From c0a128b2a462075f54611f5c4945626ff0fe2704 Mon Sep 17 00:00:00 2001 From: jb Date: Thu, 22 May 2008 07:46:01 +0000 Subject: Oops, these files belonged under src/sys, not src. Sorry. --- cddl/contrib/opensolaris/uts/common/ctf/ctf_mod.c | 177 - cddl/contrib/opensolaris/uts/common/ctf/ctf_subr.c | 96 - .../contrib/opensolaris/uts/common/dtrace/dtrace.c | 15521 ------------------- .../opensolaris/uts/common/dtrace/fasttrap.c | 2346 --- .../opensolaris/uts/common/dtrace/lockstat.c | 341 - .../opensolaris/uts/common/dtrace/profile.c | 576 - .../opensolaris/uts/common/dtrace/sdt_subr.c | 888 -- .../opensolaris/uts/common/dtrace/systrace.c | 373 - cddl/contrib/opensolaris/uts/common/sys/cmn_err.h | 128 - cddl/contrib/opensolaris/uts/common/sys/cpupart.h | 162 - cddl/contrib/opensolaris/uts/common/sys/cpuvar.h | 737 - cddl/contrib/opensolaris/uts/common/sys/ctf.h | 358 - cddl/contrib/opensolaris/uts/common/sys/ctf_api.h | 241 - cddl/contrib/opensolaris/uts/common/sys/dtrace.h | 2242 --- .../opensolaris/uts/common/sys/dtrace_impl.h | 1298 -- cddl/contrib/opensolaris/uts/common/sys/fasttrap.h | 93 - .../opensolaris/uts/intel/sys/fasttrap_isa.h | 114 - .../opensolaris/uts/sparc/sys/fasttrap_isa.h | 94 - 18 files changed, 25785 deletions(-) delete mode 100644 cddl/contrib/opensolaris/uts/common/ctf/ctf_mod.c delete mode 100644 cddl/contrib/opensolaris/uts/common/ctf/ctf_subr.c delete mode 100644 cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c delete mode 100644 cddl/contrib/opensolaris/uts/common/dtrace/fasttrap.c delete mode 100644 cddl/contrib/opensolaris/uts/common/dtrace/lockstat.c delete mode 100644 cddl/contrib/opensolaris/uts/common/dtrace/profile.c delete mode 100644 cddl/contrib/opensolaris/uts/common/dtrace/sdt_subr.c delete mode 100644 cddl/contrib/opensolaris/uts/common/dtrace/systrace.c delete mode 100644 cddl/contrib/opensolaris/uts/common/sys/cmn_err.h delete mode 100644 cddl/contrib/opensolaris/uts/common/sys/cpupart.h delete mode 100644 cddl/contrib/opensolaris/uts/common/sys/cpuvar.h delete mode 100644 cddl/contrib/opensolaris/uts/common/sys/ctf.h delete mode 100644 cddl/contrib/opensolaris/uts/common/sys/ctf_api.h delete mode 100644 cddl/contrib/opensolaris/uts/common/sys/dtrace.h delete mode 100644 cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h delete mode 100644 cddl/contrib/opensolaris/uts/common/sys/fasttrap.h delete mode 100644 cddl/contrib/opensolaris/uts/intel/sys/fasttrap_isa.h delete mode 100644 cddl/contrib/opensolaris/uts/sparc/sys/fasttrap_isa.h (limited to 'cddl') diff --git a/cddl/contrib/opensolaris/uts/common/ctf/ctf_mod.c b/cddl/contrib/opensolaris/uts/common/ctf/ctf_mod.c deleted file mode 100644 index b34cf40..0000000 --- a/cddl/contrib/opensolaris/uts/common/ctf/ctf_mod.c +++ /dev/null @@ -1,177 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2003 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include -#include -#include -#include -#include - -int ctf_leave_compressed = 0; - -static struct modlmisc modlmisc = { - &mod_miscops, "Compact C Type Format routines" -}; - -static struct modlinkage modlinkage = { - MODREV_1, &modlmisc, NULL -}; - -int -_init(void) -{ - return (mod_install(&modlinkage)); -} - -int -_info(struct modinfo *mip) -{ - return (mod_info(&modlinkage, mip)); -} - -int -_fini(void) -{ - return (mod_remove(&modlinkage)); -} - -/*ARGSUSED*/ -void * -ctf_zopen(int *errp) -{ - return ((void *)1); /* zmod is always loaded because we depend on it */ -} - -/*ARGSUSED*/ -const void * -ctf_sect_mmap(ctf_sect_t *sp, int fd) -{ - return (MAP_FAILED); /* we don't support this in the kernel */ -} - -/*ARGSUSED*/ -void -ctf_sect_munmap(const ctf_sect_t *sp) -{ - /* we don't support this in the kernel */ -} - -/*ARGSUSED*/ -ctf_file_t * -ctf_fdopen(int fd, int *errp) -{ - return (ctf_set_open_errno(errp, ENOTSUP)); -} - -/*ARGSUSED*/ -ctf_file_t * -ctf_open(const char *filename, int *errp) -{ - return (ctf_set_open_errno(errp, ENOTSUP)); -} - -/*ARGSUSED*/ -int -ctf_write(ctf_file_t *fp, int fd) -{ - return (ctf_set_errno(fp, ENOTSUP)); -} - -int -ctf_version(int version) -{ - ASSERT(version > 0 && version <= CTF_VERSION); - - if (version > 0) - _libctf_version = MIN(CTF_VERSION, version); - - return (_libctf_version); -} - -/*ARGSUSED*/ -ctf_file_t * -ctf_modopen(struct module *mp, int *error) -{ - ctf_sect_t ctfsect, symsect, strsect; - ctf_file_t *fp = NULL; - int err; - - if (error == NULL) - error = &err; - - ctfsect.cts_name = ".SUNW_ctf"; - ctfsect.cts_type = SHT_PROGBITS; - ctfsect.cts_flags = SHF_ALLOC; - ctfsect.cts_data = mp->ctfdata; - ctfsect.cts_size = mp->ctfsize; - ctfsect.cts_entsize = 1; - ctfsect.cts_offset = 0; - - symsect.cts_name = ".symtab"; - symsect.cts_type = SHT_SYMTAB; - symsect.cts_flags = 0; - symsect.cts_data = mp->symtbl; - symsect.cts_size = mp->symhdr->sh_size; -#ifdef _LP64 - symsect.cts_entsize = sizeof (Elf64_Sym); -#else - symsect.cts_entsize = sizeof (Elf32_Sym); -#endif - symsect.cts_offset = 0; - - strsect.cts_name = ".strtab"; - strsect.cts_type = SHT_STRTAB; - strsect.cts_flags = 0; - strsect.cts_data = mp->strings; - strsect.cts_size = mp->strhdr->sh_size; - strsect.cts_entsize = 1; - strsect.cts_offset = 0; - - ASSERT(MUTEX_HELD(&mod_lock)); - - if ((fp = ctf_bufopen(&ctfsect, &symsect, &strsect, error)) == NULL) - return (NULL); - - if (!ctf_leave_compressed && (caddr_t)fp->ctf_base != mp->ctfdata) { - /* - * We must have just uncompressed the CTF data. To avoid - * others having to pay the (substantial) cost of decompressing - * the data, we're going to substitute the uncompressed version - * for the compressed version. Note that this implies that the - * first CTF consumer will induce memory impact on the system - * (but in the name of performance of future CTF consumers). - */ - kobj_set_ctf(mp, (caddr_t)fp->ctf_base, fp->ctf_size); - fp->ctf_data.cts_data = fp->ctf_base; - fp->ctf_data.cts_size = fp->ctf_size; - } - - return (fp); -} diff --git a/cddl/contrib/opensolaris/uts/common/ctf/ctf_subr.c b/cddl/contrib/opensolaris/uts/common/ctf/ctf_subr.c deleted file mode 100644 index cd0a828..0000000 --- a/cddl/contrib/opensolaris/uts/common/ctf/ctf_subr.c +++ /dev/null @@ -1,96 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2004 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include - -/* - * This module is used both during the normal operation of the kernel (i.e. - * after kmem has been initialized) and during boot (before unix`_start has - * been called). kobj_alloc is able to tell the difference between the two - * cases, and as such must be used instead of kmem_alloc. - */ - -void * -ctf_data_alloc(size_t size) -{ - void *buf = kobj_alloc(size, KM_NOWAIT|KM_SCRATCH); - - if (buf == NULL) - return (MAP_FAILED); - - return (buf); -} - -void -ctf_data_free(void *buf, size_t size) -{ - kobj_free(buf, size); -} - -/*ARGSUSED*/ -void -ctf_data_protect(void *buf, size_t size) -{ - /* we don't support this operation in the kernel */ -} - -void * -ctf_alloc(size_t size) -{ - return (kobj_alloc(size, KM_NOWAIT|KM_TMP)); -} - -/*ARGSUSED*/ -void -ctf_free(void *buf, size_t size) -{ - kobj_free(buf, size); -} - -/*ARGSUSED*/ -const char * -ctf_strerror(int err) -{ - return (NULL); /* we don't support this operation in the kernel */ -} - -/*PRINTFLIKE1*/ -void -ctf_dprintf(const char *format, ...) -{ - if (_libctf_debug) { - va_list alist; - - va_start(alist, format); - (void) printf("ctf DEBUG: "); - (void) vprintf(format, alist); - va_end(alist); - } -} diff --git a/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c b/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c deleted file mode 100644 index 35971db..0000000 --- a/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c +++ /dev/null @@ -1,15521 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -/* - * DTrace - Dynamic Tracing for Solaris - * - * This is the implementation of the Solaris Dynamic Tracing framework - * (DTrace). The user-visible interface to DTrace is described at length in - * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace - * library, the in-kernel DTrace framework, and the DTrace providers are - * described in the block comments in the header file. The - * internal architecture of DTrace is described in the block comments in the - * header file. The comments contained within the DTrace - * implementation very much assume mastery of all of these sources; if one has - * an unanswered question about the implementation, one should consult them - * first. - * - * The functions here are ordered roughly as follows: - * - * - Probe context functions - * - Probe hashing functions - * - Non-probe context utility functions - * - Matching functions - * - Provider-to-Framework API functions - * - Probe management functions - * - DIF object functions - * - Format functions - * - Predicate functions - * - ECB functions - * - Buffer functions - * - Enabling functions - * - DOF functions - * - Anonymous enabling functions - * - Consumer state functions - * - Helper functions - * - Hook functions - * - Driver cookbook functions - * - * Each group of functions begins with a block comment labelled the "DTrace - * [Group] Functions", allowing one to find each block by searching forward - * on capital-f functions. - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -/* - * DTrace Tunable Variables - * - * The following variables may be tuned by adding a line to /etc/system that - * includes both the name of the DTrace module ("dtrace") and the name of the - * variable. For example: - * - * set dtrace:dtrace_destructive_disallow = 1 - * - * In general, the only variables that one should be tuning this way are those - * that affect system-wide DTrace behavior, and for which the default behavior - * is undesirable. Most of these variables are tunable on a per-consumer - * basis using DTrace options, and need not be tuned on a system-wide basis. - * When tuning these variables, avoid pathological values; while some attempt - * is made to verify the integrity of these variables, they are not considered - * part of the