From cbb70ce070d220642b038ea101d9c0f9fbf860d6 Mon Sep 17 00:00:00 2001
From: dim <dim@FreeBSD.org>
Date: Sun, 20 Feb 2011 12:57:14 +0000
Subject: Vendor import of llvm trunk r126079:
 http://llvm.org/svn/llvm-project/llvm/trunk@126079

---
 lib/CodeGen/SpillPlacement.cpp | 330 +++++++++++++++++++++++++++++++++++++++++
 1 file changed, 330 insertions(+)
 create mode 100644 lib/CodeGen/SpillPlacement.cpp

(limited to 'lib/CodeGen/SpillPlacement.cpp')

diff --git a/lib/CodeGen/SpillPlacement.cpp b/lib/CodeGen/SpillPlacement.cpp
new file mode 100644
index 0000000..9c0bf16
--- /dev/null
+++ b/lib/CodeGen/SpillPlacement.cpp
@@ -0,0 +1,330 @@
+//===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the spill code placement analysis.
+//
+// Each edge bundle corresponds to a node in a Hopfield network. Constraints on
+// basic blocks are weighted by the block frequency and added to become the node
+// bias.
+//
+// Transparent basic blocks have the variable live through, but don't care if it
+// is spilled or in a register. These blocks become connections in the Hopfield
+// network, again weighted by block frequency.
+//
+// The Hopfield network minimizes (possibly locally) its energy function:
+//
+//   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
+//
+// The energy function represents the expected spill code execution frequency,
+// or the cost of spilling. This is a Lyapunov function which never increases
+// when a node is updated. It is guaranteed to converge to a local minimum.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "spillplacement"
+#include "SpillPlacement.h"
+#include "llvm/CodeGen/EdgeBundles.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Format.h"
+
+using namespace llvm;
+
+char SpillPlacement::ID = 0;
+INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
+                      "Spill Code Placement Analysis", true, true)
+INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
+                    "Spill Code Placement Analysis", true, true)
+
+char &llvm::SpillPlacementID = SpillPlacement::ID;
+
+void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
+  AU.setPreservesAll();
+  AU.addRequiredTransitive<EdgeBundles>();
+  AU.addRequiredTransitive<MachineLoopInfo>();
+  MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+/// Node - Each edge bundle corresponds to a Hopfield node.
+///
+/// The node contains precomputed frequency data that only depends on the CFG,
+/// but Bias and Links are computed each time placeSpills is called.
+///
+/// The node Value is positive when the variable should be in a register. The
+/// value can change when linked nodes change, but convergence is very fast
+/// because all weights are positive.
+///
+struct SpillPlacement::Node {
+  /// Frequency - Total block frequency feeding into[0] or out of[1] the bundle.
+  /// Ideally, these two numbers should be identical, but inaccuracies in the
+  /// block frequency estimates means that we need to normalize ingoing and
+  /// outgoing frequencies separately so they are commensurate.
+  float Frequency[2];
+
+  /// Bias - Normalized contributions from non-transparent blocks.
+  /// A bundle connected to a MustSpill block has a huge negative bias,
+  /// otherwise it is a number in the range [-2;2].
+  float Bias;
+
+  /// Value - Output value of this node computed from the Bias and links.
+  /// This is always in the range [-1;1]. A positive number means the variable
+  /// should go in a register through this bundle.
+  float Value;
+
+  typedef SmallVector<std::pair<float, unsigned>, 4> LinkVector;
+
+  /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
+  /// bundles. The weights are all positive and add up to at most 2, weights
+  /// from ingoing and outgoing nodes separately add up to a most 1. The weight
+  /// sum can be less than 2 when the variable is not live into / out of some
+  /// connected basic blocks.
+  LinkVector Links;
+
+  /// preferReg - Return true when this node prefers to be in a register.
+  bool preferReg() const {
+    // Undecided nodes (Value==0) go on the stack.
+    return Value > 0;
+  }
+
+  /// mustSpill - Return True if this node is so biased that it must spill.
+  bool mustSpill() const {
+    // Actually, we must spill if Bias < sum(weights).
