguments and returns what that function returns.
+static Instruction::CastOps 
+isEliminableCastPair(
+  const CastInst *CI, ///< The first cast instruction
+  unsigned opcode,       ///< The opcode of the second cast instruction
+  const Type *DstTy,     ///< The target type for the second cast instruction
+  TargetData *TD         ///< The target data for pointer size
+) {
+
+  const Type *SrcTy = CI->getOperand(0)->getType();   // A from above
+  const Type *MidTy = CI->getType();                  // B from above
+
+  // Get the opcodes of the two Cast instructions
+  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
+  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
+
+  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
+                                                DstTy,
+                                  TD ? TD->getIntPtrType(CI->getContext()) : 0);
+  
+  // We don't want to form an inttoptr or ptrtoint that converts to an integer
+  // type that differs from the pointer size.
+  if ((Res == Instruction::IntToPtr &&
+          (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
+      (Res == Instruction::PtrToInt &&
+          (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
+    Res = 0;
+  
+  return Instruction::CastOps(Res);
+}
+
+/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
+/// in any code being generated.  It does not require codegen if V is simple
+/// enough or if the cast can be folded into other casts.
+bool InstCombiner::ValueRequiresCast(Instruction::CastOps opcode,const Value *V,
+                                     const Type *Ty) {
+  if (V->getType() == Ty || isa<Constant>(V)) return false;
+  
+  // If this is another cast that can be eliminated, it isn't codegen either.
+  if (const CastInst *CI = dyn_cast<CastInst>(V))
+    if (isEliminableCastPair(CI, opcode, Ty, TD))
+      return false;
+  return true;
+}
+
+
+/// @brief Implement the transforms common to all CastInst visitors.
+Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
+  Value *Src = CI.getOperand(0);
+
+  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
+  // eliminate it now.
+  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
+    if (Instruction::CastOps opc = 
+        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
+      // The first cast (CSrc) is eliminable so we need to fix up or replace
+      // the second cast (CI). CSrc will then have a good chance of being dead.
+      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
+    }
+  }
+
+  // If we are casting a select then fold the cast into the select
+  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
+    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
+      return NV;
+
+  // If we are casting a PHI then fold the cast into the PHI
+  if (isa<PHINode>(Src)) {
+    // We don't do this if this would create a PHI node with an illegal type if
+    // it is currently legal.
+    if (!isa<IntegerType>(Src->getType()) ||
+        !isa<IntegerType>(CI.getType()) ||
+        ShouldChangeType(CI.getType(), Src->getType()))
+      if (Instruction *NV = FoldOpIntoPhi(CI))
+        return NV;
+  }
+  
+  return 0;
+}
+
+/// CanEvaluateTruncated - Return true if we can evaluate the specified
+/// expression tree as type Ty instead of its larger type, and arrive with the
+/// same value.  This is used by code that tries to eliminate truncates.
+///
+/// Ty will always be a type smaller than V.  We should return true if trunc(V)
+/// can be computed by computing V in the smaller type.  If V is an instruction,
+/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
+/// makes sense if x and y can be efficiently truncated.
+///
+/// This function works on both vectors and scalars.
+///
+static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
+  // We can always evaluate constants in another type.
+  if (isa<Constant>(V))
+    return true;
+  
+  Instruction *I = dyn_cast<Instruction>(V);
+  if (!I) return false;
+  
+  const Type *OrigTy = V->getType();
+  
+  // If this is an extension from the dest type, we can eliminate it, even if it
+  // has multiple uses.
+  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 
+      I->getOperand(0)->getType() == Ty)
+    return true;
+
+  // We can't extend or shrink something that has multiple uses: doing so would
+  // require duplicating the instruction in general, which isn't profitable.
+  if (!I->hasOneUse()) return false;
+
+  unsigned Opc = I->getOpcode();
+  switch (Opc) {
+  case Instruction::Add:
+  case Instruction::Sub:
+  case Instruction::Mul:
+  case Instruction::And:
+  case Instruction::Or:
+  case Instruction::Xor:
+    // These operators can all arbitrarily be extended or truncated.
+    return CanEvaluateTruncated(I->getOperand(0), Ty) &&
+           CanEvaluateTruncated(I->getOperand(1), Ty);
+
+  case Instruction::UDiv:
+  case Instruction::URem: {
+    // UDiv and URem can be truncated if all the truncated bits are zero.
+    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
+    uint32_t BitWidth = Ty->getScalarSizeInBits();
+    if (BitWidth < OrigBitWidth) {
+      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
+      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
+          MaskedValueIsZero(I->getOperand(1), Mask)) {
+        return CanEvaluateTruncated(I->getOperand(0), Ty) &&
+               CanEvaluateTruncated(I->getOperand(1), Ty);
+      }
+    }
+    break;
+  }
+  case Instruction::Shl:
+    // If we are truncating the result of this SHL, and if it's a shift of a
+    // constant amount, we can always perform a SHL in a smaller type.
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+      uint32_t BitWidth = Ty->getScalarSizeInBits();
+      if (CI->getLimitedValue(BitWidth) < BitWidth)
+        return CanEvaluateTruncated(I->getOperand(0), Ty);
+    }
+    break;
+  case Instruction::LShr:
+    // If this is a truncate of a logical shr, we can truncate it to a smaller
+    // lshr iff we know that the bits we would otherwise be shifting in are
+    // already zeros.
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
+      uint32_t BitWidth = Ty->getScalarSizeInBits();
+      if (MaskedValueIsZero(I->getOperand(0),
+            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
+          CI->getLimitedValue(BitWidth) < BitWidth) {
+        return CanEvaluateTruncated(I->getOperand(0), Ty);
+      }
+    }
+    break;
+  case Instruction::Trunc:
+    // trunc(trunc(x)) -> trunc(x)
+    return true;
+  case Instruction::Select: {
+    SelectInst *SI = cast<SelectInst>(I);
+    return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
+           CanEvaluateTruncated(SI->getFalseValue(), Ty);
+  }
+  case Instruction::PHI: {
+    // We can change a phi if we can change all operands.  Note that we never
+    // get into trouble with cyclic PHIs here because we only consider
+    // instructions with a single use.
+    PHINode *PN = cast<PHINode>(I);
+    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+      if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
+        return false;
+    return true;
+  }
+  default:
+    // TODO: Can handle more cases here.
+    break;
+  }
+  
+  return false;
+}
+
+Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
+  if (Instruction *Result = commonCastTransforms(CI))
+    return Result;
+  
+  // See if we can simplify any instructions used by the input whose sole 
+  // purpose is to compute bits we don't care about.
+  if (SimplifyDemandedInstructionBits(CI))
+    return &CI;
+  
+  Value *Src = CI.getOperand(0);
+  const Type *DestTy = CI.getType(), *SrcTy = Src->getType();
+  
+  // Attempt to truncate the entire input expression tree to the destination
+  // type.   Only do this if the dest type is a simple type, don't convert the
+  // expression tree to something weird like i93 unless the source is also
+  // strange.
+  if ((isa<VectorType>(DestTy) || ShouldChangeType(SrcTy, DestTy)) &&
+      CanEvaluateTruncated(Src, DestTy)) {
+      
+    // If this cast is a truncate, evaluting in a different type always
+    // eliminates the cast, so it is always a win.
+    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
+          " to avoid cast: " << CI);
+    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
+    assert(Res->getType() == DestTy);
+    return ReplaceInstUsesWith(CI, Res);
+  }
+
+  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
+  if (DestTy->getScalarSizeInBits() == 1) {
+    Constant *One = ConstantInt::get(Src->getType(), 1);
+    Src = Builder->CreateAnd(Src, One, "tmp");
+    Value *Zero = Constant::getNullValue(Src->getType());
+    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
+  }
+
+  return 0;
+}
+
+/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
+/// in order to eliminate the icmp.
+Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
+                                             bool DoXform) {
+  // If we are just checking for a icmp eq of a single bit and zext'ing it
+  // to an integer, then shift the bit to the appropriate place and then
+  // cast to integer to avoid the comparison.
+  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
+    const APInt &Op1CV = Op1C->getValue();
+      
+    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
+    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
+    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
+        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
+      if (!DoXform) return ICI;
+
+      Value *In = ICI->getOperand(0);
+      Value *Sh = ConstantInt::get(In->getType(),
+                                   In->getType()->getScalarSizeInBits()-1);
+      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
+      if (In->getType() != CI.getType())
+        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
+
+      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
+        Constant *One = ConstantInt::get(In->getType(), 1);
+        In = Builder->CreateXor(In, One, In->getName()+".not");
+      }
+
+      return ReplaceInstUsesWith(CI, In);
+    }
+      
+      
+      
+    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
+    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
+    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
+    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
+    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
+    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
+    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
+    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
+    if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 
+        // This only works for EQ and NE
+        ICI->isEquality()) {
+      // If Op1C some other power of two, convert:
+      uint32_t BitWidth = Op1C->getType()->getBitWidth();
+      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
+      ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
+        
+      APInt KnownZeroMask(~KnownZero);
+      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
+        if (!DoXform) return ICI;
+
+        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
+        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
+          // (X&4) == 2 --> false
+          // (X&4) != 2 --> true
+          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
+                                           isNE);
+          Res = ConstantExpr::getZExt(Res, CI.getType());
+          return ReplaceInstUsesWith(CI, Res);
+        }
+          
+        uint32_t ShiftAmt = KnownZeroMask.logBase2();
+        Value *In = ICI->getOperand(0);
+        if (ShiftAmt) {
+          // Perform a logical shr by shiftamt.
+          // Insert the shift to put the result in the low bit.
+          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
+                                   In->getName()+".lobit");
+        }
+          
+        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
+          Constant *One = ConstantInt::get(In->getType(), 1);
+          In = Builder->CreateXor(In, One, "tmp");
+        }
+          
+        if (CI.getType() == In->getType())
+          return ReplaceInstUsesWith(CI, In);
+        else
+          return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
+      }
+    }
+  }
+
+  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
+  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
+  // may lead to additional simplifications.
+  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
+    if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
+      uint32_t BitWidth = ITy->getBitWidth();
+      Value *LHS = ICI->getOperand(0);
+      Value *RHS = ICI->getOperand(1);
+
+      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
+      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
+      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
+      ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
+      ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
+
+      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
+        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
+        APInt UnknownBit = ~KnownBits;
+        if (UnknownBit.countPopulation() == 1) {
+          if (!DoXform) return ICI;
+
+          Value *Result = Builder->CreateXor(LHS, RHS);
+
+          // Mask off any bits that are set and won't be shifted away.
+          if (KnownOneLHS.uge(UnknownBit))
+            Result = Builder->CreateAnd(Result,
+                                        ConstantInt::get(ITy, UnknownBit));
+
+          // Shift the bit we're testing down to the lsb.
+          Result = Builder->CreateLShr(
+               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
+
+          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
+            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
+          Result->takeName(ICI);
+          return ReplaceInstUsesWith(CI, Result);
+        }
+      }
+    }
+  }
+
+  return 0;
+}
+
+/// CanEvaluateZExtd - Determine if the specified value can be computed in the
+/// specified wider type and produce the same low bits.  If not, return false.
+///
+/// If this function returns true, it can also return a non-zero number of bits
+/// (in BitsToClear) which indicates that the value it computes is correct for
+/// the zero extend, but that the additional BitsToClear bits need to be zero'd
+/// out.  For example, to promote something like:
+///
+///   %B = trunc i64 %A to i32
+///   %C = lshr i32 %B, 8
+///   %E = zext i32 %C to i64
+///
+/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
+/// set to 8 to indicate that the promoted value needs to have bits 24-31
+/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
+/// clear the top bits anyway, doing this has no extra cost.
+///
+/// This function works on both vectors and scalars.
+static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) {
+  BitsToClear = 0;
+  if (isa<Constant>(V))
+    return true;
+  
+  Instruction *I = dyn_cast<Instruction>(V);
+  if (!I) return false;
+  
+  // If the input is a truncate from the destination type, we can trivially
+  // eliminate it, even if it has multiple uses.
+  // FIXME: This is currently disabled until codegen can handle this without
+  // pessimizing code, PR5997.
+  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
+    return true;
+  
+  // We can't extend or shrink something that has multiple uses: doing so would
+  // require duplicating the instruction in general, which isn't profitable.
+  if (!I->hasOneUse()) return false;
+  
+  unsigned Opc = I->getOpcode(), Tmp;
+  switch (Opc) {
+  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
+  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
+  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
+    return true;
+  case Instruction::And:
+  case Instruction::Or:
+  case Instruction::Xor:
+  case Instruction::Add:
+  case Instruction::Sub:
+  case Instruction::Mul:
+  case Instruction::Shl:
+    if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
+        !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
+      return false;
+    // These can all be promoted if neither operand has 'bits to clear'.
+    if (BitsToClear == 0 && Tmp == 0)
+      return true;
+      
+    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
+    // other side, BitsToClear is ok.
+    if (Tmp == 0 &&
+        (Opc == Instruction::And || Opc == Instruction::Or ||
+         Opc == Instruction::Xor)) {
+      // We use MaskedValueIsZero here for generality, but the case we care
+      // about the most is constant RHS.
+      unsigned VSize = V->getType()->getScalarSizeInBits();
+      if (MaskedValueIsZero(I->getOperand(1),
+                            APInt::getHighBitsSet(VSize, BitsToClear)))
+        return true;
+    }
+      
+    // Otherwise, we don't know how to analyze this BitsToClear case yet.
+    return false;
+      
+  case Instruction::LShr:
+    // We can promote lshr(x, cst) if we can promote x.  This requires the
+    // ultimate 'and' to clear out the high zero bits we're clearing out though.
+    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
+      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
+        return false;
+      BitsToClear += Amt->getZExtValue();
+      if (BitsToClear > V->getType()->getScalarSizeInBits())
+        BitsToClear = V->getType()->getScalarSizeInBits();
+      return true;
+    }
+    // Cannot promote variable LSHR.
+    return false;
+  case Instruction::Select:
+    if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
+        !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
+        // TODO: If important, we could handle the case when the BitsToClear are
+        // known zero in the disagreeing side.
+        Tmp != BitsToClear)
+      return false;
+    return true;
+      
+  case Instruction::PHI: {
+    // We can change a phi if we can change all operands.  Note that we never
+    // get into trouble with cyclic PHIs here because we only consider
+    // instructions with a single use.
+    PHINode *PN = cast<PHINode>(I);
+    if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
+      return false;
+    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
+      if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
+          // TODO: If important, we could handle the case when the BitsToClear
+          // are known zero in the disagreeing input.
+          Tmp != BitsToClear)
+        return false;
+    return true;
+  }
+  default:
+    // TODO: Can handle more cases here.
+    return false;
+  }
+}
+
+Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
+  // If this zero extend is only used by a truncate, let the truncate by
+  // eliminated before we try to optimize this zext.
+  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
+    return 0;
+  
+  // If one of the common conversion will work, do it.
+  if (Instruction *Result = commonCastTransforms(CI))
+    return Result;
+
+  // See if we can simplify any instructions used by the input whose sole 
+  // purpose is to compute bits we don't care about.
+  if (SimplifyDemandedInstructionBits(CI))
+    return &CI;
+  
+  Value *Src = CI.getOperand(0);
+  const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
+  
+  // Attempt to extend the entire input expression tree to the destination
+  // type.   Only do this if the dest type is a simple type, don't convert the
+  // expression tree to something weird like i93 unless the source is also
+  // strange.
+  unsigned BitsToClear;
+  if ((isa<VectorType>(DestTy) || ShouldChangeType(SrcTy, DestTy)) &&
+      CanEvaluateZExtd(Src, DestTy, BitsToClear)) { 
+    assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
+           "Unreasonable BitsToClear");
+    
+    // Okay, we can transform this!  Insert the new expression now.
+    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
+          " to avoid zero extend: " << CI);
+    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
+    assert(Res->getType() == DestTy);
+    
+    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
+    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
+    
+    // If the high bits are already filled with zeros, just replace this
+    // cast with the result.
+    if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
+                                                     DestBitSize-SrcBitsKept)))
+      return ReplaceInstUsesWith(CI, Res);
+    
+    // We need to emit an AND to clear the high bits.
+    Constant *C = ConstantInt::get(Res->getType(),
+                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
+    return BinaryOperator::CreateAnd(Res, C);
+  }
+
+  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
+  // types and if the sizes are just right we can convert this into a logical
+  // 'and' which will be much cheaper than the pair of casts.
+  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
+    // TODO: Subsume this into EvaluateInDifferentType.
+    
+    // Get the sizes of the types involved.  We know that the intermediate type
+    // will be smaller than A or C, but don't know the relation between A and C.
+    Value *A = CSrc->getOperand(0);
+    unsigned SrcSize = A->getType()->getScalarSizeInBits();
+    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
+    unsigned DstSize = CI.getType()->getScalarSizeInBits();
+    // If we're actually extending zero bits, then if
+    // SrcSize <  DstSize: zext(a & mask)
+    // SrcSize == DstSize: a & mask
+    // SrcSize  > DstSize: trunc(a) & mask
+    if (SrcSize < DstSize) {
+      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
+      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
+      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
+      return new ZExtInst(And, CI.getType());
+    }
+    
+    if (SrcSize == DstSize) {
+      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
+      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
+                                                           AndValue));
+    }
+    if (SrcSize > DstSize) {
+      Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
+      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
+      return BinaryOperator::CreateAnd(Trunc, 
+                                       ConstantInt::get(Trunc->getType(),
+                                                        AndValue));
+    }
+  }
+
+  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
+    return transformZExtICmp(ICI, CI);
+
+  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
+  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
+    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
+    // of the (zext icmp) will be transformed.
+    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
+    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
+    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
+        (transformZExtICmp(LHS, CI, false) ||
+         transformZExtICmp(RHS, CI, false))) {
+      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
+      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
+      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
+    }
+  }
+
+  // zext(trunc(t) & C) -> (t & zext(C)).
+  if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
+    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
+      if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
+        Value *TI0 = TI->getOperand(0);
+        if (TI0->getType() == CI.getType())
+          return
+            BinaryOperator::CreateAnd(TI0,
+                                ConstantExpr::getZExt(C, CI.getType()));
+      }
+
+  // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
+  if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
+    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
+      if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
+        if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
+            And->getOperand(1) == C)
+          if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
+            Value *TI0 = TI->getOperand(0);
+            if (TI0->getType() == CI.getType()) {
+              Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
+              Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
+              return BinaryOperator::CreateXor(NewAnd, ZC);
+            }
+          }
+
+  // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
+  Value *X;
+  if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isInteger(1) &&
+      match(SrcI, m_Not(m_Value(X))) &&
+      (!X->hasOneUse() || !isa<CmpInst>(X))) {
+    Value *New = Builder->CreateZExt(X, CI.getType());
+    return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
+  }
+  
+  return 0;
+}
+
+/// CanEvaluateSExtd - Return true if we can take the specified value
+/// and return it as type Ty without inserting any new casts and without
+/// changing the value of the common low bits.  This is used by code that tries
+/// to promote integer operations to a wider types will allow us to eliminate
+/// the extension.
+///
+/// This function works on both vectors and scalars.
+///
+static bool CanEvaluateSExtd(Value *V, const Type *Ty) {
+  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
+         "Can't sign extend type to a smaller type");
+  // If this is a constant, it can be trivially promoted.
+  if (isa<Constant>(V))
+    return true;
+  
+  Instruction *I = dyn_cast<Instruction>(V);
+  if (!I) return false;
+  
+  // If this is a truncate from the dest type, we can trivially eliminate it,
+  // even if it has multiple uses.
+  // FIXME: This is currently disabled until codegen can handle this without
+  // pessimizing code, PR5997.
+  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
+    return true;
+  
+  // We can't extend or shrink something that has multiple uses: doing so would
+  // require duplicating the instruction in general, which isn't profitable.
+  if (!I->hasOneUse()) return false;
+
+  switch (I->getOpcode()) {
+  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
+  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
+  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
+    return true;
+  case Instruction::And:
+  case Instruction::Or:
+  case Instruction::Xor:
+  case Instruction::Add:
+  case Instruction::Sub:
+  case Instruction::Mul:
+    // These operators can all arbitrarily be extended if their inputs can.
+    return CanEvaluateSExtd(I->getOperand(0), Ty) &&
+           CanEvaluateSExtd(I->getOperand(1), Ty);
+      
+  //case Instruction::Shl:   TODO
+  //case Instruction::LShr:  TODO
+      
+  case Instruction::Select:
+    return CanEvaluateSExtd(I->getOperand(1), Ty) &&
+           CanEvaluateSExtd(I->getOperand(2), Ty);
+      
+  case Instruction::PHI: {
+    // We can change a phi if we can change all operands.  Note that we never
+    // get into trouble with cyclic PHIs here because we only consider
+    // instructions with a single use.
+    PHINode *PN = cast<PHINode>(I);
+    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+      if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
+    return true;
+  }
+  default:
+    // TODO: Can handle more cases here.
+    break;
+  }
+  
+  return false;
+}
+
+Instruction *InstCombiner::visitSExt(SExtInst &CI) {
+  // If this sign extend is only used by a truncate, let the truncate by
+  // eliminated before we try to optimize this zext.
+  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
+    return 0;
+  
+  if (Instruction *I = commonCastTransforms(CI))
+    return I;
+  
+  // See if we can simplify any instructions used by the input whose sole 
+  // purpose is to compute bits we don't care about.
+  if (SimplifyDemandedInstructionBits(CI))
+    return &CI;
+  
+  Value *Src = CI.getOperand(0);
+  const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
+
+  // Canonicalize sign-extend from i1 to a select.
+  if (Src->getType()->isInteger(1))
+    return SelectInst::Create(Src,
+                              Constant::getAllOnesValue(CI.getType()),
+                              Constant::getNullValue(CI.getType()));
+  
+  // Attempt to extend the entire input expression tree to the destination
+  // type.   Only do this if the dest type is a simple type, don't convert the
+  // expression tree to something weird like i93 unless the source is also
+  // strange.
+  if ((isa<VectorType>(DestTy) || ShouldChangeType(SrcTy, DestTy)) &&
+      CanEvaluateSExtd(Src, DestTy)) {
+    // Okay, we can transform this!  Insert the new expression now.
+    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
+          " to avoid sign extend: " << CI);
+    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
+    assert(Res->getType() == DestTy);
+
+    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
+    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
+
+    // If the high bits are already filled with sign bit, just replace this
+    // cast with the result.
+    if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
+      return ReplaceInstUsesWith(CI, Res);
+    
+    // We need to emit a shl + ashr to do the sign extend.
+    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
+    return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
+                                      ShAmt);
+  }
+
+  // If the input is a shl/ashr pair of a same constant, then this is a sign
+  // extension from a smaller value.  If we could trust arbitrary bitwidth
+  // integers, we could turn this into a truncate to the smaller bit and then
+  // use a sext for the whole extension.  Since we don't, look deeper and check
+  // for a truncate.  If the source and dest are the same type, eliminate the
+  // trunc and extend and just do shifts.  For example, turn:
+  //   %a = trunc i32 %i to i8
+  //   %b = shl i8 %a, 6
+  //   %c = ashr i8 %b, 6
+  //   %d = sext i8 %c to i32
+  // into:
+  //   %a = shl i32 %i, 30
+  //   %d = ashr i32 %a, 30
+  Value *A = 0;
+  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
+  ConstantInt *BA = 0, *CA = 0;
+  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
+                        m_ConstantInt(CA))) &&
+      BA == CA && A->getType() == CI.getType()) {
+    unsigned MidSize = Src->getType()->getScalarSizeInBits();
+    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
+    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
+    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
+    A = Builder->CreateShl(A, ShAmtV, CI.getName());
+    return BinaryOperator::CreateAShr(A, ShAmtV);
+  }
+  
+  return 0;
+}
+
+
+/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
+/// in the specified FP type without changing its value.
+static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
+  bool losesInfo;
+  APFloat F = CFP->getValueAPF();
+  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
+  if (!losesInfo)
+    return ConstantFP::get(CFP->getContext(), F);
+  return 0;
+}
+
+/// LookThroughFPExtensions - If this is an fp extension instruction, look
+/// through it until we get the source value.
+static Value *LookThroughFPExtensions(Value *V) {
+  if (Instruction *I = dyn_cast<Instruction>(V))
+    if (I->getOpcode() == Instruction::FPExt)
+      return LookThroughFPExtensions(I->getOperand(0));
+  
+  // If this value is a constant, return the constant in the smallest FP type
+  // that can accurately represent it.  This allows us to turn
+  // (float)((double)X+2.0) into x+2.0f.
+  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
+    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
+      return V;  // No constant folding of this.
+    // See if the value can be truncated to float and then reextended.
+    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
+      return V;
+    if (CFP->getType()->isDoubleTy())
+      return V;  // Won't shrink.
+    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
+      return V;
+    // Don't try to shrink to various long double types.
+  }
+  
+  return V;
+}
+
+Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
+  if (Instruction *I = commonCastTransforms(CI))
+    return I;
+  
+  // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
+  // smaller than the destination type, we can eliminate the truncate by doing
+  // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
+  // as many builtins (sqrt, etc).
+  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
+  if (OpI && OpI->hasOneUse()) {
+    switch (OpI->getOpcode()) {
+    default: break;
+    case Instruction::FAdd:
+    case Instruction::FSub:
+    case Instruction::FMul:
+    case Instruction::FDiv:
+    case Instruction::FRem:
+      const Type *SrcTy = OpI->getType();
+      Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
+      Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
+      if (LHSTrunc->getType() != SrcTy && 
+          RHSTrunc->getType() != SrcTy) {
+        unsigned DstSize = CI.getType()->getScalarSizeInBits();
+        // If the source types were both smaller than the destination type of
+        // the cast, do this xform.
+        if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
+            RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
+          LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
+          RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
+          return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
+        }
+      }
+      break;  
+    }
+  }
+  return 0;
+}
+
+Instruction *InstCombiner::visitFPExt(CastInst &CI) {
+  return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
+  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
+  if (OpI == 0)
+    return commonCastTransforms(FI);
+
+  // fptoui(uitofp(X)) --> X
+  // fptoui(sitofp(X)) --> X
+  // This is safe if the intermediate type has enough bits in its mantissa to
+  // accurately represent all values of X.  For example, do not do this with
+  // i64->float->i64.  This is also safe for sitofp case, because any negative
+  // 'X' value would cause an undefined result for the fptoui. 
+  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
+      OpI->getOperand(0)->getType() == FI.getType() &&
+      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
+                    OpI->getType()->getFPMantissaWidth())
+    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
+
+  return commonCastTransforms(FI);
+}
+
+Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
+  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
+  if (OpI == 0)
+    return commonCastTransforms(FI);
+  
+  // fptosi(sitofp(X)) --> X
+  // fptosi(uitofp(X)) --> X
+  // This is safe if the intermediate type has enough bits in its mantissa to
+  // accurately represent all values of X.  For example, do not do this with
+  // i64->float->i64.  This is also safe for sitofp case, because any negative
+  // 'X' value would cause an undefined result for the fptoui. 
+  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
+      OpI->getOperand(0)->getType() == FI.getType() &&
+      (int)FI.getType()->getScalarSizeInBits() <=
+                    OpI->getType()->getFPMantissaWidth())
+    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
+  
+  return commonCastTransforms(FI);
+}
+
+Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
+  return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
+  return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
+  // If the source integer type is larger than the intptr_t type for
+  // this target, do a trunc to the intptr_t type, then inttoptr of it.  This
+  // allows the trunc to be exposed to other transforms.  Don't do this for
+  // extending inttoptr's, because we don't know if the target sign or zero
+  // extends to pointers.
+  if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() >
+      TD->getPointerSizeInBits()) {
+    Value *P = Builder->CreateTrunc(CI.getOperand(0),
+                                    TD->getIntPtrType(CI.getContext()), "tmp");
+    return new IntToPtrInst(P, CI.getType());
+  }
+  
+  if (Instruction *I = commonCastTransforms(CI))
+    return I;
+
+  return 0;
+}
+
+/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
+Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
+  Value *Src = CI.getOperand(0);
+  
+  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
+    // If casting the result of a getelementptr instruction with no offset, turn
+    // this into a cast of the original pointer!
+    if (GEP->hasAllZeroIndices()) {
+      // Changing the cast operand is usually not a good idea but it is safe
+      // here because the pointer operand is being replaced with another 
+      // pointer operand so the opcode doesn't need to change.
+      Worklist.Add(GEP);
+      CI.setOperand(0, GEP->getOperand(0));
+      return &CI;
+    }
+    
+    // If the GEP has a single use, and the base pointer is a bitcast, and the
+    // GEP computes a constant offset, see if we can convert these three
+    // instructions into fewer.  This typically happens with unions and other
+    // non-type-safe code.
+    if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
+        GEP->hasAllConstantIndices()) {
+      // We are guaranteed to get a constant from EmitGEPOffset.
+      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
+      int64_t Offset = OffsetV->getSExtValue();
+      
+      // Get the base pointer input of the bitcast, and the type it points to.
+      Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
+      const Type *GEPIdxTy =
+      cast<PointerType>(OrigBase->getType())->getElementType();
+      SmallVector<Value*, 8> NewIndices;
+      if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
+        // If we were able to index down into an element, create the GEP
+        // and bitcast the result.  This eliminates one bitcast, potentially
+        // two.
+        Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
+        Builder->CreateInBoundsGEP(OrigBase,
+                                   NewIndices.begin(), NewIndices.end()) :
+        Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
+        NGEP->takeName(GEP);
+        
+        if (isa<BitCastInst>(CI))
+          return new BitCastInst(NGEP, CI.getType());
+        assert(isa<PtrToIntInst>(CI));
+        return new PtrToIntInst(NGEP, CI.getType());
+      }      
+    }
+  }
+  
+  return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
+  // If the destination integer type is smaller than the intptr_t type for
+  // this target, do a ptrtoint to intptr_t then do a trunc.  This allows the
+  // trunc to be exposed to other transforms.  Don't do this for extending
+  // ptrtoint's, because we don't know if the target sign or zero extends its
+  // pointers.
+  if (TD &&
+      CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
+    Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
+                                       TD->getIntPtrType(CI.getContext()),
+                                       "tmp");
+    return new TruncInst(P, CI.getType());
+  }
+  
+  return commonPointerCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
+  // If the operands are integer typed then apply the integer transforms,
+  // otherwise just apply the common ones.
+  Value *Src = CI.getOperand(0);
+  const Type *SrcTy = Src->getType();
+  const Type *DestTy = CI.getType();
+
+  // Get rid of casts from one type to the same type. These are useless and can
+  // be replaced by the operand.
+  if (DestTy == Src->getType())
+    return ReplaceInstUsesWith(CI, Src);
+
+  if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
+    const PointerType *SrcPTy = cast<PointerType>(SrcTy);
+    const Type *DstElTy = DstPTy->getElementType();
+    const Type *SrcElTy = SrcPTy->getElementType();
+    
+    // If the address spaces don't match, don't eliminate the bitcast, which is
+    // required for changing types.
+    if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
+      return 0;
+    
+    // If we are casting a alloca to a pointer to a type of the same
+    // size, rewrite the allocation instruction to allocate the "right" type.
+    // There is no need to modify malloc calls because it is their bitcast that
+    // needs to be cleaned up.
+    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
+      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
+        return V;
+    
+    // If the source and destination are pointers, and this cast is equivalent
+    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
+    // This can enhance SROA and other transforms that want type-safe pointers.
+    Constant *ZeroUInt =
+      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
+    unsigned NumZeros = 0;
+    while (SrcElTy != DstElTy && 
+           isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
+           SrcElTy->getNumContainedTypes() /* not "{}" */) {
+      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
+      ++NumZeros;
+    }
+
+    // If we found a path from the src to dest, create the getelementptr now.
+    if (SrcElTy == DstElTy) {
+      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
+      return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
+                                               ((Instruction*)NULL));
+    }
+  }
+
+  if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
+    if (DestVTy->getNumElements() == 1 && !isa<VectorType>(SrcTy)) {
+      Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
+      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
+                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
+      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
+    }
+  }
+
+  if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
+    if (SrcVTy->getNumElements() == 1 && !isa<VectorType>(DestTy)) {
+      Value *Elem = 
+        Builder->CreateExtractElement(Src,
+                   Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
+      return CastInst::Create(Instruction::BitCast, Elem, DestTy);
+    }
+  }
+
+  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
+    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
+    // a bitconvert to a vector with the same # elts.
+    if (SVI->hasOneUse() && isa<VectorType>(DestTy) && 
+        cast<VectorType>(DestTy)->getNumElements() ==
+              SVI->getType()->getNumElements() &&
+        SVI->getType()->getNumElements() ==
+          cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
+      BitCastInst *Tmp;
+      // If either of the operands is a cast from CI.getType(), then
+      // evaluating the shuffle in the casted destination's type will allow
+      // us to eliminate at least one cast.
+      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 
+           Tmp->getOperand(0)->getType() == DestTy) ||
+          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 
+           Tmp->getOperand(0)->getType() == DestTy)) {
+        Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
+        Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
+        // Return a new shuffle vector.  Use the same element ID's, as we
+        // know the vector types match #elts.
+        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
+      }
+    }
+  }
+  
+  if (isa<PointerType>(SrcTy))
+    return commonPointerCastTransforms(CI);
+  return commonCastTransforms(CI);
+}
diff --git a/lib/Transforms/InstCombine/InstCombineCompares.cpp b/lib/Transforms/InstCombine/InstCombineCompares.cpp
new file mode 100644
index 0000000..e59406c6
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -0,0 +1,2475 @@
+//===- InstCombineCompares.cpp --------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitICmp and visitFCmp functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/ConstantRange.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+/// AddOne - Add one to a ConstantInt
+static Constant *AddOne(Constant *C) {
+  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
+}
+/// SubOne - Subtract one from a ConstantInt
+static Constant *SubOne(ConstantInt *C) {
+  return ConstantExpr::getSub(C,  ConstantInt::get(C->getType(), 1));
+}
+
+static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
+  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
+}
+
+static bool HasAddOverflow(ConstantInt *Result,
+                           ConstantInt *In1, ConstantInt *In2,
+                           bool IsSigned) {
+  if (IsSigned)
+    if (In2->getValue().isNegative())
+      return Result->getValue().sgt(In1->getValue());
+    else
+      return Result->getValue().slt(In1->getValue());
+  else
+    return Result->getValue().ult(In1->getValue());
+}
+
+/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
+/// overflowed for this type.
+static bool AddWithOverflow(Constant *&Result, Constant *In1,
+                            Constant *In2, bool IsSigned = false) {
+  Result = ConstantExpr::getAdd(In1, In2);
+
+  if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
+    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
+      if (HasAddOverflow(ExtractElement(Result, Idx),
+                         ExtractElement(In1, Idx),
+                         ExtractElement(In2, Idx),
+                         IsSigned))
+        return true;
+    }
+    return false;
+  }
+
+  return HasAddOverflow(cast<ConstantInt>(Result),
+                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
+                        IsSigned);
+}
+
+static bool HasSubOverflow(ConstantInt *Result,
+                           ConstantInt *In1, ConstantInt *In2,
+                           bool IsSigned) {
+  if (IsSigned)
+    if (In2->getValue().isNegative())
+      return Result->getValue().slt(In1->getValue());
+    else
+      return Result->getValue().sgt(In1->getValue());
+  else
+    return Result->getValue().ugt(In1->getValue());
+}
+
+/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
+/// overflowed for this type.
+static bool SubWithOverflow(Constant *&Result, Constant *In1,
+                            Constant *In2, bool IsSigned = false) {
+  Result = ConstantExpr::getSub(In1, In2);
+
+  if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
+    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
+      if (HasSubOverflow(ExtractElement(Result, Idx),
+                         ExtractElement(In1, Idx),
+                         ExtractElement(In2, Idx),
+                         IsSigned))
+        return true;
+    }
+    return false;
+  }
+
+  return HasSubOverflow(cast<ConstantInt>(Result),
+                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
+                        IsSigned);
+}
+
+/// isSignBitCheck - Given an exploded icmp instruction, return true if the
+/// comparison only checks the sign bit.  If it only checks the sign bit, set
+/// TrueIfSigned if the result of the comparison is true when the input value is
+/// signed.
+static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
+                           bool &TrueIfSigned) {
+  switch (pred) {
+  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
+    TrueIfSigned = true;
+    return RHS->isZero();
+  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
+    TrueIfSigned = true;
+    return RHS->isAllOnesValue();
+  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
+    TrueIfSigned = false;
+    return RHS->isAllOnesValue();
+  case ICmpInst::ICMP_UGT:
+    // True if LHS u> RHS and RHS == high-bit-mask - 1
+    TrueIfSigned = true;
+    return RHS->getValue() ==
+      APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
+  case ICmpInst::ICMP_UGE: 
+    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
+    TrueIfSigned = true;
+    return RHS->getValue().isSignBit();
+  default:
+    return false;
+  }
+}
+
+// isHighOnes - Return true if the constant is of the form 1+0+.
+// This is the same as lowones(~X).
+static bool isHighOnes(const ConstantInt *CI) {
+  return (~CI->getValue() + 1).isPowerOf2();
+}
+
+/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a 
+/// set of known zero and one bits, compute the maximum and minimum values that
+/// could have the specified known zero and known one bits, returning them in
+/// min/max.
+static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
+                                                   const APInt& KnownOne,
+                                                   APInt& Min, APInt& Max) {
+  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
+         KnownZero.getBitWidth() == Min.getBitWidth() &&
+         KnownZero.getBitWidth() == Max.getBitWidth() &&
+         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
+  APInt UnknownBits = ~(KnownZero|KnownOne);
+
+  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
+  // bit if it is unknown.
+  Min = KnownOne;
+  Max = KnownOne|UnknownBits;
+  
+  if (UnknownBits.isNegative()) { // Sign bit is unknown
+    Min.set(Min.getBitWidth()-1);
+    Max.clear(Max.getBitWidth()-1);
+  }
+}
+
+// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
+// a set of known zero and one bits, compute the maximum and minimum values that
+// could have the specified known zero and known one bits, returning them in
+// min/max.
+static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
+                                                     const APInt &KnownOne,
+                                                     APInt &Min, APInt &Max) {
+  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
+         KnownZero.getBitWidth() == Min.getBitWidth() &&
+         KnownZero.getBitWidth() == Max.getBitWidth() &&
+         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
+  APInt UnknownBits = ~(KnownZero|KnownOne);
+  
+  // The minimum value is when the unknown bits are all zeros.
+  Min = KnownOne;
+  // The maximum value is when the unknown bits are all ones.