supported interface to DTrace, and they are therefore not - * checked comprehensively. Further, these variables should not be tuned - * dynamically via "mdb -kw" or other means; they should only be tuned via - * /etc/system. - */ -int dtrace_destructive_disallow = 0; -dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); -size_t dtrace_difo_maxsize = (256 * 1024); -dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); -size_t dtrace_global_maxsize = (16 * 1024); -size_t dtrace_actions_max = (16 * 1024); -size_t dtrace_retain_max = 1024; -dtrace_optval_t dtrace_helper_actions_max = 32; -dtrace_optval_t dtrace_helper_providers_max = 32; -dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); -size_t dtrace_strsize_default = 256; -dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ -dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ -dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ -dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ -dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ -dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ -dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ -dtrace_optval_t dtrace_nspec_default = 1; -dtrace_optval_t dtrace_specsize_default = 32 * 1024; -dtrace_optval_t dtrace_stackframes_default = 20; -dtrace_optval_t dtrace_ustackframes_default = 20; -dtrace_optval_t dtrace_jstackframes_default = 50; -dtrace_optval_t dtrace_jstackstrsize_default = 512; -int dtrace_msgdsize_max = 128; -hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ -hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ -int dtrace_devdepth_max = 32; -int dtrace_err_verbose; -hrtime_t dtrace_deadman_interval = NANOSEC; -hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; -hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; - -/* - * DTrace External Variables - * - * As dtrace(7D) is a kernel module, any DTrace variables are obviously - * available to DTrace consumers via the backtick (`) syntax. One of these, - * dtrace_zero, is made deliberately so: it is provided as a source of - * well-known, zero-filled memory. While this variable is not documented, - * it is used by some translators as an implementation detail. - */ -const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ - -/* - * DTrace Internal Variables - */ -static dev_info_t *dtrace_devi; /* device info */ -static vmem_t *dtrace_arena; /* probe ID arena */ -static vmem_t *dtrace_minor; /* minor number arena */ -static taskq_t *dtrace_taskq; /* task queue */ -static dtrace_probe_t **dtrace_probes; /* array of all probes */ -static int dtrace_nprobes; /* number of probes */ -static dtrace_provider_t *dtrace_provider; /* provider list */ -static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ -static int dtrace_opens; /* number of opens */ -static int dtrace_helpers; /* number of helpers */ -static void *dtrace_softstate; /* softstate pointer */ -static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ -static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ -static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ -static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ -static int dtrace_toxranges; /* number of toxic ranges */ -static int dtrace_toxranges_max; /* size of toxic range array */ -static dtrace_anon_t dtrace_anon; /* anonymous enabling */ -static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ -static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ -static kthread_t *dtrace_panicked; /* panicking thread */ -static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ -static dtrace_genid_t dtrace_probegen; /* current probe generation */ -static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ -static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ -static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ - -/* - * DTrace Locking - * DTrace is protected by three (relatively coarse-grained) locks: - * - * (1) dtrace_lock is required to manipulate essentially any DTrace state, - * including enabling state, probes, ECBs, consumer state, helper state, - * etc. Importantly, dtrace_lock is _not_ required when in probe context; - * probe context is lock-free -- synchronization is handled via the - * dtrace_sync() cross call mechanism. - * - * (2) dtrace_provider_lock is required when manipulating provider state, or - * when provider state must be held constant. - * - * (3) dtrace_meta_lock is required when manipulating meta provider state, or - * when meta provider state must be held constant. - * - * The lock ordering between these three locks is dtrace_meta_lock before - * dtrace_provider_lock before dtrace_lock. (In particular, there are - * several places where dtrace_provider_lock is held by the framework as it - * calls into the providers -- which then call back into the framework, - * grabbing dtrace_lock.) - * - * There are two other locks in the mix: mod_lock and cpu_lock. With respect - * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical - * role as a coarse-grained lock; it is acquired before both of these locks. - * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must - * be acquired _between_ dtrace_meta_lock and any other DTrace locks. - * mod_lock is similar with respect to dtrace_provider_lock in that it must be - * acquired _between_ dtrace_provider_lock and dtrace_lock. - */ -static kmutex_t dtrace_lock; /* probe state lock */ -static kmutex_t dtrace_provider_lock; /* provider state lock */ -static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ - -/* - * DTrace Provider Variables - * - * These are the variables relating to DTrace as a provider (that is, the - * provider of the BEGIN, END, and ERROR probes). - */ -static dtrace_pattr_t dtrace_provider_attr = { -{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, -{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, -}; - -static void -dtrace_nullop(void) -{} - -static dtrace_pops_t dtrace_provider_ops = { - (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, - (void (*)(void *, struct modctl *))dtrace_nullop, - (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, - (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, - (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, - (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, - NULL, - NULL, - NULL, - (void (*)(void *, dtrace_id_t, void *))dtrace_nullop -}; - -static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ -static dtrace_id_t dtrace_probeid_end; /* special END probe */ -dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ - -/* - * DTrace Helper Tracing Variables - */ -uint32_t dtrace_helptrace_next = 0; -uint32_t dtrace_helptrace_nlocals; -char *dtrace_helptrace_buffer; -int dtrace_helptrace_bufsize = 512 * 1024; - -#ifdef DEBUG -int dtrace_helptrace_enabled = 1; -#else -int dtrace_helptrace_enabled = 0; -#endif - -/* - * DTrace Error Hashing - * - * On DEBUG kernels, DTrace will track the errors that has seen in a hash - * table. This is very useful for checking coverage of tests that are - * expected to induce DIF or DOF processing errors, and may be useful for - * debugging problems in the DIF code generator or in DOF generation . The - * error hash may be examined with the ::dtrace_errhash MDB dcmd. - */ -#ifdef DEBUG -static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; -static const char *dtrace_errlast; -static kthread_t *dtrace_errthread; -static kmutex_t dtrace_errlock; -#endif - -/* - * DTrace Macros and Constants - * - * These are various macros that are useful in various spots in the - * implementation, along with a few random constants that have no meaning - * outside of the implementation. There is no real structure to this cpp - * mishmash -- but is there ever? - */ -#define DTRACE_HASHSTR(hash, probe) \ - dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) - -#define DTRACE_HASHNEXT(hash, probe) \ - (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) - -#define DTRACE_HASHPREV(hash, probe) \ - (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) - -#define DTRACE_HASHEQ(hash, lhs, rhs) \ - (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ - *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) - -#define DTRACE_AGGHASHSIZE_SLEW 17 - -#define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) - -/* - * The key for a thread-local variable consists of the lower 61 bits of the - * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. - * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never - * equal to a variable identifier. This is necessary (but not sufficient) to - * assure that global associative arrays never collide with thread-local - * variables. To guarantee that they cannot collide, we must also define the - * order for keying dynamic variables. That order is: - * - * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] - * - * Because the variable-key and the tls-key are in orthogonal spaces, there is - * no way for a global variable key signature to match a thread-local key - * signature. - */ -#define DTRACE_TLS_THRKEY(where) { \ - uint_t intr = 0; \ - uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ - for (; actv; actv >>= 1) \ - intr++; \ - ASSERT(intr < (1 << 3)); \ - (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ - (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ -} - -#define DT_BSWAP_8(x) ((x) & 0xff) -#define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) -#define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) -#define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) - -#define DT_MASK_LO 0x00000000FFFFFFFFULL - -#define DTRACE_STORE(type, tomax, offset, what) \ - *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); - -#ifndef __i386 -#define DTRACE_ALIGNCHECK(addr, size, flags) \ - if (addr & (size - 1)) { \ - *flags |= CPU_DTRACE_BADALIGN; \ - cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ - return (0); \ - } -#else -#define DTRACE_ALIGNCHECK(addr, size, flags) -#endif - -/* - * Test whether a range of memory starting at testaddr of size testsz falls - * within the range of memory described by addr, sz. We take care to avoid - * problems with overflow and underflow of the unsigned quantities, and - * disallow all negative sizes. Ranges of size 0 are allowed. - */ -#define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ - ((testaddr) - (baseaddr) < (basesz) && \ - (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ - (testaddr) + (testsz) >= (testaddr)) - -/* - * Test whether alloc_sz bytes will fit in the scratch region. We isolate - * alloc_sz on the righthand side of the comparison in order to avoid overflow - * or underflow in the comparison with it. This is simpler than the INRANGE - * check above, because we know that the dtms_scratch_ptr is valid in the - * range. Allocations of size zero are allowed. - */ -#define DTRACE_INSCRATCH(mstate, alloc_sz) \ - ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ - (mstate)->dtms_scratch_ptr >= (alloc_sz)) - -#define DTRACE_LOADFUNC(bits) \ -/*CSTYLED*/ \ -uint##bits##_t \ -dtrace_load##bits(uintptr_t addr) \ -{ \ - size_t size = bits / NBBY; \ - /*CSTYLED*/ \ - uint##bits##_t rval; \ - int i; \ - volatile uint16_t *flags = (volatile uint16_t *) \ - &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ - \ - DTRACE_ALIGNCHECK(addr, size, flags); \ - \ - for (i = 0; i < dtrace_toxranges; i++) { \ - if (addr >= dtrace_toxrange[i].dtt_limit) \ - continue; \ - \ - if (addr + size <= dtrace_toxrange[i].dtt_base) \ - continue; \ - \ - /* \ - * This address falls within a toxic region; return 0. \ - */ \ - *flags |= CPU_DTRACE_BADADDR; \ - cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ - return (0); \ - } \ - \ - *flags |= CPU_DTRACE_NOFAULT; \ - /*CSTYLED*/ \ - rval = *((volatile uint##bits##_t *)addr); \ - *flags &= ~CPU_DTRACE_NOFAULT; \ - \ - return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ -} - -#ifdef _LP64 -#define dtrace_loadptr dtrace_load64 -#else -#define dtrace_loadptr dtrace_load32 -#endif - -#define DTRACE_DYNHASH_FREE 0 -#define DTRACE_DYNHASH_SINK 1 -#define DTRACE_DYNHASH_VALID 2 - -#define DTRACE_MATCH_NEXT 0 -#define DTRACE_MATCH_DONE 1 -#define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') -#define DTRACE_STATE_ALIGN 64 - -#define DTRACE_FLAGS2FLT(flags) \ - (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ - ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ - ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ - ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ - ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ - ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ - ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ - ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ - ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ - DTRACEFLT_UNKNOWN) - -#define DTRACEACT_ISSTRING(act) \ - ((act)->dta_kind == DTRACEACT_DIFEXPR && \ - (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) - -static size_t dtrace_strlen(const char *, size_t); -static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); -static void dtrace_enabling_provide(dtrace_provider_t *); -static int dtrace_enabling_match(dtrace_enabling_t *, int *); -static void dtrace_enabling_matchall(void); -static dtrace_state_t *dtrace_anon_grab(void); -static uint64_t dtrace_helper(int, dtrace_mstate_t *, - dtrace_state_t *, uint64_t, uint64_t); -static dtrace_helpers_t *dtrace_helpers_create(proc_t *); -static void dtrace_buffer_drop(dtrace_buffer_t *); -static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, - dtrace_state_t *, dtrace_mstate_t *); -static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, - dtrace_optval_t); -static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); -static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); - -/* - * DTrace Probe Context Functions - * - * These functions are called from probe context. Because probe context is - * any context in which C may be called, arbitrarily locks may be held, - * interrupts may be disabled, we may be in arbitrary dispatched state, etc. - * As a result, functions called from probe context may only call other DTrace - * support functions -- they may not interact at all with the system at large. - * (Note that the ASSERT macro is made probe-context safe by redefining it in - * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary - * loads are to be performed from probe context, they _must_ be in terms of - * the safe dtrace_load*() variants. - * - * Some functions in this block are not actually called from probe context; - * for these functions, there will be a comment above the function reading - * "Note: not called from probe context." - */ -void -dtrace_panic(const char *format, ...) -{ - va_list alist; - - va_start(alist, format); - dtrace_vpanic(format, alist); - va_end(alist); -} - -int -dtrace_assfail(const char *a, const char *f, int l) -{ - dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); - - /* - * We just need something here that even the most clever compiler - * cannot optimize away. - */ - return (a[(uintptr_t)f]); -} - -/* - * Atomically increment a specified error counter from probe context. - */ -static void -dtrace_error(uint32_t *counter) -{ - /* - * Most counters stored to in probe context are per-CPU counters. - * However, there are some error conditions that are sufficiently - * arcane that they don't merit per-CPU storage. If these counters - * are incremented concurrently on different CPUs, scalability will be - * adversely affected -- but we don't expect them to be white-hot in a - * correctly constructed enabling... - */ - uint32_t oval, nval; - - do { - oval = *counter; - - if ((nval = oval + 1) == 0) { - /* - * If the counter would wrap, set it to 1 -- assuring - * that the counter is never zero when we have seen - * errors. (The counter must be 32-bits because we - * aren't guaranteed a 64-bit compare&swap operation.) - * To save this code both the infamy of being fingered - * by a priggish news story and the indignity of being - * the target of a neo-puritan witch trial, we're - * carefully avoiding any colorful description of the - * likelihood of this condition -- but suffice it to - * say that it is only slightly more likely than the - * overflow of predicate cache IDs, as discussed in - * dtrace_predicate_create(). - */ - nval = 1; - } - } while (dtrace_cas32(counter, oval, nval) != oval); -} - -/* - * Use the DTRACE_LOADFUNC macro to define functions for each of loading a - * uint8_t, a uint16_t, a uint32_t and a uint64_t. - */ -DTRACE_LOADFUNC(8) -DTRACE_LOADFUNC(16) -DTRACE_LOADFUNC(32) -DTRACE_LOADFUNC(64) - -static int -dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) -{ - if (dest < mstate->dtms_scratch_base) - return (0); - - if (dest + size < dest) - return (0); - - if (dest + size > mstate->dtms_scratch_ptr) - return (0); - - return (1); -} - -static int -dtrace_canstore_statvar(uint64_t addr, size_t sz, - dtrace_statvar_t **svars, int nsvars) -{ - int i; - - for (i = 0; i < nsvars; i++) { - dtrace_statvar_t *svar = svars[i]; - - if (svar == NULL || svar->dtsv_size == 0) - continue; - - if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) - return (1); - } - - return (0); -} - -/* - * Check to see if the address is within a memory region to which a store may - * be issued. This includes the DTrace scratch areas, and any DTrace variable - * region. The caller of dtrace_canstore() is responsible for performing any - * alignment checks that are needed before stores are actually executed. - */ -static int -dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, - dtrace_vstate_t *vstate) -{ - /* - * First, check to see if the address is in scratch space... - */ - if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, - mstate->dtms_scratch_size)) - return (1); - - /* - * Now check to see if it's a dynamic variable. This check will pick - * up both thread-local variables and any global dynamically-allocated - * variables. - */ - if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, - vstate->dtvs_dynvars.dtds_size)) { - dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; - uintptr_t base = (uintptr_t)dstate->dtds_base + - (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); - uintptr_t chunkoffs; - - /* - * Before we assume that we can store here, we need to make - * sure that it isn't in our metadata -- storing to our - * dynamic variable metadata would corrupt our state. For - * the range to not include any dynamic variable metadata, - * it must: - * - * (1) Start above the hash table that is at the base of - * the dynamic variable space - * - * (2) Have a starting chunk offset that is beyond the - * dtrace_dynvar_t that is at the base of every chunk - * - * (3) Not span a chunk boundary - * - */ - if (addr < base) - return (0); - - chunkoffs = (addr - base) % dstate->dtds_chunksize; - - if (chunkoffs < sizeof (dtrace_dynvar_t)) - return (0); - - if (chunkoffs + sz > dstate->dtds_chunksize) - return (0); - - return (1); - } - - /* - * Finally, check the static local and global variables. These checks - * take the longest, so we perform them last. - */ - if (dtrace_canstore_statvar(addr, sz, - vstate->dtvs_locals, vstate->dtvs_nlocals)) - return (1); - - if (dtrace_canstore_statvar(addr, sz, - vstate->dtvs_globals, vstate->dtvs_nglobals)) - return (1); - - return (0); -} - - -/* - * Convenience routine to check to see if the address is within a memory - * region in which a load may be issued given the user's privilege level; - * if not, it sets the appropriate error flags and loads 'addr' into the - * illegal value slot. - * - * DTrace subroutines (DIF_SUBR_*) should use this helper to implement - * appropriate memory access protection. - */ -static int -dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, - dtrace_vstate_t *vstate) -{ - volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; - - /* - * If we hold the privilege to read from kernel memory, then - * everything is readable. - */ - if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) - return (1); - - /* - * You can obviously read