+    // It may be worth it to compute the weight sum here?
+    return Bias < -2.0f;
+  }
+
+  /// Node - Create a blank Node.
+  Node() {
+    Frequency[0] = Frequency[1] = 0;
+  }
+
+  /// clear - Reset per-query data, but preserve frequencies that only depend on
+  // the CFG.
+  void clear() {
+    Bias = Value = 0;
+    Links.clear();
+  }
+
+  /// addLink - Add a link to bundle b with weight w.
+  /// out=0 for an ingoing link, and 1 for an outgoing link.
+  void addLink(unsigned b, float w, bool out) {
+    // Normalize w relative to all connected blocks from that direction.
+    w /= Frequency[out];
+
+    // There can be multiple links to the same bundle, add them up.
+    for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
+      if (I->second == b) {
+        I->first += w;
+        return;
+      }
+    // This must be the first link to b.
+    Links.push_back(std::make_pair(w, b));
+  }
+
+  /// addBias - Bias this node from an ingoing[0] or outgoing[1] link.
+  void addBias(float w, bool out) {
+    // Normalize w relative to all connected blocks from that direction.
+    w /= Frequency[out];
+    Bias += w;
+  }
+
+  /// update - Recompute Value from Bias and Links. Return true when node
+  /// preference changes.
+  bool update(const Node nodes[]) {
+    // Compute the weighted sum of inputs.
+    float Sum = Bias;
+    for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
+      Sum += I->first * nodes[I->second].Value;
+
+    // The weighted sum is going to be in the range [-2;2]. Ideally, we should
+    // simply set Value = sign(Sum), but we will add a dead zone around 0 for
+    // two reasons:
+    //  1. It avoids arbitrary bias when all links are 0 as is possible during
+    //     initial iterations.
+    //  2. It helps tame rounding errors when the links nominally sum to 0.
+    const float Thres = 1e-4f;
+    bool Before = preferReg();
+    if (Sum < -Thres)
+      Value = -1;
+    else if (Sum > Thres)
+      Value = 1;
+    else
+      Value = 0;
+    return Before != preferReg();
+  }
+};
+
+bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
+  MF = &mf;
+  bundles = &getAnalysis<EdgeBundles>();
+  loops = &getAnalysis<MachineLoopInfo>();
+
+  assert(!nodes && "Leaking node array");
+  nodes = new Node[bundles->getNumBundles()];
+
+  // Compute total ingoing and outgoing block frequencies for all bundles.
+  for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
+    float Freq = getBlockFrequency(I);
+    unsigned Num = I->getNumber();
+    nodes[bundles->getBundle(Num, 1)].Frequency[0] += Freq;
+    nodes[bundles->getBundle(Num, 0)].Frequency[1] += Freq;
+  }
+
+  // We never change the function.
+  return false;
+}
+
+void SpillPlacement::releaseMemory() {
+  delete[] nodes;
+  nodes = 0;
+}
+
+/// activate - mark node n as active if it wasn't already.
+void SpillPlacement::activate(unsigned n) {
+  if (ActiveNodes->test(n))
+    return;
+  ActiveNodes->set(n);
+  nodes[n].clear();
+}
+
+
+/// prepareNodes - Compute node biases and weights from a set of constraints.
+/// Set a bit in NodeMask for each active node.
+void SpillPlacement::
+prepareNodes(const SmallVectorImpl<BlockConstraint> &LiveBlocks) {
+  for (SmallVectorImpl<BlockConstraint>::const_iterator I = LiveBlocks.begin(),
+       E = LiveBlocks.end(); I != E; ++I) {
+    MachineBasicBlock *MBB = MF->getBlockNumbered(I->Number);
+    float Freq = getBlockFrequency(MBB);
+
+    // Is this a transparent block? Link ingoing and outgoing bundles.
+    if (I->Entry == DontCare && I->Exit == DontCare) {
+      unsigned ib = bundles->getBundle(I->Number, 0);
+      unsigned ob = bundles->getBundle(I->Number, 1);
+
+      // Ignore self-loops.