+  Max = KnownOne|UnknownBits;
+}
+
+
+
+/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
+///   cmp pred (load (gep GV, ...)), cmpcst
+/// where GV is a global variable with a constant initializer.  Try to simplify
+/// this into some simple computation that does not need the load.  For example
+/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
+///
+/// If AndCst is non-null, then the loaded value is masked with that constant
+/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
+Instruction *InstCombiner::
+FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
+                             CmpInst &ICI, ConstantInt *AndCst) {
+  // We need TD information to know the pointer size unless this is inbounds.
+  if (!GEP->isInBounds() && TD == 0) return 0;
+  
+  ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
+  if (Init == 0 || Init->getNumOperands() > 1024) return 0;
+  
+  // There are many forms of this optimization we can handle, for now, just do
+  // the simple index into a single-dimensional array.
+  //
+  // Require: GEP GV, 0, i {{, constant indices}}
+  if (GEP->getNumOperands() < 3 ||
+      !isa<ConstantInt>(GEP->getOperand(1)) ||
+      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
+      isa<Constant>(GEP->getOperand(2)))
+    return 0;
+
+  // Check that indices after the variable are constants and in-range for the
+  // type they index.  Collect the indices.  This is typically for arrays of
+  // structs.
+  SmallVector<unsigned, 4> LaterIndices;
+  
+  const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
+  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
+    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
+    if (Idx == 0) return 0;  // Variable index.
+    
+    uint64_t IdxVal = Idx->getZExtValue();
+    if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
+    
+    if (const StructType *STy = dyn_cast<StructType>(EltTy))
+      EltTy = STy->getElementType(IdxVal);
+    else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
+      if (IdxVal >= ATy->getNumElements()) return 0;
+      EltTy = ATy->getElementType();
+    } else {
+      return 0; // Unknown type.
+    }
+    
+    LaterIndices.push_back(IdxVal);
+  }
+  
+  enum { Overdefined = -3, Undefined = -2 };
+
+  // Variables for our state machines.
+  
+  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
+  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
+  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
+  // undefined, otherwise set to the first true element.  SecondTrueElement is
+  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
+  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
+
+  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
+  // form "i != 47 & i != 87".  Same state transitions as for true elements.
+  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
+  
+  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
+  /// define a state machine that triggers for ranges of values that the index
+  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
+  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
+  /// index in the range (inclusive).  We use -2 for undefined here because we
+  /// use relative comparisons and don't want 0-1 to match -1.
+  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
+  
+  // MagicBitvector - This is a magic bitvector where we set a bit if the
+  // comparison is true for element 'i'.  If there are 64 elements or less in
+  // the array, this will fully represent all the comparison results.
+  uint64_t MagicBitvector = 0;
+  
+  
+  // Scan the array and see if one of our patterns matches.
+  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
+  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
+    Constant *Elt = Init->getOperand(i);
+    
+    // If this is indexing an array of structures, get the structure element.
+    if (!LaterIndices.empty())
+      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices.data(),
+                                          LaterIndices.size());
+    
+    // If the element is masked, handle it.
+    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
+    
+    // Find out if the comparison would be true or false for the i'th element.
+    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
+                                                  CompareRHS, TD);
+    // If the result is undef for this element, ignore it.
+    if (isa<UndefValue>(C)) {
+      // Extend range state machines to cover this element in case there is an
+      // undef in the middle of the range.
+      if (TrueRangeEnd == (int)i-1)
+        TrueRangeEnd = i;
+      if (FalseRangeEnd == (int)i-1)
+        FalseRangeEnd = i;
+      continue;
+    }
+    
+    // If we can't compute the result for any of the elements, we have to give
+    // up evaluating the entire conditional.
+    if (!isa<ConstantInt>(C)) return 0;
+    
+    // Otherwise, we know if the comparison is true or false for this element,
+    // update our state machines.
+    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
+    
+    // State machine for single/double/range index comparison.
+    if (IsTrueForElt) {
+      // Update the TrueElement state machine.
+      if (FirstTrueElement == Undefined)
+        FirstTrueElement = TrueRangeEnd = i;  // First true element.
+      else {
+        // Update double-compare state machine.
+        if (SecondTrueElement == Undefined)
+          SecondTrueElement = i;
+        else
+          SecondTrueElement = Overdefined;
+        
+        // Update range state machine.
+        if (TrueRangeEnd == (int)i-1)
+          TrueRangeEnd = i;
+        else
+          TrueRangeEnd = Overdefined;
+      }
+    } else {
+      // Update the FalseElement state machine.
+      if (FirstFalseElement == Undefined)
+        FirstFalseElement = FalseRangeEnd = i; // First false element.
+      else {
+        // Update double-compare state machine.
+        if (SecondFalseElement == Undefined)
+          SecondFalseElement = i;
+        else
+          SecondFalseElement = Overdefined;
+        
+        // Update range state machine.
+        if (FalseRangeEnd == (int)i-1)
+          FalseRangeEnd = i;
+        else
+          FalseRangeEnd = Overdefined;
+      }
+    }
+    
+    
+    // If this element is in range, update our magic bitvector.
+    if (i < 64 && IsTrueForElt)
+      MagicBitvector |= 1ULL << i;
+    
+    // If all of our states become overdefined, bail out early.  Since the
+    // predicate is expensive, only check it every 8 elements.  This is only
+    // really useful for really huge arrays.
+    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
+        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
+        FalseRangeEnd == Overdefined)
+      return 0;
+  }
+
+  // Now that we've scanned the entire array, emit our new comparison(s).  We
+  // order the state machines in complexity of the generated code.
+  Value *Idx = GEP->getOperand(2);
+
+  // If the index is larger than the pointer size of the target, truncate the
+  // index down like the GEP would do implicitly.  We don't have to do this for
+  // an inbounds GEP because the index can't be out of range.
+  if (!GEP->isInBounds() &&
+      Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
+    Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
+  
+  // If the comparison is only true for one or two elements, emit direct
+  // comparisons.
+  if (SecondTrueElement != Overdefined) {
+    // None true -> false.
+    if (FirstTrueElement == Undefined)
+      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
+    
+    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
+    
+    // True for one element -> 'i == 47'.
+    if (SecondTrueElement == Undefined)
+      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
+    
+    // True for two elements -> 'i == 47 | i == 72'.
+    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
+    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
+    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
+    return BinaryOperator::CreateOr(C1, C2);
+  }
+
+  // If the comparison is only false for one or two elements, emit direct
+  // comparisons.
+  if (SecondFalseElement != Overdefined) {
+    // None false -> true.
+    if (FirstFalseElement == Undefined)
+      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
+    
+    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
+
+    // False for one element -> 'i != 47'.
+    if (SecondFalseElement == Undefined)
+      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
+     
+    // False for two elements -> 'i != 47 & i != 72'.
+    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
+    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
+    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
+    return BinaryOperator::CreateAnd(C1, C2);
+  }
+  
+  // If the comparison can be replaced with a range comparison for the elements
+  // where it is true, emit the range check.
+  if (TrueRangeEnd != Overdefined) {
+    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
+    
+    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
+    if (FirstTrueElement) {
+      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
+      Idx = Builder->CreateAdd(Idx, Offs);
+    }
+    
+    Value *End = ConstantInt::get(Idx->getType(),
+                                  TrueRangeEnd-FirstTrueElement+1);
+    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
+  }
+  
+  // False range check.
+  if (FalseRangeEnd != Overdefined) {
+    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
+    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
+    if (FirstFalseElement) {
+      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
+      Idx = Builder->CreateAdd(Idx, Offs);
+    }
+    
+    Value *End = ConstantInt::get(Idx->getType(),
+                                  FalseRangeEnd-FirstFalseElement);
+    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
+  }
+  
+  
+  // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
+  // of this load, replace it with computation that does:
+  //   ((magic_cst >> i) & 1) != 0
+  if (Init->getNumOperands() <= 32 ||
+      (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
+    const Type *Ty;
+    if (Init->getNumOperands() <= 32)
+      Ty = Type::getInt32Ty(Init->getContext());
+    else
+      Ty = Type::getInt64Ty(Init->getContext());
+    Value *V = Builder->CreateIntCast(Idx, Ty, false);
+    V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
+    V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
+    return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
+  }
+  
+  return 0;
+}
+
+
+/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
+/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
+/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
+/// be complex, and scales are involved.  The above expression would also be
+/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
+/// This later form is less amenable to optimization though, and we are allowed
+/// to generate the first by knowing that pointer arithmetic doesn't overflow.
+///
+/// If we can't emit an optimized form for this expression, this returns null.
+/// 
+static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
+                                          InstCombiner &IC) {
+  TargetData &TD = *IC.getTargetData();
+  gep_type_iterator GTI = gep_type_begin(GEP);
+  
+  // Check to see if this gep only has a single variable index.  If so, and if
+  // any constant indices are a multiple of its scale, then we can compute this
+  // in terms of the scale of the variable index.  For example, if the GEP
+  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
+  // because the expression will cross zero at the same point.
+  unsigned i, e = GEP->getNumOperands();
+  int64_t Offset = 0;
+  for (i = 1; i != e; ++i, ++GTI) {
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
+      // Compute the aggregate offset of constant indices.
+      if (CI->isZero()) continue;
+      
+      // Handle a struct index, which adds its field offset to the pointer.
+      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+        Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
+      } else {
+        uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
+        Offset += Size*CI->getSExtValue();
+      }
+    } else {
+      // Found our variable index.
+      break;
+    }
+  }
+  
+  // If there are no variable indices, we must have a constant offset, just
+  // evaluate it the general way.
+  if (i == e) return 0;
+  
+  Value *VariableIdx = GEP->getOperand(i);
+  // Determine the scale factor of the variable element.  For example, this is
+  // 4 if the variable index is into an array of i32.
+  uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
+  
+  // Verify that there are no other variable indices.  If so, emit the hard way.
+  for (++i, ++GTI; i != e; ++i, ++GTI) {
+    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
+    if (!CI) return 0;
+    
+    // Compute the aggregate offset of constant indices.
+    if (CI->isZero()) continue;
+    
+    // Handle a struct index, which adds its field offset to the pointer.
+    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+      Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
+    } else {
+      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
+      Offset += Size*CI->getSExtValue();
+    }
+  }
+  
+  // Okay, we know we have a single variable index, which must be a
+  // pointer/array/vector index.  If there is no offset, life is simple, return
+  // the index.
+  unsigned IntPtrWidth = TD.getPointerSizeInBits();
+  if (Offset == 0) {
+    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
+    // we don't need to bother extending: the extension won't affect where the
+    // computation crosses zero.
+    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
+      VariableIdx = new TruncInst(VariableIdx, 
+                                  TD.getIntPtrType(VariableIdx->getContext()),
+                                  VariableIdx->getName(), &I);
+    return VariableIdx;
+  }
+  
+  // Otherwise, there is an index.  The computation we will do will be modulo
+  // the pointer size, so get it.
+  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
+  
+  Offset &= PtrSizeMask;
+  VariableScale &= PtrSizeMask;
+  
+  // To do this transformation, any constant index must be a multiple of the
+  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
+  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
+  // multiple of the variable scale.
+  int64_t NewOffs = Offset / (int64_t)VariableScale;
+  if (Offset != NewOffs*(int64_t)VariableScale)
+    return 0;
+  
+  // Okay, we can do this evaluation.  Start by converting the index to intptr.
+  const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
+  if (VariableIdx->getType() != IntPtrTy)
+    VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
+                                              true /*SExt*/, 
+                                              VariableIdx->getName(), &I);
+  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
+  return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
+}
+
+/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
+/// else.  At this point we know that the GEP is on the LHS of the comparison.
+Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
+                                       ICmpInst::Predicate Cond,
+                                       Instruction &I) {
+  // Look through bitcasts.
+  if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
+    RHS = BCI->getOperand(0);
+
+  Value *PtrBase = GEPLHS->getOperand(0);
+  if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
+    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
+    // This transformation (ignoring the base and scales) is valid because we
+    // know pointers can't overflow since the gep is inbounds.  See if we can
+    // output an optimized form.
+    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
+    
+    // If not, synthesize the offset the hard way.
+    if (Offset == 0)
+      Offset = EmitGEPOffset(GEPLHS);
+    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
+                        Constant::getNullValue(Offset->getType()));
+  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
+    // If the base pointers are different, but the indices are the same, just
+    // compare the base pointer.
+    if (PtrBase != GEPRHS->getOperand(0)) {
+      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
+      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
+                        GEPRHS->getOperand(0)->getType();
+      if (IndicesTheSame)
+        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
+          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
+            IndicesTheSame = false;
+            break;
+          }
+
+      // If all indices are the same, just compare the base pointers.
+      if (IndicesTheSame)
+        return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
+                            GEPLHS->getOperand(0), GEPRHS->getOperand(0));
+
+      // Otherwise, the base pointers are different and the indices are
+      // different, bail out.
+      return 0;
+    }
+
+    // If one of the GEPs has all zero indices, recurse.
+    bool AllZeros = true;
+    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
+      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
+          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
+        AllZeros = false;
+        break;
+      }
+    if (AllZeros)
+      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
+                          ICmpInst::getSwappedPredicate(Cond), I);
+
+    // If the other GEP has all zero indices, recurse.
+    AllZeros = true;
+    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
+      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
+          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
+        AllZeros = false;
+        break;
+      }
+    if (AllZeros)
+      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
+
+    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
+      // If the GEPs only differ by one index, compare it.
+      unsigned NumDifferences = 0;  // Keep track of # differences.
+      unsigned DiffOperand = 0;     // The operand that differs.
+      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
+        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
+          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
+                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
+            // Irreconcilable differences.
+            NumDifferences = 2;
+            break;
+          } else {
+            if (NumDifferences++) break;
+            DiffOperand = i;
+          }
+        }
+
+      if (NumDifferences == 0)   // SAME GEP?
+        return ReplaceInstUsesWith(I, // No comparison is needed here.
+                               ConstantInt::get(Type::getInt1Ty(I.getContext()),
+                                             ICmpInst::isTrueWhenEqual(Cond)));
+
+      else if (NumDifferences == 1) {
+        Value *LHSV = GEPLHS->getOperand(DiffOperand);
+        Value *RHSV = GEPRHS->getOperand(DiffOperand);
+        // Make sure we do a signed comparison here.
+        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
+      }
+    }
+
+    // Only lower this if the icmp is the only user of the GEP or if we expect
+    // the result to fold to a constant!
+    if (TD &&
+        (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
+        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
+      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
+      Value *L = EmitGEPOffset(GEPLHS);
+      Value *R = EmitGEPOffset(GEPRHS);
+      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
+    }
+  }
+  return 0;
+}
+
+/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
+Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
+                                            Value *X, ConstantInt *CI,
+                                            ICmpInst::Predicate Pred,
+                                            Value *TheAdd) {
+  // If we have X+0, exit early (simplifying logic below) and let it get folded
+  // elsewhere.   icmp X+0, X  -> icmp X, X
+  if (CI->isZero()) {
+    bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
+    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
+  }
+  
+  // (X+4) == X -> false.
+  if (Pred == ICmpInst::ICMP_EQ)
+    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
+
+  // (X+4) != X -> true.
+  if (Pred == ICmpInst::ICMP_NE)
+    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
+
+  // If this is an instruction (as opposed to constantexpr) get NUW/NSW info.
+  bool isNUW = false, isNSW = false;
+  if (BinaryOperator *Add = dyn_cast<BinaryOperator>(TheAdd)) {
+    isNUW = Add->hasNoUnsignedWrap();
+    isNSW = Add->hasNoSignedWrap();
+  }      
+  
+  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
+  // so the values can never be equal.  Similiarly for all other "or equals"
+  // operators.
+  
+  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
+  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
+  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
+  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
+    // If this is an NUW add, then this is always false.
+    if (isNUW)
+      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext())); 
+    
+    Value *R = 
+      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
+    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
+  }
+  
+  // (X+1) >u X        --> X <u (0-1)        --> X != 255
+  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
+  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
+  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
+    // If this is an NUW add, then this is always true.
+    if (isNUW)
+      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext())); 
+    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
+  }
+  
+  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
+  ConstantInt *SMax = ConstantInt::get(X->getContext(),
+                                       APInt::getSignedMaxValue(BitWidth));
+
+  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
+  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
+  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
+  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
+  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
+  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
+  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
+    // If this is an NSW add, then we have two cases: if the constant is
+    // positive, then this is always false, if negative, this is always true.
+    if (isNSW) {
+      bool isTrue = CI->getValue().isNegative();
+      return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
+    }
+    
+    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
+  }
+  
+  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
+  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
+  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
+  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
+  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
+  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
+  
+  // If this is an NSW add, then we have two cases: if the constant is
+  // positive, then this is always true, if negative, this is always false.
+  if (isNSW) {
+    bool isTrue = !CI->getValue().isNegative();
+    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
+  }
+  
+  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
+  Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
+  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
+}
+
+/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
+/// and CmpRHS are both known to be integer constants.
+Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
+                                          ConstantInt *DivRHS) {
+  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
+  const APInt &CmpRHSV = CmpRHS->getValue();
+  
+  // FIXME: If the operand types don't match the type of the divide 
+  // then don't attempt this transform. The code below doesn't have the
+  // logic to deal with a signed divide and an unsigned compare (and
+  // vice versa). This is because (x /s C1) <s C2  produces different 
+  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
+  // (x /u C1) <u C2.  Simply casting the operands and result won't 
+  // work. :(  The if statement below tests that condition and bails 
+  // if it finds it. 
+  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
+  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
+    return 0;
+  if (DivRHS->isZero())
+    return 0; // The ProdOV computation fails on divide by zero.
+  if (DivIsSigned && DivRHS->isAllOnesValue())
+    return 0; // The overflow computation also screws up here
+  if (DivRHS->isOne())
+    return 0; // Not worth bothering, and eliminates some funny cases
+              // with INT_MIN.
+
+  // Compute Prod = CI * DivRHS. We are essentially solving an equation
+  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and 
+  // C2 (CI). By solving for X we can turn this into a range check 
+  // instead of computing a divide. 
+  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
+
+  // Determine if the product overflows by seeing if the product is
+  // not equal to the divide. Make sure we do the same kind of divide
+  // as in the LHS instruction that we're folding. 
+  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
+                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
+
+  // Get the ICmp opcode
+  ICmpInst::Predicate Pred = ICI.getPredicate();
+
+  // Figure out the interval that is being checked.  For example, a comparison
+  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 
+  // Compute this interval based on the constants involved and the signedness of
+  // the compare/divide.  This computes a half-open interval, keeping track of
+  // whether either value in the interval overflows.  After analysis each
+  // overflow variable is set to 0 if it's corresponding bound variable is valid
+  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
+  int LoOverflow = 0, HiOverflow = 0;
+  Constant *LoBound = 0, *HiBound = 0;
+  
+  if (!DivIsSigned) {  // udiv
+    // e.g. X/5 op 3  --> [15, 20)
+    LoBound = Prod;
+    HiOverflow = LoOverflow = ProdOV;
+    if (!HiOverflow)
+      HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
+  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
+    if (CmpRHSV == 0) {       // (X / pos) op 0
+      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
+      LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
+      HiBound = DivRHS;
+    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
+      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
+      HiOverflow = LoOverflow = ProdOV;
+      if (!HiOverflow)
+        HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
+    } else {                       // (X / pos) op neg
+      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
+      HiBound = AddOne(Prod);
+      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
+      if (!LoOverflow) {
+        ConstantInt* DivNeg =
+                         cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
+        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
+       }
+    }
+  } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
+    if (CmpRHSV == 0) {       // (X / neg) op 0
+      // e.g. X/-5 op 0  --> [-4, 5)
+      LoBound = AddOne(DivRHS);
+      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
+      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
+        HiOverflow = 1;            // [INTMIN+1, overflow)
+        HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
+      }
+    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
+      // e.g. X/-5 op 3  --> [-19, -14)
+      HiBound = AddOne(Prod);
+      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
+      if (!LoOverflow)
+        LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
+    } else {                       // (X / neg) op neg
+      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
+      LoOverflow = HiOverflow = ProdOV;
+      if (!HiOverflow)
+        HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
+    }
+    
+    // Dividing by a negative swaps the condition.  LT <-> GT
+    Pred = ICmpInst::getSwappedPredicate(Pred);
+  }
+
+  Value *X = DivI->getOperand(0);
+  switch (Pred) {
+  default: llvm_unreachable("Unhandled icmp opcode!");
+  case ICmpInst::ICMP_EQ:
+    if (LoOverflow && HiOverflow)
+      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
+    else if (HiOverflow)
+      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
+                          ICmpInst::ICMP_UGE, X, LoBound);
+    else if (LoOverflow)
+      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
+                          ICmpInst::ICMP_ULT, X, HiBound);
+    else
+      return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
+  case ICmpInst::ICMP_NE:
+    if (LoOverflow && HiOverflow)
+      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
+    else if (HiOverflow)
+      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
+                          ICmpInst::ICMP_ULT, X, LoBound);
+    else if (LoOverflow)
+      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
+                          ICmpInst::ICMP_UGE, X, HiBound);
+    else
+      return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
+  case ICmpInst::ICMP_ULT:
+  case ICmpInst::ICMP_SLT:
+    if (LoOverflow == +1)   // Low bound is greater than input range.
+      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
+    if (LoOverflow == -1)   // Low bound is less than input range.
+      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
+    return new ICmpInst(Pred, X, LoBound);
+  case ICmpInst::ICMP_UGT:
+  case ICmpInst::ICMP_SGT:
+    if (HiOverflow == +1)       // High bound greater than input range.
+      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
+    else if (HiOverflow == -1)  // High bound less than input range.
+      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
+    if (Pred == ICmpInst::ICMP_UGT)
+      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
+    else
+      return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
+  }
+}
+
+
+/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
+///
+Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
+                                                          Instruction *LHSI,
+                                                          ConstantInt *RHS) {
+  const APInt &RHSV = RHS->getValue();
+  
+  switch (LHSI->getOpcode()) {
+  case Instruction::Trunc:
+    if (ICI.isEquality() && LHSI->hasOneUse()) {
+      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
+      // of the high bits truncated out of x are known.
+      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
+             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
+      APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
+      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
+      ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
+      
+      // If all the high bits are known, we can do this xform.
+      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
+        // Pull in the high bits from known-ones set.
+        APInt NewRHS(RHS->getValue());
+        NewRHS.zext(SrcBits);
+        NewRHS |= KnownOne;
+        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
+                            ConstantInt::get(ICI.getContext(), NewRHS));
+      }
+    }
+    break;
+      
+  case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
+    if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
+      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
+      // fold the xor.
+      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
+          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
+        Value *CompareVal = LHSI->getOperand(0);
+        
+        // If the sign bit of the XorCST is not set, there is no change to
+        // the operation, just stop using the Xor.
+        if (!XorCST->getValue().isNegative()) {
+          ICI.setOperand(0, CompareVal);
+          Worklist.Add(LHSI);
+          return &ICI;
+        }
+        
+        // Was the old condition true if the operand is positive?
+        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
+        
+        // If so, the new one isn't.
+        isTrueIfPositive ^= true;
+        
+        if (isTrueIfPositive)
+          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
+                              SubOne(RHS));
+        else
+          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
+                              AddOne(RHS));
+      }
+
+      if (LHSI->hasOneUse()) {
+        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
+        if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
+          const APInt &SignBit = XorCST->getValue();
+          ICmpInst::Predicate Pred = ICI.isSigned()
+                                         ? ICI.getUnsignedPredicate()
+                                         : ICI.getSignedPredicate();
+          return new ICmpInst(Pred, LHSI->getOperand(0),
+                              ConstantInt::get(ICI.getContext(),
+                                               RHSV ^ SignBit));
+        }
+
+        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
+        if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
+          const APInt &NotSignBit = XorCST->getValue();
+          ICmpInst::Predicate Pred = ICI.isSigned()
+                                         ? ICI.getUnsignedPredicate()
+                                         : ICI.getSignedPredicate();
+          Pred = ICI.getSwappedPredicate(Pred);
+          return new ICmpInst(Pred, LHSI->getOperand(0),
+                              ConstantInt::get(ICI.getContext(),
+                                               RHSV ^ NotSignBit));
+        }
+      }
+    }
+    break;
+  case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
+    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
+        LHSI->getOperand(0)->hasOneUse()) {
+      ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
+      
+      // If the LHS is an AND of a truncating cast, we can widen the
+      // and/compare to be the input width without changing the value
+      // produced, eliminating a cast.
+      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
+        // We can do this transformation if either the AND constant does not
+        // have its sign bit set or if it is an equality comparison. 
+        // Extending a relational comparison when we're checking the sign
+        // bit would not work.
+        if (Cast->hasOneUse() &&
+            (ICI.isEquality() ||
+             (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
+          uint32_t BitWidth = 
+            cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
+          APInt NewCST = AndCST->getValue();
+          NewCST.zext(BitWidth);
+          APInt NewCI = RHSV;
+          NewCI.zext(BitWidth);
+          Value *NewAnd = 
+            Builder->CreateAnd(Cast->getOperand(0),
+                           ConstantInt::get(ICI.getContext(), NewCST),
+                               LHSI->getName());
+          return new ICmpInst(ICI.getPredicate(), NewAnd,
+                              ConstantInt::get(ICI.getContext(), NewCI));
+        }
+      }
+      
+      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
+      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
+      // happens a LOT in code produced by the C front-end, for bitfield
+      // access.
+      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
+      if (Shift && !Shift->isShift())
+        Shift = 0;
+      
+      ConstantInt *ShAmt;
+      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
+      const Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
+      const Type *AndTy = AndCST->getType();          // Type of the and.
+      
+      // We can fold this as long as we can't shift unknown bits
+      // into the mask.  This can only happen with signed shift
+      // rights, as they sign-extend.
+      if (ShAmt) {
+        bool CanFold = Shift->isLogicalShift();
+        if (!CanFold) {
+          // To test for the bad case of the signed shr, see if any
+          // of the bits shifted in could be tested after the mask.
+          uint32_t TyBits = Ty->getPrimitiveSizeInBits();
+          int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
+          
+          uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
+          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) & 
+               AndCST->getValue()) == 0)
+            CanFold = true;
+        }
+        
+        if (CanFold) {
+          Constant *NewCst;
+          if (Shift->getOpcode() == Instruction::Shl)
+            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
+          else
+            NewCst = ConstantExpr::getShl(RHS, ShAmt);
+          
+          // Check to see if we are shifting out any of the bits being
+          // compared.
+          if (ConstantExpr::get(Shift->getOpcode(),
+                                       NewCst, ShAmt) != RHS) {
+            // If we shifted bits out, the fold is not going to work out.
+            // As a special case, check to see if this means that the
+            // result is always true or false now.
+            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
+              return ReplaceInstUsesWith(ICI,
+                                       ConstantInt::getFalse(ICI.getContext()));
+            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
+              return ReplaceInstUsesWith(ICI,
+                                       ConstantInt::getTrue(ICI.getContext()));
+          } else {
+            ICI.setOperand(1, NewCst);
+            Constant *NewAndCST;
+            if (Shift->getOpcode() == Instruction::Shl)
+              NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
+            else
+              NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
+            LHSI->setOperand(1, NewAndCST);
+            LHSI->setOperand(0, Shift->getOperand(0));
+            Worklist.Add(Shift); // Shift is dead.
+            return &ICI;
+          }
+        }
+      }
+      
+      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
+      // preferable because it allows the C<<Y expression to be hoisted out
+      // of a loop if Y is invariant and X is not.
+      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
+          ICI.isEquality() && !Shift->isArithmeticShift() &&
+          !isa<Constant>(Shift->getOperand(0))) {
+        // Compute C << Y.
+        Value *NS;
+        if (Shift->getOpcode() == Instruction::LShr) {
+          NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
+        } else {
+          // Insert a logical shift.
+          NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
+        }
+        
+        // Compute X & (C << Y).
+        Value *NewAnd = 
+          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
+        
+        ICI.setOperand(0, NewAnd);
+        return &ICI;
+      }
+    }
+      
+    // Try to optimize things like "A[i]&42 == 0" to index computations.
+    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
+      if (GetElementPtrInst *GEP =
+          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
+        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
+          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
+              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
+            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
+            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
+              return Res;
+          }
+    }
+    break;
+
+  case Instruction::Or: {
+    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
+      break;
+    Value *P, *Q;
+    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
+      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
+      // -> and (icmp eq P, null), (icmp eq Q, null).
+
+      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
+                                        Constant::getNullValue(P->getType()));
+      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
+                                        Constant::getNullValue(Q->getType()));
+      Instruction *Op;
+      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
+        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
+      else
+        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
+      return Op;
+    }
+    break;
+  }
+    
+  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
+    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
+    if (!ShAmt) break;
+    
+    uint32_t TypeBits = RHSV.getBitWidth();
+    
+    // Check that the shift amount is in range.  If not, don't perform
+    // undefined shifts.  When the shift is visited it will be
+    // simplified.
+    if (ShAmt->uge(TypeBits))
+      break;
+    
+    if (ICI.isEquality()) {
+      // If we are comparing against bits always shifted out, the
+      // comparison cannot succeed.
+      Constant *Comp =
+        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
+                                                                 ShAmt);
+      if (Comp != RHS) {// Comparing against a bit that we know is zero.
+        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
+        Constant *Cst =
+          ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
+        return ReplaceInstUsesWith(ICI, Cst);
+      }
+      
+      if (LHSI->hasOneUse()) {
+        // Otherwise strength reduce the shift into an and.
+        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
+        Constant *Mask =
+          ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits, 
+                                                       TypeBits-ShAmtVal));
+        
+        Value *And =
+          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
+        return new ICmpInst(ICI.getPredicate(), And,
+                            ConstantInt::get(ICI.getContext(),
+                                             RHSV.lshr(ShAmtVal)));
+      }
+    }
+    
+    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
+    bool TrueIfSigned = false;
+    if (LHSI->hasOneUse() &&
+        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
+      // (X << 31) <s 0  --> (X&1) != 0
+      Constant *Mask = ConstantInt::get(ICI.getContext(), APInt(TypeBits, 1) <<
+                                           (TypeBits-ShAmt->getZExtValue()-1));
+      Value *And =
+        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
+      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
+                          And, Constant::getNullValue(And->getType()));
+    }
+    break;
+  }
+    
+  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
+  case Instruction::AShr: {
+    // Only handle equality comparisons of shift-by-constant.
+    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
+    if (!ShAmt || !ICI.isEquality()) break;
+
+    // Check that the shift amount is in range.  If not, don't perform
+    // undefined shifts.  When the shift is visited it will be
+    // simplified.
+    uint32_t TypeBits = RHSV.getBitWidth();
+    if (ShAmt->uge(TypeBits))
+      break;
+    
+    uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
+      
+    // If we are comparing against bits always shifted out, the
+    // comparison cannot succeed.
+    APInt Comp = RHSV << ShAmtVal;
+    if (LHSI->getOpcode() == Instruction::LShr)
+      Comp = Comp.lshr(ShAmtVal);
+    else
+      Comp = Comp.ashr(ShAmtVal);
+    
+    if (Comp != RHSV) { // Comparing against a bit that we know is zero.
+      bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
+      Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
+                                       IsICMP_NE);
+      return ReplaceInstUsesWith(ICI, Cst);
+    }
+    
+    // Otherwise, check to see if the bits shifted out are known to be zero.
+    // If so, we can compare against the unshifted value:
+    //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
+    if (LHSI->hasOneUse() &&
+        MaskedValueIsZero(LHSI->getOperand(0), 
+                          APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
+      return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
+                          ConstantExpr::getShl(RHS, ShAmt));
+    }
+      
+    if (LHSI->hasOneUse()) {
+      // Otherwise strength reduce the shift into an and.
+      APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
+      Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
+      
+      Value *And = Builder->CreateAnd(LHSI->getOperand(0),
+                                      Mask, LHSI->getName()+".mask");
+      return new ICmpInst(ICI.getPredicate(), And,
+                          ConstantExpr::getShl(RHS, ShAmt));
+    }
+    break;
+  }
+    
+  case Instruction::SDiv:
+  case Instruction::UDiv:
+    // Fold: icmp pred ([us]div X, C1), C2 -> range test
+    // Fold this div into the comparison, producing a range check. 
+    // Determine, based on the divide type, what the range is being 
+    // checked.  If there is an overflow on the low or high side, remember 
+    // it, otherwise compute the range [low, hi) bounding the new value.
+    // See: InsertRangeTest above for the kinds of replacements possible.
+    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
+      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
+                                          DivRHS))
+        return R;
+    break;
+
+  case Instruction::Add:
+    // Fold: icmp pred (add X, C1), C2
+    if (!ICI.isEquality()) {
+      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
+      if (!LHSC) break;
+      const APInt &LHSV = LHSC->getValue();
+
+      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
+                            .subtract(LHSV);
+
+      if (ICI.isSigned()) {
+        if (CR.getLower().isSignBit()) {
+          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
+                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
+        } else if (CR.getUpper().isSignBit()) {
+          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
+                              ConstantInt::get(ICI.getContext(),CR.getLower()));
+        }
+      } else {
+        if (CR.getLower().isMinValue()) {
+          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
+                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
+        } else if (CR.getUpper().isMinValue()) {
+          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
+                              ConstantInt::get(ICI.getContext(),CR.getLower()));
+        }
+      }
+    }
+    break;
+  }
+  
+  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
+  if (ICI.isEquality()) {
+    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
+    
+    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and 
+    // the second operand is a constant, simplify a bit.
+    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
+      switch (BO->getOpcode()) {
+      case Instruction::SRem:
+        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
+        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
+          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
+          if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
+            Value *NewRem =
+              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
+                                  BO->getName());
+            return new ICmpInst(ICI.getPredicate(), NewRem,
+                                Constant::getNullValue(BO->getType()));
+          }
+        }
+        break;
+      case Instruction::Add:
+        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
+        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
+          if (BO->hasOneUse())
+            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+                                ConstantExpr::getSub(RHS, BOp1C));
+        } else if (RHSV == 0) {
+          // Replace ((add A, B) != 0) with (A != -B) if A or B is
+          // efficiently invertible, or if the add has just this one use.
+          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
+          
+          if (Value *NegVal = dyn_castNegVal(BOp1))
+            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
+          else if (Value *NegVal = dyn_castNegVal(BOp0))
+            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
+          else if (BO->hasOneUse()) {
+            Value *Neg = Builder->CreateNeg(BOp1);
+            Neg->takeName(BO);
+            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
+          }
+        }
+        break;
+      case Instruction::Xor:
+        // For the xor case, we can xor two constants together, eliminating
+        // the explicit xor.
+        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
+          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 
+                              ConstantExpr::getXor(RHS, BOC));
+        
+        // FALLTHROUGH
+      case Instruction::Sub:
+        // Replace (([sub|xor] A, B) != 0) with (A != B)
+        if (RHSV == 0)
+          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+                              BO->getOperand(1));
+        break;
+        
+      case Instruction::Or:
+        // If bits are being or'd in that are not present in the constant we
+        // are comparing against, then the comparison could never succeed!
+        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
+          Constant *NotCI = ConstantExpr::getNot(RHS);
+          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
+            return ReplaceInstUsesWith(ICI,
+                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()), 
+                                       isICMP_NE));
+        }
+        break;
+        
+      case Instruction::And:
+        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
+          // If bits are being compared against that are and'd out, then the
+          // comparison can never succeed!
+          if ((RHSV & ~BOC->getValue()) != 0)
+            return ReplaceInstUsesWith(ICI,
+                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
+                                       isICMP_NE));
+          
+          // If we have ((X & C) == C), turn it into ((X & C) != 0).
+          if (RHS == BOC && RHSV.isPowerOf2())
+            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
+                                ICmpInst::ICMP_NE, LHSI,
+                                Constant::getNullValue(RHS->getType()));
+          
+          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
+          if (BOC->getValue().isSignBit()) {
+            Value *X = BO->getOperand(0);
+            Constant *Zero = Constant::getNullValue(X->getType());
+            ICmpInst::Predicate pred = isICMP_NE ? 
+              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
+            return new ICmpInst(pred, X, Zero);
+          }
+          
+          // ((X & ~7) == 0) --> X < 8
+          if (RHSV == 0 && isHighOnes(BOC)) {
+            Value *X = BO->getOperand(0);
+            Constant *NegX = ConstantExpr::getNeg(BOC);
+            ICmpInst::Predicate pred = isICMP_NE ? 
+              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
+            return new ICmpInst(pred, X, NegX);
+          }
+        }
+      default: break;
+      }
+    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
+      // Handle icmp {eq|ne} <intrinsic>, intcst.
+      switch (II->getIntrinsicID()) {
+      case Intrinsic::bswap:
+        Worklist.Add(II);
+        ICI.setOperand(0, II->getOperand(1));
+        ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
+        return &ICI;
+      case Intrinsic::ctlz:
+      case Intrinsic::cttz:
+        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
+        if (RHSV == RHS->getType()->getBitWidth()) {
+          Worklist.Add(II);
+          ICI.setOperand(0, II->getOperand(1));
+          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
+          return &ICI;
+        }
+        break;
+      case Intrinsic::ctpop:
+        // popcount(A) == 0  ->  A == 0 and likewise for !=
+        if (RHS->isZero()) {
+          Worklist.Add(II);
+          ICI.setOperand(0, II->getOperand(1));
+          ICI.setOperand(1, RHS);
+          return &ICI;
+        }
+        break;
+      default:
+      	break;
+      }
+    }
+  }
+  return 0;
+}
+
+/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
+/// We only handle extending casts so far.
+///
+Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
+  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
+  Value *LHSCIOp        = LHSCI->getOperand(0);
+  const Type *SrcTy     = LHSCIOp->getType();
+  const Type *DestTy    = LHSCI->getType();
+  Value *RHSCIOp;
+
+  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 
+  // integer type is the same size as the pointer type.
+  if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
+      TD->getPointerSizeInBits() ==
+         cast<IntegerType>(DestTy)->getBitWidth()) {
+    Value *RHSOp = 0;
+    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
+      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
+    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
+      RHSOp = RHSC->getOperand(0);
+      // If the pointer types don't match, insert a bitcast.
+      if (LHSCIOp->getType() != RHSOp->getType())
+        RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
+    }
+
+    if (RHSOp)
+      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
+  }
+  
+  // The code below only handles extension cast instructions, so far.
+  // Enforce this.
+  if (LHSCI->getOpcode() != Instruction::ZExt &&
+      LHSCI->getOpcode() != Instruction::SExt)
+    return 0;
+
+  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
+  bool isSignedCmp = ICI.isSigned();
+
+  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
+    // Not an extension from the same type?
+    RHSCIOp = CI->getOperand(0);
+    if (RHSCIOp->getType() != LHSCIOp->getType()) 
+      return 0;
+    
+    // If the signedness of the two casts doesn't agree (i.e. one is a sext
+    // and the other is a zext), then we can't handle this.