that which you can store. - */ - if (dtrace_canstore(addr, sz, mstate, vstate)) - return (1); - - /* - * We're allowed to read from our own string table. - */ - if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, - mstate->dtms_difo->dtdo_strlen)) - return (1); - - DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); - *illval = addr; - return (0); -} - -/* - * Convenience routine to check to see if a given string is within a memory - * region in which a load may be issued given the user's privilege level; - * this exists so that we don't need to issue unnecessary dtrace_strlen() - * calls in the event that the user has all privileges. - */ -static int -dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, - dtrace_vstate_t *vstate) -{ - size_t strsz; - - /* - * If we hold the privilege to read from kernel memory, then - * everything is readable. - */ - if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) - return (1); - - strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); - if (dtrace_canload(addr, strsz, mstate, vstate)) - return (1); - - return (0); -} - -/* - * Convenience routine to check to see if a given variable is within a memory - * region in which a load may be issued given the user's privilege level. - */ -static int -dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, - dtrace_vstate_t *vstate) -{ - size_t sz; - ASSERT(type->dtdt_flags & DIF_TF_BYREF); - - /* - * If we hold the privilege to read from kernel memory, then - * everything is readable. - */ - if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) - return (1); - - if (type->dtdt_kind == DIF_TYPE_STRING) - sz = dtrace_strlen(src, - vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; - else - sz = type->dtdt_size; - - return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); -} - -/* - * Compare two strings using safe loads. - */ -static int -dtrace_strncmp(char *s1, char *s2, size_t limit) -{ - uint8_t c1, c2; - volatile uint16_t *flags; - - if (s1 == s2 || limit == 0) - return (0); - - flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; - - do { - if (s1 == NULL) { - c1 = '\0'; - } else { - c1 = dtrace_load8((uintptr_t)s1++); - } - - if (s2 == NULL) { - c2 = '\0'; - } else { - c2 = dtrace_load8((uintptr_t)s2++); - } - - if (c1 != c2) - return (c1 - c2); - } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); - - return (0); -} - -/* - * Compute strlen(s) for a string using safe memory accesses. The additional - * len parameter is used to specify a maximum length to ensure completion. - */ -static size_t -dtrace_strlen(const char *s, size_t lim) -{ - uint_t len; - - for (len = 0; len != lim; len++) { - if (dtrace_load8((uintptr_t)s++) == '\0') - break; - } - - return (len); -} - -/* - * Check if an address falls within a toxic region. - */ -static int -dtrace_istoxic(uintptr_t kaddr, size_t size) -{ - uintptr_t taddr, tsize; - int i; - - for (i = 0; i < dtrace_toxranges; i++) { - taddr = dtrace_toxrange[i].dtt_base; - tsize = dtrace_toxrange[i].dtt_limit - taddr; - - if (kaddr - taddr < tsize) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); - cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; - return (1); - } - - if (taddr - kaddr < size) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); - cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; - return (1); - } - } - - return (0); -} - -/* - * Copy src to dst using safe memory accesses. The src is assumed to be unsafe - * memory specified by the DIF program. The dst is assumed to be safe memory - * that we can store to directly because it is managed by DTrace. As with - * standard bcopy, overlapping copies are handled properly. - */ -static void -dtrace_bcopy(const void *src, void *dst, size_t len) -{ - if (len != 0) { - uint8_t *s1 = dst; - const uint8_t *s2 = src; - - if (s1 <= s2) { - do { - *s1++ = dtrace_load8((uintptr_t)s2++); - } while (--len != 0); - } else { - s2 += len; - s1 += len; - - do { - *--s1 = dtrace_load8((uintptr_t)--s2); - } while (--len != 0); - } - } -} - -/* - * Copy src to dst using safe memory accesses, up to either the specified - * length, or the point that a nul byte is encountered. The src is assumed to - * be unsafe memory specified by the DIF program. The dst is assumed to be - * safe memory that we can store to directly because it is managed by DTrace. - * Unlike dtrace_bcopy(), overlapping regions are not handled. - */ -static void -dtrace_strcpy(const void *src, void *dst, size_t len) -{ - if (len != 0) { - uint8_t *s1 = dst, c; - const uint8_t *s2 = src; - - do { - *s1++ = c = dtrace_load8((uintptr_t)s2++); - } while (--len != 0 && c != '\0'); - } -} - -/* - * Copy src to dst, deriving the size and type from the specified (BYREF) - * variable type. The src is assumed to be unsafe memory specified by the DIF - * program. The dst is assumed to be DTrace variable memory that is of the - * specified type; we assume that we can store to directly. - */ -static void -dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) -{ - ASSERT(type->dtdt_flags & DIF_TF_BYREF); - - if (type->dtdt_kind == DIF_TYPE_STRING) { - dtrace_strcpy(src, dst, type->dtdt_size); - } else { - dtrace_bcopy(src, dst, type->dtdt_size); - } -} - -/* - * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be - * unsafe memory specified by the DIF program. The s2 data is assumed to be - * safe memory that we can access directly because it is managed by DTrace. - */ -static int -dtrace_bcmp(const void *s1, const void *s2, size_t len) -{ - volatile uint16_t *flags; - - flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; - - if (s1 == s2) - return (0); - - if (s1 == NULL || s2 == NULL) - return (1); - - if (s1 != s2 && len != 0) { - const uint8_t *ps1 = s1; - const uint8_t *ps2 = s2; - - do { - if (dtrace_load8((uintptr_t)ps1++) != *ps2++) - return (1); - } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); - } - return (0); -} - -/* - * Zero the specified region using a simple byte-by-byte loop. Note that this - * is for safe DTrace-managed memory only. - */ -static void -dtrace_bzero(void *dst, size_t len) -{ - uchar_t *cp; - - for (cp = dst; len != 0; len--) - *cp++ = 0; -} - -static void -dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) -{ - uint64_t result[2]; - - result[0] = addend1[0] + addend2[0]; - result[1] = addend1[1] + addend2[1] + - (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); - - sum[0] = result[0]; - sum[1] = result[1]; -} - -/* - * Shift the 128-bit value in a by b. If b is positive, shift left. - * If b is negative, shift right. - */ -static void -dtrace_shift_128(uint64_t *a, int b) -{ - uint64_t mask; - - if (b == 0) - return; - - if (b < 0) { - b = -b; - if (b >= 64) { - a[0] = a[1] >> (b - 64); - a[1] = 0; - } else { - a[0] >>= b; - mask = 1LL << (64 - b); - mask -= 1; - a[0] |= ((a[1] & mask) << (64 - b)); - a[1] >>= b; - } - } else { - if (b >= 64) { - a[1] = a[0] << (b - 64); - a[0] = 0; - } else { - a[1] <<= b; - mask = a[0] >> (64 - b); - a[1] |= mask; - a[0] <<= b; - } - } -} - -/* - * The basic idea is to break the 2 64-bit values into 4 32-bit values, - * use native multiplication on those, and then re-combine into the - * resulting 128-bit value. - * - * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = - * hi1 * hi2 << 64 + - * hi1 * lo2 << 32 + - * hi2 * lo1 << 32 + - * lo1 * lo2 - */ -static void -dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) -{ - uint64_t hi1, hi2, lo1, lo2; - uint64_t tmp[2]; - - hi1 = factor1 >> 32; - hi2 = factor2 >> 32; - - lo1 = factor1 & DT_MASK_LO; - lo2 = factor2 & DT_MASK_LO; - - product[0] = lo1 * lo2; - product[1] = hi1 * hi2; - - tmp[0] = hi1 * lo2; - tmp[1] = 0; - dtrace_shift_128(tmp, 32); - dtrace_add_128(product, tmp, product); - - tmp[0] = hi2 * lo1; - tmp[1] = 0; - dtrace_shift_128(tmp, 32); - dtrace_add_128(product, tmp, product); -} - -/* - * This privilege check should be used by actions and subroutines to - * verify that the user credentials of the process that enabled the - * invoking ECB match the target credentials - */ -static int -dtrace_priv_proc_common_user(dtrace_state_t *state) -{ - cred_t *cr, *s_cr = state->dts_cred.dcr_cred; - - /* - * We should always have a non-NULL state cred here, since if cred - * is null (anonymous tracing), we fast-path bypass this routine. - */ - ASSERT(s_cr != NULL); - - if ((cr = CRED()) != NULL && - s_cr->cr_uid == cr->cr_uid && - s_cr->cr_uid == cr->cr_ruid && - s_cr->cr_uid == cr->cr_suid && - s_cr->cr_gid == cr->cr_gid && - s_cr->cr_gid == cr->cr_rgid && - s_cr->cr_gid == cr->cr_sgid) - return (1); - - return (0); -} - -/* - * This privilege check should be used by actions and subroutines to - * verify that the zone of the process that enabled the invoking ECB - * matches the target credentials - */ -static int -dtrace_priv_proc_common_zone(dtrace_state_t *state) -{ - cred_t *cr, *s_cr = state->dts_cred.dcr_cred; - - /* - * We should always have a non-NULL state cred here, since if cred - * is null (anonymous tracing), we fast-path bypass this routine. - */ - ASSERT(s_cr != NULL); - - if ((cr = CRED()) != NULL && - s_cr->cr_zone == cr->cr_zone) - return (1); - - return (0); -} - -/* - * This privilege check should be used by actions and subroutines to - * verify that the process has not setuid or changed credentials. - */ -static int -dtrace_priv_proc_common_nocd() -{ - proc_t *proc; - - if ((proc = ttoproc(curthread)) != NULL && - !