+      if (ib == ob)
+        continue;
+      activate(ib);
+      activate(ob);
+      nodes[ib].addLink(ob, Freq, 1);
+      nodes[ob].addLink(ib, Freq, 0);
+      continue;
+    }
+
+    // This block is not transparent, but it can still add bias.
+    const float Bias[] = {
+      0,           // DontCare,
+      1,           // PrefReg,
+      -1,          // PrefSpill
+      -HUGE_VALF   // MustSpill
+    };
+
+    // Live-in to block?
+    if (I->Entry != DontCare) {
+      unsigned ib = bundles->getBundle(I->Number, 0);
+      activate(ib);
+      nodes[ib].addBias(Freq * Bias[I->Entry], 1);
+    }
+
+    // Live-out from block?
+    if (I->Exit != DontCare) {
+      unsigned ob = bundles->getBundle(I->Number, 1);
+      activate(ob);
+      nodes[ob].addBias(Freq * Bias[I->Exit], 0);
+    }
+  }
+}
+
+/// iterate - Repeatedly update the Hopfield nodes until stability or the
+/// maximum number of iterations is reached.
+/// @param Linked - Numbers of linked nodes that need updating.
+void SpillPlacement::iterate(const SmallVectorImpl<unsigned> &Linked) {
+  if (Linked.empty())
+    return;
+
+  // Run up to 10 iterations. The edge bundle numbering is closely related to
+  // basic block numbering, so there is a strong tendency towards chains of
+  // linked nodes with sequential numbers. By scanning the linked nodes
+  // backwards and forwards, we make it very likely that a single node can
+  // affect the entire network in a single iteration. That means very fast
+  // convergence, usually in a single iteration.
+  for (unsigned iteration = 0; iteration != 10; ++iteration) {
+    // Scan backwards, skipping the last node which was just updated.
+    bool Changed = false;
+    for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
+           llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) {
+      unsigned n = *I;
+      bool C = nodes[n].update(nodes);
+      Changed |= C;
+    }
+    if (!Changed)
+      return;
+
+    // Scan forwards, skipping the first node which was just updated.
+    Changed = false;
+    for (SmallVectorImpl<unsigned>::const_iterator I =
+           llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
+      unsigned n = *I;
+      bool C = nodes[n].update(nodes);
+      Changed |= C;
+    }
+    if (!Changed)
+      return;
+  }
+}
+
+bool
+SpillPlacement::placeSpills(const SmallVectorImpl<BlockConstraint> &LiveBlocks,
+                            BitVector &RegBundles) {
+  // Reuse RegBundles as our ActiveNodes vector.
+  ActiveNodes = &RegBundles;
+  ActiveNodes->clear();
+  ActiveNodes->resize(bundles->getNumBundles());
+
+  // Compute active nodes, links and biases.
+  prepareNodes(LiveBlocks);
+
+  // Update all active nodes, and find the ones that are actually linked to
+  // something so their value may change when iterating.
+  SmallVector<unsigned, 8> Linked;
+  for (int n = RegBundles.find_first(); n>=0; n = RegBundles.find_next(n)) {
+    nodes[n].update(nodes);
+    // A node that must spill, or a node without any links is not going to
+    // change its value ever again, so exclude it from iterations.
+    if (!nodes[n].Links.empty() && !nodes[n].mustSpill())
+      Linked.push_back(n);
+  }
+
+  // Iterate the network to convergence.
+  iterate(Linked);
+
+  // Write preferences back to RegBundles.
+  bool Perfect = true;
+  for (int n = RegBundles.find_first(); n>=0; n = RegBundles.find_next(n))
+    if (!nodes[n].preferReg()) {
+      RegBundles.reset(n);
+      Perfect = false;
+    }
+  return Perfect;
+}
+
+/// getBlockFrequency - Return our best estimate of the block frequency which is
+/// the expected number of block executions per function invocation.
+float SpillPlacement::getBlockFrequency(const MachineBasicBlock *MBB) {
+  // Use the unnormalized spill weight for real block frequencies.
+  return LiveIntervals::getSpillWeight(true, false, loops->getLoopDepth(MBB));
+}
+
-- 
cgit v1.1