+    if (CI->getOpcode() != LHSCI->getOpcode())
+      return 0;
+
+    // Deal with equality cases early.
+    if (ICI.isEquality())
+      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
+
+    // A signed comparison of sign extended values simplifies into a
+    // signed comparison.
+    if (isSignedCmp && isSignedExt)
+      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
+
+    // The other three cases all fold into an unsigned comparison.
+    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
+  }
+
+  // If we aren't dealing with a constant on the RHS, exit early
+  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
+  if (!CI)
+    return 0;
+
+  // Compute the constant that would happen if we truncated to SrcTy then
+  // reextended to DestTy.
+  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
+  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
+                                                Res1, DestTy);
+
+  // If the re-extended constant didn't change...
+  if (Res2 == CI) {
+    // Deal with equality cases early.
+    if (ICI.isEquality())
+      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
+
+    // A signed comparison of sign extended values simplifies into a
+    // signed comparison.
+    if (isSignedExt && isSignedCmp)
+      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
+
+    // The other three cases all fold into an unsigned comparison.
+    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
+  }
+
+  // The re-extended constant changed so the constant cannot be represented 
+  // in the shorter type. Consequently, we cannot emit a simple comparison.
+
+  // First, handle some easy cases. We know the result cannot be equal at this
+  // point so handle the ICI.isEquality() cases
+  if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
+    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
+  if (ICI.getPredicate() == ICmpInst::ICMP_NE)
+    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
+
+  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
+  // should have been folded away previously and not enter in here.
+  Value *Result;
+  if (isSignedCmp) {
+    // We're performing a signed comparison.
+    if (cast<ConstantInt>(CI)->getValue().isNegative())
+      Result = ConstantInt::getFalse(ICI.getContext()); // X < (small) --> false
+    else
+      Result = ConstantInt::getTrue(ICI.getContext());  // X < (large) --> true
+  } else {
+    // We're performing an unsigned comparison.
+    if (isSignedExt) {
+      // We're performing an unsigned comp with a sign extended value.
+      // This is true if the input is >= 0. [aka >s -1]
+      Constant *NegOne = Constant::getAllOnesValue(SrcTy);
+      Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
+    } else {
+      // Unsigned extend & unsigned compare -> always true.
+      Result = ConstantInt::getTrue(ICI.getContext());
+    }
+  }
+
+  // Finally, return the value computed.
+  if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
+      ICI.getPredicate() == ICmpInst::ICMP_SLT)
+    return ReplaceInstUsesWith(ICI, Result);
+
+  assert((ICI.getPredicate()==ICmpInst::ICMP_UGT || 
+          ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
+         "ICmp should be folded!");
+  if (Constant *CI = dyn_cast<Constant>(Result))
+    return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
+  return BinaryOperator::CreateNot(Result);
+}
+
+
+
+Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
+  bool Changed = false;
+  
+  /// Orders the operands of the compare so that they are listed from most
+  /// complex to least complex.  This puts constants before unary operators,
+  /// before binary operators.
+  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
+    I.swapOperands();
+    Changed = true;
+  }
+  
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+  
+  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
+    return ReplaceInstUsesWith(I, V);
+  
+  const Type *Ty = Op0->getType();
+
+  // icmp's with boolean values can always be turned into bitwise operations
+  if (Ty == Type::getInt1Ty(I.getContext())) {
+    switch (I.getPredicate()) {
+    default: llvm_unreachable("Invalid icmp instruction!");
+    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
+      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
+      return BinaryOperator::CreateNot(Xor);
+    }
+    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
+      return BinaryOperator::CreateXor(Op0, Op1);
+
+    case ICmpInst::ICMP_UGT:
+      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
+      // FALL THROUGH
+    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
+      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
+      return BinaryOperator::CreateAnd(Not, Op1);
+    }
+    case ICmpInst::ICMP_SGT:
+      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
+      // FALL THROUGH
+    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
+      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
+      return BinaryOperator::CreateAnd(Not, Op0);
+    }
+    case ICmpInst::ICMP_UGE:
+      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
+      // FALL THROUGH
+    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
+      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
+      return BinaryOperator::CreateOr(Not, Op1);
+    }
+    case ICmpInst::ICMP_SGE:
+      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
+      // FALL THROUGH
+    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
+      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
+      return BinaryOperator::CreateOr(Not, Op0);
+    }
+    }
+  }
+
+  unsigned BitWidth = 0;
+  if (TD)
+    BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
+  else if (Ty->isIntOrIntVector())
+    BitWidth = Ty->getScalarSizeInBits();
+
+  bool isSignBit = false;
+
+  // See if we are doing a comparison with a constant.
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+    Value *A = 0, *B = 0;
+    
+    // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
+    if (I.isEquality() && CI->isZero() &&
+        match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
+      // (icmp cond A B) if cond is equality
+      return new ICmpInst(I.getPredicate(), A, B);
+    }
+    
+    // If we have an icmp le or icmp ge instruction, turn it into the
+    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
+    // them being folded in the code below.  The SimplifyICmpInst code has
+    // already handled the edge cases for us, so we just assert on them.
+    switch (I.getPredicate()) {
+    default: break;
+    case ICmpInst::ICMP_ULE:
+      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
+      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
+                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
+    case ICmpInst::ICMP_SLE:
+      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
+      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
+                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
+    case ICmpInst::ICMP_UGE:
+      assert(!CI->isMinValue(false));                  // A >=u MIN -> TRUE
+      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
+                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
+    case ICmpInst::ICMP_SGE:
+      assert(!CI->isMinValue(true));                   // A >=s MIN -> TRUE
+      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
+                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
+    }
+    
+    // If this comparison is a normal comparison, it demands all
+    // bits, if it is a sign bit comparison, it only demands the sign bit.
+    bool UnusedBit;
+    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
+  }
+
+  // See if we can fold the comparison based on range information we can get
+  // by checking whether bits are known to be zero or one in the input.
+  if (BitWidth != 0) {
+    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
+    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
+
+    if (SimplifyDemandedBits(I.getOperandUse(0),
+                             isSignBit ? APInt::getSignBit(BitWidth)
+                                       : APInt::getAllOnesValue(BitWidth),
+                             Op0KnownZero, Op0KnownOne, 0))
+      return &I;
+    if (SimplifyDemandedBits(I.getOperandUse(1),
+                             APInt::getAllOnesValue(BitWidth),
+                             Op1KnownZero, Op1KnownOne, 0))
+      return &I;
+
+    // Given the known and unknown bits, compute a range that the LHS could be
+    // in.  Compute the Min, Max and RHS values based on the known bits. For the
+    // EQ and NE we use unsigned values.
+    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
+    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
+    if (I.isSigned()) {
+      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
+                                             Op0Min, Op0Max);
+      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
+                                             Op1Min, Op1Max);
+    } else {
+      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
+                                               Op0Min, Op0Max);
+      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
+                                               Op1Min, Op1Max);
+    }
+
+    // If Min and Max are known to be the same, then SimplifyDemandedBits
+    // figured out that the LHS is a constant.  Just constant fold this now so
+    // that code below can assume that Min != Max.
+    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
+      return new ICmpInst(I.getPredicate(),
+                          ConstantInt::get(I.getContext(), Op0Min), Op1);
+    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
+      return new ICmpInst(I.getPredicate(), Op0,
+                          ConstantInt::get(I.getContext(), Op1Min));
+
+    // Based on the range information we know about the LHS, see if we can
+    // simplify this comparison.  For example, (x&4) < 8  is always true.
+    switch (I.getPredicate()) {
+    default: llvm_unreachable("Unknown icmp opcode!");
+    case ICmpInst::ICMP_EQ:
+      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
+        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+      break;
+    case ICmpInst::ICMP_NE:
+      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
+        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+      break;
+    case ICmpInst::ICMP_ULT:
+      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
+        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
+        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
+        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
+          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
+
+        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
+        if (CI->isMinValue(true))
+          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
+                           Constant::getAllOnesValue(Op0->getType()));
+      }
+      break;
+    case ICmpInst::ICMP_UGT:
+      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
+        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
+        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+
+      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
+        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
+          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
+
+        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
+        if (CI->isMaxValue(true))
+          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
+                              Constant::getNullValue(Op0->getType()));
+      }
+      break;
+    case ICmpInst::ICMP_SLT:
+      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
+        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
+        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
+        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
+          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
+      }
+      break;
+    case ICmpInst::ICMP_SGT:
+      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
+        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
+        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+
+      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
+        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
+          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
+      }
+      break;
+    case ICmpInst::ICMP_SGE:
+      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
+      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
+        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
+        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+      break;
+    case ICmpInst::ICMP_SLE:
+      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
+      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
+        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
+        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+      break;
+    case ICmpInst::ICMP_UGE:
+      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
+      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
+        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
+        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+      break;
+    case ICmpInst::ICMP_ULE:
+      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
+      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
+        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
+        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+      break;
+    }
+
+    // Turn a signed comparison into an unsigned one if both operands
+    // are known to have the same sign.
+    if (I.isSigned() &&
+        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
+         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
+      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
+  }
+
+  // Test if the ICmpInst instruction is used exclusively by a select as
+  // part of a minimum or maximum operation. If so, refrain from doing
+  // any other folding. This helps out other analyses which understand
+  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
+  // and CodeGen. And in this case, at least one of the comparison
+  // operands has at least one user besides the compare (the select),
+  // which would often largely negate the benefit of folding anyway.
+  if (I.hasOneUse())
+    if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
+      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
+          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
+        return 0;
+
+  // See if we are doing a comparison between a constant and an instruction that
+  // can be folded into the comparison.
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+    // Since the RHS is a ConstantInt (CI), if the left hand side is an 
+    // instruction, see if that instruction also has constants so that the 
+    // instruction can be folded into the icmp 
+    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
+      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
+        return Res;
+  }
+
+  // Handle icmp with constant (but not simple integer constant) RHS
+  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
+    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
+      switch (LHSI->getOpcode()) {
+      case Instruction::GetElementPtr:
+          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
+        if (RHSC->isNullValue() &&
+            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
+          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
+                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
+        break;
+      case Instruction::PHI:
+        // Only fold icmp into the PHI if the phi and icmp are in the same
+        // block.  If in the same block, we're encouraging jump threading.  If
+        // not, we are just pessimizing the code by making an i1 phi.
+        if (LHSI->getParent() == I.getParent())
+          if (Instruction *NV = FoldOpIntoPhi(I, true))
+            return NV;
+        break;
+      case Instruction::Select: {
+        // If either operand of the select is a constant, we can fold the
+        // comparison into the select arms, which will cause one to be
+        // constant folded and the select turned into a bitwise or.
+        Value *Op1 = 0, *Op2 = 0;
+        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
+          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
+        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
+          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
+
+        // We only want to perform this transformation if it will not lead to
+        // additional code. This is true if either both sides of the select
+        // fold to a constant (in which case the icmp is replaced with a select
+        // which will usually simplify) or this is the only user of the
+        // select (in which case we are trading a select+icmp for a simpler
+        // select+icmp).
+        if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
+          if (!Op1)
+            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
+                                      RHSC, I.getName());
+          if (!Op2)
+            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
+                                      RHSC, I.getName());
+          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
+        }
+        break;
+      }
+      case Instruction::Call:
+        // If we have (malloc != null), and if the malloc has a single use, we
+        // can assume it is successful and remove the malloc.
+        if (isMalloc(LHSI) && LHSI->hasOneUse() &&
+            isa<ConstantPointerNull>(RHSC)) {
+          // Need to explicitly erase malloc call here, instead of adding it to
+          // Worklist, because it won't get DCE'd from the Worklist since
+          // isInstructionTriviallyDead() returns false for function calls.
+          // It is OK to replace LHSI/MallocCall with Undef because the 
+          // instruction that uses it will be erased via Worklist.
+          if (extractMallocCall(LHSI)) {
+            LHSI->replaceAllUsesWith(UndefValue::get(LHSI->getType()));
+            EraseInstFromFunction(*LHSI);
+            return ReplaceInstUsesWith(I,
+                               ConstantInt::get(Type::getInt1Ty(I.getContext()),
+                                                      !I.isTrueWhenEqual()));
+          }
+          if (CallInst* MallocCall = extractMallocCallFromBitCast(LHSI))
+            if (MallocCall->hasOneUse()) {
+              MallocCall->replaceAllUsesWith(
+                                        UndefValue::get(MallocCall->getType()));
+              EraseInstFromFunction(*MallocCall);
+              Worklist.Add(LHSI); // The malloc's bitcast use.
+              return ReplaceInstUsesWith(I,
+                               ConstantInt::get(Type::getInt1Ty(I.getContext()),
+                                                      !I.isTrueWhenEqual()));
+            }
+        }
+        break;
+      case Instruction::IntToPtr:
+        // icmp pred inttoptr(X), null -> icmp pred X, 0
+        if (RHSC->isNullValue() && TD &&
+            TD->getIntPtrType(RHSC->getContext()) == 
+               LHSI->getOperand(0)->getType())
+          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
+                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
+        break;
+
+      case Instruction::Load:
+        // Try to optimize things like "A[i] > 4" to index computations.
+        if (GetElementPtrInst *GEP =
+              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
+          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
+            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
+                !cast<LoadInst>(LHSI)->isVolatile())
+              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
+                return Res;
+        }
+        break;
+      }
+  }
+
+  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
+  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
+    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
+      return NI;
+  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
+    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
+                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
+      return NI;
+
+  // Test to see if the operands of the icmp are casted versions of other
+  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
+  // now.
+  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
+    if (isa<PointerType>(Op0->getType()) && 
+        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 
+      // We keep moving the cast from the left operand over to the right
+      // operand, where it can often be eliminated completely.
+      Op0 = CI->getOperand(0);
+
+      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
+      // so eliminate it as well.
+      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
+        Op1 = CI2->getOperand(0);
+
+      // If Op1 is a constant, we can fold the cast into the constant.
+      if (Op0->getType() != Op1->getType()) {
+        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
+          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
+        } else {
+          // Otherwise, cast the RHS right before the icmp
+          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
+        }
+      }
+      return new ICmpInst(I.getPredicate(), Op0, Op1);
+    }
+  }
+  
+  if (isa<CastInst>(Op0)) {
+    // Handle the special case of: icmp (cast bool to X), <cst>
+    // This comes up when you have code like
+    //   int X = A < B;
+    //   if (X) ...
+    // For generality, we handle any zero-extension of any operand comparison
+    // with a constant or another cast from the same type.
+    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
+      if (Instruction *R = visitICmpInstWithCastAndCast(I))
+        return R;
+  }
+  
+  // See if it's the same type of instruction on the left and right.
+  if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
+    if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
+      if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
+          Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) {
+        switch (Op0I->getOpcode()) {
+        default: break;
+        case Instruction::Add:
+        case Instruction::Sub:
+        case Instruction::Xor:
+          if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
+            return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
+                                Op1I->getOperand(0));
+          // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
+          if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
+            if (CI->getValue().isSignBit()) {
+              ICmpInst::Predicate Pred = I.isSigned()
+                                             ? I.getUnsignedPredicate()
+                                             : I.getSignedPredicate();
+              return new ICmpInst(Pred, Op0I->getOperand(0),
+                                  Op1I->getOperand(0));
+            }
+            
+            if (CI->getValue().isMaxSignedValue()) {
+              ICmpInst::Predicate Pred = I.isSigned()
+                                             ? I.getUnsignedPredicate()
+                                             : I.getSignedPredicate();
+              Pred = I.getSwappedPredicate(Pred);
+              return new ICmpInst(Pred, Op0I->getOperand(0),
+                                  Op1I->getOperand(0));
+            }
+          }
+          break;
+        case Instruction::Mul:
+          if (!I.isEquality())
+            break;
+
+          if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
+            // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
+            // Mask = -1 >> count-trailing-zeros(Cst).
+            if (!CI->isZero() && !CI->isOne()) {
+              const APInt &AP = CI->getValue();
+              ConstantInt *Mask = ConstantInt::get(I.getContext(), 
+                                      APInt::getLowBitsSet(AP.getBitWidth(),
+                                                           AP.getBitWidth() -
+                                                      AP.countTrailingZeros()));
+              Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
+              Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
+              return new ICmpInst(I.getPredicate(), And1, And2);
+            }
+          }
+          break;
+        }
+      }
+    }
+  }
+  
+  // ~x < ~y --> y < x
+  { Value *A, *B;
+    if (match(Op0, m_Not(m_Value(A))) &&
+        match(Op1, m_Not(m_Value(B))))
+      return new ICmpInst(I.getPredicate(), B, A);
+  }
+  
+  if (I.isEquality()) {
+    Value *A, *B, *C, *D;
+    
+    // -x == -y --> x == y
+    if (match(Op0, m_Neg(m_Value(A))) &&
+        match(Op1, m_Neg(m_Value(B))))
+      return new ICmpInst(I.getPredicate(), A, B);
+    
+    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
+      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
+        Value *OtherVal = A == Op1 ? B : A;
+        return new ICmpInst(I.getPredicate(), OtherVal,
+                            Constant::getNullValue(A->getType()));
+      }
+
+      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
+        // A^c1 == C^c2 --> A == C^(c1^c2)
+        ConstantInt *C1, *C2;
+        if (match(B, m_ConstantInt(C1)) &&
+            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
+          Constant *NC = ConstantInt::get(I.getContext(),
+                                          C1->getValue() ^ C2->getValue());
+          Value *Xor = Builder->CreateXor(C, NC, "tmp");
+          return new ICmpInst(I.getPredicate(), A, Xor);
+        }
+        
+        // A^B == A^D -> B == D
+        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
+        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
+        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
+        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
+      }
+    }
+    
+    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
+        (A == Op0 || B == Op0)) {
+      // A == (A^B)  ->  B == 0
+      Value *OtherVal = A == Op0 ? B : A;
+      return new ICmpInst(I.getPredicate(), OtherVal,
+                          Constant::getNullValue(A->getType()));
+    }
+
+    // (A-B) == A  ->  B == 0
+    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
+      return new ICmpInst(I.getPredicate(), B, 
+                          Constant::getNullValue(B->getType()));
+
+    // A == (A-B)  ->  B == 0
+    if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
+      return new ICmpInst(I.getPredicate(), B,
+                          Constant::getNullValue(B->getType()));
+    
+    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
+    if (Op0->hasOneUse() && Op1->hasOneUse() &&
+        match(Op0, m_And(m_Value(A), m_Value(B))) && 
+        match(Op1, m_And(m_Value(C), m_Value(D)))) {
+      Value *X = 0, *Y = 0, *Z = 0;
+      
+      if (A == C) {
+        X = B; Y = D; Z = A;
+      } else if (A == D) {
+        X = B; Y = C; Z = A;
+      } else if (B == C) {
+        X = A; Y = D; Z = B;
+      } else if (B == D) {
+        X = A; Y = C; Z = B;
+      }
+      
+      if (X) {   // Build (X^Y) & Z
+        Op1 = Builder->CreateXor(X, Y, "tmp");
+        Op1 = Builder->CreateAnd(Op1, Z, "tmp");
+        I.setOperand(0, Op1);
+        I.setOperand(1, Constant::getNullValue(Op1->getType()));
+        return &I;
+      }
+    }
+  }
+  
+  {
+    Value *X; ConstantInt *Cst;
+    // icmp X+Cst, X
+    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
+      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
+
+    // icmp X, X+Cst
+    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
+      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
+  }
+  return Changed ? &I : 0;
+}
+
+
+
+
+
+
+/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
+///
+Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
+                                                Instruction *LHSI,
+                                                Constant *RHSC) {
+  if (!isa<ConstantFP>(RHSC)) return 0;
+  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
+  
+  // Get the width of the mantissa.  We don't want to hack on conversions that
+  // might lose information from the integer, e.g. "i64 -> float"
+  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
+  if (MantissaWidth == -1) return 0;  // Unknown.
+  
+  // Check to see that the input is converted from an integer type that is small
+  // enough that preserves all bits.  TODO: check here for "known" sign bits.
+  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
+  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
+  
+  // If this is a uitofp instruction, we need an extra bit to hold the sign.
+  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
+  if (LHSUnsigned)
+    ++InputSize;
+  
+  // If the conversion would lose info, don't hack on this.
+  if ((int)InputSize > MantissaWidth)
+    return 0;
+  
+  // Otherwise, we can potentially simplify the comparison.  We know that it
+  // will always come through as an integer value and we know the constant is
+  // not a NAN (it would have been previously simplified).
+  assert(!RHS.isNaN() && "NaN comparison not already folded!");
+  
+  ICmpInst::Predicate Pred;
+  switch (I.getPredicate()) {
+  default: llvm_unreachable("Unexpected predicate!");
+  case FCmpInst::FCMP_UEQ:
+  case FCmpInst::FCMP_OEQ:
+    Pred = ICmpInst::ICMP_EQ;
+    break;
+  case FCmpInst::FCMP_UGT:
+  case FCmpInst::FCMP_OGT:
+    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
+    break;
+  case FCmpInst::FCMP_UGE:
+  case FCmpInst::FCMP_OGE:
+    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
+    break;
+  case FCmpInst::FCMP_ULT:
+  case FCmpInst::FCMP_OLT:
+    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
+    break;
+  case FCmpInst::FCMP_ULE:
+  case FCmpInst::FCMP_OLE:
+    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
+    break;
+  case FCmpInst::FCMP_UNE:
+  case FCmpInst::FCMP_ONE:
+    Pred = ICmpInst::ICMP_NE;
+    break;
+  case FCmpInst::FCMP_ORD:
+    return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+  case FCmpInst::FCMP_UNO:
+    return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+  }
+  
+  const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
+  
+  // Now we know that the APFloat is a normal number, zero or inf.
+  
+  // See if the FP constant is too large for the integer.  For example,
+  // comparing an i8 to 300.0.
+  unsigned IntWidth = IntTy->getScalarSizeInBits();
+  
+  if (!LHSUnsigned) {
+    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
+    // and large values.
+    APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
+    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
+                          APFloat::rmNearestTiesToEven);
+    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
+      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
+          Pred == ICmpInst::ICMP_SLE)
+        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+    }
+  } else {
+    // If the RHS value is > UnsignedMax, fold the comparison. This handles
+    // +INF and large values.
+    APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
+    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
+                          APFloat::rmNearestTiesToEven);
+    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
+      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
+          Pred == ICmpInst::ICMP_ULE)
+        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+    }
+  }
+  
+  if (!LHSUnsigned) {
+    // See if the RHS value is < SignedMin.
+    APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
+    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
+                          APFloat::rmNearestTiesToEven);
+    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
+      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
+          Pred == ICmpInst::ICMP_SGE)
+        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+    }
+  }
+
+  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
+  // [0, UMAX], but it may still be fractional.  See if it is fractional by
+  // casting the FP value to the integer value and back, checking for equality.
+  // Don't do this for zero, because -0.0 is not fractional.
+  Constant *RHSInt = LHSUnsigned
+    ? ConstantExpr::getFPToUI(RHSC, IntTy)
+    : ConstantExpr::getFPToSI(RHSC, IntTy);
+  if (!RHS.isZero()) {
+    bool Equal = LHSUnsigned
+      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
+      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
+    if (!Equal) {
+      // If we had a comparison against a fractional value, we have to adjust
+      // the compare predicate and sometimes the value.  RHSC is rounded towards
+      // zero at this point.
+      switch (Pred) {
+      default: llvm_unreachable("Unexpected integer comparison!");
+      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
+        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
+        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+      case ICmpInst::ICMP_ULE:
+        // (float)int <= 4.4   --> int <= 4
+        // (float)int <= -4.4  --> false
+        if (RHS.isNegative())
+          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+        break;
+      case ICmpInst::ICMP_SLE:
+        // (float)int <= 4.4   --> int <= 4
+        // (float)int <= -4.4  --> int < -4
+        if (RHS.isNegative())
+          Pred = ICmpInst::ICMP_SLT;
+        break;
+      case ICmpInst::ICMP_ULT:
+        // (float)int < -4.4   --> false
+        // (float)int < 4.4    --> int <= 4
+        if (RHS.isNegative())
+          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+        Pred = ICmpInst::ICMP_ULE;
+        break;
+      case ICmpInst::ICMP_SLT:
+        // (float)int < -4.4   --> int < -4
+        // (float)int < 4.4    --> int <= 4
+        if (!RHS.isNegative())
+          Pred = ICmpInst::ICMP_SLE;
+        break;
+      case ICmpInst::ICMP_UGT:
+        // (float)int > 4.4    --> int > 4
+        // (float)int > -4.4   --> true
+        if (RHS.isNegative())
+          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+        break;
+      case ICmpInst::ICMP_SGT:
+        // (float)int > 4.4    --> int > 4
+        // (float)int > -4.4   --> int >= -4
+        if (RHS.isNegative())
+          Pred = ICmpInst::ICMP_SGE;
+        break;
+      case ICmpInst::ICMP_UGE:
+        // (float)int >= -4.4   --> true
+        // (float)int >= 4.4    --> int > 4
+        if (!RHS.isNegative())
+          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+        Pred = ICmpInst::ICMP_UGT;
+        break;
+      case ICmpInst::ICMP_SGE:
+        // (float)int >= -4.4   --> int >= -4
+        // (float)int >= 4.4    --> int > 4
+        if (!RHS.isNegative())
+          Pred = ICmpInst::ICMP_SGT;
+        break;
+      }
+    }
+  }
+
+  // Lower this FP comparison into an appropriate integer version of the
+  // comparison.
+  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
+}
+
+Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
+  bool Changed = false;
+  
+  /// Orders the operands of the compare so that they are listed from most
+  /// complex to least complex.  This puts constants before unary operators,
+  /// before binary operators.
+  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
+    I.swapOperands();
+    Changed = true;
+  }
+
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+  
+  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
+    return ReplaceInstUsesWith(I, V);
+
+  // Simplify 'fcmp pred X, X'
+  if (Op0 == Op1) {
+    switch (I.getPredicate()) {
+    default: llvm_unreachable("Unknown predicate!");
+    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
+    case FCmpInst::FCMP_ULT:    // True if unordered or less than
+    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
+    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
+      // Canonicalize these to be 'fcmp uno %X, 0.0'.
+      I.setPredicate(FCmpInst::FCMP_UNO);
+      I.setOperand(1, Constant::getNullValue(Op0->getType()));
+      return &I;
+      
+    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
+    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
+    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
+    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
+      // Canonicalize these to be 'fcmp ord %X, 0.0'.
+      I.setPredicate(FCmpInst::FCMP_ORD);
+      I.setOperand(1, Constant::getNullValue(Op0->getType()));
+      return &I;
+    }
+  }
+    
+  // Handle fcmp with constant RHS
+  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
+    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
+      switch (LHSI->getOpcode()) {
+      case Instruction::PHI:
+        // Only fold fcmp into the PHI if the phi and fcmp are in the same
+        // block.  If in the same block, we're encouraging jump threading.  If
+        // not, we are just pessimizing the code by making an i1 phi.
+        if (LHSI->getParent() == I.getParent())
+          if (Instruction *NV = FoldOpIntoPhi(I, true))
+            return NV;
+        break;
+      case Instruction::SIToFP:
+      case Instruction::UIToFP:
+        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
+          return NV;
+        break;
+      case Instruction::Select: {
+        // If either operand of the select is a constant, we can fold the
+        // comparison into the select arms, which will cause one to be
+        // constant folded and the select turned into a bitwise or.
+        Value *Op1 = 0, *Op2 = 0;
+        if (LHSI->hasOneUse()) {
+          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
+            // Fold the known value into the constant operand.
+            Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
+            // Insert a new FCmp of the other select operand.
+            Op2 = Builder->CreateFCmp(I.getPredicate(),
+                                      LHSI->getOperand(2), RHSC, I.getName());
+          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
+            // Fold the known value into the constant operand.
+            Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
+            // Insert a new FCmp of the other select operand.
+            Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
+                                      RHSC, I.getName());
+          }
+        }
+
+        if (Op1)
+          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
+        break;
+      }
+    case Instruction::Load:
+      if (GetElementPtrInst *GEP =
+          dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
+        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
+          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
+              !cast<LoadInst>(LHSI)->isVolatile())
+            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
+              return Res;
+      }
+      break;
+    }
+  }
+
+  return Changed ? &I : 0;
+}
diff --git a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
new file mode 100644
index 0000000..6c0ecc9
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -0,0 +1,613 @@
+//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for load, store and alloca.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/ADT/Statistic.h"
+using namespace llvm;
+
+STATISTIC(NumDeadStore, "Number of dead stores eliminated");
+
+Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
+  // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
+  if (AI.isArrayAllocation()) {  // Check C != 1
+    if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
+      const Type *NewTy = 
+        ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
+      assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
+      AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
+      New->setAlignment(AI.getAlignment());
+
+      // Scan to the end of the allocation instructions, to skip over a block of
+      // allocas if possible...also skip interleaved debug info
+      //
+      BasicBlock::iterator It = New;
+      while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
+
+      // Now that I is pointing to the first non-allocation-inst in the block,
+      // insert our getelementptr instruction...
+      //
+      Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext()));
+      Value *Idx[2];
+      Idx[0] = NullIdx;
+      Idx[1] = NullIdx;
+      Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2,
+                                                   New->getName()+".sub", It);
+
+      // Now make everything use the getelementptr instead of the original
+      // allocation.
+      return ReplaceInstUsesWith(AI, V);
+    } else if (isa<UndefValue>(AI.getArraySize())) {
+      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
+    }
+  }
+
+  if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
+    // If alloca'ing a zero byte object, replace the alloca with a null pointer.
+    // Note that we only do this for alloca's, because malloc should allocate
+    // and return a unique pointer, even for a zero byte allocation.
+    if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
+      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
+
+    // If the alignment is 0 (unspecified), assign it the preferred alignment.
+    if (AI.getAlignment() == 0)
+      AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
+  }
+
+  return 0;
+}
+
+
+/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
+static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
+                                        const TargetData *TD) {
+  User *CI = cast<User>(LI.getOperand(0));
+  Value *CastOp = CI->getOperand(0);
+
+  const PointerType *DestTy = cast<PointerType>(CI->getType());
+  const Type *DestPTy = DestTy->getElementType();
+  if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
+
+    // If the address spaces don't match, don't eliminate the cast.
+    if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
+      return 0;
+
+    const Type *SrcPTy = SrcTy->getElementType();
+
+    if (DestPTy->isInteger() || isa<PointerType>(DestPTy) || 
+         isa<VectorType>(DestPTy)) {
+      // If the source is an array, the code below will not succeed.  Check to
+      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
+      // constants.
+      if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
+        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
+          if (ASrcTy->getNumElements() != 0) {
+            Value *Idxs[2];
+            Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext()));
+            Idxs[1] = Idxs[0];
+            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
+            SrcTy = cast<PointerType>(CastOp->getType());
+            SrcPTy = SrcTy->getElementType();
+          }
+
+      if (IC.getTargetData() &&
+          (SrcPTy->isInteger() || isa<PointerType>(SrcPTy) || 
+            isa<VectorType>(SrcPTy)) &&
+          // Do not allow turning this into a load of an integer, which is then
+          // casted to a pointer, this pessimizes pointer analysis a lot.
+          (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
+          IC.getTargetData()->getTypeSizeInBits(SrcPTy) ==
+               IC.getTargetData()->getTypeSizeInBits(DestPTy)) {
+
+        // Okay, we are casting from one integer or pointer type to another of
+        // the same size.  Instead of casting the pointer before the load, cast
+        // the result of the loaded value.
+        Value *NewLoad = 
+          IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
+        // Now cast the result of the load.
+        return new BitCastInst(NewLoad, LI.getType());
+      }
+    }
+  }
+  return 0;
+}
+
+Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
+  Value *Op = LI.getOperand(0);
+
+  // Attempt to improve the alignment.
+  if (TD) {
+    unsigned KnownAlign =
+      GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()));
+    if (KnownAlign >
+        (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
+                                  LI.getAlignment()))
+      LI.setAlignment(KnownAlign);
+  }
+
+  // load (cast X) --> cast (load X) iff safe.
+  if (isa<CastInst>(Op))
+    if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
+      return Res;
+
+  // None of the following transforms are legal for volatile loads.
+  if (LI.isVolatile()) return 0;
+  
+  // Do really simple store-to-load forwarding and load CSE, to catch cases
+  // where there are several consequtive memory accesses to the same location,
+  // separated by a few arithmetic operations.
+  BasicBlock::iterator BBI = &LI;
+  if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
+    return ReplaceInstUsesWith(LI, AvailableVal);
+
+  // load(gep null, ...) -> unreachable
+  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
+    const Value *GEPI0 = GEPI->getOperand(0);
+    // TODO: Consider a target hook for valid address spaces for this xform.
+    if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
+      // Insert a new store to null instruction before the load to indicate
+      // that this code is not reachable.  We do this instead of inserting
+      // an unreachable instruction directly because we cannot modify the
+      // CFG.
+      new StoreInst(UndefValue::get(LI.getType()),
+                    Constant::getNullValue(Op->getType()), &LI);
+      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
+    }
+  } 
+
+  // load null/undef -> unreachable
+  // TODO: Consider a target hook for valid address spaces for this xform.
+  if (isa<UndefValue>(Op) ||
+      (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
+    // Insert a new store to null instruction before the load to indicate that
+    // this code is not reachable.  We do this instead of inserting an
+    // unreachable instruction directly because we cannot modify the CFG.
+    new StoreInst(UndefValue::get(LI.getType()),
+                  Constant::getNullValue(Op->getType()), &LI);
+    return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
+  }
+
+  // Instcombine load (constantexpr_cast global) -> cast (load global)
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
+    if (CE->isCast())
+      if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
+        return Res;
+  
+  if (Op->hasOneUse()) {
+    // Change select and PHI nodes to select values instead of addresses: this
+    // helps alias analysis out a lot, allows many others simplifications, and
+    // exposes redundancy in the code.
+    //
+    // Note that we cannot do the transformation unless we know that the
+    // introduced loads cannot trap!  Something like this is valid as long as
+    // the condition is always false: load (select bool %C, int* null, int* %G),
+    // but it would not be valid if we transformed it to load from null
+    // unconditionally.
+    //
+    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
+      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
+      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
+          isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
+        Value *V1 = Builder->CreateLoad(SI->getOperand(1),
+                                        SI->getOperand(1)->getName()+".val");
+        Value *V2 = Builder->CreateLoad(SI->getOperand(2),
+                                        SI->getOperand(2)->getName()+".val");
+        return SelectInst::Create(SI->getCondition(), V1, V2);
+      }
+
+      // load (select (cond, null, P)) -> load P
+      if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
+        if (C->isNullValue()) {
+          LI.setOperand(0, SI->getOperand(2));
+          return &LI;
+        }
+
+      // load (select (cond, P, null)) -> load P
+      if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
+        if (C->isNullValue()) {
+          LI.setOperand(0, SI->getOperand(1));
+          return &LI;
+        }
+    }
+  }
+  return 0;
+}
+
+/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
+/// when possible.  This makes it generally easy to do alias analysis and/or
+/// SROA/mem2reg of the memory object.
+static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
+  User *CI = cast<User>(SI.getOperand(1));
+  Value *CastOp = CI->getOperand(0);
+
+  const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
+  const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
+  if (SrcTy == 0) return 0;
+  
+  const Type *SrcPTy = SrcTy->getElementType();
+
+  if (!DestPTy->isInteger() && !isa<PointerType>(DestPTy))
+    return 0;
+  
+  /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
+  /// to its first element.  This allows us to handle things like:
+  ///   store i32 xxx, (bitcast {foo*, float}* %P to i32*)
+  /// on 32-bit hosts.
+  SmallVector<Value*, 4> NewGEPIndices;
+  
+  // If the source is an array, the code below will not succeed.  Check to
+  // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
+  // constants.
+  if (isa<ArrayType>(SrcPTy) || isa<StructType>(SrcPTy)) {
+    // Index through pointer.
+    Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
+    NewGEPIndices.push_back(Zero);
+    
+    while (1) {
+      if (const StructType *STy = dyn_cast<StructType>(SrcPTy)) {
+        if (!STy->getNumElements()) /* Struct can be empty {} */
+          break;
+        NewGEPIndices.push_back(Zero);
+        SrcPTy = STy->getElementType(0);
+      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
+        NewGEPIndices.push_back(Zero);
+        SrcPTy = ATy->getElementType();
+      } else {
+        break;
+      }
+    }
+    
+    SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
+  }
+
+  if (!SrcPTy->isInteger() && !isa<PointerType>(SrcPTy))
+    return 0;
+  
+  // If the pointers point into different address spaces or if they point to
+  // values with different sizes, we can't do the transformation.
+  if (!IC.getTargetData() ||
+      SrcTy->getAddressSpace() != 
+        cast<PointerType>(CI->getType())->getAddressSpace() ||
+      IC.getTargetData()->getTypeSizeInBits(SrcPTy) !=
+      IC.getTargetData()->getTypeSizeInBits(DestPTy))
+    return 0;
+
+  // Okay, we are casting from one integer or pointer type to another of
+  // the same size.  Instead of casting the pointer before 
+  // the store, cast the value to be stored.
+  Value *NewCast;
+  Value *SIOp0 = SI.getOperand(0);
+  Instruction::CastOps opcode = Instruction::BitCast;
+  const Type* CastSrcTy = SIOp0->getType();
+  const Type* CastDstTy = SrcPTy;
+  if (isa<PointerType>(CastDstTy)) {
+    if (CastSrcTy->isInteger())
+      opcode = Instruction::IntToPtr;
+  } else if (isa<IntegerType>(CastDstTy)) {
+    if (isa<PointerType>(SIOp0->getType()))
+      opcode = Instruction::PtrToInt;
+  }
+  
+  // SIOp0 is a pointer to aggregate and this is a store to the first field,
+  // emit a GEP to index into its first field.
+  if (!NewGEPIndices.empty())
+    CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(),
+                                           NewGEPIndices.end());
+  
+  NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
+                                   SIOp0->getName()+".c");
+  return new StoreInst(NewCast, CastOp);
+}
+
+/// equivalentAddressValues - Test if A and B will obviously have the same
+/// value. This includes recognizing that %t0 and %t1 will have the same
+/// value in code like this:
+///   %t0 = getelementptr \@a, 0, 3
+///   store i32 0, i32* %t0
+///   %t1 = getelementptr \@a, 0, 3
+///   %t2 = load i32* %t1
+///
+static bool equivalentAddressValues(Value *A, Value *B) {
+  // Test if the values are trivially equivalent.
+  if (A == B) return true;
+  
+  // Test if the values come form identical arithmetic instructions.
+  // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
+  // its only used to compare two uses within the same basic block, which
+  // means that they'll always either have the same value or one of them
+  // will have an undefined value.
+  if (isa<BinaryOperator>(A) ||
+      isa<CastInst>(A) ||
+      isa<PHINode>(A) ||
+      isa<GetElementPtrInst>(A))
+    if (Instruction *BI = dyn_cast<Instruction>(B))
+      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
+        return true;
+  
+  // Otherwise they may not be equivalent.
+  return false;
+}
+
+// If this instruction has two uses, one of which is a llvm.dbg.declare,
+// return the llvm.dbg.declare.
+DbgDeclareInst *InstCombiner::hasOneUsePlusDeclare(Value *V) {
+  if (!V->hasNUses(2))
+    return 0;
+  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
+       UI != E; ++UI) {
+    if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI))
+      return DI;
+    if (isa<BitCastInst>(UI) && UI->hasOneUse()) {
+      if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI->use_begin()))
+        return DI;
+      }
+  }
+  return 0;
+}
+
+Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
+  Value *Val = SI.getOperand(0);
+  Value *Ptr = SI.getOperand(1);
+
+  // If the RHS is an alloca with a single use, zapify the store, making the
+  // alloca dead.
+  // If the RHS is an alloca with a two uses, the other one being a 
+  // llvm.dbg.declare, zapify the store and the declare, making the
+  // alloca dead.  We must do this to prevent declare's from affecting
+  // codegen.
+  if (!SI.isVolatile()) {
+    if (Ptr->hasOneUse()) {
+      if (isa<AllocaInst>(Ptr)) 
+        return EraseInstFromFunction(SI);
+      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
+        if (isa<AllocaInst>(GEP->getOperand(0))) {
+          if (GEP->getOperand(0)->hasOneUse())
+            return EraseInstFromFunction(SI);
+          if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) {
+            EraseInstFromFunction(*DI);
+            return EraseInstFromFunction(SI);
+          }
+        }
+      }
+    }
+    if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) {
+      EraseInstFromFunction(*DI);
+      return EraseInstFromFunction(SI);
+    }
+  }
+
+  // Attempt to improve the alignment.
+  if (TD) {
+    unsigned KnownAlign =
+      GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
+    if (KnownAlign >
+        (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
+                                  SI.getAlignment()))
+      SI.setAlignment(KnownAlign);
+  }
+
+  // Do really simple DSE, to catch cases where there are several consecutive
+  // stores to the same location, separated by a few arithmetic operations. This
+  // situation often occurs with bitfield accesses.
+  BasicBlock::iterator BBI = &SI;
+  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
+       --ScanInsts) {
+    --BBI;
+    // Don't count debug info directives, lest they affect codegen,
+    // and we skip pointer-to-pointer bitcasts, which are NOPs.
+    // It is necessary for correctness to skip those that feed into a
+    // llvm.dbg.declare, as these are not present when debugging is off.
+    if (isa<DbgInfoIntrinsic>(BBI) ||
+        (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
+      ScanInsts++;
+      continue;
+    }    
+    
+    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
+      // Prev store isn't volatile, and stores to the same location?
+      if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
+                                                          SI.getOperand(1))) {
+        ++NumDeadStore;
+        ++BBI;
+        EraseInstFromFunction(*PrevSI);
+        continue;
+      }
+      break;
+    }
+    
+    // If this is a load, we have to stop.  However, if the loaded value is from
+    // the pointer we're loading and is producing the pointer we're storing,
+    // then *this* store is dead (X = load P; store X -> P).
+    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
+      if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
+          !SI.isVolatile())
+        return EraseInstFromFunction(SI);
+      
+      // Otherwise, this is a load from some other location.  Stores before it
+      // may not be dead.
+      break;
+    }
+    
+    // Don't skip over loads or things that can modify memory.
+    if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
+      break;
+  }
+  
+  
+  if (SI.isVolatile()) return 0;  // Don't hack volatile stores.
+
+  // store X, null    -> turns into 'unreachable' in SimplifyCFG
+  if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
+    if (!isa<UndefValue>(Val)) {
+      SI.setOperand(0, UndefValue::get(Val->getType()));
+      if (Instruction *U = dyn_cast<Instruction>(Val))
+        Worklist.Add(U);  // Dropped a use.
+    }
+    return 0;  // Do not modify these!
+  }
+
+  // store undef, Ptr -> noop
+  if (isa<UndefValue>(Val))
+    return EraseInstFromFunction(SI);
+
+  // If the pointer destination is a cast, see if we can fold the cast into the
+  // source instead.
+  if (isa<CastInst>(Ptr))
+    if (Instruction *Res = InstCombineStoreToCast(*this, SI))
+      return Res;
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+    if (CE->isCast())
+      if (Instruction *Res = InstCombineStoreToCast(*this, SI))
+        return Res;
+
+  
+  // If this store is the last instruction in the basic block (possibly
+  // excepting debug info instructions and the pointer bitcasts that feed
+  // into them), and if the block ends with an unconditional branch, try
+  // to move it to the successor block.
+  BBI = &SI; 
+  do {
+    ++BBI;
+  } while (isa<DbgInfoIntrinsic>(BBI) ||
+           (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType())));
+  if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
+    if (BI->isUnconditional())
+      if (SimplifyStoreAtEndOfBlock(SI))
+        return 0;  // xform done!
+  
+  return 0;
+}
+
+/// SimplifyStoreAtEndOfBlock - Turn things like:
+///   if () { *P = v1; } else { *P = v2 }
+/// into a phi node with a store in the successor.
+///
+/// Simplify things like:
+///   *P = v1; if () { *P = v2; }
+/// into a phi node with a store in the successor.
+///
+bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
+  BasicBlock *StoreBB = SI.getParent();
+  
+  // Check to see if the successor block has exactly two incoming edges.  If
+  // so, see if the other predecessor contains a store to the same location.
+  // if so, insert a PHI node (if needed) and move the stores down.
+  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
+  
+  // Determine whether Dest has exactly two predecessors and, if so, compute
+  // the other predecessor.
+  pred_iterator PI = pred_begin(DestBB);
+  BasicBlock *OtherBB = 0;
+  if (*PI != StoreBB)
+    OtherBB = *PI;
+  ++PI;
+  if (PI == pred_end(DestBB))
+    return false;
+  
+  if (*PI != StoreBB) {
+    if (OtherBB)
+      return false;
+    OtherBB = *PI;
+  }
+  if (++PI != pred_end(DestBB))
+    return false;
+
+  // Bail out if all the relevant blocks aren't distinct (this can happen,
+  // for example, if SI is in an infinite loop)
+  if (StoreBB == DestBB || OtherBB == DestBB)
+    return false;
+
+  // Verify that the other block ends in a branch and is not otherwise empty.
+  BasicBlock::iterator BBI = OtherBB->getTerminator();
+  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
+  if (!OtherBr || BBI == OtherBB->begin())
+    return false;
+  
+  // If the other block ends in an unconditional branch, check for the 'if then
+  // else' case.  there is an instruction before the branch.
+  StoreInst *OtherStore = 0;
+  if (OtherBr->isUnconditional()) {
+    --BBI;
+    // Skip over debugging info.
+    while (isa<DbgInfoIntrinsic>(BBI) ||
+           (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
+      if (BBI==OtherBB->begin())
+        return false;
+      --BBI;
+    }
+    // If this isn't a store, isn't a store to the same location, or if the
+    // alignments differ, bail out.
+    OtherStore = dyn_cast<StoreInst>(BBI);
+    if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
+        OtherStore->getAlignment() != SI.getAlignment())
+      return false;
+  } else {
+    // Otherwise, the other block ended with a conditional branch. If one of the
+    // destinations is StoreBB, then we have the if/then case.
+    if (OtherBr->getSuccessor(0) != StoreBB && 
+        OtherBr->getSuccessor(1) != StoreBB)
+      return false;
+    
+    // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
+    // if/then triangle.  See if there is a store to the same ptr as SI that
+    // lives in OtherBB.
+    for (;; --BBI) {
+      // Check to see if we find the matching store.
+      if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
+        if (OtherStore->getOperand(1) != SI.getOperand(1) ||
+            OtherStore->getAlignment() != SI.getAlignment())
+          return false;
+        break;
+      }
+      // If we find something that may be using or overwriting the stored
+      // value, or if we run out of instructions, we can't do the xform.
+      if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
+          BBI == OtherBB->begin())
+        return false;
+    }
+    
+    // In order to eliminate the store in OtherBr, we have to
+    // make sure nothing reads or overwrites the stored value in
+    // StoreBB.
+    for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
+      // FIXME: This should really be AA driven.
+      if (I->mayReadFromMemory() || I->mayWriteToMemory())
+        return false;
+    }
+  }
+  
+  // Insert a PHI node now if we need it.
+  Value *MergedVal = OtherStore->getOperand(0);
+  if (MergedVal != SI.getOperand(0)) {
+    PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
+    PN->reserveOperandSpace(2);
+    PN->addIncoming(SI.getOperand(0), SI.getParent());
+    PN->addIncoming(OtherStore->getOperand(0), OtherBB);
+    MergedVal = InsertNewInstBefore(PN, DestBB->front());
+  }
+  
+  // Advance to a place where it is safe to insert the new store and
+  // insert it.
+  BBI = DestBB->getFirstNonPHI();
+  InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
+                                    OtherStore->isVolatile(),
+                                    SI.getAlignment()), *BBI);
+  
+  // Nuke the old stores.
+  EraseInstFromFunction(SI);
+  EraseInstFromFunction(*OtherStore);
+  return true;
+}
diff --git a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
new file mode 100644
index 0000000..6afc0cd
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -0,0 +1,695 @@
+//===- InstCombineMulDivRem.cpp -------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
+// srem, urem, frem.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+/// SubOne - Subtract one from a ConstantInt.
+static Constant *SubOne(ConstantInt *C) {
+  return ConstantInt::get(C->getContext(), C->getValue()-1);
+}
+
+/// MultiplyOverflows - True if the multiply can not be expressed in an int
+/// this size.
+static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
+  uint32_t W = C1->getBitWidth();
+  APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
+  if (sign) {
+    LHSExt.sext(W * 2);
+    RHSExt.sext(W * 2);
+  } else {
+    LHSExt.zext(W * 2);
+    RHSExt.zext(W * 2);
+  }
+  
+  APInt MulExt = LHSExt * RHSExt;
+  
+  if (!sign)
+    return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
+  
+  APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
+  APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
+  return MulExt.slt(Min) || MulExt.sgt(Max);
+}
+
+Instruction *InstCombiner::visitMul(BinaryOperator &I) {
+  bool Changed = SimplifyCommutative(I);
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  if (isa<UndefValue>(Op1))              // undef * X -> 0
+    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+
+  // Simplify mul instructions with a constant RHS.
+  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1C)) {
+
+      // ((X << C1)*C2) == (X * (C2 << C1))
+      if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
+        if (SI->getOpcode() == Instruction::Shl)
+          if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
+            return BinaryOperator::CreateMul(SI->getOperand(0),
+                                        ConstantExpr::getShl(CI, ShOp));
+
+      if (CI->isZero())
+        return ReplaceInstUsesWith(I, Op1C);  // X * 0  == 0
+      if (CI->equalsInt(1))                  // X * 1  == X
+        return ReplaceInstUsesWith(I, Op0);
+      if (CI->isAllOnesValue())              // X * -1 == 0 - X
+        return BinaryOperator::CreateNeg(Op0, I.getName());
+
+      const APInt& Val = cast<ConstantInt>(CI)->getValue();
+      if (Val.isPowerOf2()) {          // Replace X*(2^C) with X << C
+        return BinaryOperator::CreateShl(Op0,
+                 ConstantInt::get(Op0->getType(), Val.logBase2()));
+      }
+    } else if (isa<VectorType>(Op1C->getType())) {
+      if (Op1C->isNullValue())
+        return ReplaceInstUsesWith(I, Op1C);
+
+      if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
+        if (Op1V->isAllOnesValue())              // X * -1 == 0 - X
+          return BinaryOperator::CreateNeg(Op0, I.getName());
+
+        // As above, vector X*splat(1.0) -> X in all defined cases.
+        if (Constant *Splat = Op1V->getSplatValue()) {
+          if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
+            if (CI->equalsInt(1))
+              return ReplaceInstUsesWith(I, Op0);
+        }
+      }
+    }
+    
+    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
+      if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
+          isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1C)) {
+        // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
+        Value *Add = Builder->CreateMul(Op0I->getOperand(0), Op1C, "tmp");
+        Value *C1C2 = Builder->CreateMul(Op1C, Op0I->getOperand(1));
+        return BinaryOperator::CreateAdd(Add, C1C2);
+        
+      }
+
+    // Try to fold constant mul into select arguments.
+    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+      if (Instruction *R = FoldOpIntoSelect(I, SI))
+        return R;
+
+    if (isa<PHINode>(Op0))
+      if (Instruction *NV = FoldOpIntoPhi(I))
+        return NV;
+  }
+
+  if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
+    if (Value *Op1v = dyn_castNegVal(Op1))
+      return BinaryOperator::CreateMul(Op0v, Op1v);
+
+  // (X / Y) *  Y = X - (X % Y)
+  // (X / Y) * -Y = (X % Y) - X
+  {
+    Value *Op1C = Op1;
+    BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
+    if (!BO ||
+        (BO->getOpcode() != Instruction::UDiv && 
+         BO->getOpcode() != Instruction::SDiv)) {
+      Op1C = Op0;
+      BO = dyn_cast<BinaryOperator>(Op1);
+    }
+    Value *Neg = dyn_castNegVal(Op1C);
+    if (BO && BO->hasOneUse() &&
+        (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
+        (BO->getOpcode() == Instruction::UDiv ||
+         BO->getOpcode() == Instruction::SDiv)) {
+      Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
+
+      // If the division is exact, X % Y is zero.
+      if (SDivOperator *SDiv = dyn_cast<SDivOperator>(BO))
+        if (SDiv->isExact()) {
+          if (Op1BO == Op1C)
+            return ReplaceInstUsesWith(I, Op0BO);
+          return BinaryOperator::CreateNeg(Op0BO);
+        }
+
+      Value *Rem;
+      if (BO->getOpcode() == Instruction::UDiv)
+        Rem = Builder->CreateURem(Op0BO, Op1BO);
+      else
+        Rem = Builder->CreateSRem(Op0BO, Op1BO);
+      Rem->takeName(BO);
+
+      if (Op1BO == Op1C)
+        return BinaryOperator::CreateSub(Op0BO, Rem);
+      return BinaryOperator::CreateSub(Rem, Op0BO);
+    }
+  }
+
+  /// i1 mul -> i1 and.
+  if (I.getType()->isInteger(1))
+    return BinaryOperator::CreateAnd(Op0, Op1);
+
+  // X*(1 << Y) --> X << Y
+  // (1 << Y)*X --> X << Y
+  {
+    Value *Y;
+    if (match(Op0, m_Shl(m_One(), m_Value(Y))))
+      return BinaryOperator::CreateShl(Op1, Y);
+    if (match(Op1, m_Shl(m_One(), m_Value(Y))))
+      return BinaryOperator::CreateShl(Op0, Y);
+  }
+  
+  // If one of the operands of the multiply is a cast from a boolean value, then
+  // we know the bool is either zero or one, so this is a 'masking' multiply.
+  //   X * Y (where Y is 0 or 1) -> X & (0-Y)
+  if (!isa<VectorType>(I.getType())) {
+    // -2 is "-1 << 1" so it is all bits set except the low one.
+    APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
+    
+    Value *BoolCast = 0, *OtherOp = 0;
+    if (MaskedValueIsZero(Op0, Negative2))
+      BoolCast = Op0, OtherOp = Op1;
+    else if (MaskedValueIsZero(Op1, Negative2))
+      BoolCast = Op1, OtherOp = Op0;
+
+    if (BoolCast) {
+      Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
+                                    BoolCast, "tmp");
+      return BinaryOperator::CreateAnd(V, OtherOp);
+    }
+  }
+
+  return Changed ? &I : 0;
+}
+
+Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
+  bool Changed = SimplifyCommutative(I);
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  // Simplify mul instructions with a constant RHS...
+  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
+    if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
+      // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
+      // ANSI says we can drop signals, so we can do this anyway." (from GCC)
+      if (Op1F->isExactlyValue(1.0))
+        return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul double %X, 1.0'
+    } else if (isa<VectorType>(Op1C->getType())) {
+      if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
+        // As above, vector X*splat(1.0) -> X in all defined cases.
+        if (Constant *Splat = Op1V->getSplatValue()) {
+          if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
+            if (F->isExactlyValue(1.0))
+              return ReplaceInstUsesWith(I, Op0);
+        }
+      }
+    }
+
+    // Try to fold constant mul into select arguments.
+    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+      if (Instruction *R = FoldOpIntoSelect(I, SI))
+        return R;
+
+    if (isa<PHINode>(Op0))
+      if (Instruction *NV = FoldOpIntoPhi(I))
+        return NV;
+  }
+
+  if (Value *Op0v = dyn_castFNegVal(Op0))     // -X * -Y = X*Y
+    if (Value *Op1v = dyn_castFNegVal(Op1))
+      return BinaryOperator::CreateFMul(Op0v, Op1v);
+
+  return Changed ? &I : 0;
+}
+
+/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
+/// instruction.
+bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
+  SelectInst *SI = cast<SelectInst>(I.getOperand(1));
+  
+  // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
+  int NonNullOperand = -1;
+  if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
+    if (ST->isNullValue())
+      NonNullOperand = 2;
+  // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
+  if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
+    if (ST->isNullValue())
+      NonNullOperand = 1;
+  
+  if (NonNullOperand == -1)
+    return false;
+  
+  Value *SelectCond = SI->getOperand(0);
+  
+  // Change the div/rem to use 'Y' instead of the select.
+  I.setOperand(1, SI->getOperand(NonNullOperand));
+  
+  // Okay, we know we replace the operand of the div/rem with 'Y' with no
+  // problem.  However, the select, or the condition of the select may have
+  // multiple uses.  Based on our knowledge that the operand must be non-zero,
+  // propagate the known value for the select into other uses of it, and
+  // propagate a known value of the condition into its other users.
+  
+  // If the select and condition only have a single use, don't bother with this,
+  // early exit.
+  if (SI->use_empty() && SelectCond->hasOneUse())
+    return true;
+  
+  // Scan the current block backward, looking for other uses of SI.
+  BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
+  
+  while (BBI != BBFront) {
+    --BBI;
+    // If we found a call to a function, we can't assume it will return, so
+    // information from below it cannot be propagated above it.
+    if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
+      break;
+    
+    // Replace uses of the select or its condition with the known values.
+    for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
+         I != E; ++I) {
+      if (*I == SI) {
+        *I = SI->getOperand(NonNullOperand);
+        Worklist.Add(BBI);
+      } else if (*I == SelectCond) {
+        *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
+                                   ConstantInt::getFalse(BBI->getContext());
+        Worklist.Add(BBI);
+      }
+    }
+    
+    // If we past the instruction, quit looking for it.
+    if (&*BBI == SI)
+      SI = 0;
+    if (&*BBI == SelectCond)
+      SelectCond = 0;
+    
+    // If we ran out of things to eliminate, break out of the loop.
+    if (SelectCond == 0 && SI == 0)
+      break;
+    
+  }
+  return true;
+}
+
+
+/// This function implements the transforms on div instructions that work
+/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
+/// used by the visitors to those instructions.
+/// @brief Transforms common to all three div instructions
+Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  // undef / X -> 0        for integer.
+  // undef / X -> undef    for FP (the undef could be a snan).
+  if (isa<UndefValue>(Op0)) {
+    if (Op0->getType()->isFPOrFPVector())
+      return ReplaceInstUsesWith(I, Op0);
+    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+  }
+
+  // X / undef -> undef
+  if (isa<UndefValue>(Op1))
+    return ReplaceInstUsesWith(I, Op1);
+
+  return 0;
+}
+
+/// This function implements the transforms common to both integer division
+/// instructions (udiv and sdiv). It is called by the visitors to those integer
+/// division instructions.
+/// @brief Common integer divide transforms
+Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  // (sdiv X, X) --> 1     (udiv X, X) --> 1
+  if (Op0 == Op1) {
+    if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
+      Constant *CI = ConstantInt::get(Ty->getElementType(), 1);
+      std::vector<Constant*> Elts(Ty->getNumElements(), CI);
+      return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
+    }
+
+    Constant *CI = ConstantInt::get(I.getType(), 1);
+    return ReplaceInstUsesWith(I, CI);
+  }
+  
+  if (Instruction *Common = commonDivTransforms(I))
+    return Common;
+  
+  // Handle cases involving: [su]div X, (select Cond, Y, Z)
+  // This does not apply for fdiv.
+  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
+    return &I;
+
+  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+    // div X, 1 == X
+    if (RHS->equalsInt(1))
+      return ReplaceInstUsesWith(I, Op0);
+
+    // (X / C1) / C2  -> X / (C1*C2)
+    if (Instruction *LHS = dyn_cast<Instruction>(Op0))
+      if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
+        if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
+          if (MultiplyOverflows(RHS, LHSRHS,
+                                I.getOpcode()==Instruction::SDiv))
+            return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+          else 
+            return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
+                                      ConstantExpr::getMul(RHS, LHSRHS));
+        }
+
+    if (!RHS->isZero()) { // avoid X udiv 0
+      if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+        if (Instruction *R = FoldOpIntoSelect(I, SI))
+          return R;
+      if (isa<PHINode>(Op0))
+        if (Instruction *NV = FoldOpIntoPhi(I))
+          return NV;
+    }
+  }
+
+  // 0 / X == 0, we don't need to preserve faults!
+  if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
+    if (LHS->equalsInt(0))
+      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+
+  // It can't be division by zero, hence it must be division by one.
+  if (I.getType()->isInteger(1))
+    return ReplaceInstUsesWith(I, Op0);
+
+  if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
+    if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
+      // div X, 1 == X
+      if (X->isOne())
+        return ReplaceInstUsesWith(I, Op0);
+  }
+
+  return 0;
+}
+
+Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  // Handle the integer div common cases
+  if (Instruction *Common = commonIDivTransforms(I))
+    return Common;
+
+  if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
+    // X udiv C^2 -> X >> C
+    // Check to see if this is an unsigned division with an exact power of 2,
+    // if so, convert to a right shift.
+    if (C->getValue().isPowerOf2())  // 0 not included in isPowerOf2
+      return BinaryOperator::CreateLShr(Op0, 
+            ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
+
+    // X udiv C, where C >= signbit
+    if (C->getValue().isNegative()) {
+      Value *IC = Builder->CreateICmpULT( Op0, C);
+      return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
+                                ConstantInt::get(I.getType(), 1));
+    }
+  }
+
+  // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
+  if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
+    if (RHSI->getOpcode() == Instruction::Shl &&
+        isa<ConstantInt>(RHSI->getOperand(0))) {
+      const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
+      if (C1.isPowerOf2()) {
+        Value *N = RHSI->getOperand(1);
+        const Type *NTy = N->getType();
+        if (uint32_t C2 = C1.logBase2())
+          N = Builder->CreateAdd(N, ConstantInt::get(NTy, C2), "tmp");
+        return BinaryOperator::CreateLShr(Op0, N);
+      }
+    }
+  }
+  
+  // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
+  // where C1&C2 are powers of two.
+  if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 
+    if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
+      if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2)))  {
+        const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
+        if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
+          // Compute the shift amounts
+          uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
+          // Construct the "on true" case of the select
+          Constant *TC = ConstantInt::get(Op0->getType(), TSA);
+          Value *TSI = Builder->CreateLShr(Op0, TC, SI->getName()+".t");
+  
+          // Construct the "on false" case of the select
+          Constant *FC = ConstantInt::get(Op0->getType(), FSA); 
+          Value *FSI = Builder->CreateLShr(Op0, FC, SI->getName()+".f");
+
+          // construct the select instruction and return it.
+          return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
+        }
+      }
+  return 0;
+}
+
+Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  // Handle the integer div common cases
+  if (Instruction *Common = commonIDivTransforms(I))
+    return Common;
+
+  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+    // sdiv X, -1 == -X
+    if (RHS->isAllOnesValue())
+      return BinaryOperator::CreateNeg(Op0);
+
+    // sdiv X, C  -->  ashr X, log2(C)
+    if (cast<SDivOperator>(&I)->isExact() &&
+        RHS->getValue().isNonNegative() &&
+        RHS->getValue().isPowerOf2()) {
+      Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
+                                            RHS->getValue().exactLogBase2());
+      return BinaryOperator::CreateAShr(Op0, ShAmt, I.getName());
+    }
+
+    // -X/C  -->  X/-C  provided the negation doesn't overflow.
+    if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
+      if (isa<Constant>(Sub->getOperand(0)) &&
+          cast<Constant>(Sub->getOperand(0))->isNullValue() &&
+          Sub->hasNoSignedWrap())
+        return BinaryOperator::CreateSDiv(Sub->getOperand(1),
+                                          ConstantExpr::getNeg(RHS));
+  }
+
+  // If the sign bits of both operands are zero (i.e. we can prove they are
+  // unsigned inputs), turn this into a udiv.
+  if (I.getType()->isInteger()) {
+    APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
+    if (MaskedValueIsZero(Op0, Mask)) {
+      if (MaskedValueIsZero(Op1, Mask)) {
+        // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
+        return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+      }
+      ConstantInt *ShiftedInt;
+      if (match(Op1, m_Shl(m_ConstantInt(ShiftedInt), m_Value())) &&
+          ShiftedInt->getValue().isPowerOf2()) {
+        // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
+        // Safe because the only negative value (1 << Y) can take on is
+        // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
+        // the sign bit set.
+        return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+      }
+    }
+  }
+  
+  return 0;
+}
+
+Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
+  return commonDivTransforms(I);
+}
+
+/// This function implements the transforms on rem instructions that work
+/// regardless of the kind of rem instruction it is (urem, srem, or frem). It 
+/// is used by the visitors to those instructions.
+/// @brief Transforms common to all three rem instructions
+Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  if (isa<UndefValue>(Op0)) {             // undef % X -> 0
+    if (I.getType()->isFPOrFPVector())
+      return ReplaceInstUsesWith(I, Op0);  // X % undef -> undef (could be SNaN)
+    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+  }
+  if (isa<UndefValue>(Op1))
+    return ReplaceInstUsesWith(I, Op1);  // X % undef -> undef
+
+  // Handle cases involving: rem X, (select Cond, Y, Z)
+  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
+    return &I;
+
+  return 0;
+}
+
+/// This function implements the transforms common to both integer remainder
+/// instructions (urem and srem). It is called by the visitors to those integer
+/// remainder instructions.
+/// @brief Common integer remainder transforms
+Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  if (Instruction *common = commonRemTransforms(I))
+    return common;
+
+  // 0 % X == 0 for integer, we don't need to preserve faults!
+  if (Constant *LHS = dyn_cast<Constant>(Op0))
+    if (LHS->isNullValue())
+      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+
+  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+    // X % 0 == undef, we don't need to preserve faults!
+    if (RHS->equalsInt(0))
+      return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
+    
+    if (RHS->equalsInt(1))  // X % 1 == 0
+      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+
+    if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
+      if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
+        if (Instruction *R = FoldOpIntoSelect(I, SI))
+          return R;
+      } else if (isa<PHINode>(Op0I)) {
+        if (Instruction *NV = FoldOpIntoPhi(I))
+          return NV;
+      }
+
+      // See if we can fold away this rem instruction.
+      if (SimplifyDemandedInstructionBits(I))
+        return &I;
+    }
+  }
+
+  return 0;
+}
+
+Instruction *InstCombiner::visitURem(BinaryOperator &I) {
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  if (Instruction *common = commonIRemTransforms(I))
+    return common;
+  
+  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+    // X urem C^2 -> X and C
+    // Check to see if this is an unsigned remainder with an exact power of 2,
+    // if so, convert to a bitwise and.
+    if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
+      if (C->getValue().isPowerOf2())
+        return BinaryOperator::CreateAnd(Op0, SubOne(C));
+  }
+
+  if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
+    // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)  
+    if (RHSI->getOpcode() == Instruction::Shl &&
+        isa<ConstantInt>(RHSI->getOperand(0))) {
+      if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
+        Constant *N1 = Constant::getAllOnesValue(I.getType());
+        Value *Add = Builder->CreateAdd(RHSI, N1, "tmp");
+        return BinaryOperator::CreateAnd(Op0, Add);
+      }
+    }
+  }
+
+  // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
+  // where C1&C2 are powers of two.
+  if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
+    if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
+      if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
+        // STO == 0 and SFO == 0 handled above.
+        if ((STO->getValue().isPowerOf2()) && 
+            (SFO->getValue().isPowerOf2())) {
+          Value *TrueAnd = Builder->CreateAnd(Op0, SubOne(STO),
+                                              SI->getName()+".t");
+          Value *FalseAnd = Builder->CreateAnd(Op0, SubOne(SFO),
+                                               SI->getName()+".f");
+          return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
+        }
+      }
+  }
+  
+  return 0;
+}
+
+Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  // Handle the integer rem common cases
+  if (Instruction *Common = commonIRemTransforms(I))
+    return Common;
+  
+  if (Value *RHSNeg = dyn_castNegVal(Op1))
+    if (!isa<Constant>(RHSNeg) ||
+        (isa<ConstantInt>(RHSNeg) &&
+         cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
+      // X % -Y -> X % Y
+      Worklist.AddValue(I.getOperand(1));
+      I.setOperand(1, RHSNeg);
+      return &I;
+    }
+
+  // If the sign bits of both operands are zero (i.e. we can prove they are
+  // unsigned inputs), turn this into a urem.
+  if (I.getType()->isInteger()) {
+    APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
+    if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
+      // X srem Y -> X urem Y, iff X and Y don't have sign bit set
+      return BinaryOperator::CreateURem(Op0, Op1, I.getName());
+    }
+  }
+
+  // If it's a constant vector, flip any negative values positive.
+  if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) {
+    unsigned VWidth = RHSV->getNumOperands();
+
+    bool hasNegative = false;
+    for (unsigned i = 0; !hasNegative && i != VWidth; ++i)
+      if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i)))
+        if (RHS->getValue().isNegative())
+          hasNegative = true;
+
+    if (hasNegative) {
+      std::vector<Constant *> Elts(VWidth);
+      for (unsigned i = 0; i != VWidth; ++i) {
+        if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) {
+          if (RHS->getValue().isNegative())
+            Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
+          else
+            Elts[i] = RHS;
+        }
+      }
+
+      Constant *NewRHSV = ConstantVector::get(Elts);
+      if (NewRHSV != RHSV) {
+        Worklist.AddValue(I.getOperand(1));
+        I.setOperand(1, NewRHSV);
+        return &I;
+      }
+    }
+  }
+
+  return 0;
+}
+
+Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
+  return commonRemTransforms(I);
+}
+
diff --git a/lib/Transforms/InstCombine/InstCombinePHI.cpp b/lib/Transforms/InstCombine/InstCombinePHI.cpp
new file mode 100644
index 0000000..bb7632f
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombinePHI.cpp
@@ -0,0 +1,841 @@
+//===- InstCombinePHI.cpp -------------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitPHINode function.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/STLExtras.h"
+using namespace llvm;
+
+/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
+/// and if a/b/c and the add's all have a single use, turn this into a phi
+/// and a single binop.
+Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
+  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
+  assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
+  unsigned Opc = FirstInst->getOpcode();
+  Value *LHSVal = FirstInst->getOperand(0);
+  Value *RHSVal = FirstInst->getOperand(1);
+    
+  const Type *LHSType = LHSVal->getType();
+  const Type *RHSType = RHSVal->getType();
+  
+  // Scan to see if all operands are the same opcode, and all have one use.
+  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
+    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
+    if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
+        // Verify type of the LHS matches so we don't fold cmp's of different
+        // types or GEP's with different index types.
+        I->getOperand(0)->getType() != LHSType ||
+        I->getOperand(1)->getType() != RHSType)
+      return 0;
+
+    // If they are CmpInst instructions, check their predicates
+    if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
+      if (cast<CmpInst>(I)->getPredicate() !=
+          cast<CmpInst>(FirstInst)->getPredicate())
+        return 0;
+    
+    // Keep track of which operand needs a phi node.
+    if (I->getOperand(0) != LHSVal) LHSVal = 0;
+    if (I->getOperand(1) != RHSVal) RHSVal = 0;
+  }
+
+  // If both LHS and RHS would need a PHI, don't do this transformation,
+  // because it would increase the number of PHIs entering the block,
+  // which leads to higher register pressure. This is especially
+  // bad when the PHIs are in the header of a loop.
+  if (!LHSVal && !RHSVal)
+    return 0;
+  
+  // Otherwise, this is safe to transform!
+  
+  Value *InLHS = FirstInst->getOperand(0);
+  Value *InRHS = FirstInst->getOperand(1);
+  PHINode *NewLHS = 0, *NewRHS = 0;
+  if (LHSVal == 0) {
+    NewLHS = PHINode::Create(LHSType,
+                             FirstInst->getOperand(0)->getName() + ".pn");
+    NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
+    NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
+    InsertNewInstBefore(NewLHS, PN);
+    LHSVal = NewLHS;
+  }
+  
+  if (RHSVal == 0) {
+    NewRHS = PHINode::Create(RHSType,
+                             FirstInst->getOperand(1)->getName() + ".pn");
+    NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
+    NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
+    InsertNewInstBefore(NewRHS, PN);
+    RHSVal = NewRHS;
+  }
+  
+  // Add all operands to the new PHIs.
+  if (NewLHS || NewRHS) {
+    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
+      Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
+      if (NewLHS) {
+        Value *NewInLHS = InInst->getOperand(0);
+        NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
+      }
+      if (NewRHS) {
+        Value *NewInRHS = InInst->getOperand(1);
+        NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
+      }
+    }
+  }
+    
+  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
+    return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
+  CmpInst *CIOp = cast<CmpInst>(FirstInst);
+  return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
+                         LHSVal, RHSVal);
+}
+
+Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
+  GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
+  
+  SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), 
+                                        FirstInst->op_end());
+  // This is true if all GEP bases are allocas and if all indices into them are
+  // constants.
+  bool AllBasePointersAreAllocas = true;
+
+  // We don't want to replace this phi if the replacement would require
+  // more than one phi, which leads to higher register pressure. This is
+  // especially bad when the PHIs are in the header of a loop.
+  bool NeededPhi = false;
+  
+  // Scan to see if all operands are the same opcode, and all have one use.
+  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
+    GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
+    if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
+      GEP->getNumOperands() != FirstInst->getNumOperands())
+      return 0;
+
+    // Keep track of whether or not all GEPs are of alloca pointers.
+    if (AllBasePointersAreAllocas &&
+        (!isa<AllocaInst>(GEP->getOperand(0)) ||
+         !GEP->hasAllConstantIndices()))
+      AllBasePointersAreAllocas = false;
+    
+    // Compare the operand lists.
+    for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
+      if (FirstInst->getOperand(op) == GEP->getOperand(op))
+        continue;
+      
+      // Don't merge two GEPs when two operands differ (introducing phi nodes)
+      // if one of the PHIs has a constant for the index.  The index may be
+      // substantially cheaper to compute for the constants, so making it a
+      // variable index could pessimize the path.  This also handles the case
+      // for struct indices, which must always be constant.
+      if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
+          isa<ConstantInt>(GEP->getOperand(op)))
+        return 0;
+      
+      if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
+        return 0;
+
+      // If we already needed a PHI for an earlier operand, and another operand
+      // also requires a PHI, we'd be introducing more PHIs than we're
+      // eliminating, which increases register pressure on entry to the PHI's
+      // block.
+      if (NeededPhi)
+        return 0;
+
+      FixedOperands[op] = 0;  // Needs a PHI.
+      NeededPhi = true;
+    }
+  }
+  
+  // If all of the base pointers of the PHI'd GEPs are from allocas, don't
+  // bother doing this transformation.  At best, this will just save a bit of
+  // offset calculation, but all the predecessors will have to materialize the
+  // stack address into a register anyway.  We'd actually rather *clone* the
+  // load up into the predecessors so that we have a load of a gep of an alloca,
+  // which can usually all be folded into the load.
+  if (AllBasePointersAreAllocas)
+    return 0;
+  
+  // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
+  // that is variable.
+  SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
+  
+  bool HasAnyPHIs = false;
+  for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
+    if (FixedOperands[i]) continue;  // operand doesn't need a phi.
+    Value *FirstOp = FirstInst->getOperand(i);
+    PHINode *NewPN = PHINode::Create(FirstOp->getType(),
+                                     FirstOp->getName()+".pn");
+    InsertNewInstBefore(NewPN, PN);
+    
+    NewPN->reserveOperandSpace(e);
+    NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
+    OperandPhis[i] = NewPN;
+    FixedOperands[i] = NewPN;
+    HasAnyPHIs = true;
+  }
+
+  
+  // Add all operands to the new PHIs.
+  if (HasAnyPHIs) {
+    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
+      GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
+      BasicBlock *InBB = PN.getIncomingBlock(i);
+      
+      for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
+        if (PHINode *OpPhi = OperandPhis[op])
+          OpPhi->addIncoming(InGEP->getOperand(op), InBB);
+    }
+  }
+  
+  Value *Base = FixedOperands[0];
+  return cast<GEPOperator>(FirstInst)->isInBounds() ?
+    GetElementPtrInst::CreateInBounds(Base, FixedOperands.begin()+1,
+                                      FixedOperands.end()) :
+    GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
+                              FixedOperands.end());
+}
+
+
+/// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
+/// sink the load out of the block that defines it.  This means that it must be
+/// obvious the value of the load is not changed from the point of the load to
+/// the end of the block it is in.
+///
+/// Finally, it is safe, but not profitable, to sink a load targetting a
+/// non-address-taken alloca.  Doing so will cause us to not promote the alloca
+/// to a register.
+static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
+  BasicBlock::iterator BBI = L, E = L->getParent()->end();
+  
+  for (++BBI; BBI != E; ++BBI)
+    if (BBI->mayWriteToMemory())
+      return false;
+  
+  // Check for non-address taken alloca.  If not address-taken already, it isn't
+  // profitable to do this xform.
+  if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
+    bool isAddressTaken = false;
+    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
+         UI != E; ++UI) {
+      if (isa<LoadInst>(UI)) continue;
+      if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
+        // If storing TO the alloca, then the address isn't taken.
+        if (SI->getOperand(1) == AI) continue;
+      }
+      isAddressTaken = true;
+      break;
+    }
+    
+    if (!isAddressTaken && AI->isStaticAlloca())
+      return false;
+  }
+  
+  // If this load is a load from a GEP with a constant offset from an alloca,
+  // then we don't want to sink it.  In its present form, it will be
+  // load [constant stack offset].  Sinking it will cause us to have to
+  // materialize the stack addresses in each predecessor in a register only to
+  // do a shared load from register in the successor.
+  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
+    if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
+      if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
+        return false;
+  
+  return true;
+}
+
+Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
+  LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
+  
+  // When processing loads, we need to propagate two bits of information to the
+  // sunk load: whether it is volatile, and what its alignment is.  We currently
+  // don't sink loads when some have their alignment specified and some don't.
+  // visitLoadInst will propagate an alignment onto the load when TD is around,
+  // and if TD isn't around, we can't handle the mixed case.
+  bool isVolatile = FirstLI->isVolatile();
+  unsigned LoadAlignment = FirstLI->getAlignment();
+  
+  // We can't sink the load if the loaded value could be modified between the
+  // load and the PHI.
+  if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
+      !isSafeAndProfitableToSinkLoad(FirstLI))
+    return 0;
+  
+  // If the PHI is of volatile loads and the load block has multiple
+  // successors, sinking it would remove a load of the volatile value from
+  // the path through the other successor.
+  if (isVolatile && 
+      FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
+    return 0;
+  
+  // Check to see if all arguments are the same operation.
+  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
+    LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
+    if (!LI || !LI->hasOneUse())
+      return 0;
+    
+    // We can't sink the load if the loaded value could be modified between 
+    // the load and the PHI.
+    if (LI->isVolatile() != isVolatile ||
+        LI->getParent() != PN.getIncomingBlock(i) ||
+        !isSafeAndProfitableToSinkLoad(LI))
+      return 0;
+      
+    // If some of the loads have an alignment specified but not all of them,
+    // we can't do the transformation.
+    if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
+      return 0;
+    
+    LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
+    
+    // If the PHI is of volatile loads and the load block has multiple
+    // successors, sinking it would remove a load of the volatile value from
+    // the path through the other successor.
+    if (isVolatile &&
+        LI->getParent()->getTerminator()->getNumSuccessors() != 1)
+      return 0;
+  }
+  
+  // Okay, they are all the same operation.  Create a new PHI node of the
+  // correct type, and PHI together all of the LHS's of the instructions.
+  PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
+                                   PN.getName()+".in");
+  NewPN->reserveOperandSpace(PN.getNumOperands()/2);
+  
+  Value *InVal = FirstLI->getOperand(0);
+  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
+  
+  // Add all operands to the new PHI.
+  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
+    Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0);
+    if (NewInVal != InVal)
+      InVal = 0;
+    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
+  }
+  
+  Value *PhiVal;
+  if (InVal) {
+    // The new PHI unions all of the same values together.  This is really
+    // common, so we handle it intelligently here for compile-time speed.
+    PhiVal = InVal;
+    delete NewPN;
+  } else {
+    InsertNewInstBefore(NewPN, PN);
+    PhiVal = NewPN;
+  }
+  
+  // If this was a volatile load that we are merging, make sure to loop through
+  // and mark all the input loads as non-volatile.  If we don't do this, we will
+  // insert a new volatile load and the old ones will not be deletable.
+  if (isVolatile)
+    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
+      cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
+  
+  return new LoadInst(PhiVal, "", isVolatile, LoadAlignment);
+}
+
+
+
+/// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
+/// operator and they all are only used by the PHI, PHI together their
+/// inputs, and do the operation once, to the result of the PHI.
+Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
+  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
+
+  if (isa<GetElementPtrInst>(FirstInst))
+    return FoldPHIArgGEPIntoPHI(PN);
+  if (isa<LoadInst>(FirstInst))
+    return FoldPHIArgLoadIntoPHI(PN);
+  
+  // Scan the instruction, looking for input operations that can be folded away.
+  // If all input operands to the phi are the same instruction (e.g. a cast from
+  // the same type or "+42") we can pull the operation through the PHI, reducing
+  // code size and simplifying code.
+  Constant *ConstantOp = 0;
+  const Type *CastSrcTy = 0;
+  
+  if (isa<CastInst>(FirstInst)) {
+    CastSrcTy = FirstInst->getOperand(0)->getType();
+
+    // Be careful about transforming integer PHIs.  We don't want to pessimize
+    // the code by turning an i32 into an i1293.
+    if (isa<IntegerType>(PN.getType()) && isa<IntegerType>(CastSrcTy)) {
+      if (!ShouldChangeType(PN.getType(), CastSrcTy))
+        return 0;
+    }
+  } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
+    // Can fold binop, compare or shift here if the RHS is a constant, 
+    // otherwise call FoldPHIArgBinOpIntoPHI.
+    ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
+    if (ConstantOp == 0)
+      return FoldPHIArgBinOpIntoPHI(PN);
+  } else {
+    return 0;  // Cannot fold this operation.
+  }
+
+  // Check to see if all arguments are the same operation.
+  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
+    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
+    if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
+      return 0;
+    if (CastSrcTy) {
+      if (I->getOperand(0)->getType() != CastSrcTy)
+        return 0;  // Cast operation must match.
+    } else if (I->getOperand(1) != ConstantOp) {
+      return 0;
+    }
+  }
+
+  // Okay, they are all the same operation.  Create a new PHI node of the
+  // correct type, and PHI together all of the LHS's of the instructions.
+  PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
+                                   PN.getName()+".in");
+  NewPN->reserveOperandSpace(PN.getNumOperands()/2);
+
+  Value *InVal = FirstInst->getOperand(0);
+  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
+
+  // Add all operands to the new PHI.
+  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
+    Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
+    if (NewInVal != InVal)
+      InVal = 0;
+    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
+  }
+
+  Value *PhiVal;
+  if (InVal) {
+    // The new PHI unions all of the same values together.  This is really
+    // common, so we handle it intelligently here for compile-time speed.
+    PhiVal = InVal;
+    delete NewPN;
+  } else {
+    InsertNewInstBefore(NewPN, PN);
+    PhiVal = NewPN;
+  }
+
+  // Insert and return the new operation.
+  if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst))
+    return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
+  
+  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
+    return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
+  
+  CmpInst *CIOp = cast<CmpInst>(FirstInst);
+  return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
+                         PhiVal, ConstantOp);
+}
+
+/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
+/// that is dead.
+static bool DeadPHICycle(PHINode *PN,
+                         SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
+  if (PN->use_empty()) return true;
+  if (!PN->hasOneUse()) return false;
+
+  // Remember this node, and if we find the cycle, return.
+  if (!PotentiallyDeadPHIs.insert(PN))
+    return true;
+  
+  // Don't scan crazily complex things.
+  if (PotentiallyDeadPHIs.size() == 16)
+    return false;
+
+  if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
+    return DeadPHICycle(PU, PotentiallyDeadPHIs);
+
+  return false;
+}
+
+/// PHIsEqualValue - Return true if this phi node is always equal to
+/// NonPhiInVal.  This happens with mutually cyclic phi nodes like:
+///   z = some value; x = phi (y, z); y = phi (x, z)
+static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, 
+                           SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
+  // See if we already saw this PHI node.
+  if (!ValueEqualPHIs.insert(PN))
+    return true;
+  
+  // Don't scan crazily complex things.
+  if (ValueEqualPHIs.size() == 16)
+    return false;
+ 
+  // Scan the operands to see if they are either phi nodes or are equal to
+  // the value.
+  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+    Value *Op = PN->getIncomingValue(i);
+    if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
+      if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
+        return false;
+    } else if (Op != NonPhiInVal)
+      return false;
+  }
+  
+  return true;
+}
+
+
+namespace {
+struct PHIUsageRecord {
+  unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
+  unsigned Shift;     // The amount shifted.
+  Instruction *Inst;  // The trunc instruction.
+  
+  PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
+    : PHIId(pn), Shift(Sh), Inst(User) {}
+  
+  bool operator<(const PHIUsageRecord &RHS) const {
+    if (PHIId < RHS.PHIId) return true;
+    if (PHIId > RHS.PHIId) return false;
+    if (Shift < RHS.Shift) return true;
+    if (Shift > RHS.Shift) return false;
+    return Inst->getType()->getPrimitiveSizeInBits() <
+           RHS.Inst->getType()->getPrimitiveSizeInBits();
+  }
+};
+  
+struct LoweredPHIRecord {
+  PHINode *PN;        // The PHI that was lowered.
+  unsigned Shift;     // The amount shifted.
+  unsigned Width;     // The width extracted.
+  
+  LoweredPHIRecord(PHINode *pn, unsigned Sh, const Type *Ty)
+    : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
+  
+  // Ctor form used by DenseMap.
+  LoweredPHIRecord(PHINode *pn, unsigned Sh)
+    : PN(pn), Shift(Sh), Width(0) {}
+};
+}
+
+namespace llvm {
+  template<>
+  struct DenseMapInfo<LoweredPHIRecord> {
+    static inline LoweredPHIRecord getEmptyKey() {
+      return LoweredPHIRecord(0, 0);
+    }
+    static inline LoweredPHIRecord getTombstoneKey() {
+      return LoweredPHIRecord(0, 1);
+    }
+    static unsigned getHashValue(const LoweredPHIRecord &Val) {
+      return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
+             (Val.Width>>3);
+    }
+    static bool isEqual(const LoweredPHIRecord &LHS,
+                        const LoweredPHIRecord &RHS) {
+      return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
+             LHS.Width == RHS.Width;
+    }
+  };
+  template <>
+  struct isPodLike<LoweredPHIRecord> { static const bool value = true; };
+}
+
+
+/// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
+/// illegal type: see if it is only used by trunc or trunc(lshr) operations.  If
+/// so, we split the PHI into the various pieces being extracted.  This sort of
+/// thing is introduced when SROA promotes an aggregate to large integer values.
+///
+/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
+/// inttoptr.  We should produce new PHIs in the right type.
+///
+Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
+  // PHIUsers - Keep track of all of the truncated values extracted from a set
+  // of PHIs, along with their offset.  These are the things we want to rewrite.
+  SmallVector<PHIUsageRecord, 16> PHIUsers;
+  
+  // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
+  // nodes which are extracted from. PHIsToSlice is a set we use to avoid
+  // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
+  // check the uses of (to ensure they are all extracts).
+  SmallVector<PHINode*, 8> PHIsToSlice;
+  SmallPtrSet<PHINode*, 8> PHIsInspected;
+  
+  PHIsToSlice.push_back(&FirstPhi);
+  PHIsInspected.insert(&FirstPhi);
+  
+  for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
+    PHINode *PN = PHIsToSlice[PHIId];
+    
+    // Scan the input list of the PHI.  If any input is an invoke, and if the
+    // input is defined in the predecessor, then we won't be split the critical
+    // edge which is required to insert a truncate.  Because of this, we have to
+    // bail out.
+    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+      InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
+      if (II == 0) continue;
+      if (II->getParent() != PN->getIncomingBlock(i))
+        continue;
+     
+      // If we have a phi, and if it's directly in the predecessor, then we have
+      // a critical edge where we need to put the truncate.  Since we can't
+      // split the edge in instcombine, we have to bail out.
+      return 0;
+    }
+      
+    
+    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
+         UI != E; ++UI) {
+      Instruction *User = cast<Instruction>(*UI);
+      
+      // If the user is a PHI, inspect its uses recursively.
+      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
+        if (PHIsInspected.insert(UserPN))
+          PHIsToSlice.push_back(UserPN);
+        continue;
+      }
+      
+      // Truncates are always ok.
+      if (isa<TruncInst>(User)) {
+        PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User));
+        continue;
+      }
+      
+      // Otherwise it must be a lshr which can only be used by one trunc.
+      if (User->getOpcode() != Instruction::LShr ||
+          !User->hasOneUse() || !isa<TruncInst>(User->use_back()) ||
+          !isa<ConstantInt>(User->getOperand(1)))
+        return 0;
+      
+      unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue();
+      PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back()));
+    }
+  }
+  
+  // If we have no users, they must be all self uses, just nuke the PHI.
+  if (PHIUsers.empty())
+    return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
+  
+  // If this phi node is transformable, create new PHIs for all the pieces
+  // extracted out of it.  First, sort the users by their offset and size.
+  array_pod_sort(PHIUsers.begin(), PHIUsers.end());
+  
+  DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n';
+            for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
+              errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n';
+        );
+  
+  // PredValues - This is a temporary used when rewriting PHI nodes.  It is
+  // hoisted out here to avoid construction/destruction thrashing.
+  DenseMap<BasicBlock*, Value*> PredValues;
+  
+  // ExtractedVals - Each new PHI we introduce is saved here so we don't
+  // introduce redundant PHIs.
+  DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
+  
+  for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
+    unsigned PHIId = PHIUsers[UserI].PHIId;
+    PHINode *PN = PHIsToSlice[PHIId];
+    unsigned Offset = PHIUsers[UserI].Shift;
+    const Type *Ty = PHIUsers[UserI].Inst->getType();
+    
+    PHINode *EltPHI;
+    
+    // If we've already lowered a user like this, reuse the previously lowered
+    // value.
+    if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) {
+      
+      // Otherwise, Create the new PHI node for this user.
+      EltPHI = PHINode::Create(Ty, PN->getName()+".off"+Twine(Offset), PN);
+      assert(EltPHI->getType() != PN->getType() &&
+             "Truncate didn't shrink phi?");
+    
+      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+        BasicBlock *Pred = PN->getIncomingBlock(i);
+        Value *&PredVal = PredValues[Pred];
+        
+        // If we already have a value for this predecessor, reuse it.
+        if (PredVal) {
+          EltPHI->addIncoming(PredVal, Pred);
+          continue;
+        }
+
+        // Handle the PHI self-reuse case.
+        Value *InVal = PN->getIncomingValue(i);
+        if (InVal == PN) {
+          PredVal = EltPHI;
+          EltPHI->addIncoming(PredVal, Pred);
+          continue;
+        }
+        
+        if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
+          // If the incoming value was a PHI, and if it was one of the PHIs we
+          // already rewrote it, just use the lowered value.
+          if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
+            PredVal = Res;
+            EltPHI->addIncoming(PredVal, Pred);
+            continue;
+          }
+        }
+        
+        // Otherwise, do an extract in the predecessor.
+        Builder->SetInsertPoint(Pred, Pred->getTerminator());
+        Value *Res = InVal;
+        if (Offset)
+          Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
+                                                          Offset), "extract");
+        Res = Builder->CreateTrunc(Res, Ty, "extract.t");
+        PredVal = Res;
+        EltPHI->addIncoming(Res, Pred);
+        
+        // If the incoming value was a PHI, and if it was one of the PHIs we are
+        // rewriting, we will ultimately delete the code we inserted.  This
+        // means we need to revisit that PHI to make sure we extract out the
+        // needed piece.
+        if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
+          if (PHIsInspected.count(OldInVal)) {
+            unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
+                                          OldInVal)-PHIsToSlice.begin();
+            PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset, 
+                                              cast<Instruction>(Res)));
+            ++UserE;
+          }
+      }
+      PredValues.clear();
+      
+      DEBUG(errs() << "  Made element PHI for offset " << Offset << ": "
+                   << *EltPHI << '\n');
+      ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
+    }
+    
+    // Replace the use of this piece with the PHI node.
+    ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
+  }
+  
+  // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
+  // with undefs.
+  Value *Undef = UndefValue::get(FirstPhi.getType());
+  for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
+    ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
+  return ReplaceInstUsesWith(FirstPhi, Undef);
+}
+
+// PHINode simplification
+//
+Instruction *InstCombiner::visitPHINode(PHINode &PN) {
+  // If LCSSA is around, don't mess with Phi nodes
+  if (MustPreserveLCSSA) return 0;
+  
+  if (Value *V = PN.hasConstantValue())
+    return ReplaceInstUsesWith(PN, V);
+
+  // If all PHI operands are the same operation, pull them through the PHI,
+  // reducing code size.
+  if (isa<Instruction>(PN.getIncomingValue(0)) &&
+      isa<Instruction>(PN.getIncomingValue(1)) &&
+      cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
+      cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
+      // FIXME: The hasOneUse check will fail for PHIs that use the value more
+      // than themselves more than once.
+      PN.getIncomingValue(0)->hasOneUse())
+    if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
+      return Result;
+
+  // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
+  // this PHI only has a single use (a PHI), and if that PHI only has one use (a
+  // PHI)... break the cycle.
+  if (PN.hasOneUse()) {
+    Instruction *PHIUser = cast<Instruction>(PN.use_back());
+    if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
+      SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
+      PotentiallyDeadPHIs.insert(&PN);
+      if (DeadPHICycle(PU, PotentiallyDeadPHIs))
+        return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
+    }
+   
+    // If this phi has a single use, and if that use just computes a value for
+    // the next iteration of a loop, delete the phi.  This occurs with unused
+    // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
+    // common case here is good because the only other things that catch this
+    // are induction variable analysis (sometimes) and ADCE, which is only run
+    // late.
+    if (PHIUser->hasOneUse() &&
+        (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
+        PHIUser->use_back() == &PN) {
+      return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
+    }
+  }
+
+  // We sometimes end up with phi cycles that non-obviously end up being the
+  // same value, for example:
+  //   z = some value; x = phi (y, z); y = phi (x, z)
+  // where the phi nodes don't necessarily need to be in the same block.  Do a
+  // quick check to see if the PHI node only contains a single non-phi value, if
+  // so, scan to see if the phi cycle is actually equal to that value.
+  {
+    unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
+    // Scan for the first non-phi operand.
+    while (InValNo != NumOperandVals && 
+           isa<PHINode>(PN.getIncomingValue(InValNo)))
+      ++InValNo;
+
+    if (InValNo != NumOperandVals) {
+      Value *NonPhiInVal = PN.getOperand(InValNo);
+      
+      // Scan the rest of the operands to see if there are any conflicts, if so
+      // there is no need to recursively scan other phis.
+      for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
+        Value *OpVal = PN.getIncomingValue(InValNo);
+        if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
+          break;
+      }
+      
+      // If we scanned over all operands, then we have one unique value plus
+      // phi values.  Scan PHI nodes to see if they all merge in each other or
+      // the value.
+      if (InValNo == NumOperandVals) {
+        SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
+        if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
+          return ReplaceInstUsesWith(PN, NonPhiInVal);
+      }
+    }
+  }
+
+  // If there are multiple PHIs, sort their operands so that they all list
+  // the blocks in the same order. This will help identical PHIs be eliminated
+  // by other passes. Other passes shouldn't depend on this for correctness
+  // however.
+  PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
+  if (&PN != FirstPN)
+    for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
+      BasicBlock *BBA = PN.getIncomingBlock(i);
+      BasicBlock *BBB = FirstPN->getIncomingBlock(i);
+      if (BBA != BBB) {
+        Value *VA = PN.getIncomingValue(i);
+        unsigned j = PN.getBasicBlockIndex(BBB);
+        Value *VB = PN.getIncomingValue(j);
+        PN.setIncomingBlock(i, BBB);
+        PN.setIncomingValue(i, VB);
+        PN.setIncomingBlock(j, BBA);
+        PN.setIncomingValue(j, VA);
+        // NOTE: Instcombine normally would want us to "return &PN" if we
+        // modified any of the operands of an instruction.  However, since we
+        // aren't adding or removing uses (just rearranging them) we don't do
+        // this in this case.
+      }
+    }
+
+  // If this is an integer PHI and we know that it has an illegal type, see if
+  // it is only used by trunc or trunc(lshr) operations.  If so, we split the
+  // PHI into the various pieces being extracted.  This sort of thing is
+  // introduced when SROA promotes an aggregate to a single large integer type.
+  if (isa<IntegerType>(PN.getType()) && TD &&
+      !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
+    if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
+      return Res;
+  
+  return 0;
+}
diff --git a/lib/Transforms/InstCombine/InstCombineSelect.cpp b/lib/Transforms/InstCombine/InstCombineSelect.cpp
new file mode 100644
index 0000000..18b2dff
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineSelect.cpp
@@ -0,0 +1,703 @@
+//===- InstCombineSelect.cpp ----------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitSelect function.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
+/// returning the kind and providing the out parameter results if we
+/// successfully match.
+static SelectPatternFlavor
+MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
+  SelectInst *SI = dyn_cast<SelectInst>(V);
+  if (SI == 0) return SPF_UNKNOWN;
+  
+  ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
+  if (ICI == 0) return SPF_UNKNOWN;
+  
+  LHS = ICI->getOperand(0);
+  RHS = ICI->getOperand(1);
+  
+  // (icmp X, Y) ? X : Y 
+  if (SI->getTrueValue() == ICI->getOperand(0) &&
+      SI->getFalseValue() == ICI->getOperand(1)) {
+    switch (ICI->getPredicate()) {
+    default: return SPF_UNKNOWN; // Equality.
+    case ICmpInst::ICMP_UGT:
+    case ICmpInst::ICMP_UGE: return SPF_UMAX;
+    case ICmpInst::ICMP_SGT:
+    case ICmpInst::ICMP_SGE: return SPF_SMAX;
+    case ICmpInst::ICMP_ULT:
+    case ICmpInst::ICMP_ULE: return SPF_UMIN;
+    case ICmpInst::ICMP_SLT:
+    case ICmpInst::ICMP_SLE: return SPF_SMIN;
+    }
+  }
+  
+  // (icmp X, Y) ? Y : X 
+  if (SI->getTrueValue() == ICI->getOperand(1) &&
+      SI->getFalseValue() == ICI->getOperand(0)) {
+    switch (ICI->getPredicate()) {
+      default: return SPF_UNKNOWN; // Equality.
+      case ICmpInst::ICMP_UGT:
+      case ICmpInst::ICMP_UGE: return SPF_UMIN;
+      case ICmpInst::ICMP_SGT:
+      case ICmpInst::ICMP_SGE: return SPF_SMIN;
+      case ICmpInst::ICMP_ULT:
+      case ICmpInst::ICMP_ULE: return SPF_UMAX;
+      case ICmpInst::ICMP_SLT:
+      case ICmpInst::ICMP_SLE: return SPF_SMAX;
+    }
+  }
+  
+  // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
+  
+  return SPF_UNKNOWN;
+}
+
+
+/// GetSelectFoldableOperands - We want to turn code that looks like this:
+///   %C = or %A, %B
+///   %D = select %cond, %C, %A
+/// into:
+///   %C = select %cond, %B, 0
+///   %D = or %A, %C
+///
+/// Assuming that the specified instruction is an operand to the select, return
+/// a bitmask indicating which operands of this instruction are foldable if they
+/// equal the other incoming value of the select.
+///
+static unsigned GetSelectFoldableOperands(Instruction *I) {
+  switch (I->getOpcode()) {
+  case Instruction::Add:
+  case Instruction::Mul:
+  case Instruction::And:
+  case Instruction::Or:
+  case Instruction::Xor:
+    return 3;              // Can fold through either operand.
+  case Instruction::Sub:   // Can only fold on the amount subtracted.
+  case Instruction::Shl:   // Can only fold on the shift amount.
+  case Instruction::LShr:
+  case Instruction::AShr:
+    return 1;
+  default:
+    return 0;              // Cannot fold
+  }
+}
+
+/// GetSelectFoldableConstant - For the same transformation as the previous
+/// function, return the identity constant that goes into the select.
+static Constant *GetSelectFoldableConstant(Instruction *I) {
+  switch (I->getOpcode()) {
+  default: llvm_unreachable("This cannot happen!");
+  case Instruction::Add:
+  case Instruction::Sub:
+  case Instruction::Or:
+  case Instruction::Xor:
+  case Instruction::Shl:
+  case Instruction::LShr:
+  case Instruction::AShr:
+    return Constant::getNullValue(I->getType());
+  case Instruction::And:
+    return Constant::getAllOnesValue(I->getType());
+  case Instruction::Mul:
+    return ConstantInt::get(I->getType(), 1);
+  }
+}
+
+/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
+/// have the same opcode and only one use each.  Try to simplify this.
+Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
+                                          Instruction *FI) {
+  if (TI->getNumOperands() == 1) {
+    // If this is a non-volatile load or a cast from the same type,
+    // merge.
+    if (TI->isCast()) {
+      if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
+        return 0;
+    } else {
+      return 0;  // unknown unary op.
+    }
+
+    // Fold this by inserting a select from the input values.
+    SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
+                                          FI->getOperand(0), SI.getName()+".v");
+    InsertNewInstBefore(NewSI, SI);
+    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 
+                            TI->getType());
+  }
+
+  // Only handle binary operators here.
+  if (!isa<BinaryOperator>(TI))
+    return 0;
+
+  // Figure out if the operations have any operands in common.
+  Value *MatchOp, *OtherOpT, *OtherOpF;
+  bool MatchIsOpZero;
+  if (TI->getOperand(0) == FI->getOperand(0)) {
+    MatchOp  = TI->getOperand(0);
+    OtherOpT = TI->getOperand(1);
+    OtherOpF = FI->getOperand(1);
+    MatchIsOpZero = true;
+  } else if (TI->getOperand(1) == FI->getOperand(1)) {
+    MatchOp  = TI->getOperand(1);
+    OtherOpT = TI->getOperand(0);
+    OtherOpF = FI->getOperand(0);
+    MatchIsOpZero = false;
+  } else if (!TI->isCommutative()) {
+    return 0;
+  } else if (TI->getOperand(0) == FI->getOperand(1)) {
+    MatchOp  = TI->getOperand(0);
+    OtherOpT = TI->getOperand(1);
+    OtherOpF = FI->getOperand(0);
+    MatchIsOpZero = true;
+  } else if (TI->getOperand(1) == FI->getOperand(0)) {
+    MatchOp  = TI->getOperand(1);
+    OtherOpT = TI->getOperand(0);
+    OtherOpF = FI->getOperand(1);
+    MatchIsOpZero = true;
+  } else {
+    return 0;
+  }
+
+  // If we reach here, they do have operations in common.
+  SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
+                                         OtherOpF, SI.getName()+".v");
+  InsertNewInstBefore(NewSI, SI);
+
+  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
+    if (MatchIsOpZero)
+      return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
+    else
+      return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
+  }
+  llvm_unreachable("Shouldn't get here");
+  return 0;
+}
+
+static bool isSelect01(Constant *C1, Constant *C2) {
+  ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
+  if (!C1I)
+    return false;
+  ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
+  if (!C2I)
+    return false;
+  return (C1I->isZero() || C1I->isOne()) && (C2I->isZero() || C2I->isOne());
+}
+
+/// FoldSelectIntoOp - Try fold the select into one of the operands to
+/// facilitate further optimization.
+Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
+                                            Value *FalseVal) {
+  // See the comment above GetSelectFoldableOperands for a description of the
+  // transformation we are doing here.
+  if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
+    if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
+        !isa<Constant>(FalseVal)) {
+      if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
+        unsigned OpToFold = 0;
+        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
+          OpToFold = 1;
+        } else  if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
+          OpToFold = 2;
+        }
+
+        if (OpToFold) {
+          Constant *C = GetSelectFoldableConstant(TVI);
+          Value *OOp = TVI->getOperand(2-OpToFold);
+          // Avoid creating select between 2 constants unless it's selecting
+          // between 0 and 1.
+          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
+            Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C);
+            InsertNewInstBefore(NewSel, SI);
+            NewSel->takeName(TVI);
+            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
+              return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
+            llvm_unreachable("Unknown instruction!!");
+          }
+        }
+      }
+    }
+  }
+
+  if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
+    if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
+        !isa<Constant>(TrueVal)) {
+      if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
+        unsigned OpToFold = 0;
+        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
+          OpToFold = 1;
+        } else  if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
+          OpToFold = 2;
+        }
+
+        if (OpToFold) {
+          Constant *C = GetSelectFoldableConstant(FVI);
+          Value *OOp = FVI->getOperand(2-OpToFold);
+          // Avoid creating select between 2 constants unless it's selecting
+          // between 0 and 1.
+          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
+            Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp);
+            InsertNewInstBefore(NewSel, SI);
+            NewSel->takeName(FVI);
+            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
+              return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
+            llvm_unreachable("Unknown instruction!!");
+          }
+        }
+      }
+    }
+  }
+
+  return 0;
+}
+
+/// visitSelectInstWithICmp - Visit a SelectInst that has an
+/// ICmpInst as its first operand.
+///
+Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
+                                                   ICmpInst *ICI) {
+  bool Changed = false;
+  ICmpInst::Predicate Pred = ICI->getPredicate();
+  Value *CmpLHS = ICI->getOperand(0);
+  Value *CmpRHS = ICI->getOperand(1);
+  Value *TrueVal = SI.getTrueValue();
+  Value *FalseVal = SI.getFalseValue();
+
+  // Check cases where the comparison is with a constant that
+  // can be adjusted to fit the min/max idiom. We may edit ICI in
+  // place here, so make sure the select is the only user.
+  if (ICI->hasOneUse())
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
+      switch (Pred) {
+      default: break;
+      case ICmpInst::ICMP_ULT:
+      case ICmpInst::ICMP_SLT: {
+        // X < MIN ? T : F  -->  F
+        if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
+          return ReplaceInstUsesWith(SI, FalseVal);
+        // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
+        Constant *AdjustedRHS =
+          ConstantInt::get(CI->getContext(), CI->getValue()-1);
+        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
+            (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
+          Pred = ICmpInst::getSwappedPredicate(Pred);
+          CmpRHS = AdjustedRHS;
+          std::swap(FalseVal, TrueVal);
+          ICI->setPredicate(Pred);
+          ICI->setOperand(1, CmpRHS);
+          SI.setOperand(1, TrueVal);
+          SI.setOperand(2, FalseVal);
+          Changed = true;
+        }
+        break;
+      }
+      case ICmpInst::ICMP_UGT:
+      case ICmpInst::ICMP_SGT: {
+        // X > MAX ? T : F  -->  F
+        if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
+          return ReplaceInstUsesWith(SI, FalseVal);
+        // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
+        Constant *AdjustedRHS =
+          ConstantInt::get(CI->getContext(), CI->getValue()+1);
+        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
+            (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
+          Pred = ICmpInst::getSwappedPredicate(Pred);
+          CmpRHS = AdjustedRHS;
+          std::swap(FalseVal, TrueVal);
+          ICI->setPredicate(Pred);
+          ICI->setOperand(1, CmpRHS);
+          SI.setOperand(1, TrueVal);
+          SI.setOperand(2, FalseVal);
+          Changed = true;
+        }
+        break;
+      }
+      }
+
+      // (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed
+      // (x >s -1) ? -1 : 0 -> ashr x, 31  -> all ones if not signed
+      CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
+      if (match(TrueVal, m_ConstantInt<-1>()) &&
+          match(FalseVal, m_ConstantInt<0>()))
+        Pred = ICI->getPredicate();
+      else if (match(TrueVal, m_ConstantInt<0>()) &&
+               match(FalseVal, m_ConstantInt<-1>()))
+        Pred = CmpInst::getInversePredicate(ICI->getPredicate());
+      
+      if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
+        // If we are just checking for a icmp eq of a single bit and zext'ing it
+        // to an integer, then shift the bit to the appropriate place and then
+        // cast to integer to avoid the comparison.
+        const APInt &Op1CV = CI->getValue();
+    
+        // sext (x <s  0) to i32 --> x>>s31      true if signbit set.
+        // sext (x >s -1) to i32 --> (x>>s31)^-1  true if signbit clear.
+        if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
+            (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
+          Value *In = ICI->getOperand(0);
+          Value *Sh = ConstantInt::get(In->getType(),
+                                       In->getType()->getScalarSizeInBits()-1);
+          In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
+                                                        In->getName()+".lobit"),
+                                   *ICI);
+          if (In->getType() != SI.getType())
+            In = CastInst::CreateIntegerCast(In, SI.getType(),
+                                             true/*SExt*/, "tmp", ICI);
+    
+          if (Pred == ICmpInst::ICMP_SGT)
+            In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
+                                       In->getName()+".not"), *ICI);
+    
+          return ReplaceInstUsesWith(SI, In);
+        }
+      }
+    }
+
+  if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
+    // Transform (X == Y) ? X : Y  -> Y
+    if (Pred == ICmpInst::ICMP_EQ)
+      return ReplaceInstUsesWith(SI, FalseVal);
+    // Transform (X != Y) ? X : Y  -> X
+    if (Pred == ICmpInst::ICMP_NE)
+      return ReplaceInstUsesWith(SI, TrueVal);
+    /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
+
+  } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
+    // Transform (X == Y) ? Y : X  -> X
+    if (Pred == ICmpInst::ICMP_EQ)
+      return ReplaceInstUsesWith(SI, FalseVal);
+    // Transform (X != Y) ? Y : X  -> Y
+    if (Pred == ICmpInst::ICMP_NE)
+      return ReplaceInstUsesWith(SI, TrueVal);
+    /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
+  }
+  return Changed ? &SI : 0;
+}
+
+
+/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
+/// PHI node (but the two may be in different blocks).  See if the true/false
+/// values (V) are live in all of the predecessor blocks of the PHI.  For
+/// example, cases like this cannot be mapped:
+///
+///   X = phi [ C1, BB1], [C2, BB2]
+///   Y = add
+///   Z = select X, Y, 0
+///
+/// because Y is not live in BB1/BB2.
+///
+static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
+                                                   const SelectInst &SI) {
+  // If the value is a non-instruction value like a constant or argument, it
+  // can always be mapped.
+  const Instruction *I = dyn_cast<Instruction>(V);
+  if (I == 0) return true;
+  
+  // If V is a PHI node defined in the same block as the condition PHI, we can
+  // map the arguments.
+  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
+  
+  if (const PHINode *VP = dyn_cast<PHINode>(I))
+    if (VP->getParent() == CondPHI->getParent())
+      return true;
+  
+  // Otherwise, if the PHI and select are defined in the same block and if V is
+  // defined in a different block, then we can transform it.
+  if (SI.getParent() == CondPHI->getParent() &&
+      I->getParent() != CondPHI->getParent())
+    return true;
+  
+  // Otherwise we have a 'hard' case and we can't tell without doing more
+  // detailed dominator based analysis, punt.
+  return false;
+}
+
+/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
+///   SPF2(SPF1(A, B), C) 
+Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
+                                        SelectPatternFlavor SPF1,
+                                        Value *A, Value *B,
+                                        Instruction &Outer,
+                                        SelectPatternFlavor SPF2, Value *C) {
+  if (C == A || C == B) {
+    // MAX(MAX(A, B), B) -> MAX(A, B)
+    // MIN(MIN(a, b), a) -> MIN(a, b)
+    if (SPF1 == SPF2)
+      return ReplaceInstUsesWith(Outer, Inner);
+    
+    // MAX(MIN(a, b), a) -> a
+    // MIN(MAX(a, b), a) -> a
+    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
+        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
+        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
+        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
+      return ReplaceInstUsesWith(Outer, C);
+  }
+  
+  // TODO: MIN(MIN(A, 23), 97)
+  return 0;
+}
+
+
+
+
+Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
+  Value *CondVal = SI.getCondition();
+  Value *TrueVal = SI.getTrueValue();
+  Value *FalseVal = SI.getFalseValue();
+
+  // select true, X, Y  -> X
+  // select false, X, Y -> Y
+  if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
+    return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
+
+  // select C, X, X -> X
+  if (TrueVal == FalseVal)
+    return ReplaceInstUsesWith(SI, TrueVal);
+
+  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
+    return ReplaceInstUsesWith(SI, FalseVal);
+  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
+    return ReplaceInstUsesWith(SI, TrueVal);
+  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
+    if (isa<Constant>(TrueVal))
+      return ReplaceInstUsesWith(SI, TrueVal);
+    else
+      return ReplaceInstUsesWith(SI, FalseVal);
+  }
+
+  if (SI.getType()->isInteger(1)) {
+    if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
+      if (C->getZExtValue()) {
+        // Change: A = select B, true, C --> A = or B, C
+        return BinaryOperator::CreateOr(CondVal, FalseVal);
+      } else {
+        // Change: A = select B, false, C --> A = and !B, C
+        Value *NotCond =
+          InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
+                                             "not."+CondVal->getName()), SI);
+        return BinaryOperator::CreateAnd(NotCond, FalseVal);
+      }
+    } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
+      if (C->getZExtValue() == false) {
+        // Change: A = select B, C, false --> A = and B, C
+        return BinaryOperator::CreateAnd(CondVal, TrueVal);
+      } else {
+        // Change: A = select B, C, true --> A = or !B, C
+        Value *NotCond =
+          InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
+                                             "not."+CondVal->getName()), SI);
+        return BinaryOperator::CreateOr(NotCond, TrueVal);
+      }
+    }
+    
+    // select a, b, a  -> a&b
+    // select a, a, b  -> a|b
+    if (CondVal == TrueVal)
+      return BinaryOperator::CreateOr(CondVal, FalseVal);
+    else if (CondVal == FalseVal)
+      return BinaryOperator::CreateAnd(CondVal, TrueVal);
+  }
+
+  // Selecting between two integer constants?
+  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
+    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
+      // select C, 1, 0 -> zext C to int
+      if (FalseValC->isZero() && TrueValC->getValue() == 1) {
+        return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
+      } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
+        // select C, 0, 1 -> zext !C to int
+        Value *NotCond =
+          InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
+                                               "not."+CondVal->getName()), SI);
+        return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
+      }
+
+      if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
+        // If one of the constants is zero (we know they can't both be) and we
+        // have an icmp instruction with zero, and we have an 'and' with the
+        // non-constant value, eliminate this whole mess.  This corresponds to
+        // cases like this: ((X & 27) ? 27 : 0)
+        if (TrueValC->isZero() || FalseValC->isZero())
+          if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
+              cast<Constant>(IC->getOperand(1))->isNullValue())
+            if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
+              if (ICA->getOpcode() == Instruction::And &&
+                  isa<ConstantInt>(ICA->getOperand(1)) &&
+                  (ICA->getOperand(1) == TrueValC ||
+                   ICA->getOperand(1) == FalseValC) &&
+               cast<ConstantInt>(ICA->getOperand(1))->getValue().isPowerOf2()) {
+                // Okay, now we know that everything is set up, we just don't
+                // know whether we have a icmp_ne or icmp_eq and whether the 
+                // true or false val is the zero.
+                bool ShouldNotVal = !TrueValC->isZero();
+                ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
+                Value *V = ICA;
+                if (ShouldNotVal)
+                  V = InsertNewInstBefore(BinaryOperator::Create(
+                                  Instruction::Xor, V, ICA->getOperand(1)), SI);
+                return ReplaceInstUsesWith(SI, V);
+              }
+      }
+    }
+
+  // See if we are selecting two values based on a comparison of the two values.
+  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
+    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
+      // Transform (X == Y) ? X : Y  -> Y
+      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
+        // This is not safe in general for floating point:  
+        // consider X== -0, Y== +0.
+        // It becomes safe if either operand is a nonzero constant.
+        ConstantFP *CFPt, *CFPf;
+        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
+              !CFPt->getValueAPF().isZero()) ||
+            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
+             !CFPf->getValueAPF().isZero()))
+        return ReplaceInstUsesWith(SI, FalseVal);
+      }
+      // Transform (X != Y) ? X : Y  -> X
+      if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
+        return ReplaceInstUsesWith(SI, TrueVal);
+      // NOTE: if we wanted to, this is where to detect MIN/MAX
+
+    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
+      // Transform (X == Y) ? Y : X  -> X
+      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
+        // This is not safe in general for floating point:  
+        // consider X== -0, Y== +0.
+        // It becomes safe if either operand is a nonzero constant.
+        ConstantFP *CFPt, *CFPf;
+        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
+              !CFPt->getValueAPF().isZero()) ||
+            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
+             !CFPf->getValueAPF().isZero()))
+          return ReplaceInstUsesWith(SI, FalseVal);
+      }
+      // Transform (X != Y) ? Y : X  -> Y
+      if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
+        return ReplaceInstUsesWith(SI, TrueVal);
+      // NOTE: if we wanted to, this is where to detect MIN/MAX
+    }
+    // NOTE: if we wanted to, this is where to detect ABS
+  }
+
+  // See if we are selecting two values based on a comparison of the two values.
+  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
+    if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
+      return Result;
+
+  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
+    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
+      if (TI->hasOneUse() && FI->hasOneUse()) {
+        Instruction *AddOp = 0, *SubOp = 0;
+
+        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
+        if (TI->getOpcode() == FI->getOpcode())
+          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
+            return IV;
+
+        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
+        // even legal for FP.
+        if ((TI->getOpcode() == Instruction::Sub &&
+             FI->getOpcode() == Instruction::Add) ||
+            (TI->getOpcode() == Instruction::FSub &&
+             FI->getOpcode() == Instruction::FAdd)) {
+          AddOp = FI; SubOp = TI;
+        } else if ((FI->getOpcode() == Instruction::Sub &&
+                    TI->getOpcode() == Instruction::Add) ||
+                   (FI->getOpcode() == Instruction::FSub &&
+                    TI->getOpcode() == Instruction::FAdd)) {
+          AddOp = TI; SubOp = FI;
+        }
+
+        if (AddOp) {
+          Value *OtherAddOp = 0;
+          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
+            OtherAddOp = AddOp->getOperand(1);
+          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
+            OtherAddOp = AddOp->getOperand(0);
+          }
+
+          if (OtherAddOp) {
+            // So at this point we know we have (Y -> OtherAddOp):
+            //        select C, (add X, Y), (sub X, Z)
+            Value *NegVal;  // Compute -Z
+            if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
+              NegVal = ConstantExpr::getNeg(C);
+            } else {
+              NegVal = InsertNewInstBefore(
+                    BinaryOperator::CreateNeg(SubOp->getOperand(1),
+                                              "tmp"), SI);
+            }
+
+            Value *NewTrueOp = OtherAddOp;
+            Value *NewFalseOp = NegVal;
+            if (AddOp != TI)
+              std::swap(NewTrueOp, NewFalseOp);
+            Instruction *NewSel =
+              SelectInst::Create(CondVal, NewTrueOp,
+                                 NewFalseOp, SI.getName() + ".p");
+
+            NewSel = InsertNewInstBefore(NewSel, SI);
+            return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
+          }
+        }
+      }
+
+  // See if we can fold the select into one of our operands.
+  if (SI.getType()->isInteger()) {
+    if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
+      return FoldI;
+    
+    // MAX(MAX(a, b), a) -> MAX(a, b)
+    // MIN(MIN(a, b), a) -> MIN(a, b)
+    // MAX(MIN(a, b), a) -> a
+    // MIN(MAX(a, b), a) -> a
+    Value *LHS, *RHS, *LHS2, *RHS2;
+    if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
+      if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
+        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 
+                                          SI, SPF, RHS))
+          return R;
+      if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
+        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
+                                          SI, SPF, LHS))
+          return R;
+    }
+
+    // TODO.
+    // ABS(-X) -> ABS(X)
+    // ABS(ABS(X)) -> ABS(X)
+  }
+
+  // See if we can fold the select into a phi node if the condition is a select.
+  if (isa<PHINode>(SI.getCondition())) 
+    // The true/false values have to be live in the PHI predecessor's blocks.
+    if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
+        CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
+      if (Instruction *NV = FoldOpIntoPhi(SI))
+        return NV;
+
+  if (BinaryOperator::isNot(CondVal)) {
+    SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
+    SI.setOperand(1, FalseVal);
+    SI.setOperand(2, TrueVal);
+    return &SI;
+  }
+
+  return 0;
+}
diff --git a/lib/Transforms/InstCombine/InstCombineShifts.cpp b/lib/Transforms/InstCombine/InstCombineShifts.cpp
new file mode 100644
index 0000000..fe91da1
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineShifts.cpp
@@ -0,0 +1,427 @@
+//===- InstCombineShifts.cpp ----------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitShl, visitLShr, and visitAShr functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
+  assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  // shl X, 0 == X and shr X, 0 == X
+  // shl 0, X == 0 and shr 0, X == 0
+  if (Op1 == Constant::getNullValue(Op1->getType()) ||
+      Op0 == Constant::getNullValue(Op0->getType()))
+    return ReplaceInstUsesWith(I, Op0);
+  
+  if (isa<UndefValue>(Op0)) {            
+    if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
+      return ReplaceInstUsesWith(I, Op0);
+    else                                    // undef << X -> 0, undef >>u X -> 0
+      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+  }
+  if (isa<UndefValue>(Op1)) {
+    if (I.getOpcode() == Instruction::AShr)  // X >>s undef -> X
+      return ReplaceInstUsesWith(I, Op0);          
+    else                                     // X << undef, X >>u undef -> 0
+      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+  }
+
+  // See if we can fold away this shift.
+  if (SimplifyDemandedInstructionBits(I))
+    return &I;
+
+  // Try to fold constant and into select arguments.
+  if (isa<Constant>(Op0))
+    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
+      if (Instruction *R = FoldOpIntoSelect(I, SI))
+        return R;
+
+  if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
+    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
+      return Res;
+  return 0;
+}
+
+Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
+                                               BinaryOperator &I) {
+  bool isLeftShift = I.getOpcode() == Instruction::Shl;
+
+  // See if we can simplify any instructions used by the instruction whose sole 
+  // purpose is to compute bits we don't care about.
+  uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
+  
+  // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
+  // a signed shift.
+  //
+  if (Op1->uge(TypeBits)) {
+    if (I.getOpcode() != Instruction::AShr)
+      return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
+    else {
+      I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
+      return &I;
+    }
+  }
+  
+  // ((X*C1) << C2) == (X * (C1 << C2))
+  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
+    if (BO->getOpcode() == Instruction::Mul && isLeftShift)
+      if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
+        return BinaryOperator::CreateMul(BO->getOperand(0),
+                                        ConstantExpr::getShl(BOOp, Op1));
+  
+  // Try to fold constant and into select arguments.
+  if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+    if (Instruction *R = FoldOpIntoSelect(I, SI))
+      return R;
+  if (isa<PHINode>(Op0))
+    if (Instruction *NV = FoldOpIntoPhi(I))
+      return NV;
+  
+  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
+  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
+    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
+    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
+    // place.  Don't try to do this transformation in this case.  Also, we
+    // require that the input operand is a shift-by-constant so that we have
+    // confidence that the shifts will get folded together.  We could do this
+    // xform in more cases, but it is unlikely to be profitable.
+    if (TrOp && I.isLogicalShift() && TrOp->isShift() && 
+        isa<ConstantInt>(TrOp->getOperand(1))) {
+      // Okay, we'll do this xform.  Make the shift of shift.
+      Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
+      // (shift2 (shift1 & 0x00FF), c2)
+      Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
+
+      // For logical shifts, the truncation has the effect of making the high
+      // part of the register be zeros.  Emulate this by inserting an AND to
+      // clear the top bits as needed.  This 'and' will usually be zapped by
+      // other xforms later if dead.
+      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
+      unsigned DstSize = TI->getType()->getScalarSizeInBits();
+      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
+      
+      // The mask we constructed says what the trunc would do if occurring
+      // between the shifts.  We want to know the effect *after* the second
+      // shift.  We know that it is a logical shift by a constant, so adjust the
+      // mask as appropriate.
+      if (I.getOpcode() == Instruction::Shl)
+        MaskV <<= Op1->getZExtValue();
+      else {
+        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
+        MaskV = MaskV.lshr(Op1->getZExtValue());
+      }
+
+      // shift1 & 0x00FF
+      Value *And = Builder->CreateAnd(NSh,
+                                      ConstantInt::get(I.getContext(), MaskV),
+                                      TI->getName());
+
+      // Return the value truncated to the interesting size.
+      return new TruncInst(And, I.getType());
+    }
+  }
+  
+  if (Op0->hasOneUse()) {
+    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
+      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
+      Value *V1, *V2;
+      ConstantInt *CC;
+      switch (Op0BO->getOpcode()) {
+      default: break;
+      case Instruction::Add:
+      case Instruction::And:
+      case Instruction::Or:
+      case Instruction::Xor: {
+        // These operators commute.
+        // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
+        if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
+            match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
+                  m_Specific(Op1)))) {
+          Value *YS =         // (Y << C)
+            Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
+          // (X + (Y << C))
+          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
+                                          Op0BO->getOperand(1)->getName());
+          uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
+          return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
+                     APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
+        }
+        
+        // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
+        Value *Op0BOOp1 = Op0BO->getOperand(1);
+        if (isLeftShift && Op0BOOp1->hasOneUse() &&
+            match(Op0BOOp1, 
+                  m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
+                        m_ConstantInt(CC))) &&
+            cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
+          Value *YS =   // (Y << C)
+            Builder->CreateShl(Op0BO->getOperand(0), Op1,
+                                         Op0BO->getName());
+          // X & (CC << C)
+          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
+                                         V1->getName()+".mask");
+          return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
+        }
+      }
+        
+      // FALL THROUGH.
+      case Instruction::Sub: {
+        // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
+        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
+            match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
+                  m_Specific(Op1)))) {
+          Value *YS =  // (Y << C)
+            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
+          // (X + (Y << C))
+          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
+                                          Op0BO->getOperand(0)->getName());
+          uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
+          return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
+                     APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
+        }
+        
+        // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
+        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
+            match(Op0BO->getOperand(0),
+                  m_And(m_Shr(m_Value(V1), m_Value(V2)),
+                        m_ConstantInt(CC))) && V2 == Op1 &&
+            cast<BinaryOperator>(Op0BO->getOperand(0))
+                ->getOperand(0)->hasOneUse()) {
+          Value *YS = // (Y << C)
+            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
+          // X & (CC << C)
+          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
+                                         V1->getName()+".mask");
+          
+          return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
+        }
+        
+        break;
+      }
+      }
+      
+      
+      // If the operand is an bitwise operator with a constant RHS, and the
+      // shift is the only use, we can pull it out of the shift.
+      if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
+        bool isValid = true;     // Valid only for And, Or, Xor
+        bool highBitSet = false; // Transform if high bit of constant set?
+        
+        switch (Op0BO->getOpcode()) {
+        default: isValid = false; break;   // Do not perform transform!
+        case Instruction::Add:
+          isValid = isLeftShift;
+          break;
+        case Instruction::Or:
+        case Instruction::Xor:
+          highBitSet = false;
+          break;
+        case Instruction::And:
+          highBitSet = true;
+          break;
+        }
+        
+        // If this is a signed shift right, and the high bit is modified
+        // by the logical operation, do not perform the transformation.
+        // The highBitSet boolean indicates the value of the high bit of
+        // the constant which would cause it to be modified for this
+        // operation.
+        //
+        if (isValid && I.getOpcode() == Instruction::AShr)
+          isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
+        
+        if (isValid) {
+          Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
+          
+          Value *NewShift =
+            Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
+          NewShift->takeName(Op0BO);
+          
+          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
+                                        NewRHS);
+        }
+      }
+    }
+  }
+  
+  // Find out if this is a shift of a shift by a constant.
+  BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
+  if (ShiftOp && !ShiftOp->isShift())
+    ShiftOp = 0;
+  
+  if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
+    ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
+    uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
+    uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
+    assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
+    if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future.
+    Value *X = ShiftOp->getOperand(0);
+    
+    uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
+    
+    const IntegerType *Ty = cast<IntegerType>(I.getType());
+    
+    // Check for (X << c1) << c2  and  (X >> c1) >> c2
+    if (I.getOpcode() == ShiftOp->getOpcode()) {
+      // If this is oversized composite shift, then unsigned shifts get 0, ashr
+      // saturates.
+      if (AmtSum >= TypeBits) {
+        if (I.getOpcode() != Instruction::AShr)
+          return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+        AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
+      }
+      
+      return BinaryOperator::Create(I.getOpcode(), X,
+                                    ConstantInt::get(Ty, AmtSum));
+    }
+    
+    if (ShiftOp->getOpcode() == Instruction::LShr &&
+        I.getOpcode() == Instruction::AShr) {
+      if (AmtSum >= TypeBits)
+        return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+      
+      // ((X >>u C1) >>s C2) -> (X >>u (C1+C2))  since C1 != 0.
+      return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
+    }
+    
+    if (ShiftOp->getOpcode() == Instruction::AShr &&
+        I.getOpcode() == Instruction::LShr) {
+      // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
+      if (AmtSum >= TypeBits)
+        AmtSum = TypeBits-1;
+      
+      Value *Shift = Builder->CreateAShr(X, ConstantInt::get(Ty, AmtSum));
+
+      APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
+      return BinaryOperator::CreateAnd(Shift,
+                                       ConstantInt::get(I.getContext(), Mask));
+    }
+    
+    // Okay, if we get here, one shift must be left, and the other shift must be
+    // right.  See if the amounts are equal.
+    if (ShiftAmt1 == ShiftAmt2) {
+      // If we have ((X >>? C) << C), turn this into X & (-1 << C).
+      if (I.getOpcode() == Instruction::Shl) {
+        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
+        return BinaryOperator::CreateAnd(X,
+                                         ConstantInt::get(I.getContext(),Mask));
+      }
+      // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
+      if (I.getOpcode() == Instruction::LShr) {
+        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
+        return BinaryOperator::CreateAnd(X,
+                                        ConstantInt::get(I.getContext(), Mask));
+      }
+    } else if (ShiftAmt1 < ShiftAmt2) {
+      uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
+      
+      // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
+      if (I.getOpcode() == Instruction::Shl) {
+        assert(ShiftOp->getOpcode() == Instruction::LShr ||
+               ShiftOp->getOpcode() == Instruction::AShr);
+        Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
+        
+        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
+        return BinaryOperator::CreateAnd(Shift,
+                                         ConstantInt::get(I.getContext(),Mask));
+      }
+      
+      // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
+      if (I.getOpcode() == Instruction::LShr) {
+        assert(ShiftOp->getOpcode() == Instruction::Shl);
+        Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
+        
+        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
+        return BinaryOperator::CreateAnd(Shift,
+                                         ConstantInt::get(I.getContext(),Mask));
+      }
+      
+      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
+    } else {
+      assert(ShiftAmt2 < ShiftAmt1);
+      uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
+
+      // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
+      if (I.getOpcode() == Instruction::Shl) {
+        assert(ShiftOp->getOpcode() == Instruction::LShr ||
+               ShiftOp->getOpcode() == Instruction::AShr);
+        Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X,
+                                            ConstantInt::get(Ty, ShiftDiff));
+        
+        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
+        return BinaryOperator::CreateAnd(Shift,
+                                         ConstantInt::get(I.getContext(),Mask));
+      }
+      
+      // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
+      if (I.getOpcode() == Instruction::LShr) {
+        assert(ShiftOp->getOpcode() == Instruction::Shl);
+        Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
+        
+        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
+        return BinaryOperator::CreateAnd(Shift,
+                                         ConstantInt::get(I.getContext(),Mask));
+      }
+      
+      // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
+    }
+  }
+  return 0;
+}
+
+Instruction *InstCombiner::visitShl(BinaryOperator &I) {
+  return commonShiftTransforms(I);
+}
+
+Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
+  return commonShiftTransforms(I);
+}
+
+Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
+  if (Instruction *R = commonShiftTransforms(I))
+    return R;
+  
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+  
+  if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) {
+    // ashr int -1, X = -1   (for any arithmetic shift rights of ~0)
+    if (CSI->isAllOnesValue())
+      return ReplaceInstUsesWith(I, CSI);
+  }
+  
+  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+    // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
+    // have a sign-extend idiom.  If the input value is known to already be sign
+    // extended enough, delete the extension.
+    Value *X;
+    if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
+        ComputeNumSignBits(X) > Op1C->getZExtValue())
+      return ReplaceInstUsesWith(I, X);
+  }            
+  
+  // See if we can turn a signed shr into an unsigned shr.
+  if (MaskedValueIsZero(Op0,
+                        APInt::getSignBit(I.getType()->getScalarSizeInBits())))
+    return BinaryOperator::CreateLShr(Op0, Op1);
+  
+  // Arithmetic shifting an all-sign-bit value is a no-op.
+  unsigned NumSignBits = ComputeNumSignBits(Op0);
+  if (NumSignBits == Op0->getType()->getScalarSizeInBits())
+    return ReplaceInstUsesWith(I, Op0);
+  
+  return 0;
+}
+
diff --git a/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
new file mode 100644
index 0000000..74a1b68
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
@@ -0,0 +1,1106 @@
+//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains logic for simplifying instructions based on information
+// about how they are used.
+//
+//===----------------------------------------------------------------------===//
+
+
+#include "InstCombine.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/IntrinsicInst.h"
+
+using namespace llvm;
+
+
+/// ShrinkDemandedConstant - Check to see if the specified operand of the 
+/// specified instruction is a constant integer.  If so, check to see if there
+/// are any bits set in the constant that are not demanded.  If so, shrink the
+/// constant and return true.
+static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 
+                                   APInt Demanded) {
+  assert(I && "No instruction?");
+  assert(OpNo < I->getNumOperands() && "Operand index too large");
+
+  // If the operand is not a constant integer, nothing to do.
+  ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
+  if (!OpC) return false;
+
+  // If there are no bits set that aren't demanded, nothing to do.
+  Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
+  if ((~Demanded & OpC->getValue()) == 0)
+    return false;
+
+  // This instruction is producing bits that are not demanded. Shrink the RHS.
+  Demanded &= OpC->getValue();
+  I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
+  return true;
+}
+
+
+
+/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
+/// SimplifyDemandedBits knows about.  See if the instruction has any
+/// properties that allow us to simplify its operands.
+bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
+  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
+  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
+  
+  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, 
+                                     KnownZero, KnownOne, 0);
+  if (V == 0) return false;
+  if (V == &Inst) return true;
+  ReplaceInstUsesWith(Inst, V);
+  return true;
+}
+
+/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
+/// specified instruction operand if possible, updating it in place.  It returns
+/// true if it made any change and false otherwise.
+bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, 
+                                        APInt &KnownZero, APInt &KnownOne,
+                                        unsigned Depth) {
+  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
+                                          KnownZero, KnownOne, Depth);
+  if (NewVal == 0) return false;
+  U = NewVal;
+  return true;
+}
+
+
+/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
+/// value based on the demanded bits.  When this function is called, it is known
+/// that only the bits set in DemandedMask of the result of V are ever used
+/// downstream. Consequently, depending on the mask and V, it may be possible
+/// to replace V with a constant or one of its operands. In such cases, this
+/// function does the replacement and returns true. In all other cases, it
+/// returns false after analyzing the expression and setting KnownOne and known
+/// to be one in the expression.  KnownZero contains all the bits that are known
+/// to be zero in the expression. These are provided to potentially allow the
+/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
+/// the expression. KnownOne and KnownZero always follow the invariant that 
+/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
+/// the bits in KnownOne and KnownZero may only be accurate for those bits set
+/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
+/// and KnownOne must all be the same.
+///
+/// This returns null if it did not change anything and it permits no
+/// simplification.  This returns V itself if it did some simplification of V's
+/// operands based on the information about what bits are demanded. This returns
+/// some other non-null value if it found out that V is equal to another value
+/// in the context where the specified bits are demanded, but not for all users.
+Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
+                                             APInt &KnownZero, APInt &KnownOne,
+                                             unsigned Depth) {
+  assert(V != 0 && "Null pointer of Value???");
+  assert(Depth <= 6 && "Limit Search Depth");
+  uint32_t BitWidth = DemandedMask.getBitWidth();
+  const Type *VTy = V->getType();
+  assert((TD || !isa<PointerType>(VTy)) &&
+         "SimplifyDemandedBits needs to know bit widths!");
+  assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
+         (!VTy->isIntOrIntVector() ||
+          VTy->getScalarSizeInBits() == BitWidth) &&
+         KnownZero.getBitWidth() == BitWidth &&
+         KnownOne.getBitWidth() == BitWidth &&
+         "Value *V, DemandedMask, KnownZero and KnownOne "
+         "must have same BitWidth");
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+    // We know all of the bits for a constant!
+    KnownOne = CI->getValue() & DemandedMask;
+    KnownZero = ~KnownOne & DemandedMask;
+    return 0;
+  }
+  if (isa<ConstantPointerNull>(V)) {
+    // We know all of the bits for a constant!
+    KnownOne.clear();
+    KnownZero = DemandedMask;
+    return 0;
+  }
+
+  KnownZero.clear();
+  KnownOne.clear();
+  if (DemandedMask == 0) {   // Not demanding any bits from V.
+    if (isa<UndefValue>(V))
+      return 0;
+    return UndefValue::get(VTy);
+  }
+  
+  if (Depth == 6)        // Limit search depth.
+    return 0;
+  
+  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
+  APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
+
+  Instruction *I = dyn_cast<Instruction>(V);
+  if (!I) {
+    ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
+    return 0;        // Only analyze instructions.
+  }
+
+  // If there are multiple uses of this value and we aren't at the root, then
+  // we can't do any simplifications of the operands, because DemandedMask
+  // only reflects the bits demanded by *one* of the users.
+  if (Depth != 0 && !I->hasOneUse()) {
+    // Despite the fact that we can't simplify this instruction in all User's
+    // context, we can at least compute the knownzero/knownone bits, and we can
+    // do simplifications that apply to *just* the one user if we know that
+    // this instruction has a simpler value in that context.
+    if (I->getOpcode() == Instruction::And) {
+      // If either the LHS or the RHS are Zero, the result is zero.
+      ComputeMaskedBits(I->getOperand(1), DemandedMask,
+                        RHSKnownZero, RHSKnownOne, Depth+1);
+      ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
+                        LHSKnownZero, LHSKnownOne, Depth+1);
+      
+      // If all of the demanded bits are known 1 on one side, return the other.
+      // These bits cannot contribute to the result of the 'and' in this
+      // context.
+      if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 
+          (DemandedMask & ~LHSKnownZero))
+        return I->getOperand(0);
+      if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 
+          (DemandedMask & ~RHSKnownZero))
+        return I->getOperand(1);
+      
+      // If all of the demanded bits in the inputs are known zeros, return zero.
+      if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
+        return Constant::getNullValue(VTy);
+      
+    } else if (I->getOpcode() == Instruction::Or) {
+      // We can simplify (X|Y) -> X or Y in the user's context if we know that
+      // only bits from X or Y are demanded.
+      
+      // If either the LHS or the RHS are One, the result is One.
+      ComputeMaskedBits(I->getOperand(1), DemandedMask, 
+                        RHSKnownZero, RHSKnownOne, Depth+1);
+      ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne, 
+                        LHSKnownZero, LHSKnownOne, Depth+1);
+      
+      // If all of the demanded bits are known zero on one side, return the
+      // other.  These bits cannot contribute to the result of the 'or' in this
+      // context.
+      if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 
+          (DemandedMask & ~LHSKnownOne))
+        return I->getOperand(0);
+      if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 
+          (DemandedMask & ~RHSKnownOne))
+        return I->getOperand(1);
+      
+      // If all of the potentially set bits on one side are known to be set on
+      // the other side, just use the 'other' side.
+      if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 
+          (DemandedMask & (~RHSKnownZero)))
+        return I->getOperand(0);
+      if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 
+          (DemandedMask & (~LHSKnownZero)))
+        return I->getOperand(1);
+    }
+    
+    // Compute the KnownZero/KnownOne bits to simplify things downstream.
+    ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
+    return 0;
+  }
+  
+  // If this is the root being simplified, allow it to have multiple uses,
+  // just set the DemandedMask to all bits so that we can try to simplify the
+  // operands.  This allows visitTruncInst (for example) to simplify the
+  // operand of a trunc without duplicating all the logic below.
+  if (Depth == 0 && !V->hasOneUse())
+    DemandedMask = APInt::getAllOnesValue(BitWidth);
+  
+  switch (I->getOpcode()) {
+  default:
+    ComputeMaskedBits(I, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
+    break;
+  case Instruction::And:
+    // If either the LHS or the RHS are Zero, the result is zero.
+    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
+                             RHSKnownZero, RHSKnownOne, Depth+1) ||
+        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
+                             LHSKnownZero, LHSKnownOne, Depth+1))
+      return I;
+    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
+    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 
+
+    // If all of the demanded bits are known 1 on one side, return the other.
+    // These bits cannot contribute to the result of the 'and'.
+    if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 
+        (DemandedMask & ~LHSKnownZero))
+      return I->getOperand(0);
+    if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 
+        (DemandedMask & ~RHSKnownZero))
+      return I->getOperand(1);
+    
+    // If all of the demanded bits in the inputs are known zeros, return zero.
+    if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
+      return Constant::getNullValue(VTy);
+      
+    // If the RHS is a constant, see if we can simplify it.
+    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
+      return I;
+      
+    // Output known-1 bits are only known if set in both the LHS & RHS.
+    RHSKnownOne &= LHSKnownOne;
+    // Output known-0 are known to be clear if zero in either the LHS | RHS.
+    RHSKnownZero |= LHSKnownZero;
+    break;
+  case Instruction::Or:
+    // If either the LHS or the RHS are One, the result is One.
+    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 
+                             RHSKnownZero, RHSKnownOne, Depth+1) ||
+        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, 
+                             LHSKnownZero, LHSKnownOne, Depth+1))
+      return I;
+    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
+    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 
+    
+    // If all of the demanded bits are known zero on one side, return the other.
+    // These bits cannot contribute to the result of the 'or'.
+    if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 
+        (DemandedMask & ~LHSKnownOne))
+      return I->getOperand(0);
+    if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 
+        (DemandedMask & ~RHSKnownOne))
+      return I->getOperand(1);
+
+    // If all of the potentially set bits on one side are known to be set on
+    // the other side, just use the 'other' side.
+    if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 
+        (DemandedMask & (~RHSKnownZero)))
+      return I->getOperand(0);
+    if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 
+        (DemandedMask & (~LHSKnownZero)))
+      return I->getOperand(1);
+        
+    // If the RHS is a constant, see if we can simplify it.
+    if (ShrinkDemandedConstant(I, 1, DemandedMask))
+      return I;
+          
+    // Output known-0 bits are only known if clear in both the LHS & RHS.
+    RHSKnownZero &= LHSKnownZero;
+    // Output known-1 are known to be set if set in either the LHS | RHS.
+    RHSKnownOne |= LHSKnownOne;
+    break;
+  case Instruction::Xor: {
+    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
+                             RHSKnownZero, RHSKnownOne, Depth+1) ||
+        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 
+                             LHSKnownZero, LHSKnownOne, Depth+1))
+      return I;
+    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
+    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 
+    
+    // If all of the demanded bits are known zero on one side, return the other.
+    // These bits cannot contribute to the result of the 'xor'.
+    if ((DemandedMask & RHSKnownZero) == DemandedMask)
+      return I->getOperand(0);
+    if ((DemandedMask & LHSKnownZero) == DemandedMask)
+      return I->getOperand(1);
+    
+    // Output known-0 bits are known if clear or set in both the LHS & RHS.
+    APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) | 
+                         (RHSKnownOne & LHSKnownOne);
+    // Output known-1 are known to be set if set in only one of the LHS, RHS.
+    APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) | 
+                        (RHSKnownOne & LHSKnownZero);
+    
+    // If all of the demanded bits are known to be zero on one side or the
+    // other, turn this into an *inclusive* or.
+    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
+    if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
+      Instruction *Or = 
+        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
+                                 I->getName());
+      return InsertNewInstBefore(Or, *I);
+    }
+    
+    // If all of the demanded bits on one side are known, and all of the set
+    // bits on that side are also known to be set on the other side, turn this
+    // into an AND, as we know the bits will be cleared.
+    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
+    if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { 
+      // all known
+      if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
+        Constant *AndC = Constant::getIntegerValue(VTy,
+                                                   ~RHSKnownOne & DemandedMask);
+        Instruction *And = 
+          BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
+        return InsertNewInstBefore(And, *I);
+      }
+    }
+    
+    // If the RHS is a constant, see if we can simplify it.
+    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
+    if (ShrinkDemandedConstant(I, 1, DemandedMask))
+      return I;
+    
+    // If our LHS is an 'and' and if it has one use, and if any of the bits we
+    // are flipping are known to be set, then the xor is just resetting those
+    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
+    // simplifying both of them.
+    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
+      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
+          isa<ConstantInt>(I->getOperand(1)) &&
+          isa<ConstantInt>(LHSInst->getOperand(1)) &&
+          (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
+        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
+        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
+        APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
+        
+        Constant *AndC =
+          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
+        Instruction *NewAnd = 
+          BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
+        InsertNewInstBefore(NewAnd, *I);
+        
+        Constant *XorC =
+          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
+        Instruction *NewXor =
+          BinaryOperator::CreateXor(NewAnd, XorC, "tmp");
+        return InsertNewInstBefore(NewXor, *I);
+      }
+          
+          
+    RHSKnownZero = KnownZeroOut;
+    RHSKnownOne  = KnownOneOut;
+    break;
+  }
+  case Instruction::Select:
+    if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
+                             RHSKnownZero, RHSKnownOne, Depth+1) ||
+        SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 
+                             LHSKnownZero, LHSKnownOne, Depth+1))
+      return I;
+    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
+    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 
+    
+    // If the operands are constants, see if we can simplify them.
+    if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
+        ShrinkDemandedConstant(I, 2, DemandedMask))
+      return I;
+    
+    // Only known if known in both the LHS and RHS.
+    RHSKnownOne &= LHSKnownOne;
+    RHSKnownZero &= LHSKnownZero;
+    break;
+  case Instruction::Trunc: {
+    unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
+    DemandedMask.zext(truncBf);
+    RHSKnownZero.zext(truncBf);
+    RHSKnownOne.zext(truncBf);
+    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 
+                             RHSKnownZero, RHSKnownOne, Depth+1))
+      return I;
+    DemandedMask.trunc(BitWidth);
+    RHSKnownZero.trunc(BitWidth);
+    RHSKnownOne.trunc(BitWidth);
+    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
+    break;
+  }
+  case Instruction::BitCast:
+    if (!I->getOperand(0)->getType()->isIntOrIntVector())
+      return false;  // vector->int or fp->int?
+
+    if (const VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
+      if (const VectorType *SrcVTy =
+            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
+        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
+          // Don't touch a bitcast between vectors of different element counts.
+          return false;
+      } else
+        // Don't touch a scalar-to-vector bitcast.
+        return false;
+    } else if (isa<VectorType>(I->getOperand(0)->getType()))
+      // Don't touch a vector-to-scalar bitcast.
+      return false;
+
+    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
+                             RHSKnownZero, RHSKnownOne, Depth+1))
+      return I;
+    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
+    break;
+  case Instruction::ZExt: {
+    // Compute the bits in the result that are not present in the input.
+    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
+    
+    DemandedMask.trunc(SrcBitWidth);
+    RHSKnownZero.trunc(SrcBitWidth);
+    RHSKnownOne.trunc(SrcBitWidth);
+    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
+                             RHSKnownZero, RHSKnownOne, Depth+1))
+      return I;
+    DemandedMask.zext(BitWidth);
+    RHSKnownZero.zext(BitWidth);
+    RHSKnownOne.zext(BitWidth);
+    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
+    // The top bits are known to be zero.
+    RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
+    break;
+  }
+  case Instruction::SExt: {
+    // Compute the bits in the result that are not present in the input.
+    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
+    
+    APInt InputDemandedBits = DemandedMask & 
+                              APInt::getLowBitsSet(BitWidth, SrcBitWidth);
+
+    APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
+    // If any of the sign extended bits are demanded, we know that the sign
+    // bit is demanded.
+    if ((NewBits & DemandedMask) != 0)
+      InputDemandedBits.set(SrcBitWidth-1);
+      
+    InputDemandedBits.trunc(SrcBitWidth);
+    RHSKnownZero.trunc(SrcBitWidth);
+    RHSKnownOne.trunc(SrcBitWidth);
+    if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
+                             RHSKnownZero, RHSKnownOne, Depth+1))
+      return I;
+    InputDemandedBits.zext(BitWidth);
+    RHSKnownZero.zext(BitWidth);
+    RHSKnownOne.zext(BitWidth);
+    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
+      
+    // If the sign bit of the input is known set or clear, then we know the
+    // top bits of the result.
+
+    // If the input sign bit is known zero, or if the NewBits are not demanded
+    // convert this into a zero extension.
+    if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
+      // Convert to ZExt cast
+      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
+      return InsertNewInstBefore(NewCast, *I);
+    } else if (RHSKnownOne[SrcBitWidth-1]) {    // Input sign bit known set
+      RHSKnownOne |= NewBits;
+    }
+    break;
+  }
+  case Instruction::Add: {
+    // Figure out what the input bits are.  If the top bits of the and result
+    // are not demanded, then the add doesn't demand them from its input
+    // either.
+    unsigned NLZ = DemandedMask.countLeadingZeros();
+      
+    // If there is a constant on the RHS, there are a variety of xformations
+    // we can do.
+    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
+      // If null, this should be simplified elsewhere.  Some of the xforms here
+      // won't work if the RHS is zero.
+      if (RHS->isZero())
+        break;
+      
+      // If the top bit of the output is demanded, demand everything from the
+      // input.  Otherwise, we demand all the input bits except NLZ top bits.
+      APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
+
+      // Find information about known zero/one bits in the input.
+      if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, 
+                               LHSKnownZero, LHSKnownOne, Depth+1))
+        return I;
+
+      // If the RHS of the add has bits set that can't affect the input, reduce
+      // the constant.
+      if (ShrinkDemandedConstant(I, 1, InDemandedBits))
+        return I;
+      
+      // Avoid excess work.
+      if (LHSKnownZero == 0 && LHSKnownOne == 0)
+        break;
+      
+      // Turn it into OR if input bits are zero.
+      if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
+        Instruction *Or =
+          BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
+                                   I->getName());
+        return InsertNewInstBefore(Or, *I);
+      }
+      
+      // We can say something about the output known-zero and known-one bits,
+      // depending on potential carries from the input constant and the
+      // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
+      // bits set and the RHS constant is 0x01001, then we know we have a known
+      // one mask of 0x00001 and a known zero mask of 0xE0F0E.
+      
+      // To compute this, we first compute the potential carry bits.  These are
+      // the bits which may be modified.  I'm not aware of a better way to do
+      // this scan.
+      const APInt &RHSVal = RHS->getValue();
+      APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
+      
+      // Now that we know which bits have carries, compute the known-1/0 sets.
+      
+      // Bits are known one if they are known zero in one operand and one in the
+      // other, and there is no input carry.
+      RHSKnownOne = ((LHSKnownZero & RHSVal) | 
+                     (LHSKnownOne & ~RHSVal)) & ~CarryBits;
+      
+      // Bits are known zero if they are known zero in both operands and there
+      // is no input carry.
+      RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
+    } else {
+      // If the high-bits of this ADD are not demanded, then it does not demand
+      // the high bits of its LHS or RHS.
+      if (DemandedMask[BitWidth-1] == 0) {
+        // Right fill the mask of bits for this ADD to demand the most
+        // significant bit and all those below it.
+        APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
+        if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
+                                 LHSKnownZero, LHSKnownOne, Depth+1) ||
+            SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
+                                 LHSKnownZero, LHSKnownOne, Depth+1))
+          return I;
+      }
+    }
+    break;
+  }
+  case Instruction::Sub:
+    // If the high-bits of this SUB are not demanded, then it does not demand
+    // the high bits of its LHS or RHS.
+    if (DemandedMask[BitWidth-1] == 0) {
+      // Right fill the mask of bits for this SUB to demand the most
+      // significant bit and all those below it.
+      uint32_t NLZ = DemandedMask.countLeadingZeros();
+      APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
+      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
+                               LHSKnownZero, LHSKnownOne, Depth+1) ||
+          SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
+                               LHSKnownZero, LHSKnownOne, Depth+1))
+        return I;
+    }
+    // Otherwise just hand the sub off to ComputeMaskedBits to fill in
+    // the known zeros and ones.
+    ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
+    break;
+  case Instruction::Shl:
+    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
+      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
+      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 
+                               RHSKnownZero, RHSKnownOne, Depth+1))
+        return I;
+      assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+      RHSKnownZero <<= ShiftAmt;
+      RHSKnownOne  <<= ShiftAmt;
+      // low bits known zero.
+      if (ShiftAmt)
+        RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
+    }
+    break;
+  case Instruction::LShr:
+    // For a logical shift right
+    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
+      
+      // Unsigned shift right.
+      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
+      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
+                               RHSKnownZero, RHSKnownOne, Depth+1))
+        return I;
+      assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+      RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
+      RHSKnownOne  = APIntOps::lshr(RHSKnownOne, ShiftAmt);
+      if (ShiftAmt) {
+        // Compute the new bits that are at the top now.
+        APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
+        RHSKnownZero |= HighBits;  // high bits known zero.
+      }
+    }
+    break;
+  case Instruction::AShr:
+    // If this is an arithmetic shift right and only the low-bit is set, we can
+    // always convert this into a logical shr, even if the shift amount is
+    // variable.  The low bit of the shift cannot be an input sign bit unless
+    // the shift amount is >= the size of the datatype, which is undefined.
+    if (DemandedMask == 1) {
+      // Perform the logical shift right.
+      Instruction *NewVal = BinaryOperator::CreateLShr(
+                        I->getOperand(0), I->getOperand(1), I->getName());
+      return InsertNewInstBefore(NewVal, *I);
+    }    
+
+    // If the sign bit is the only bit demanded by this ashr, then there is no
+    // need to do it, the shift doesn't change the high bit.
+    if (DemandedMask.isSignBit())
+      return I->getOperand(0);
+    
+    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
+      
+      // Signed shift right.
+      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
+      // If any of the "high bits" are demanded, we should set the sign bit as
+      // demanded.
+      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
+        DemandedMaskIn.set(BitWidth-1);
+      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
+                               RHSKnownZero, RHSKnownOne, Depth+1))
+        return I;
+      assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+      // Compute the new bits that are at the top now.
+      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
+      RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
+      RHSKnownOne  = APIntOps::lshr(RHSKnownOne, ShiftAmt);
+        
+      // Handle the sign bits.
+      APInt SignBit(APInt::getSignBit(BitWidth));
+      // Adjust to where it is now in the mask.
+      SignBit = APIntOps::lshr(SignBit, ShiftAmt);  
+        
+      // If the input sign bit is known to be zero, or if none of the top bits
+      // are demanded, turn this into an unsigned shift right.
+      if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] || 
+          (HighBits & ~DemandedMask) == HighBits) {
+        // Perform the logical shift right.
+        Instruction *NewVal = BinaryOperator::CreateLShr(
+                          I->getOperand(0), SA, I->getName());
+        return InsertNewInstBefore(NewVal, *I);
+      } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
+        RHSKnownOne |= HighBits;
+      }
+    }
+    break;
+  case Instruction::SRem:
+    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
+      APInt RA = Rem->getValue().abs();
+      if (RA.isPowerOf2()) {
+        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
+          return I->getOperand(0);
+
+        APInt LowBits = RA - 1;
+        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
+        if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
+                                 LHSKnownZero, LHSKnownOne, Depth+1))
+          return I;
+
+        if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
+          LHSKnownZero |= ~LowBits;
+
+        KnownZero |= LHSKnownZero & DemandedMask;
+
+        assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 
+      }
+    }
+    break;
+  case Instruction::URem: {
+    APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
+    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
+    if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
+                             KnownZero2, KnownOne2, Depth+1) ||
+        SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
+                             KnownZero2, KnownOne2, Depth+1))
+      return I;
+
+    unsigned Leaders = KnownZero2.countLeadingOnes();
+    Leaders = std::max(Leaders,
+                       KnownZero2.countLeadingOnes());
+    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
+    break;
+  }
+  case Instruction::Call:
+    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+      switch (II->getIntrinsicID()) {
+      default: break;
+      case Intrinsic::bswap: {
+        // If the only bits demanded come from one byte of the bswap result,
+        // just shift the input byte into position to eliminate the bswap.
+        unsigned NLZ = DemandedMask.countLeadingZeros();
+        unsigned NTZ = DemandedMask.countTrailingZeros();
+          
+        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
+        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
+        // have 14 leading zeros, round to 8.
+        NLZ &= ~7;
+        NTZ &= ~7;
+        // If we need exactly one byte, we can do this transformation.
+        if (BitWidth-NLZ-NTZ == 8) {
+          unsigned ResultBit = NTZ;
+          unsigned InputBit = BitWidth-NTZ-8;
+          
+          // Replace this with either a left or right shift to get the byte into
+          // the right place.
+          Instruction *NewVal;
+          if (InputBit > ResultBit)
+            NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
+                    ConstantInt::get(I->getType(), InputBit-ResultBit));
+          else
+            NewVal = BinaryOperator::CreateShl(I->getOperand(1),
+                    ConstantInt::get(I->getType(), ResultBit-InputBit));
+          NewVal->takeName(I);
+          return InsertNewInstBefore(NewVal, *I);
+        }
+          
+        // TODO: Could compute known zero/one bits based on the input.
+        break;
+      }
+      }
+    }
+    ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
+    break;
+  }
+  
+  // If the client is only demanding bits that we know, return the known
+  // constant.
+  if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
+    return Constant::getIntegerValue(VTy, RHSKnownOne);
+  return false;
+}
+
+
+/// SimplifyDemandedVectorElts - The specified value produces a vector with
+/// any number of elements. DemandedElts contains the set of elements that are
+/// actually used by the caller.  This method analyzes which elements of the
+/// operand are undef and returns that information in UndefElts.
+///
+/// If the information about demanded elements can be used to simplify the
+/// operation, the operation is simplified, then the resultant value is
+/// returned.  This returns null if no change was made.
+Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
+                                                APInt& UndefElts,
+                                                unsigned Depth) {
+  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
+  APInt EltMask(APInt::getAllOnesValue(VWidth));
+  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
+
+  if (isa<UndefValue>(V)) {
+    // If the entire vector is undefined, just return this info.
+    UndefElts = EltMask;
+    return 0;
+  } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
+    UndefElts = EltMask;
+    return UndefValue::get(V->getType());
+  }
+
+  UndefElts = 0;
+  if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
+    const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
+    Constant *Undef = UndefValue::get(EltTy);
+
+    std::vector<Constant*> Elts;
+    for (unsigned i = 0; i != VWidth; ++i)
+      if (!DemandedElts[i]) {   // If not demanded, set to undef.
+        Elts.push_back(Undef);
+        UndefElts.set(i);
+      } else if (isa<UndefValue>(CP->getOperand(i))) {   // Already undef.
+        Elts.push_back(Undef);
+        UndefElts.set(i);
+      } else {                               // Otherwise, defined.
+        Elts.push_back(CP->getOperand(i));
+      }
+
+    // If we changed the constant, return it.
+    Constant *NewCP = ConstantVector::get(Elts);
+    return NewCP != CP ? NewCP : 0;
+  } else if (isa<ConstantAggregateZero>(V)) {
+    // Simplify the CAZ to a ConstantVector where the non-demanded elements are
+    // set to undef.
+    
+    // Check if this is identity. If so, return 0 since we are not simplifying
+    // anything.
+    if (DemandedElts == ((1ULL << VWidth) -1))
+      return 0;
+    
+    const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
+    Constant *Zero = Constant::getNullValue(EltTy);
+    Constant *Undef = UndefValue::get(EltTy);
+    std::vector<Constant*> Elts;
+    for (unsigned i = 0; i != VWidth; ++i) {
+      Constant *Elt = DemandedElts[i] ? Zero : Undef;
+      Elts.push_back(Elt);
+    }
+    UndefElts = DemandedElts ^ EltMask;
+    return ConstantVector::get(Elts);
+  }
+  
+  // Limit search depth.
+  if (Depth == 10)
+    return 0;
+
+  // If multiple users are using the root value, procede with
+  // simplification conservatively assuming that all elements
+  // are needed.
+  if (!V->hasOneUse()) {
+    // Quit if we find multiple users of a non-root value though.
+    // They'll be handled when it's their turn to be visited by
+    // the main instcombine process.
+    if (Depth != 0)
+      // TODO: Just compute the UndefElts information recursively.
+      return 0;
+
+    // Conservatively assume that all elements are needed.
+    DemandedElts = EltMask;
+  }
+  
+  Instruction *I = dyn_cast<Instruction>(V);
+  if (!I) return 0;        // Only analyze instructions.
+  
+  bool MadeChange = false;
+  APInt UndefElts2(VWidth, 0);
+  Value *TmpV;
+  switch (I->getOpcode()) {
+  default: break;
+    
+  case Instruction::InsertElement: {
+    // If this is a variable index, we don't know which element it overwrites.
+    // demand exactly the same input as we produce.
+    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
+    if (Idx == 0) {
+      // Note that we can't propagate undef elt info, because we don't know
+      // which elt is getting updated.
+      TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
+                                        UndefElts2, Depth+1);
+      if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
+      break;
+    }
+    
+    // If this is inserting an element that isn't demanded, remove this
+    // insertelement.
+    unsigned IdxNo = Idx->getZExtValue();
+    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
+      Worklist.Add(I);
+      return I->getOperand(0);
+    }
+    
+    // Otherwise, the element inserted overwrites whatever was there, so the
+    // input demanded set is simpler than the output set.
+    APInt DemandedElts2 = DemandedElts;
+    DemandedElts2.clear(IdxNo);
+    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
+                                      UndefElts, Depth+1);
+    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
+
+    // The inserted element is defined.
+    UndefElts.clear(IdxNo);
+    break;
+  }
+  case Instruction::ShuffleVector: {
+    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
+    uint64_t LHSVWidth =
+      cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
+    APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
+    for (unsigned i = 0; i < VWidth; i++) {
+      if (DemandedElts[i]) {
+        unsigned MaskVal = Shuffle->getMaskValue(i);
+        if (MaskVal != -1u) {
+          assert(MaskVal < LHSVWidth * 2 &&
+                 "shufflevector mask index out of range!");
+          if (MaskVal < LHSVWidth)
+            LeftDemanded.set(MaskVal);
+          else
+            RightDemanded.set(MaskVal - LHSVWidth);
+        }
+      }
+    }
+
+    APInt UndefElts4(LHSVWidth, 0);
+    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
+                                      UndefElts4, Depth+1);
+    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
+
+    APInt UndefElts3(LHSVWidth, 0);
+    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
+                                      UndefElts3, Depth+1);
+    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
+
+    bool NewUndefElts = false;
+    for (unsigned i = 0; i < VWidth; i++) {
+      unsigned MaskVal = Shuffle->getMaskValue(i);
+      if (MaskVal == -1u) {
+        UndefElts.set(i);
+      } else if (MaskVal < LHSVWidth) {
+        if (UndefElts4[MaskVal]) {
+          NewUndefElts = true;
+          UndefElts.set(i);
+        }
+      } else {
+        if (UndefElts3[MaskVal - LHSVWidth]) {
+          NewUndefElts = true;
+          UndefElts.set(i);
+        }
+      }
+    }
+
+    if (NewUndefElts) {
+      // Add additional discovered undefs.
+      std::vector<Constant*> Elts;
+      for (unsigned i = 0; i < VWidth; ++i) {
+        if (UndefElts[i])
+          Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
+        else
+          Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
+                                          Shuffle->getMaskValue(i)));
+      }
+      I->setOperand(2, ConstantVector::get(Elts));
+      MadeChange = true;
+    }
+    break;
+  }
+  case Instruction::BitCast: {
+    // Vector->vector casts only.
+    const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
+    if (!VTy) break;
+    unsigned InVWidth = VTy->getNumElements();
+    APInt InputDemandedElts(InVWidth, 0);
+    unsigned Ratio;
+
+    if (VWidth == InVWidth) {
+      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
+      // elements as are demanded of us.
+      Ratio = 1;
+      InputDemandedElts = DemandedElts;
+    } else if (VWidth > InVWidth) {
+      // Untested so far.
+      break;
+      
+      // If there are more elements in the result than there are in the source,
+      // then an input element is live if any of the corresponding output
+      // elements are live.
+      Ratio = VWidth/InVWidth;
+      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
+        if (DemandedElts[OutIdx])
+          InputDemandedElts.set(OutIdx/Ratio);
+      }
+    } else {
+      // Untested so far.
+      break;
+      
+      // If there are more elements in the source than there are in the result,
+      // then an input element is live if the corresponding output element is
+      // live.
+      Ratio = InVWidth/VWidth;
+      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
+        if (DemandedElts[InIdx/Ratio])
+          InputDemandedElts.set(InIdx);
+    }
+    
+    // div/rem demand all inputs, because they don't want divide by zero.
+    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
+                                      UndefElts2, Depth+1);
+    if (TmpV) {
+      I->setOperand(0, TmpV);
+      MadeChange = true;
+    }
+    
+    UndefElts = UndefElts2;
+    if (VWidth > InVWidth) {
+      llvm_unreachable("Unimp");
+      // If there are more elements in the result than there are in the source,
+      // then an output element is undef if the corresponding input element is
+      // undef.
+      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
+        if (UndefElts2[OutIdx/Ratio])
+          UndefElts.set(OutIdx);
+    } else if (VWidth < InVWidth) {
+      llvm_unreachable("Unimp");
+      // If there are more elements in the source than there are in the result,
+      // then a result element is undef if all of the corresponding input
+      // elements are undef.
+      UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef.
+      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
+        if (!UndefElts2[InIdx])            // Not undef?
+          UndefElts.clear(InIdx/Ratio);    // Clear undef bit.
+    }
+    break;
+  }
+  case Instruction::And:
+  case Instruction::Or:
+  case Instruction::Xor:
+  case Instruction::Add:
+  case Instruction::Sub:
+  case Instruction::Mul:
+    // div/rem demand all inputs, because they don't want divide by zero.
+    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
+                                      UndefElts, Depth+1);
+    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
+    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
+                                      UndefElts2, Depth+1);
+    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
+      
+    // Output elements are undefined if both are undefined.  Consider things
+    // like undef&0.  The result is known zero, not undef.
+    UndefElts &= UndefElts2;
+    break;
+    
+  case Instruction::Call: {
+    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
+    if (!II) break;
+    switch (II->getIntrinsicID()) {
+    default: break;
+      
+    // Binary vector operations that work column-wise.  A dest element is a
+    // function of the corresponding input elements from the two inputs.
+    case Intrinsic::x86_sse_sub_ss:
+    case Intrinsic::x86_sse_mul_ss:
+    case Intrinsic::x86_sse_min_ss:
+    case Intrinsic::x86_sse_max_ss:
+    case Intrinsic::x86_sse2_sub_sd:
+    case Intrinsic::x86_sse2_mul_sd:
+    case Intrinsic::x86_sse2_min_sd:
+    case Intrinsic::x86_sse2_max_sd:
+      TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
+                                        UndefElts, Depth+1);
+      if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
+      TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
+                                        UndefElts2, Depth+1);
+      if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
+
+      // If only the low elt is demanded and this is a scalarizable intrinsic,
+      // scalarize it now.
+      if (DemandedElts == 1) {
+        switch (II->getIntrinsicID()) {
+        default: break;
+        case Intrinsic::x86_sse_sub_ss:
+        case Intrinsic::x86_sse_mul_ss:
+        case Intrinsic::x86_sse2_sub_sd:
+        case Intrinsic::x86_sse2_mul_sd:
+          // TODO: Lower MIN/MAX/ABS/etc
+          Value *LHS = II->getOperand(1);
+          Value *RHS = II->getOperand(2);
+          // Extract the element as scalars.
+          LHS = InsertNewInstBefore(ExtractElementInst::Create(LHS, 
+            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
+          RHS = InsertNewInstBefore(ExtractElementInst::Create(RHS,
+            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
+          
+          switch (II->getIntrinsicID()) {
+          default: llvm_unreachable("Case stmts out of sync!");
+          case Intrinsic::x86_sse_sub_ss:
+          case Intrinsic::x86_sse2_sub_sd:
+            TmpV = InsertNewInstBefore(BinaryOperator::CreateFSub(LHS, RHS,
+                                                        II->getName()), *II);
+            break;
+          case Intrinsic::x86_sse_mul_ss:
+          case Intrinsic::x86_sse2_mul_sd:
+            TmpV = InsertNewInstBefore(BinaryOperator::CreateFMul(LHS, RHS,
+                                                         II->getName()), *II);
+            break;
+          }
+          
+          Instruction *New =
+            InsertElementInst::Create(
+              UndefValue::get(II->getType()), TmpV,
+              ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
+                                      II->getName());
+          InsertNewInstBefore(New, *II);
+          return New;
+        }            
+      }
+        
+      // Output elements are undefined if both are undefined.  Consider things
+      // like undef&0.  The result is known zero, not undef.
+      UndefElts &= UndefElts2;
+      break;
+    }
+    break;
+  }
+  }
+  return MadeChange ? I : 0;
+}
diff --git a/lib/Transforms/InstCombine/InstCombineVectorOps.cpp b/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
new file mode 100644
index 0000000..f11f557
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
@@ -0,0 +1,560 @@
+//===- InstCombineVectorOps.cpp -------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements instcombine for ExtractElement, InsertElement and
+// ShuffleVector.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+using namespace llvm;
+
+/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
+/// is to leave as a vector operation.
+static bool CheapToScalarize(Value *V, bool isConstant) {
+  if (isa<ConstantAggregateZero>(V)) 
+    return true;
+  if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
+    if (isConstant) return true;
+    // If all elts are the same, we can extract.
+    Constant *Op0 = C->getOperand(0);
+    for (unsigned i = 1; i < C->getNumOperands(); ++i)
+      if (C->getOperand(i) != Op0)
+        return false;
+    return true;
+  }
+  Instruction *I = dyn_cast<Instruction>(V);
+  if (!I) return false;
+  
+  // Insert element gets simplified to the inserted element or is deleted if
+  // this is constant idx extract element and its a constant idx insertelt.
+  if (I->getOpcode() == Instruction::InsertElement && isConstant &&
+      isa<ConstantInt>(I->getOperand(2)))
+    return true;
+  if (I->getOpcode() == Instruction::Load && I->hasOneUse())
+    return true;
+  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
+    if (BO->hasOneUse() &&
+        (CheapToScalarize(BO->getOperand(0), isConstant) ||
+         CheapToScalarize(BO->getOperand(1), isConstant)))
+      return true;
+  if (CmpInst *CI = dyn_cast<CmpInst>(I))
+    if (CI->hasOneUse() &&
+        (CheapToScalarize(CI->getOperand(0), isConstant) ||
+         CheapToScalarize(CI->getOperand(1), isConstant)))
+      return true;
+  
+  return false;
+}
+
+/// Read and decode a shufflevector mask.
+///
+/// It turns undef elements into values that are larger than the number of
+/// elements in the input.
+static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
+  unsigned NElts = SVI->getType()->getNumElements();
+  if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
+    return std::vector<unsigned>(NElts, 0);
+  if (isa<UndefValue>(SVI->getOperand(2)))
+    return std::vector<unsigned>(NElts, 2*NElts);
+  
+  std::vector<unsigned> Result;
+  const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
+  for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
+    if (isa<UndefValue>(*i))
+      Result.push_back(NElts*2);  // undef -> 8
+    else
+      Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
+  return Result;
+}
+
+/// FindScalarElement - Given a vector and an element number, see if the scalar
+/// value is already around as a register, for example if it were inserted then
+/// extracted from the vector.
+static Value *FindScalarElement(Value *V, unsigned EltNo) {
+  assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
+  const VectorType *PTy = cast<VectorType>(V->getType());
+  unsigned Width = PTy->getNumElements();
+  if (EltNo >= Width)  // Out of range access.
+    return UndefValue::get(PTy->getElementType());
+  
+  if (isa<UndefValue>(V))
+    return UndefValue::get(PTy->getElementType());
+  if (isa<ConstantAggregateZero>(V))
+    return Constant::getNullValue(PTy->getElementType());
+  if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
+    return CP->getOperand(EltNo);
+  
+  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
+    // If this is an insert to a variable element, we don't know what it is.
+    if (!isa<ConstantInt>(III->getOperand(2))) 
+      return 0;
+    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
+    
+    // If this is an insert to the element we are looking for, return the
+    // inserted value.
+    if (EltNo == IIElt) 
+      return III->getOperand(1);
+    
+    // Otherwise, the insertelement doesn't modify the value, recurse on its
+    // vector input.
+    return FindScalarElement(III->getOperand(0), EltNo);
+  }
+  
+  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
+    unsigned LHSWidth =
+    cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
+    unsigned InEl = getShuffleMask(SVI)[EltNo];
+    if (InEl < LHSWidth)
+      return FindScalarElement(SVI->getOperand(0), InEl);
+    else if (InEl < LHSWidth*2)
+      return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
+    else
+      return UndefValue::get(PTy->getElementType());
+  }
+  
+  // Otherwise, we don't know.
+  return 0;
+}
+
+Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
+  // If vector val is undef, replace extract with scalar undef.
+  if (isa<UndefValue>(EI.getOperand(0)))
+    return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
+  
+  // If vector val is constant 0, replace extract with scalar 0.
+  if (isa<ConstantAggregateZero>(EI.getOperand(0)))
+    return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
+  
+  if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
+    // If vector val is constant with all elements the same, replace EI with
+    // that element. When the elements are not identical, we cannot replace yet
+    // (we do that below, but only when the index is constant).
+    Constant *op0 = C->getOperand(0);
+    for (unsigned i = 1; i != C->getNumOperands(); ++i)
+      if (C->getOperand(i) != op0) {
+        op0 = 0; 
+        break;
+      }
+    if (op0)
+      return ReplaceInstUsesWith(EI, op0);
+  }
+  
+  // If extracting a specified index from the vector, see if we can recursively
+  // find a previously computed scalar that was inserted into the vector.
+  if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
+    unsigned IndexVal = IdxC->getZExtValue();
+    unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
+    
+    // If this is extracting an invalid index, turn this into undef, to avoid
+    // crashing the code below.
+    if (IndexVal >= VectorWidth)
+      return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
+    
+    // This instruction only demands the single element from the input vector.
+    // If the input vector has a single use, simplify it based on this use
+    // property.
+    if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
+      APInt UndefElts(VectorWidth, 0);
+      APInt DemandedMask(VectorWidth, 1 << IndexVal);
+      if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
+                                                DemandedMask, UndefElts)) {
+        EI.setOperand(0, V);
+        return &EI;
+      }
+    }
+    
+    if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
+      return ReplaceInstUsesWith(EI, Elt);
+    
+    // If the this extractelement is directly using a bitcast from a vector of
+    // the same number of elements, see if we can find the source element from
+    // it.  In this case, we will end up needing to bitcast the scalars.
+    if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
+      if (const VectorType *VT = 
+          dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
+        if (VT->getNumElements() == VectorWidth)
+          if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
+            return new BitCastInst(Elt, EI.getType());
+    }
+  }
+  
+  if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
+    // Push extractelement into predecessor operation if legal and
+    // profitable to do so
+    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
+      if (I->hasOneUse() &&
+          CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
+        Value *newEI0 =
+        Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
+                                      EI.getName()+".lhs");
+        Value *newEI1 =
+        Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
+                                      EI.getName()+".rhs");
+        return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
+      }
+    } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
+      // Extracting the inserted element?
+      if (IE->getOperand(2) == EI.getOperand(1))
+        return ReplaceInstUsesWith(EI, IE->getOperand(1));
+      // If the inserted and extracted elements are constants, they must not
+      // be the same value, extract from the pre-inserted value instead.
+      if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
+        Worklist.AddValue(EI.getOperand(0));
+        EI.setOperand(0, IE->getOperand(0));
+        return &EI;
+      }
+    } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
+      // If this is extracting an element from a shufflevector, figure out where
+      // it came from and extract from the appropriate input element instead.
+      if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
+        unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
+        Value *Src;
+        unsigned LHSWidth =
+        cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
+        
+        if (SrcIdx < LHSWidth)
+          Src = SVI->getOperand(0);
+        else if (SrcIdx < LHSWidth*2) {
+          SrcIdx -= LHSWidth;
+          Src = SVI->getOperand(1);
+        } else {
+          return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
+        }
+        return ExtractElementInst::Create(Src,
+                                          ConstantInt::get(Type::getInt32Ty(EI.getContext()),
+                                                           SrcIdx, false));
+      }
+    }
+    // FIXME: Canonicalize extractelement(bitcast) -> bitcast(extractelement)
+  }
+  return 0;
+}
+
+/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
+/// elements from either LHS or RHS, return the shuffle mask and true. 
+/// Otherwise, return false.
+static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
+                                         std::vector<Constant*> &Mask) {
+  assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
+         "Invalid CollectSingleShuffleElements");
+  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
+  
+  if (isa<UndefValue>(V)) {
+    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
+    return true;
+  }
+  
+  if (V == LHS) {
+    for (unsigned i = 0; i != NumElts; ++i)
+      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
+    return true;
+  }
+  
+  if (V == RHS) {
+    for (unsigned i = 0; i != NumElts; ++i)
+      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
+                                      i+NumElts));
+    return true;
+  }
+  
+  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
+    // If this is an insert of an extract from some other vector, include it.
+    Value *VecOp    = IEI->getOperand(0);
+    Value *ScalarOp = IEI->getOperand(1);
+    Value *IdxOp    = IEI->getOperand(2);
+    
+    if (!isa<ConstantInt>(IdxOp))
+      return false;
+    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
+    
+    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
+      // Okay, we can handle this if the vector we are insertinting into is
+      // transitively ok.
+      if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
+        // If so, update the mask to reflect the inserted undef.
+        Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
+        return true;
+      }      
+    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
+      if (isa<ConstantInt>(EI->getOperand(1)) &&
+          EI->getOperand(0)->getType() == V->getType()) {
+        unsigned ExtractedIdx =
+        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
+        
+        // This must be extracting from either LHS or RHS.
+        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
+          // Okay, we can handle this if the vector we are insertinting into is
+          // transitively ok.
+          if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
+            // If so, update the mask to reflect the inserted value.
+            if (EI->getOperand(0) == LHS) {
+              Mask[InsertedIdx % NumElts] = 
+              ConstantInt::get(Type::getInt32Ty(V->getContext()),
+                               ExtractedIdx);
+            } else {
+              assert(EI->getOperand(0) == RHS);
+              Mask[InsertedIdx % NumElts] = 
+              ConstantInt::get(Type::getInt32Ty(V->getContext()),
+                               ExtractedIdx+NumElts);
+              
+            }
+            return true;
+          }
+        }
+      }
+    }
+  }
+  // TODO: Handle shufflevector here!
+  
+  return false;
+}
+
+/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
+/// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
+/// that computes V and the LHS value of the shuffle.
+static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
+                                     Value *&RHS) {
+  assert(isa<VectorType>(V->getType()) && 
+         (RHS == 0 || V->getType() == RHS->getType()) &&
+         "Invalid shuffle!");
+  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
+  
+  if (isa<UndefValue>(V)) {
+    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
+    return V;
+  } else if (isa<ConstantAggregateZero>(V)) {
+    Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
+    return V;
+  } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
+    // If this is an insert of an extract from some other vector, include it.
+    Value *VecOp    = IEI->getOperand(0);
+    Value *ScalarOp = IEI->getOperand(1);
+    Value *IdxOp    = IEI->getOperand(2);
+    
+    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
+      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
+          EI->getOperand(0)->getType() == V->getType()) {
+        unsigned ExtractedIdx =
+        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
+        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
+        
+        // Either the extracted from or inserted into vector must be RHSVec,
+        // otherwise we'd end up with a shuffle of three inputs.
+        if (EI->getOperand(0) == RHS || RHS == 0) {
+          RHS = EI->getOperand(0);
+          Value *V = CollectShuffleElements(VecOp, Mask, RHS);
+          Mask[InsertedIdx % NumElts] = 
+          ConstantInt::get(Type::getInt32Ty(V->getContext()),
+                           NumElts+ExtractedIdx);
+          return V;
+        }
+        
+        if (VecOp == RHS) {
+          Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
+          // Everything but the extracted element is replaced with the RHS.
+          for (unsigned i = 0; i != NumElts; ++i) {
+            if (i != InsertedIdx)
+              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
+                                         NumElts+i);
+          }
+          return V;
+        }
+        
+        // If this insertelement is a chain that comes from exactly these two
+        // vectors, return the vector and the effective shuffle.
+        if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
+          return EI->getOperand(0);
+      }
+    }
+  }
+  // TODO: Handle shufflevector here!
+  
+  // Otherwise, can't do anything fancy.  Return an identity vector.
+  for (unsigned i = 0; i != NumElts; ++i)
+    Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
+  return V;
+}
+
+Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
+  Value *VecOp    = IE.getOperand(0);
+  Value *ScalarOp = IE.getOperand(1);
+  Value *IdxOp    = IE.getOperand(2);
+  
+  // Inserting an undef or into an undefined place, remove this.
+  if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
+    ReplaceInstUsesWith(IE, VecOp);
+  
+  // If the inserted element was extracted from some other vector, and if the 
+  // indexes are constant, try to turn this into a shufflevector operation.
+  if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
+    if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
+        EI->getOperand(0)->getType() == IE.getType()) {
+      unsigned NumVectorElts = IE.getType()->getNumElements();
+      unsigned ExtractedIdx =
+      cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
+      unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
+      
+      if (ExtractedIdx >= NumVectorElts) // Out of range extract.
+        return ReplaceInstUsesWith(IE, VecOp);
+      
+      if (InsertedIdx >= NumVectorElts)  // Out of range insert.
+        return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
+      
+      // If we are extracting a value from a vector, then inserting it right
+      // back into the same place, just use the input vector.
+      if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
+        return ReplaceInstUsesWith(IE, VecOp);      
+      
+      // If this insertelement isn't used by some other insertelement, turn it
+      // (and any insertelements it points to), into one big shuffle.
+      if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
+        std::vector<Constant*> Mask;
+        Value *RHS = 0;
+        Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
+        if (RHS == 0) RHS = UndefValue::get(LHS->getType());
+        // We now have a shuffle of LHS, RHS, Mask.
+        return new ShuffleVectorInst(LHS, RHS,
+                                     ConstantVector::get(Mask));
+      }
+    }
+  }
+  
+  unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
+  APInt UndefElts(VWidth, 0);
+  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
+  if (SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts))
+    return &IE;
+  
+  return 0;
+}
+
+
+Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
+  Value *LHS = SVI.getOperand(0);
+  Value *RHS = SVI.getOperand(1);
+  std::vector<unsigned> Mask = getShuffleMask(&SVI);
+  
+  bool MadeChange = false;
+  
+  // Undefined shuffle mask -> undefined value.
+  if (isa<UndefValue>(SVI.getOperand(2)))
+    return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
+  
+  unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
+  
+  if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
+    return 0;
+  
+  APInt UndefElts(VWidth, 0);
+  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
+  if (SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
+    LHS = SVI.getOperand(0);
+    RHS = SVI.getOperand(1);
+    MadeChange = true;
+  }
+  
+  // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
+  // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
+  if (LHS == RHS || isa<UndefValue>(LHS)) {
+    if (isa<UndefValue>(LHS) && LHS == RHS) {
+      // shuffle(undef,undef,mask) -> undef.
+      return ReplaceInstUsesWith(SVI, LHS);
+    }
+    
+    // Remap any references to RHS to use LHS.
+    std::vector<Constant*> Elts;
+    for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
+      if (Mask[i] >= 2*e)
+        Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
+      else {
+        if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
+            (Mask[i] <  e && isa<UndefValue>(LHS))) {
+          Mask[i] = 2*e;     // Turn into undef.
+          Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
+        } else {
+          Mask[i] = Mask[i] % e;  // Force to LHS.
+          Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
+                                          Mask[i]));
+        }
+      }
+    }
+    SVI.setOperand(0, SVI.getOperand(1));
+    SVI.setOperand(1, UndefValue::get(RHS->getType()));
+    SVI.setOperand(2, ConstantVector::get(Elts));
+    LHS = SVI.getOperand(0);
+    RHS = SVI.getOperand(1);
+    MadeChange = true;
+  }
+  
+  // Analyze the shuffle, are the LHS or RHS and identity shuffles?
+  bool isLHSID = true, isRHSID = true;
+  
+  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
+    if (Mask[i] >= e*2) continue;  // Ignore undef values.
+    // Is this an identity shuffle of the LHS value?
+    isLHSID &= (Mask[i] == i);
+    
+    // Is this an identity shuffle of the RHS value?
+    isRHSID &= (Mask[i]-e == i);
+  }
+  
+  // Eliminate identity shuffles.
+  if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
+  if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
+  
+  // If the LHS is a shufflevector itself, see if we can combine it with this
+  // one without producing an unusual shuffle.  Here we are really conservative:
+  // we are absolutely afraid of producing a shuffle mask not in the input
+  // program, because the code gen may not be smart enough to turn a merged
+  // shuffle into two specific shuffles: it may produce worse code.  As such,
+  // we only merge two shuffles if the result is one of the two input shuffle
+  // masks.  In this case, merging the shuffles just removes one instruction,
+  // which we know is safe.  This is good for things like turning:
+  // (splat(splat)) -> splat.
+  if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
+    if (isa<UndefValue>(RHS)) {
+      std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
+      
+      if (LHSMask.size() == Mask.size()) {
+        std::vector<unsigned> NewMask;
+        for (unsigned i = 0, e = Mask.size(); i != e; ++i)
+          if (Mask[i] >= e)
+            NewMask.push_back(2*e);
+          else
+            NewMask.push_back(LHSMask[Mask[i]]);
+        
+        // If the result mask is equal to the src shuffle or this
+        // shuffle mask, do the replacement.
+        if (NewMask == LHSMask || NewMask == Mask) {
+          unsigned LHSInNElts =
+          cast<VectorType>(LHSSVI->getOperand(0)->getType())->
+          getNumElements();
+          std::vector<Constant*> Elts;
+          for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
+            if (NewMask[i] >= LHSInNElts*2) {
+              Elts.push_back(UndefValue::get(
+                                             Type::getInt32Ty(SVI.getContext())));
+            } else {
+              Elts.push_back(ConstantInt::get(
+                                              Type::getInt32Ty(SVI.getContext()),
+                                              NewMask[i]));
+            }
+          }
+          return new ShuffleVectorInst(LHSSVI->getOperand(0),
+                                       LHSSVI->getOperand(1),
+                                       ConstantVector::get(Elts));
+        }
+      }
+    }
+  }
+  
+  return MadeChange ? &SVI : 0;
+}
+
diff --git a/lib/Transforms/InstCombine/InstCombineWorklist.h b/lib/Transforms/InstCombine/InstCombineWorklist.h
new file mode 100644
index 0000000..9d88621
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineWorklist.h
@@ -0,0 +1,105 @@
+//===- InstCombineWorklist.h - Worklist for the InstCombine pass ----------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef INSTCOMBINE_WORKLIST_H
+#define INSTCOMBINE_WORKLIST_H
+
+#define DEBUG_TYPE "instcombine"
+#include "llvm/Instruction.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+  
+/// InstCombineWorklist - This is the worklist management logic for
+/// InstCombine.
+class VISIBILITY_HIDDEN InstCombineWorklist {
+  SmallVector<Instruction*, 256> Worklist;
+  DenseMap<Instruction*, unsigned> WorklistMap;
+  
+  void operator=(const InstCombineWorklist&RHS);   // DO NOT IMPLEMENT
+  InstCombineWorklist(const InstCombineWorklist&); // DO NOT IMPLEMENT
+public:
+  InstCombineWorklist() {}
+  
+  bool isEmpty() const { return Worklist.empty(); }
+  
+  /// Add - Add the specified instruction to the worklist if it isn't already
+  /// in it.
+  void Add(Instruction *I) {
+    if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second) {
+      DEBUG(errs() << "IC: ADD: " << *I << '\n');
+      Worklist.push_back(I);
+    }
+  }
+  
+  void AddValue(Value *V) {
+    if (Instruction *I = dyn_cast<Instruction>(V))
+      Add(I);
+  }
+  
+  /// AddInitialGroup - Add the specified batch of stuff in reverse order.
+  /// which should only be done when the worklist is empty and when the group
+  /// has no duplicates.
+  void AddInitialGroup(Instruction *const *List, unsigned NumEntries) {
+    assert(Worklist.empty() && "Worklist must be empty to add initial group");
+    Worklist.reserve(NumEntries+16);
+    DEBUG(errs() << "IC: ADDING: " << NumEntries << " instrs to worklist\n");
+    for (; NumEntries; --NumEntries) {
+      Instruction *I = List[NumEntries-1];
+      WorklistMap.insert(std::make_pair(I, Worklist.size()));
+      Worklist.push_back(I);
+    }
+  }
+  
+  // Remove - remove I from the worklist if it exists.
+  void Remove(Instruction *I) {
+    DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
+    if (It == WorklistMap.end()) return; // Not in worklist.
+    
+    // Don't bother moving everything down, just null out the slot.
+    Worklist[It->second] = 0;
+    
+    WorklistMap.erase(It);
+  }
+  
+  Instruction *RemoveOne() {
+    Instruction *I = Worklist.back();
+    Worklist.pop_back();
+    WorklistMap.erase(I);
+    return I;
+  }
+  
+  /// AddUsersToWorkList - When an instruction is simplified, add all users of
+  /// the instruction to the work lists because they might get more simplified
+  /// now.
+  ///
+  void AddUsersToWorkList(Instruction &I) {
+    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
+         UI != UE; ++UI)
+      Add(cast<Instruction>(*UI));
+  }
+  
+  
+  /// Zap - check that the worklist is empty and nuke the backing store for
+  /// the map if it is large.
+  void Zap() {
+    assert(WorklistMap.empty() && "Worklist empty, but map not?");
+    
+    // Do an explicit clear, this shrinks the map if needed.
+    WorklistMap.clear();
+  }
+};
+  
+} // end namespace llvm.
+
+#endif
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp
new file mode 100644
index 0000000..93b1961
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -0,0 +1,1274 @@
+//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// InstructionCombining - Combine instructions to form fewer, simple
+// instructions.  This pass does not modify the CFG.  This pass is where
+// algebraic simplification happens.
+//
+// This pass combines things like:
+//    %Y = add i32 %X, 1
+//    %Z = add i32 %Y, 1
+// into:
+//    %Z = add i32 %X, 2
+//
+// This is a simple worklist driven algorithm.
+//
+// This pass guarantees that the following canonicalizations are performed on
+// the program:
+//    1. If a binary operator has a constant operand, it is moved to the RHS
+//    2. Bitwise operators with constant operands are always grouped so that
+//       shifts are performed first, then or's, then and's, then xor's.
+//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
+//    4. All cmp instructions on boolean values are replaced with logical ops
+//    5. add X, X is represented as (X*2) => (X << 1)
+//    6. Multiplies with a power-of-two constant argument are transformed into
+//       shifts.
+//   ... etc.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "instcombine"
+#include "llvm/Transforms/Scalar.h"
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/PatternMatch.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include <algorithm>
+#include <climits>
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+STATISTIC(NumCombined , "Number of insts combined");
+STATISTIC(NumConstProp, "Number of constant folds");
+STATISTIC(NumDeadInst , "Number of dead inst eliminated");
+STATISTIC(NumSunkInst , "Number of instructions sunk");
+
+
+char InstCombiner::ID = 0;
+static RegisterPass<InstCombiner>
+X("instcombine", "Combine redundant instructions");
+
+void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
+  AU.addPreservedID(LCSSAID);
+  AU.setPreservesCFG();
+}
+
+
+/// ShouldChangeType - Return true if it is desirable to convert a computation
+/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
+/// type for example, or from a smaller to a larger illegal type.
+bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const {
+  assert(isa<IntegerType>(From) && isa<IntegerType>(To));
+  
+  // If we don't have TD, we don't know if the source/dest are legal.
+  if (!TD) return false;
+  
+  unsigned FromWidth = From->getPrimitiveSizeInBits();
+  unsigned ToWidth = To->getPrimitiveSizeInBits();
+  bool FromLegal = TD->isLegalInteger(FromWidth);
+  bool ToLegal = TD->isLegalInteger(ToWidth);
+  
+  // If this is a legal integer from type, and the result would be an illegal
+  // type, don't do the transformation.
+  if (FromLegal && !ToLegal)
+    return false;
+  
+  // Otherwise, if both are illegal, do not increase the size of the result. We
+  // do allow things like i160 -> i64, but not i64 -> i160.
+  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
+    return false;
+  
+  return true;
+}
+
+
+// SimplifyCommutative - This performs a few simplifications for commutative
+// operators:
+//
+//  1. Order operands such that they are listed from right (least complex) to
+//     left (most complex).  This puts constants before unary operators before
+//     binary operators.
+//
+//  2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
+//  3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
+//
+bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
+  bool Changed = false;
+  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
+    Changed = !I.swapOperands();
+
+  if (!I.isAssociative()) return Changed;
+  
+  Instruction::BinaryOps Opcode = I.getOpcode();
+  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
+    if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
+      if (isa<Constant>(I.getOperand(1))) {
+        Constant *Folded = ConstantExpr::get(I.getOpcode(),
+                                             cast<Constant>(I.getOperand(1)),
+                                             cast<Constant>(Op->getOperand(1)));
+        I.setOperand(0, Op->getOperand(0));
+        I.setOperand(1, Folded);
+        return true;
+      }
+      
+      if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)))
+        if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
+            Op->hasOneUse() && Op1->hasOneUse()) {
+          Constant *C1 = cast<Constant>(Op->getOperand(1));
+          Constant *C2 = cast<Constant>(Op1->getOperand(1));
+
+          // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
+          Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
+          Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
+                                                    Op1->getOperand(0),
+                                                    Op1->getName(), &I);
+          Worklist.Add(New);
+          I.setOperand(0, New);
+          I.setOperand(1, Folded);
+          return true;
+        }
+    }
+  return Changed;
+}
+
+// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
+// if the LHS is a constant zero (which is the 'negate' form).
+//
+Value *InstCombiner::dyn_castNegVal(Value *V) const {
+  if (BinaryOperator::isNeg(V))
+    return BinaryOperator::getNegArgument(V);
+
+  // Constants can be considered to be negated values if they can be folded.
+  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
+    return ConstantExpr::getNeg(C);
+
+  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
+    if (C->getType()->getElementType()->isInteger())
+      return ConstantExpr::getNeg(C);
+
+  return 0;
+}
+
+// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
+// instruction if the LHS is a constant negative zero (which is the 'negate'
+// form).
+//
+Value *InstCombiner::dyn_castFNegVal(Value *V) const {
+  if (BinaryOperator::isFNeg(V))
+    return BinaryOperator::getFNegArgument(V);
+
+  // Constants can be considered to be negated values if they can be folded.
+  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
+    return ConstantExpr::getFNeg(C);
+
+  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
+    if (C->getType()->getElementType()->isFloatingPoint())
+      return ConstantExpr::getFNeg(C);
+
+  return 0;
+}
+
+static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
+                                             InstCombiner *IC) {
+  if (CastInst *CI = dyn_cast<CastInst>(&I))
+    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
+
+  // Figure out if the constant is the left or the right argument.
+  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
+  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
+
+  if (Constant *SOC = dyn_cast<Constant>(SO)) {
+    if (ConstIsRHS)
+      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
+    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
+  }
+
+  Value *Op0 = SO, *Op1 = ConstOperand;
+  if (!ConstIsRHS)
+    std::swap(Op0, Op1);
+  
+  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
+    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
+                                    SO->getName()+".op");
+  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
+    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
+                                   SO->getName()+".cmp");
+  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
+    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
+                                   SO->getName()+".cmp");
+  llvm_unreachable("Unknown binary instruction type!");
+}
+
+// FoldOpIntoSelect - Given an instruction with a select as one operand and a
+// constant as the other operand, try to fold the binary operator into the
+// select arguments.  This also works for Cast instructions, which obviously do
+// not have a second operand.
+Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
+  // Don't modify shared select instructions
+  if (!SI->hasOneUse()) return 0;
+  Value *TV = SI->getOperand(1);
+  Value *FV = SI->getOperand(2);
+
+  if (isa<Constant>(TV) || isa<Constant>(FV)) {
+    // Bool selects with constant operands can be folded to logical ops.
+    if (SI->getType()->isInteger(1)) return 0;
+
+    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
+    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
+
+    return SelectInst::Create(SI->getCondition(), SelectTrueVal,
+                              SelectFalseVal);
+  }
+  return 0;
+}
+
+
+/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
+/// has a PHI node as operand #0, see if we can fold the instruction into the
+/// PHI (which is only possible if all operands to the PHI are constants).
+///
+/// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
+/// that would normally be unprofitable because they strongly encourage jump
+/// threading.
+Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
+                                         bool AllowAggressive) {
+  AllowAggressive = false;
+  PHINode *PN = cast<PHINode>(I.getOperand(0));
+  unsigned NumPHIValues = PN->getNumIncomingValues();
+  if (NumPHIValues == 0 ||
+      // We normally only transform phis with a single use, unless we're trying
+      // hard to make jump threading happen.
+      (!PN->hasOneUse() && !AllowAggressive))
+    return 0;
+  
+  
+  // Check to see if all of the operands of the PHI are simple constants
+  // (constantint/constantfp/undef).  If there is one non-constant value,
+  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
+  // bail out.  We don't do arbitrary constant expressions here because moving
+  // their computation can be expensive without a cost model.
+  BasicBlock *NonConstBB = 0;
+  for (unsigned i = 0; i != NumPHIValues; ++i)
+    if (!isa<Constant>(PN->getIncomingValue(i)) ||
+        isa<ConstantExpr>(PN->getIncomingValue(i))) {
+      if (NonConstBB) return 0;  // More than one non-const value.
+      if (isa<PHINode>(PN->getIncomingValue(i))) return 0;  // Itself a phi.
+      NonConstBB = PN->getIncomingBlock(i);
+      
+      // If the incoming non-constant value is in I's block, we have an infinite
+      // loop.
+      if (NonConstBB == I.getParent())
+        return 0;
+    }
+  
+  // If there is exactly one non-constant value, we can insert a copy of the
+  // operation in that block.  However, if this is a critical edge, we would be
+  // inserting the computation one some other paths (e.g. inside a loop).  Only
+  // do this if the pred block is unconditionally branching into the phi block.
+  if (NonConstBB != 0 && !AllowAggressive) {
+    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
+    if (!BI || !BI->isUnconditional()) return 0;
+  }
+
+  // Okay, we can do the transformation: create the new PHI node.
+  PHINode *NewPN = PHINode::Create(I.getType(), "");
+  NewPN->reserveOperandSpace(PN->getNumOperands()/2);
+  InsertNewInstBefore(NewPN, *PN);
+  NewPN->takeName(PN);
+
+  // Next, add all of the operands to the PHI.
+  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
+    // We only currently try to fold the condition of a select when it is a phi,
+    // not the true/false values.
+    Value *TrueV = SI->getTrueValue();
+    Value *FalseV = SI->getFalseValue();
+    BasicBlock *PhiTransBB = PN->getParent();
+    for (unsigned i = 0; i != NumPHIValues; ++i) {
+      BasicBlock *ThisBB = PN->getIncomingBlock(i);
+      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
+      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
+      Value *InV = 0;
+      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
+        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
+      } else {
+        assert(PN->getIncomingBlock(i) == NonConstBB);
+        InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred,
+                                 FalseVInPred,
+                                 "phitmp", NonConstBB->getTerminator());
+        Worklist.Add(cast<Instruction>(InV));
+      }
+      NewPN->addIncoming(InV, ThisBB);
+    }
+  } else if (I.getNumOperands() == 2) {
+    Constant *C = cast<Constant>(I.getOperand(1));
+    for (unsigned i = 0; i != NumPHIValues; ++i) {
+      Value *InV = 0;
+      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
+        if (CmpInst *CI = dyn_cast<CmpInst>(&I))
+          InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
+        else
+          InV = ConstantExpr::get(I.getOpcode(), InC, C);
+      } else {
+        assert(PN->getIncomingBlock(i) == NonConstBB);
+        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) 
+          InV = BinaryOperator::Create(BO->getOpcode(),
+                                       PN->getIncomingValue(i), C, "phitmp",
+                                       NonConstBB->getTerminator());
+        else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
+          InV = CmpInst::Create(CI->getOpcode(),
+                                CI->getPredicate(),
+                                PN->getIncomingValue(i), C, "phitmp",
+                                NonConstBB->getTerminator());
+        else
+          llvm_unreachable("Unknown binop!");
+        
+        Worklist.Add(cast<Instruction>(InV));
+      }
+      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+    }
+  } else { 
+    CastInst *CI = cast<CastInst>(&I);
+    const Type *RetTy = CI->getType();
+    for (unsigned i = 0; i != NumPHIValues; ++i) {
+      Value *InV;
+      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
+        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
+      } else {
+        assert(PN->getIncomingBlock(i) == NonConstBB);
+        InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i), 
+                               I.getType(), "phitmp", 
+                               NonConstBB->getTerminator());
+        Worklist.Add(cast<Instruction>(InV));
+      }
+      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+    }
+  }
+  return ReplaceInstUsesWith(I, NewPN);
+}
+
+/// FindElementAtOffset - Given a type and a constant offset, determine whether
+/// or not there is a sequence of GEP indices into the type that will land us at
+/// the specified offset.  If so, fill them into NewIndices and return the
+/// resultant element type, otherwise return null.
+const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset, 
+                                          SmallVectorImpl<Value*> &NewIndices) {
+  if (!TD) return 0;
+  if (!Ty->isSized()) return 0;
+  
+  // Start with the index over the outer type.  Note that the type size
+  // might be zero (even if the offset isn't zero) if the indexed type
+  // is something like [0 x {int, int}]
+  const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
+  int64_t FirstIdx = 0;
+  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
+    FirstIdx = Offset/TySize;
+    Offset -= FirstIdx*TySize;
+    
+    // Handle hosts where % returns negative instead of values [0..TySize).
+    if (Offset < 0) {
+      --FirstIdx;
+      Offset += TySize;
+      assert(Offset >= 0);
+    }
+    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
+  }
+  
+  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
+    
+  // Index into the types.  If we fail, set OrigBase to null.
+  while (Offset) {
+    // Indexing into tail padding between struct/array elements.
+    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
+      return 0;
+    
+    if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+      const StructLayout *SL = TD->getStructLayout(STy);
+      assert(Offset < (int64_t)SL->getSizeInBytes() &&
+             "Offset must stay within the indexed type");
+      
+      unsigned Elt = SL->getElementContainingOffset(Offset);
+      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
+                                            Elt));
+      
+      Offset -= SL->getElementOffset(Elt);
+      Ty = STy->getElementType(Elt);
+    } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
+      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
+      assert(EltSize && "Cannot index into a zero-sized array");
+      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
+      Offset %= EltSize;
+      Ty = AT->getElementType();
+    } else {
+      // Otherwise, we can't index into the middle of this atomic type, bail.
+      return 0;
+    }
+  }
+  
+  return Ty;
+}
+
+
+
+Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
+  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
+
+  if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD))
+    return ReplaceInstUsesWith(GEP, V);
+
+  Value *PtrOp = GEP.getOperand(0);
+
+  if (isa<UndefValue>(GEP.getOperand(0)))
+    return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
+
+  // Eliminate unneeded casts for indices.
+  if (TD) {
+    bool MadeChange = false;
+    unsigned PtrSize = TD->getPointerSizeInBits();
+    
+    gep_type_iterator GTI = gep_type_begin(GEP);
+    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
+         I != E; ++I, ++GTI) {
+      if (!isa<SequentialType>(*GTI)) continue;
+      
+      // If we are using a wider index than needed for this platform, shrink it
+      // to what we need.  If narrower, sign-extend it to what we need.  This
+      // explicit cast can make subsequent optimizations more obvious.
+      unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth();
+      if (OpBits == PtrSize)
+        continue;
+      
+      *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true);
+      MadeChange = true;
+    }
+    if (MadeChange) return &GEP;
+  }
+
+  // Combine Indices - If the source pointer to this getelementptr instruction
+  // is a getelementptr instruction, combine the indices of the two
+  // getelementptr instructions into a single instruction.
+  //
+  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
+    // Note that if our source is a gep chain itself that we wait for that
+    // chain to be resolved before we perform this transformation.  This
+    // avoids us creating a TON of code in some cases.
+    //
+    if (GetElementPtrInst *SrcGEP =
+          dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
+      if (SrcGEP->getNumOperands() == 2)
+        return 0;   // Wait until our source is folded to completion.
+
+    SmallVector<Value*, 8> Indices;
+
+    // Find out whether the last index in the source GEP is a sequential idx.
+    bool EndsWithSequential = false;
+    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
+         I != E; ++I)
+      EndsWithSequential = !isa<StructType>(*I);
+
+    // Can we combine the two pointer arithmetics offsets?
+    if (EndsWithSequential) {
+      // Replace: gep (gep %P, long B), long A, ...
+      // With:    T = long A+B; gep %P, T, ...
+      //
+      Value *Sum;
+      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
+      Value *GO1 = GEP.getOperand(1);
+      if (SO1 == Constant::getNullValue(SO1->getType())) {
+        Sum = GO1;
+      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
+        Sum = SO1;
+      } else {
+        // If they aren't the same type, then the input hasn't been processed
+        // by the loop above yet (which canonicalizes sequential index types to
+        // intptr_t).  Just avoid transforming this until the input has been
+        // normalized.
+        if (SO1->getType() != GO1->getType())
+          return 0;
+        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
+      }
+
+      // Update the GEP in place if possible.
+      if (Src->getNumOperands() == 2) {
+        GEP.setOperand(0, Src->getOperand(0));
+        GEP.setOperand(1, Sum);
+        return &GEP;
+      }
+      Indices.append(Src->op_begin()+1, Src->op_end()-1);
+      Indices.push_back(Sum);
+      Indices.append(GEP.op_begin()+2, GEP.op_end());
+    } else if (isa<Constant>(*GEP.idx_begin()) &&
+               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
+               Src->getNumOperands() != 1) {
+      // Otherwise we can do the fold if the first index of the GEP is a zero
+      Indices.append(Src->op_begin()+1, Src->op_end());
+      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
+    }
+
+    if (!Indices.empty())
+      return (GEP.isInBounds() && Src->isInBounds()) ?
+        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
+                                          Indices.end(), GEP.getName()) :
+        GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
+                                  Indices.end(), GEP.getName());
+  }
+  
+  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
+  Value *StrippedPtr = PtrOp->stripPointerCasts();
+  if (StrippedPtr != PtrOp) {
+    const PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
+
+    bool HasZeroPointerIndex = false;
+    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
+      HasZeroPointerIndex = C->isZero();
+    
+    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
+    // into     : GEP [10 x i8]* X, i32 0, ...
+    //
+    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
+    //           into     : GEP i8* X, ...
+    // 
+    // This occurs when the program declares an array extern like "int X[];"
+    if (HasZeroPointerIndex) {
+      const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
+      if (const ArrayType *CATy =
+          dyn_cast<ArrayType>(CPTy->getElementType())) {
+        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
+        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
+          // -> GEP i8* X, ...
+          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
+          GetElementPtrInst *Res =
+            GetElementPtrInst::Create(StrippedPtr, Idx.begin(),
+                                      Idx.end(), GEP.getName());
+          Res->setIsInBounds(GEP.isInBounds());
+          return Res;
+        }
+        
+        if (const ArrayType *XATy =
+              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
+          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
+          if (CATy->getElementType() == XATy->getElementType()) {
+            // -> GEP [10 x i8]* X, i32 0, ...
+            // At this point, we know that the cast source type is a pointer
+            // to an array of the same type as the destination pointer
+            // array.  Because the array type is never stepped over (there
+            // is a leading zero) we can fold the cast into this GEP.
+            GEP.setOperand(0, StrippedPtr);
+            return &GEP;
+          }
+        }
+      }
+    } else if (GEP.getNumOperands() == 2) {
+      // Transform things like:
+      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
+      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
+      const Type *SrcElTy = StrippedPtrTy->getElementType();
+      const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
+      if (TD && isa<ArrayType>(SrcElTy) &&
+          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
+          TD->getTypeAllocSize(ResElTy)) {
+        Value *Idx[2];
+        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
+        Idx[1] = GEP.getOperand(1);
+        Value *NewGEP = GEP.isInBounds() ?
+          Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2, GEP.getName()) :
+          Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
+        // V and GEP are both pointer types --> BitCast
+        return new BitCastInst(NewGEP, GEP.getType());
+      }
+      
+      // Transform things like:
+      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
+      //   (where tmp = 8*tmp2) into:
+      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
+      
+      if (TD && isa<ArrayType>(SrcElTy) && ResElTy->isInteger(8)) {
+        uint64_t ArrayEltSize =
+            TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
+        
+        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
+        // allow either a mul, shift, or constant here.
+        Value *NewIdx = 0;
+        ConstantInt *Scale = 0;
+        if (ArrayEltSize == 1) {
+          NewIdx = GEP.getOperand(1);
+          Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
+        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
+          NewIdx = ConstantInt::get(CI->getType(), 1);
+          Scale = CI;
+        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
+          if (Inst->getOpcode() == Instruction::Shl &&
+              isa<ConstantInt>(Inst->getOperand(1))) {
+            ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
+            uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
+            Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
+                                     1ULL << ShAmtVal);
+            NewIdx = Inst->getOperand(0);
+          } else if (Inst->getOpcode() == Instruction::Mul &&
+                     isa<ConstantInt>(Inst->getOperand(1))) {
+            Scale = cast<ConstantInt>(Inst->getOperand(1));
+            NewIdx = Inst->getOperand(0);
+          }
+        }
+        
+        // If the index will be to exactly the right offset with the scale taken
+        // out, perform the transformation. Note, we don't know whether Scale is
+        // signed or not. We'll use unsigned version of division/modulo
+        // operation after making sure Scale doesn't have the sign bit set.
+        if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
+            Scale->getZExtValue() % ArrayEltSize == 0) {
+          Scale = ConstantInt::get(Scale->getType(),
+                                   Scale->getZExtValue() / ArrayEltSize);
+          if (Scale->getZExtValue() != 1) {
+            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
+                                                       false /*ZExt*/);
+            NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
+          }
+
+          // Insert the new GEP instruction.
+          Value *Idx[2];
+          Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
+          Idx[1] = NewIdx;
+          Value *NewGEP = GEP.isInBounds() ?
+            Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2,GEP.getName()):
+            Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
+          // The NewGEP must be pointer typed, so must the old one -> BitCast
+          return new BitCastInst(NewGEP, GEP.getType());
+        }
+      }
+    }
+  }
+  
+  /// See if we can simplify:
+  ///   X = bitcast A* to B*
+  ///   Y = gep X, <...constant indices...>
+  /// into a gep of the original struct.  This is important for SROA and alias
+  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
+  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
+    if (TD &&
+        !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
+      // Determine how much the GEP moves the pointer.  We are guaranteed to get
+      // a constant back from EmitGEPOffset.
+      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
+      int64_t Offset = OffsetV->getSExtValue();
+      
+      // If this GEP instruction doesn't move the pointer, just replace the GEP
+      // with a bitcast of the real input to the dest type.
+      if (Offset == 0) {
+        // If the bitcast is of an allocation, and the allocation will be
+        // converted to match the type of the cast, don't touch this.
+        if (isa<AllocaInst>(BCI->getOperand(0)) ||
+            isMalloc(BCI->getOperand(0))) {
+          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
+          if (Instruction *I = visitBitCast(*BCI)) {
+            if (I != BCI) {
+              I->takeName(BCI);
+              BCI->getParent()->getInstList().insert(BCI, I);
+              ReplaceInstUsesWith(*BCI, I);
+            }
+            return &GEP;
+          }
+        }
+        return new BitCastInst(BCI->getOperand(0), GEP.getType());
+      }
+      
+      // Otherwise, if the offset is non-zero, we need to find out if there is a
+      // field at Offset in 'A's type.  If so, we can pull the cast through the
+      // GEP.
+      SmallVector<Value*, 8> NewIndices;
+      const Type *InTy =
+        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
+      if (FindElementAtOffset(InTy, Offset, NewIndices)) {
+        Value *NGEP = GEP.isInBounds() ?
+          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
+                                     NewIndices.end()) :
+          Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
+                             NewIndices.end());
+        
+        if (NGEP->getType() == GEP.getType())
+          return ReplaceInstUsesWith(GEP, NGEP);
+        NGEP->takeName(&GEP);
+        return new BitCastInst(NGEP, GEP.getType());
+      }
+    }
+  }    
+    
+  return 0;
+}
+
+Instruction *InstCombiner::visitFree(Instruction &FI) {
+  Value *Op = FI.getOperand(1);
+
+  // free undef -> unreachable.
+  if (isa<UndefValue>(Op)) {
+    // Insert a new store to null because we cannot modify the CFG here.
+    new StoreInst(ConstantInt::getTrue(FI.getContext()),
+           UndefValue::get(Type::getInt1PtrTy(FI.getContext())), &FI);
+    return EraseInstFromFunction(FI);
+  }
+  
+  // If we have 'free null' delete the instruction.  This can happen in stl code
+  // when lots of inlining happens.
+  if (isa<ConstantPointerNull>(Op))
+    return EraseInstFromFunction(FI);
+
+  // If we have a malloc call whose only use is a free call, delete both.
+  if (isMalloc(Op)) {
+    if (CallInst* CI = extractMallocCallFromBitCast(Op)) {
+      if (Op->hasOneUse() && CI->hasOneUse()) {
+        EraseInstFromFunction(FI);
+        EraseInstFromFunction(*CI);
+        return EraseInstFromFunction(*cast<Instruction>(Op));
+      }
+    } else {
+      // Op is a call to malloc
+      if (Op->hasOneUse()) {
+        EraseInstFromFunction(FI);
+        return EraseInstFromFunction(*cast<Instruction>(Op));
+      }
+    }
+  }
+
+  return 0;
+}
+
+
+
+Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
+  // Change br (not X), label True, label False to: br X, label False, True
+  Value *X = 0;
+  BasicBlock *TrueDest;
+  BasicBlock *FalseDest;
+  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
+      !isa<Constant>(X)) {
+    // Swap Destinations and condition...
+    BI.setCondition(X);
+    BI.setSuccessor(0, FalseDest);
+    BI.setSuccessor(1, TrueDest);
+    return &BI;
+  }
+
+  // Cannonicalize fcmp_one -> fcmp_oeq
+  FCmpInst::Predicate FPred; Value *Y;
+  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 
+                             TrueDest, FalseDest)) &&
+      BI.getCondition()->hasOneUse())
+    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
+        FPred == FCmpInst::FCMP_OGE) {
+      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
+      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
+      
+      // Swap Destinations and condition.
+      BI.setSuccessor(0, FalseDest);
+      BI.setSuccessor(1, TrueDest);
+      Worklist.Add(Cond);
+      return &BI;
+    }
+
+  // Cannonicalize icmp_ne -> icmp_eq
+  ICmpInst::Predicate IPred;
+  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
+                      TrueDest, FalseDest)) &&
+      BI.getCondition()->hasOneUse())
+    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
+        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
+        IPred == ICmpInst::ICMP_SGE) {
+      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
+      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
+      // Swap Destinations and condition.
+      BI.setSuccessor(0, FalseDest);
+      BI.setSuccessor(1, TrueDest);
+      Worklist.Add(Cond);
+      return &BI;
+    }
+
+  return 0;
+}
+
+Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
+  Value *Cond = SI.getCondition();
+  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
+    if (I->getOpcode() == Instruction::Add)
+      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
+        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
+        for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
+          SI.setOperand(i,
+                   ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
+                                                AddRHS));
+        SI.setOperand(0, I->getOperand(0));
+        Worklist.Add(I);
+        return &SI;
+      }
+  }
+  return 0;
+}
+
+Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
+  Value *Agg = EV.getAggregateOperand();
+
+  if (!EV.hasIndices())
+    return ReplaceInstUsesWith(EV, Agg);
+
+  if (Constant *C = dyn_cast<Constant>(Agg)) {
+    if (isa<UndefValue>(C))
+      return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
+      
+    if (isa<ConstantAggregateZero>(C))
+      return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
+
+    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
+      // Extract the element indexed by the first index out of the constant
+      Value *V = C->getOperand(*EV.idx_begin());
+      if (EV.getNumIndices() > 1)
+        // Extract the remaining indices out of the constant indexed by the
+        // first index
+        return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
+      else
+        return ReplaceInstUsesWith(EV, V);
+    }
+    return 0; // Can't handle other constants
+  } 
+  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
+    // We're extracting from an insertvalue instruction, compare the indices
+    const unsigned *exti, *exte, *insi, *inse;
+    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
+         exte = EV.idx_end(), inse = IV->idx_end();
+         exti != exte && insi != inse;
+         ++exti, ++insi) {
+      if (*insi != *exti)
+        // The insert and extract both reference distinctly different elements.
+        // This means the extract is not influenced by the insert, and we can
+        // replace the aggregate operand of the extract with the aggregate
+        // operand of the insert. i.e., replace
+        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
+        // %E = extractvalue { i32, { i32 } } %I, 0
+        // with
+        // %E = extractvalue { i32, { i32 } } %A, 0
+        return ExtractValueInst::Create(IV->getAggregateOperand(),
+                                        EV.idx_begin(), EV.idx_end());
+    }
+    if (exti == exte && insi == inse)
+      // Both iterators are at the end: Index lists are identical. Replace
+      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
+      // %C = extractvalue { i32, { i32 } } %B, 1, 0
+      // with "i32 42"
+      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
+    if (exti == exte) {
+      // The extract list is a prefix of the insert list. i.e. replace
+      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
+      // %E = extractvalue { i32, { i32 } } %I, 1
+      // with
+      // %X = extractvalue { i32, { i32 } } %A, 1
+      // %E = insertvalue { i32 } %X, i32 42, 0
+      // by switching the order of the insert and extract (though the
+      // insertvalue should be left in, since it may have other uses).
+      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
+                                                 EV.idx_begin(), EV.idx_end());
+      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
+                                     insi, inse);
+    }
+    if (insi == inse)
+      // The insert list is a prefix of the extract list
+      // We can simply remove the common indices from the extract and make it
+      // operate on the inserted value instead of the insertvalue result.
+      // i.e., replace
+      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
+      // %E = extractvalue { i32, { i32 } } %I, 1, 0
+      // with
+      // %E extractvalue { i32 } { i32 42 }, 0
+      return ExtractValueInst::Create(IV->getInsertedValueOperand(), 
+                                      exti, exte);
+  }
+  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
+    // We're extracting from an intrinsic, see if we're the only user, which
+    // allows us to simplify multiple result intrinsics to simpler things that
+    // just get one value..
+    if (II->hasOneUse()) {
+      // Check if we're grabbing the overflow bit or the result of a 'with
+      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
+      // and replace it with a traditional binary instruction.
+      switch (II->getIntrinsicID()) {
+      case Intrinsic::uadd_with_overflow:
+      case Intrinsic::sadd_with_overflow:
+        if (*EV.idx_begin() == 0) {  // Normal result.
+          Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
+          II->replaceAllUsesWith(UndefValue::get(II->getType()));
+          EraseInstFromFunction(*II);
+          return BinaryOperator::CreateAdd(LHS, RHS);
+        }
+        break;
+      case Intrinsic::usub_with_overflow:
+      case Intrinsic::ssub_with_overflow:
+        if (*EV.idx_begin() == 0) {  // Normal result.
+          Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
+          II->replaceAllUsesWith(UndefValue::get(II->getType()));
+          EraseInstFromFunction(*II);
+          return BinaryOperator::CreateSub(LHS, RHS);
+        }
+        break;
+      case Intrinsic::umul_with_overflow:
+      case Intrinsic::smul_with_overflow:
+        if (*EV.idx_begin() == 0) {  // Normal result.
+          Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
+          II->replaceAllUsesWith(UndefValue::get(II->getType()));
+          EraseInstFromFunction(*II);
+          return BinaryOperator::CreateMul(LHS, RHS);
+        }
+        break;
+      default:
+        break;
+      }
+    }
+  }
+  // Can't simplify extracts from other values. Note that nested extracts are
+  // already simplified implicitely by the above (extract ( extract (insert) )
+  // will be translated into extract ( insert ( extract ) ) first and then just
+  // the value inserted, if appropriate).
+  return 0;
+}
+
+
+
+
+/// TryToSinkInstruction - Try to move the specified instruction from its
+/// current block into the beginning of DestBlock, which can only happen if it's
+/// safe to move the instruction past all of the instructions between it and the
+/// end of its block.
+static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
+  assert(I->hasOneUse() && "Invariants didn't hold!");
+
+  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
+  if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I))
+    return false;
+
+  // Do not sink alloca instructions out of the entry block.
+  if (isa<AllocaInst>(I) && I->getParent() ==
+        &DestBlock->getParent()->getEntryBlock())
+    return false;
+
+  // We can only sink load instructions if there is nothing between the load and
+  // the end of block that could change the value.
+  if (I->mayReadFromMemory()) {
+    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
+         Scan != E; ++Scan)
+      if (Scan->mayWriteToMemory())
+        return false;
+  }
+
+  BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
+
+  I->moveBefore(InsertPos);
+  ++NumSunkInst;
+  return true;
+}
+
+
+/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
+/// all reachable code to the worklist.
+///
+/// This has a couple of tricks to make the code faster and more powerful.  In
+/// particular, we constant fold and DCE instructions as we go, to avoid adding
+/// them to the worklist (this significantly speeds up instcombine on code where
+/// many instructions are dead or constant).  Additionally, if we find a branch
+/// whose condition is a known constant, we only visit the reachable successors.
+///
+static bool AddReachableCodeToWorklist(BasicBlock *BB, 
+                                       SmallPtrSet<BasicBlock*, 64> &Visited,
+                                       InstCombiner &IC,
+                                       const TargetData *TD) {
+  bool MadeIRChange = false;
+  SmallVector<BasicBlock*, 256> Worklist;
+  Worklist.push_back(BB);
+  
+  std::vector<Instruction*> InstrsForInstCombineWorklist;
+  InstrsForInstCombineWorklist.reserve(128);
+
+  SmallPtrSet<ConstantExpr*, 64> FoldedConstants;
+  
+  do {
+    BB = Worklist.pop_back_val();
+    
+    // We have now visited this block!  If we've already been here, ignore it.
+    if (!Visited.insert(BB)) continue;
+
+    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
+      Instruction *Inst = BBI++;
+      
+      // DCE instruction if trivially dead.
+      if (isInstructionTriviallyDead(Inst)) {
+        ++NumDeadInst;
+        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
+        Inst->eraseFromParent();
+        continue;
+      }
+      
+      // ConstantProp instruction if trivially constant.
+      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
+        if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
+          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
+                       << *Inst << '\n');
+          Inst->replaceAllUsesWith(C);
+          ++NumConstProp;
+          Inst->eraseFromParent();
+          continue;
+        }
+      
+      if (TD) {
+        // See if we can constant fold its operands.
+        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
+             i != e; ++i) {
+          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
+          if (CE == 0) continue;
+          
+          // If we already folded this constant, don't try again.
+          if (!FoldedConstants.insert(CE))
+            continue;
+          
+          Constant *NewC = ConstantFoldConstantExpression(CE, TD);
+          if (NewC && NewC != CE) {
+            *i = NewC;
+            MadeIRChange = true;
+          }
+        }
+      }
+
+      InstrsForInstCombineWorklist.push_back(Inst);
+    }
+
+    // Recursively visit successors.  If this is a branch or switch on a
+    // constant, only visit the reachable successor.
+    TerminatorInst *TI = BB->getTerminator();
+    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
+        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
+        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
+        Worklist.push_back(ReachableBB);
+        continue;
+      }
+    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
+        // See if this is an explicit destination.
+        for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
+          if (SI->getCaseValue(i) == Cond) {
+            BasicBlock *ReachableBB = SI->getSuccessor(i);
+            Worklist.push_back(ReachableBB);
+            continue;
+          }
+        
+        // Otherwise it is the default destination.
+        Worklist.push_back(SI->getSuccessor(0));
+        continue;
+      }
+    }
+    
+    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+      Worklist.push_back(TI->getSuccessor(i));
+  } while (!Worklist.empty());
+  
+  // Once we've found all of the instructions to add to instcombine's worklist,
+  // add them in reverse order.  This way instcombine will visit from the top
+  // of the function down.  This jives well with the way that it adds all uses
+  // of instructions to the worklist after doing a transformation, thus avoiding
+  // some N^2 behavior in pathological cases.
+  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
+                              InstrsForInstCombineWorklist.size());
+  
+  return MadeIRChange;
+}
+
+bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
+  MadeIRChange = false;
+  
+  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
+        << F.getNameStr() << "\n");
+
+  {
+    // Do a depth-first traversal of the function, populate the worklist with
+    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
+    // track of which blocks we visit.
+    SmallPtrSet<BasicBlock*, 64> Visited;
+    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
+
+    // Do a quick scan over the function.  If we find any blocks that are
+    // unreachable, remove any instructions inside of them.  This prevents
+    // the instcombine code from having to deal with some bad special cases.
+    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+      if (!Visited.count(BB)) {
+        Instruction *Term = BB->getTerminator();
+        while (Term != BB->begin()) {   // Remove instrs bottom-up
+          BasicBlock::iterator I = Term; --I;
+
+          DEBUG(errs() << "IC: DCE: " << *I << '\n');
+          // A debug intrinsic shouldn't force another iteration if we weren't
+          // going to do one without it.
+          if (!isa<DbgInfoIntrinsic>(I)) {
+            ++NumDeadInst;
+            MadeIRChange = true;
+          }
+
+          // If I is not void type then replaceAllUsesWith undef.
+          // This allows ValueHandlers and custom metadata to adjust itself.
+          if (!I->getType()->isVoidTy())
+            I->replaceAllUsesWith(UndefValue::get(I->getType()));
+          I->eraseFromParent();
+        }
+      }
+  }
+
+  while (!Worklist.isEmpty()) {
+    Instruction *I = Worklist.RemoveOne();
+    if (I == 0) continue;  // skip null values.
+
+    // Check to see if we can DCE the instruction.
+    if (isInstructionTriviallyDead(I)) {
+      DEBUG(errs() << "IC: DCE: " << *I << '\n');
+      EraseInstFromFunction(*I);
+      ++NumDeadInst;
+      MadeIRChange = true;
+      continue;
+    }
+
+    // Instruction isn't dead, see if we can constant propagate it.
+    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
+      if (Constant *C = ConstantFoldInstruction(I, TD)) {
+        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
+
+        // Add operands to the worklist.
+        ReplaceInstUsesWith(*I, C);
+        ++NumConstProp;
+        EraseInstFromFunction(*I);
+        MadeIRChange = true;
+        continue;
+      }
+
+    // See if we can trivially sink this instruction to a successor basic block.
+    if (I->hasOneUse()) {
+      BasicBlock *BB = I->getParent();
+      Instruction *UserInst = cast<Instruction>(I->use_back());
+      BasicBlock *UserParent;
+      
+      // Get the block the use occurs in.
+      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
+        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
+      else
+        UserParent = UserInst->getParent();
+      
+      if (UserParent != BB) {
+        bool UserIsSuccessor = false;
+        // See if the user is one of our successors.
+        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
+          if (*SI == UserParent) {
+            UserIsSuccessor = true;
+            break;
+          }
+
+        // If the user is one of our immediate successors, and if that successor
+        // only has us as a predecessors (we'd have to split the critical edge
+        // otherwise), we can keep going.
+        if (UserIsSuccessor && UserParent->getSinglePredecessor())
+          // Okay, the CFG is simple enough, try to sink this instruction.
+          MadeIRChange |= TryToSinkInstruction(I, UserParent);
+      }
+    }
+
+    // Now that we have an instruction, try combining it to simplify it.
+    Builder->SetInsertPoint(I->getParent(), I);
+    
+#ifndef NDEBUG
+    std::string OrigI;
+#endif
+    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
+    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
+
+    if (Instruction *Result = visit(*I)) {
+      ++NumCombined;
+      // Should we replace the old instruction with a new one?
+      if (Result != I) {
+        DEBUG(errs() << "IC: Old = " << *I << '\n'
+                     << "    New = " << *Result << '\n');
+
+        // Everything uses the new instruction now.
+        I->replaceAllUsesWith(Result);
+
+        // Push the new instruction and any users onto the worklist.
+        Worklist.Add(Result);
+        Worklist.AddUsersToWorkList(*Result);
+
+        // Move the name to the new instruction first.
+        Result->takeName(I);
+
+        // Insert the new instruction into the basic block...
+        BasicBlock *InstParent = I->getParent();
+        BasicBlock::iterator InsertPos = I;
+
+        if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
+          while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
+            ++InsertPos;
+
+        InstParent->getInstList().insert(InsertPos, Result);
+
+        EraseInstFromFunction(*I);
+      } else {
+#ifndef NDEBUG
+        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
+                     << "    New = " << *I << '\n');
+#endif
+
+        // If the instruction was modified, it's possible that it is now dead.
+        // if so, remove it.
+        if (isInstructionTriviallyDead(I)) {
+          EraseInstFromFunction(*I);
+        } else {
+          Worklist.Add(I);
+          Worklist.AddUsersToWorkList(*I);
+        }
+      }
+      MadeIRChange = true;
+    }
+  }
+
+  Worklist.Zap();
+  return MadeIRChange;
+}
+
+
+bool InstCombiner::runOnFunction(Function &F) {
+  MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
+  TD = getAnalysisIfAvailable<TargetData>();
+
+  
+  /// Builder - This is an IRBuilder that automatically inserts new
+  /// instructions into the worklist when they are created.
+  IRBuilder<true, TargetFolder, InstCombineIRInserter> 
+    TheBuilder(F.getContext(), TargetFolder(TD),
+               InstCombineIRInserter(Worklist));
+  Builder = &TheBuilder;
+  
+  bool EverMadeChange = false;
+
+  // Iterate while there is work to do.
+  unsigned Iteration = 0;
+  while (DoOneIteration(F, Iteration++))
+    EverMadeChange = true;
+  
+  Builder = 0;
+  return EverMadeChange;
+}
+
+FunctionPass *llvm::createInstructionCombiningPass() {
+  return new InstCombiner();
+}
diff --git a/lib/Transforms/InstCombine/Makefile b/lib/Transforms/InstCombine/Makefile
new file mode 100644
index 0000000..0c488e78
--- /dev/null
+++ b/lib/Transforms/InstCombine/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Transforms/InstCombine/Makefile -----------------*- Makefile -*-===##
+#
+#                     The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../..
+LIBRARYNAME = LLVMInstCombine
+BUILD_ARCHIVE = 1
+
+include $(LEVEL)/Makefile.common
+
-- 
cgit v1.1