(proc->p_flag & SNOCD)) - return (1); - - return (0); -} - -static int -dtrace_priv_proc_destructive(dtrace_state_t *state) -{ - int action = state->dts_cred.dcr_action; - - if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && - dtrace_priv_proc_common_zone(state) == 0) - goto bad; - - if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && - dtrace_priv_proc_common_user(state) == 0) - goto bad; - - if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && - dtrace_priv_proc_common_nocd() == 0) - goto bad; - - return (1); - -bad: - cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; - - return (0); -} - -static int -dtrace_priv_proc_control(dtrace_state_t *state) -{ - if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) - return (1); - - if (dtrace_priv_proc_common_zone(state) && - dtrace_priv_proc_common_user(state) && - dtrace_priv_proc_common_nocd()) - return (1); - - cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; - - return (0); -} - -static int -dtrace_priv_proc(dtrace_state_t *state) -{ - if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) - return (1); - - cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; - - return (0); -} - -static int -dtrace_priv_kernel(dtrace_state_t *state) -{ - if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) - return (1); - - cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; - - return (0); -} - -static int -dtrace_priv_kernel_destructive(dtrace_state_t *state) -{ - if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) - return (1); - - cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; - - return (0); -} - -/* - * Note: not called from probe context. This function is called - * asynchronously (and at a regular interval) from outside of probe context to - * clean the dirty dynamic variable lists on all CPUs. Dynamic variable - * cleaning is explained in detail in . - */ -void -dtrace_dynvar_clean(dtrace_dstate_t *dstate) -{ - dtrace_dynvar_t *dirty; - dtrace_dstate_percpu_t *dcpu; - int i, work = 0; - - for (i = 0; i < NCPU; i++) { - dcpu = &dstate->dtds_percpu[i]; - - ASSERT(dcpu->dtdsc_rinsing == NULL); - - /* - * If the dirty list is NULL, there is no dirty work to do. - */ - if (dcpu->dtdsc_dirty == NULL) - continue; - - /* - * If the clean list is non-NULL, then we're not going to do - * any work for this CPU -- it means that there has not been - * a dtrace_dynvar() allocation on this CPU (or from this CPU) - * since the last time we cleaned house. - */ - if (dcpu->dtdsc_clean != NULL) - continue; - - work = 1; - - /* - * Atomically move the dirty list aside. - */ - do { - dirty = dcpu->dtdsc_dirty; - - /* - * Before we zap the dirty list, set the rinsing list. - * (This allows for a potential assertion in - * dtrace_dynvar(): if a free dynamic variable appears - * on a hash chain, either the dirty list or the - * rinsing list for some CPU must be non-NULL.) - */ - dcpu->dtdsc_rinsing = dirty; - dtrace_membar_producer(); - } while (dtrace_casptr(&dcpu->dtdsc_dirty, - dirty, NULL) != dirty); - } - - if (!work) { - /* - * We have no work to do; we can simply return. - */ - return; - } - - dtrace_sync(); - - for (i = 0; i < NCPU; i++) { - dcpu = &dstate->dtds_percpu[i]; - - if (dcpu->dtdsc_rinsing == NULL) - continue; - - /* - * We are now guaranteed that no hash chain contains a pointer - * into this dirty list; we can make it clean. - */ - ASSERT(dcpu->dtdsc_clean == NULL); - dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; - dcpu->dtdsc_rinsing = NULL; - } - - /* - * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make - * sure that all CPUs have seen all of the dtdsc_clean pointers. - * This prevents a race whereby a CPU incorrectly decides that - * the state should be something other than DTRACE_DSTATE_CLEAN - * after dtrace_dynvar_clean() has completed. - */ - dtrace_sync(); - - dstate->dtds_state = DTRACE_DSTATE_CLEAN; -} - -/* - * Depending on the value of the op parameter, this function looks-up, - * allocates or deallocates an arbitrarily-keyed dynamic variable. If an - * allocation is requested, this function will return a pointer to a - * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no - * variable can be allocated. If NULL is returned, the appropriate counter - * will be incremented. - */ -dtrace_dynvar_t * -dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, - dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, - dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) -{ - uint64_t hashval = DTRACE_DYNHASH_VALID; - dtrace_dynhash_t *hash = dstate->dtds_hash; - dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; - processorid_t me = CPU->cpu_id, cpu = me; - dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; - size_t bucket, ksize; - size_t chunksize = dstate->dtds_chunksize; - uintptr_t kdata, lock, nstate; - uint_t i; - - ASSERT(nkeys != 0); - - /* - * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" - * algorithm. For the by-value portions, we perform the algorithm in - * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a - * bit, and seems to have only a minute effect on distribution. For - * the by-reference data, we perform "One-at-a-time" iterating (safely) - * over each referenced byte. It's painful to do this, but it's much - * better than pathological hash distribution. The efficacy of the - * hashing algorithm (and a comparison with other algorithms) may be - * found by running the ::dtrace_dynstat MDB dcmd. - */ - for (i = 0; i < nkeys; i++) { - if (key[i].dttk_size == 0) { - uint64_t val = key[i].dttk_value; - - hashval += (val >> 48) & 0xffff; - hashval += (hashval << 10); - hashval ^= (hashval >> 6); - - hashval += (val >> 32) & 0xffff; - hashval += (hashval << 10); - hashval ^= (hashval >> 6); - - hashval += (val >> 16) & 0xffff; - hashval += (hashval << 10); - hashval ^= (hashval >> 6); - - hashval += val & 0xffff; - hashval += (hashval << 10); - hashval ^= (hashval >> 6); - } else { - /* - * This is incredibly painful, but it beats the hell - * out of the alternative. - */ - uint64_t j, size = key[i].dttk_size; - uintptr_t base = (uintptr_t)key[i].dttk_value; - - if (!dtrace_canload(base, size, mstate, vstate)) - break; - - for (j = 0; j < size; j++) { - hashval += dtrace_load8(base + j); - hashval += (hashval << 10); - hashval ^= (hashval >> 6); - } - } - } - - if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) - return (NULL); - - hashval += (hashval << 3); - hashval ^= (hashval >> 11); - hashval += (hashval << 15); - - /* - * There is a remote chance (ideally, 1 in 2^31) that our hashval - * comes out to be one of our two sentinel hash values. If this - * actually happens, we set the hashval to be a value known to be a - * non-sentinel value. - */ - if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) - hashval = DTRACE_DYNHASH_VALID; - - /* - * Yes, it's painful to do a divide here. If the cycle count becomes - * important here, tricks can be pulled to reduce it. (However, it's - * critical that hash collisions be kept to an absolute minimum; - * they're much more painful than a divide.) It's better to have a - * solution that generates few collisions and still keeps things - * relatively simple. - */ - bucket = hashval % dstate->dtds_hashsize; - - if (op == DTRACE_DYNVAR_DEALLOC) { - volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; - - for (;;) { - while ((lock = *lockp) & 1) - continue; - - if (dtrace_casptr((void *)lockp, - (void *)lock, (void *)(lock + 1)) == (void *)lock) - break; - } - - dtrace_membar_producer(); - } - -top: - prev = NULL; - lock = hash[bucket].dtdh_lock; - - dtrace_membar_consumer(); - - start = hash[bucket].dtdh_chain; - ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || - start->dtdv_hashval != DTRACE_DYNHASH_FREE || - op != DTRACE_DYNVAR_DEALLOC)); - - for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { - dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; - dtrace_key_t *dkey = &dtuple->dtt_key[0]; - - if (dvar->dtdv_hashval != hashval) { - if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { - /* - * We've reached the sink, and therefore the - * end of the hash chain; we can kick out of - * the loop knowing that we have seen a valid - * snapshot of state. - */ - ASSERT(dvar->dtdv_next == NULL); - ASSERT(dvar == &dtrace_dynhash_sink); - break; - } - - if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { - /* - * We've gone off the rails: somewhere along - * the line, one of the members of this hash - * chain was deleted. Note that we could also - * detect this by simply letting this loop run - * to completion, as we would eventually hit - * the end of the dirty list. However, we - * want to avoid running the length of the - * dirty list unnecessarily (it might be quite - * long), so we catch this as early as - * possible by detecting the hash marker. In - * this case, we simply set dvar to NULL and - * break; the conditional after the loop will - * send us back to top. - */ - dvar = NULL; - break; - } - - goto next; - } - - if (dtuple->dtt_nkeys != nkeys) - goto next; - - for (i = 0; i < nkeys; i++, dkey++) { - if (dkey->dttk_size != key[i].dttk_size) - goto next; /* size or type mismatch */ - - if (dkey->dttk_size != 0) { - if (dtrace_bcmp( - (void *)(uintptr_t)key[i].dttk_value, - (void *)(uintptr_t)dkey->dttk_value, - dkey->dttk_size)) - goto next; - } else { - if (dkey->dttk_value != key[i].dttk_value) - goto next; - } - } - - if (op != DTRACE_DYNVAR_DEALLOC) - return (dvar); - - ASSERT(dvar->dtdv_next == NULL || - dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); - - if (prev != NULL) { - ASSERT(hash[bucket].dtdh_chain != dvar); - ASSERT(start != dvar); - ASSERT(prev->dtdv_next == dvar); - prev->dtdv_next = dvar->dtdv_next; - } else { - if (dtrace_casptr(&hash[bucket].dtdh_chain, - start, dvar->dtdv_next) != start) { - /* - * We have failed to atomically swing the - * hash table head pointer, presumably because - * of a conflicting allocation on another CPU. - * We need to reread the hash chain and try - * again. - */ - goto top; - } - } - - dtrace_membar_producer(); - - /* - * Now set the hash value to indicate that it's free. - */ - ASSERT(hash[bucket].dtdh_chain != dvar); - dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; - - dtrace_membar_producer(); - - /* - * Set the next pointer to point at the dirty list, and - * atomically swing the dirty pointer to the newly freed dvar. - */ - do { - next = dcpu->dtdsc_dirty; - dvar->dtdv_next = next; - } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); - - /* - * Finally, unlock this hash bucket. - */ - ASSERT(hash[bucket].dtdh_lock == lock); - ASSERT(lock & 1); - hash[bucket].dtdh_lock++; - - return (NULL); -next: - prev = dvar; - continue; - } - - if (dvar == NULL) { - /* - * If dvar is NULL, it is because we went off the rails: - * one of the elements that we traversed in the hash chain - * was deleted while we were traversing it. In this case, - * we assert that we aren't doing a dealloc (deallocs lock - * the hash bucket to prevent themselves from racing with - * one another), and retry the hash chain traversal. - */ - ASSERT(op != DTRACE_DYNVAR_DEALLOC); - goto top; - } - - if (op != DTRACE_DYNVAR_ALLOC) { - /* - * If we are not to allocate a new variable, we want to - * return NULL now. Before we return, check that the value - * of the lock word hasn't changed. If it has, we may have - * seen an inconsistent snapshot. - */ - if (op == DTRACE_DYNVAR_NOALLOC) { - if (hash[bucket].dtdh_lock != lock) - goto top; - } else { - ASSERT(op == DTRACE_DYNVAR_DEALLOC); - ASSERT(hash[bucket].dtdh_lock == lock); - ASSERT(lock & 1); - hash[bucket].dtdh_lock++; - } - - return (NULL); - } - - /* - * We need to allocate a new dynamic variable. The size we need is the - * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the - * size of any auxiliary key data (rounded up to 8-byte alignment) plus - * the size of any referred-to data (dsize). We then round the final - * size up to the chunksize for allocation. - */ - for (ksize = 0, i = 0; i < nkeys; i++) - ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); - - /* - * This should be pretty much impossible, but could happen if, say, - * strange DIF specified the tuple. Ideally, this should be an - * assertion and not an error condition -- but that requires that the - * chunksize calculation in dtrace_difo_chunksize() be absolutely - * bullet-proof. (That is, it must not be able to be fooled by - * malicious DIF.) Given the lack of backwards branches in DIF, - * solving this would presumably not amount to solving the Halting - * Problem -- but it still seems awfully hard. - */ - if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + - ksize + dsize > chunksize) { - dcpu->dtdsc_drops++; - return (NULL); - } - - nstate = DTRACE_DSTATE_EMPTY; - - do { -retry: - free = dcpu->dtdsc_free; - - if (free == NULL) { - dtrace_dynvar_t *clean = dcpu->dtdsc_clean; - void *rval; - - if (clean == NULL) { - /* - * We're out of dynamic variable space on - * this CPU. Unless we have tried all CPUs, - * we'll try to allocate from a different - * CPU. - */ - switch (dstate->dtds_state) { - case DTRACE_DSTATE_CLEAN: { - void *sp = &dstate->dtds_state; - - if (++cpu >= NCPU) - cpu = 0; - - if (dcpu->dtdsc_dirty != NULL && - nstate == DTRACE_DSTATE_EMPTY) - nstate = DTRACE_DSTATE_DIRTY; - - if (dcpu->dtdsc_rinsing != NULL) - nstate = DTRACE_DSTATE_RINSING; - - dcpu = &dstate->dtds_percpu[cpu]; - - if (cpu != me) - goto retry; - - (void) dtrace_cas32(sp, - DTRACE_DSTATE_CLEAN, nstate); - - /* - * To increment the correct bean - * counter, take another lap. - */ - goto retry; - } - - case DTRACE_DSTATE_DIRTY: - dcpu->dtdsc_dirty_drops++; - break; - - case DTRACE_DSTATE_RINSING: - dcpu->dtdsc_rinsing_drops++; - break; - - case DTRACE_DSTATE_EMPTY: - dcpu->dtdsc_drops++; - break; - } - - DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); - return (NULL); - } - - /* - * The clean list appears to be non-empty. We want to - * move the clean list to the free list; we start by - * moving the clean pointer aside. - */ - if (dtrace_casptr(&dcpu->dtdsc_clean, - clean, NULL) != clean) { - /* - * We are in one of two situations: - * - * (a) The clean list was switched to the - * free list by another CPU. - * - * (b) The clean list was added to by the - * cleansing cyclic. - * - * In either of these situations, we can - * just reattempt the free list allocation. - */ - goto retry; - } - - ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); - - /* - * Now we'll move the clean list to the free list. - * It's impossible for this to fail: the only way - * the free list can be updated is through this - * code path, and only one CPU can own the clean list. - * Thus, it would only be possible for this to fail if - * this code were racing with dtrace_dynvar_clean(). - * (That is, if dtrace_dynvar_clean() updated the clean - * list, and we ended up racing to update the free - * list.) This race is prevented by the dtrace_sync() - * in dtrace_dynvar_clean() -- which flushes the - * owners of the clean lists out before resetting - * the clean lists. - */ - rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); - ASSERT(rval == NULL); - goto retry; - } - - dvar = free; - new_free = dvar->dtdv_next; - } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); - - /* - * We have now allocated a new chunk. We copy the tuple keys into the - * tuple array and copy any referenced key data into the data space - * following the tuple array. As we do this, we relocate dttk_value - * in the final tuple to point to the key data address in the chunk. - */ - kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; - dvar->dtdv_data = (void *)(kdata + ksize); - dvar->dtdv_tuple.dtt_nkeys = nkeys; - - for (i = 0; i < nkeys; i++) { - dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; - size_t kesize = key[i].dttk_size; - - if (kesize != 0) { - dtrace_bcopy( - (const void *)(uintptr_t)key[i].dttk_value, - (void *)kdata, kesize); - dkey->dttk_value = kdata; - kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); - } else { - dkey->dttk_value = key[i].dttk_value; - } - - dkey->dttk_size = kesize; - } - - ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); - dvar->dtdv_hashval = hashval; - dvar->dtdv_next = start; - - if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) - return (dvar); - - /* - * The cas has failed. Either another CPU is adding an element to - * this hash chain, or another CPU is deleting an element from this - * hash chain. The simplest way to deal with both of these cases - * (though not necessarily the most efficient) is to free our - * allocated block and tail-call ourselves. Note that the free is - * to the dirty list and _not_ to the free list. This is to prevent - * races with allocators, above. - */ - dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; - - dtrace_membar_producer(); - - do { - free = dcpu->dtdsc_dirty; - dvar->dtdv_next = free; - } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); - - return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); -} - -/*ARGSUSED*/ -static void -dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) -{ - if ((int64_t)nval < (int64_t)*oval) - *oval = nval; -} - -/*ARGSUSED*/ -static void -dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) -{ - if ((int64_t)nval > (int64_t)*oval) - *oval = nval; -} - -static void -dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) -{ - int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; - int64_t val = (int64_t)nval; - - if (val < 0) { - for (i = 0; i < zero; i++) { - if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { - quanta[i] += incr; - return; - } - } - } else { - for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { - if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { - quanta[i - 1] += incr; - return; - } - } - - quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; - return; - } - - ASSERT(0); -} - -static void -dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) -{ - uint64_t arg = *lquanta++; - int32_t base = DTRACE_LQUANTIZE_BASE(arg); - uint16_t step = DTRACE_LQUANTIZE_STEP(arg); - uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); - int32_t val = (int32_t)nval, level; - - ASSERT(step != 0); - ASSERT(levels != 0); - - if (val < base) { - /* - * This is an underflow. - */ - lquanta[0] += incr; - return; - } - - level = (val - base) / step; - - if (level < levels) { - lquanta[level + 1] += incr; - return; - } - - /* - * This is an overflow. - */ - lquanta[levels + 1] += incr; -} - -/*ARGSUSED*/ -static void -dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) -{ - data[0]++; - data[1] += nval; -} - -/*ARGSUSED*/ -static void -dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) -{ - int64_t snval = (int64_t)nval; - uint64_t tmp[2]; - - data[0]++; - data[1] += nval; - - /* - * What we want to say here is: - * - * data[2] += nval * nval; - * - * But given that nval is 64-bit, we could easily overflow, so - * we do this as 128-bit arithmetic. - */ - if (snval < 0) - snval = -snval; - - dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); - dtrace_add_128(data + 2, tmp, data + 2); -} - -/*ARGSUSED*/ -static void -dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) -{ - *oval = *oval + 1; -} - -/*ARGSUSED*/ -static void -dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) -{ - *oval += nval; -} - -/* - * Aggregate given the tuple in the principal data buffer, and the aggregating - * action denoted by the specified dtrace_aggregation_t. The aggregation - * buffer is specified as the buf parameter. This routine does not return - * failure; if there is no space in the aggregation buffer, the data will be - * dropped, and a corresponding counter incremented. - */ -static void -dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, - intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) -{ - dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; - uint32_t i, ndx, size, fsize; - uint32_t align = sizeof (uint64_t) - 1; - dtrace_aggbuffer_t *agb; - dtrace_aggkey_t *key; - uint32_t hashval = 0, limit, isstr; - caddr_t tomax, data, kdata; - dtrace_actkind_t action; - dtrace_action_t *act; - uintptr_t offs; - - if (buf == NULL) - return; - - if (!agg->dtag_hasarg) { - /* - * Currently, only quantize() and lquantize() take additional - * arguments, and they have the same semantics: an increment - * value that defaults to 1 when not present. If additional - * aggregating actions take arguments, the setting of the - * default argument value will presumably have to become more - * sophisticated... - */ - arg = 1; - } - - action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; - size = rec->dtrd_offset - agg->dtag_base; - fsize = size + rec->dtrd_size; - - ASSERT(dbuf->dtb_tomax != NULL); - data = dbuf->dtb_tomax + offset + agg->dtag_base; - - if ((tomax = buf->dtb_tomax) == NULL) { - dtrace_buffer_drop(buf); - return; - } - - /* - * The metastructure is always at the bottom of the buffer. - */ - agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - - sizeof (dtrace_aggbuffer_t)); - - if (buf->dtb_offset == 0) { - /* - * We just kludge up approximately 1/8th of the size to be - * buckets. If this guess ends up being routinely - * off-the-mark, we may need to dynamically readjust this - * based on past performance. - */ - uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); - - if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < - (uintptr_t)tomax || hashsize == 0) { - /* - * We've been given a ludicrously small buffer; - * increment our drop count and leave. - */ - dtrace_buffer_drop(buf); - return; - } - - /* - * And now, a pathetic attempt to try to get a an odd (or - * perchance, a prime) hash size for better hash distribution. - */ - if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) - hashsize -= DTRACE_AGGHASHSIZE_SLEW; - - agb->dtagb_hashsize = hashsize; - agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - - agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); - agb->dtagb_free = (uintptr_t)agb->dtagb_hash; - - for (i = 0; i < agb->dtagb_hashsize; i++) - agb->dtagb_hash[i] = NULL; - } - - ASSERT(agg->dtag_first != NULL); - ASSERT(agg->dtag_first->dta_intuple); - - /* - * Calculate the hash value based on the key. Note that we _don't_ - * include the aggid in the hashing (but we will store it as part of - * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" - * algorithm: a simple, quick algorithm that has no known funnels, and - * gets good distribution in practice. The efficacy of the hashing - * algorithm (and a comparison with other algorithms) may be found by - * running the ::dtrace_aggstat MDB dcmd. - */ - for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { - i = act->dta_rec.dtrd_offset - agg->dtag_base; - limit = i + act->dta_rec.dtrd_size; - ASSERT(limit <= size); - isstr = DTRACEACT_ISSTRING(act); - - for (; i < limit; i++) { - hashval += data[i]; - hashval += (hashval << 10); - hashval ^= (hashval >> 6); - - if (isstr && data[i] == '\0') - break; - } - } - - hashval += (hashval << 3); - hashval ^= (hashval >> 11); - hashval += (hashval << 15); - - /* - * Yes, the divide here is expensive -- but it's generally the least - * of the performance issues given the amount of data that we iterate - * over to compute hash values, compare data, etc. - */ - ndx = hashval % agb->dtagb_hashsize; - - for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { - ASSERT((caddr_t)key >= tomax); - ASSERT((caddr_t)key < tomax + buf->dtb_size); - - if (hashval != key->dtak_hashval || key->dtak_size != size) - continue; - - kdata = key->dtak_data; - ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); - - for (act = agg->dtag_first; act->dta_intuple; - act = act->dta_next) { - i = act->dta_rec.dtrd_offset - agg->dtag_base; - limit = i + act->dta_rec.dtrd_size; - ASSERT(limit <= size); - isstr = DTRACEACT_ISSTRING(act); - - for (; i < limit; i++) { - if (kdata[i] != data[i]) - goto next; - - if (isstr && data[i] == '\0') - break; - } - } - - if (action != key->dtak_action) { - /* - * We are aggregating on the same value in the same - * aggregation with two different aggregating actions. - * (This should have been picked up in the compiler, - * so we may be dealing with errant or devious DIF.) - * This is an error condition; we indicate as much, - * and return. - */ - DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); - return; - } - - /* - * This is a hit: we need to apply the aggregator to - * the value at this key. - */ - agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); - return; -next: - continue; - } - - /* - * We didn't find it. We need to allocate some zero-filled space, - * link it into the hash table appropriately, and apply the aggregator - * to the (zero-filled) value. - */ - offs = buf->dtb_offset; - while (offs & (align - 1)) - offs += sizeof (uint32_t); - - /* - * If we don't have enough room to both allocate a new key _and_ - * its associated data, increment the drop count and return. - */ - if ((uintptr_t)tomax + offs + fsize > - agb->dtagb_free - sizeof (dtrace_aggkey_t)) { - dtrace_buffer_drop(buf); - return; - } - - /*CONSTCOND*/ - ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); - key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); - agb->dtagb_free -= sizeof (dtrace_aggkey_t); - - key->dtak_data = kdata = tomax + offs; - buf->dtb_offset = offs + fsize; - - /* - * Now copy the data across. - */ - *((dtrace_aggid_t *)kdata) = agg->dtag_id; - - for (i = sizeof (dtrace_aggid_t); i < size; i++) - kdata[i] = data[i]; - - /* - * Because strings are not zeroed out by default, we need to iterate - * looking for actions that store strings, and we need to explicitly - * pad these strings out with zeroes. - */ - for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { - int nul; - - if (!DTRACEACT_ISSTRING(act)) - continue; - - i = act->dta_rec.dtrd_offset - agg->dtag_base; - limit = i + act->dta_rec.dtrd_size; - ASSERT(limit <= size); - - for (nul = 0; i < limit; i++) { - if (nul) { - kdata[i] = '\0'; - continue; - } - - if (data[i] != '\0') - continue; - - nul = 1; - } - } - - for (i = size; i < fsize; i++) - kdata[i] = 0; - - key->dtak_hashval = hashval; - key->dtak_size = size; - key->dtak_action = action; - key->dtak_next = agb->dtagb_hash[ndx]; - agb->dtagb_hash[ndx] = key; - - /* - * Finally, apply the aggregator. - */ - *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; - agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); -} - -/* - * Given consumer state, this routine finds a speculation in the INACTIVE - * state and transitions it into the ACTIVE state. If there is no speculation - * in the INACTIVE state, 0 is returned. In this case, no error counter is - * incremented -- it is up to the caller to take appropriate action. - */ -static int -dtrace_speculation(dtrace_state_t *state) -{ - int i = 0; - dtrace_speculation_state_t current; - uint32_t *stat = &state->dts_speculations_unavail, count; - - while (i < state->dts_nspeculations) { - dtrace_speculation_t *spec = &state->dts_speculations[i]; - - current = spec->dtsp_state; - - if (current != DTRACESPEC_INACTIVE) { - if (current == DTRACESPEC_COMMITTINGMANY || - current == DTRACESPEC_COMMITTING || - current == DTRACESPEC_DISCARDING) - stat = &state->dts_speculations_busy; - i++; - continue; - } - - if (dtrace_cas32((uint32_t *)&spec->dtsp_state, - current, DTRACESPEC_ACTIVE) == current) - return (i + 1); - } - - /* - * We couldn't find a speculation. If we found as much as a single - * busy speculation buffer, we'll attribute this failure as "busy" - * instead of "unavail". - */ - do { - count = *stat; - } while (dtrace_cas32(stat, count, count + 1) != count); - - return (0); -} - -/* - * This routine commits an active speculation. If the specified speculation - * is not in a valid state to perform a commit(), this routine will silently do - * nothing. The state of the specified speculation is transitioned according - * to the state transition diagram outlined in - */ -static void -dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, - dtrace_specid_t which) -{ - dtrace_speculation_t *spec; - dtrace_buffer_t *src, *dest; - uintptr_t daddr, saddr, dlimit; - dtrace_speculation_state_t current, new; - intptr_t offs; - - if (which == 0) - return; - - if (which > state->dts_nspeculations) { - cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; - return; - } - - spec = &state->dts_speculations[which - 1]; - src = &spec->dtsp_buffer[cpu]; - dest = &state->dts_buffer[cpu]; - - do { - current = spec->dtsp_state; - - if (current == DTRACESPEC_COMMITTINGMANY) - break; - - switch (current) { - case DTRACESPEC_INACTIVE: - case DTRACESPEC_DISCARDING: - return; - - case DTRACESPEC_COMMITTING: - /* - * This is only possible if we are (a) commit()'ing - * without having done a prior speculate() on this CPU - * and (b) racing with another commit() on a different - * CPU. There's nothing to do -- we just assert that - * our offset is 0. - */ - ASSERT(src->dtb_offset == 0); - return; - - case DTRACESPEC_ACTIVE: - new = DTRACESPEC_COMMITTING; - break; - - case DTRACESPEC_ACTIVEONE: - /* - * This speculation is active on one CPU. If our - * buffer offset is non-zero, we know that the one CPU - * must be us. Otherwise, we are committing on a - * different CPU from the speculate(), and we must - * rely on being asynchronously cleaned. - */ - if (src->dtb_offset != 0) { - new = DTRACESPEC_COMMITTING; - break; - } - /*FALLTHROUGH*/ - - case DTRACESPEC_ACTIVEMANY: - new = DTRACESPEC_COMMITTINGMANY; - break; - - default: - ASSERT(0); - } - } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, - current, new) != current); - - /* - * We have set the state to indicate that we are committing this - * speculation. Now reserve the necessary space in the destination - * buffer. - */ - if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, - sizeof (uint64_t), state, NULL)) < 0) { - dtrace_buffer_drop(dest); - goto out; - } - - /* - * We have the space; copy the buffer across. (Note that this is a - * highly subobtimal bcopy(); in the unlikely event that this becomes - * a serious performance issue, a high-performance DTrace-specific - * bcopy() should obviously be invented.) - */ - daddr = (uintptr_t)dest->dtb_tomax + offs; - dlimit = daddr + src->dtb_offset; - saddr = (uintptr_t)src->dtb_tomax; - - /* - * First, the aligned portion. - */ - while (dlimit - daddr >= sizeof (uint64_t)) { - *((uint64_t *)daddr) = *((uint64_t *)saddr); - - daddr += sizeof (uint64_t); - saddr += sizeof (uint64_t); - } - - /* - * Now any left-over bit... - */ - while (dlimit - daddr) - *((uint8_t *)daddr++) = *((uint8_t *)saddr++); - - /* - * Finally, commit the reserved space in the destination buffer. - */ - dest->dtb_offset = offs + src->dtb_offset; - -out: - /* - * If we're lucky enough to be the only active CPU on this speculation - * buffer, we can just set the state back to DTRACESPEC_INACTIVE. - */ - if (current == DTRACESPEC_ACTIVE || - (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { - uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, - DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); - - ASSERT(rval == DTRACESPEC_COMMITTING); - } - - src->dtb_offset = 0; - src->dtb_xamot_drops += src->dtb_drops; - src->dtb_drops = 0; -} - -/* - * This routine discards an active speculation. If the specified speculation - * is not in a valid state to perform a discard(), this routine will silently - * do nothing. The state of the specified speculation is transitioned - * according to the state transition diagram outlined in - */ -static void -dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, - dtrace_specid_t which) -{ - dtrace_speculation_t *spec; - dtrace_speculation_state_t current, new; - dtrace_buffer_t *buf; - - if (which == 0) - return; - - if (which > state->dts_nspeculations) { - cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; - return; - } - - spec = &state->dts_speculations[which - 1]; - buf = &spec->dtsp_buffer[cpu]; - - do { - current = spec->dtsp_state; - - switch (current) { - case DTRACESPEC_INACTIVE: - case DTRACESPEC_COMMITTINGMANY: - case DTRACESPEC_COMMITTING: - case DTRACESPEC_DISCARDING: - return; - - case DTRACESPEC_ACTIVE: - case DTRACESPEC_ACTIVEMANY: - new = DTRACESPEC_DISCARDING; - break; - - case DTRACESPEC_ACTIVEONE: - if (buf->dtb_offset != 0) { - new = DTRACESPEC_INACTIVE; - } else { - new = DTRACESPEC_DISCARDING; - } - break; - - default: - ASSERT(0); - } - } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, - current, new) != current); - - buf->dtb_offset = 0; - buf->dtb_drops = 0; -} - -/* - * Note: not called from probe context. This function is called - * asynchronously from cross call context to clean any speculations that are - * in the COMMITTINGMANY or DISCARDING states. These speculations may not be - * transitioned back to the INACTIVE state until all CPUs have cleaned the - * speculation. - */ -static void -dtrace_speculation_clean_here(dtrace_state_t *state) -{ - dtrace_icookie_t cookie; - processorid_t cpu = CPU->cpu_id; - dtrace_buffer_t *dest = &state->dts_buffer[cpu]; - dtrace_specid_t i; - - cookie = dtrace_interrupt_disable(); - - if (dest->dtb_tomax == NULL) { - dtrace_interrupt_enable(cookie); - return; - } - - for (i = 0; i < state->dts_nspeculations; i++) { - dtrace_speculation_t *spec = &state->dts_speculations[i]; - dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; - - if (src->dtb_tomax == NULL) - continue; - - if (spec->dtsp_state == DTRACESPEC_DISCARDING) { - src->dtb_offset = 0; - continue; - } - - if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) - continue; - - if (src->dtb_offset == 0) - continue; - - dtrace_speculation_commit(state, cpu, i + 1); - } - - dtrace_interrupt_enable(cookie); -} - -/* - * Note: not called from probe context. This function is called - * asynchronously (and at a regular interval) to clean any speculations that - * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there - * is work to be done, it cross calls all CPUs to perform that work; - * COMMITMANY and DISCARDING speculations may not be transitioned back to the - * INACTIVE state until they have been cleaned by all CPUs. - */ -static void -dtrace_speculation_clean(dtrace_state_t *state) -{ - int work = 0, rv; - dtrace_specid_t i; - - for (i = 0; i < state->dts_nspeculations; i++) { - dtrace_speculation_t *spec = &state->dts_speculations[i]; - - ASSERT(!spec->dtsp_cleaning); - - if (spec->dtsp_state != DTRACESPEC_DISCARDING && - spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) - continue; - - work++; - spec->dtsp_cleaning = 1; - } - - if (!work) - return; - - dtrace_xcall(DTRACE_CPUALL, - (dtrace_xcall_t)dtrace_speculation_clean_here, state); - - /* - * We now know that all CPUs have committed or discarded their - * speculation buffers, as appropriate. We can now set the state - * to inactive. - */ - for (i = 0; i < state->dts_nspeculations; i++) { - dtrace_speculation_t *spec = &state->dts_speculations[i]; - dtrace_speculation_state_t current, new; - - if (!spec->dtsp_cleaning) - continue; - - current = spec->dtsp_state; - ASSERT(current == DTRACESPEC_DISCARDING || - current == DTRACESPEC_COMMITTINGMANY); - - new = DTRACESPEC_INACTIVE; - - rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); - ASSERT(rv == current); - spec->dtsp_cleaning = 0; - } -} - -/* - * Called as part of a speculate() to get the speculative buffer associated - * with a given speculation. Returns NULL if the specified speculation is not - * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and - * the active CPU is not the specified CPU -- the speculation will be - * atomically transitioned into the ACTIVEMANY state. - */ -static dtrace_buffer_t * -dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, - dtrace_specid_t which) -{ - dtrace_speculation_t *spec; - dtrace_speculation_state_t current, new; - dtrace_buffer_t *buf; - - if (which == 0) - return (NULL); - - if (which > state->dts_nspeculations) { - cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; - return (NULL); - } - - spec = &state->dts_speculations[which - 1]; - buf = &spec->dtsp_buffer[cpuid]; - - do { - current = spec->dtsp_state; - - switch (current) { - case DTRACESPEC_INACTIVE: - case DTRACESPEC_COMMITTINGMANY: - case DTRACESPEC_DISCARDING: - return (NULL); - - case DTRACESPEC_COMMITTING: - ASSERT(buf->dtb_offset == 0); - return (NULL); - - case DTRACESPEC_ACTIVEONE: - /* - * This speculation is currently active on one CPU. - * Check the offset in the buffer; if it's non-zero, - * that CPU must be us (and we leave the state alone). - * If it's zero, assume that we're starting on a new - * CPU -- and change the state to indicate that the - * speculation is active on more than one CPU. - */ - if (buf->dtb_offset != 0) - return (buf); - - new = DTRACESPEC_ACTIVEMANY; - break; - - case DTRACESPEC_ACTIVEMANY: - return (buf); - - case DTRACESPEC_ACTIVE: - new = DTRACESPEC_ACTIVEONE; - break; - - default: - ASSERT(0); - } - } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, - current, new) != current); - - ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); - return (buf); -} - -/* - * Return a string. In the event that the user lacks the privilege to access - * arbitrary kernel memory, we copy the string out to scratch memory so that we - * don't fail access checking. - * - * dtrace_dif_variable() uses this routine as a helper for various - * builtin values such as 'execname' and 'probefunc.' - */ -uintptr_t -dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, - dtrace_mstate_t *mstate) -{ - uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; - uintptr_t ret; - size_t strsz; - - /* - * The easy case: this probe is allowed to read all of memory, so - * we can just return this as a vanilla pointer. - */ - if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) - return (addr); - - /* - * This is the tougher case: we copy the string in question from - * kernel memory into scratch memory and return it that way: this - * ensures that we won't trip up when access checking tests the - * BYREF return value. - */ - strsz = dtrace_strlen((char *)addr, size) + 1; - - if (mstate->dtms_scratch_ptr + strsz > - mstate->dtms_scratch_base + mstate->dtms_scratch_size) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - return (NULL); - } - - dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, - strsz); - ret = mstate->dtms_scratch_ptr; - mstate->dtms_scratch_ptr += strsz; - return (ret); -} - -/* - * This function implements the DIF emulator's variable lookups. The emulator - * passes a reserved variable identifier and optional built-in array index. - */ -static uint64_t -dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, - uint64_t ndx) -{ - /* - * If we're accessing one of the uncached arguments, we'll turn this - * into a reference in the args array. - */ - if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { - ndx = v - DIF_VAR_ARG0; - v = DIF_VAR_ARGS; - } - - switch (v) { - case DIF_VAR_ARGS: - ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); - if (ndx >= sizeof (mstate->dtms_arg) / - sizeof (mstate->dtms_arg[0])) { - int aframes = mstate->dtms_probe->dtpr_aframes + 2; - dtrace_provider_t *pv; - uint64_t val; - - pv = mstate->dtms_probe->dtpr_provider; - if (pv->dtpv_pops.dtps_getargval != NULL) - val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, - mstate->dtms_probe->dtpr_id, - mstate->dtms_probe->dtpr_arg, ndx, aframes); - else - val = dtrace_getarg(ndx, aframes); - - /* - * This is regrettably required to keep the compiler - * from tail-optimizing the call to dtrace_getarg(). - * The condition always evaluates to true, but the - * compiler has no way of figuring that out a priori. - * (None of this would be necessary if the compiler - * could be relied upon to _always_ tail-optimize - * the call to dtrace_getarg() -- but it can't.) - */ - if (mstate->dtms_probe != NULL) - return (val); - - ASSERT(0); - } - - return (mstate->dtms_arg[ndx]); - - case DIF_VAR_UREGS: { - klwp_t *lwp; - - if (!dtrace_priv_proc(state)) - return (0); - - if ((lwp = curthread->t_lwp) == NULL) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); - cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; - return (0); - } - - return (dtrace_getreg(lwp->lwp_regs, ndx)); - } - - case DIF_VAR_CURTHREAD: - if (!dtrace_priv_kernel(state)) - return (0); - return ((uint64_t)(uintptr_t)curthread); - - case DIF_VAR_TIMESTAMP: - if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { - mstate->dtms_timestamp = dtrace_gethrtime(); - mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; - } - return (mstate->dtms_timestamp); - - case DIF_VAR_VTIMESTAMP: - ASSERT(dtrace_vtime_references != 0); - return (curthread->t_dtrace_vtime); - - case DIF_VAR_WALLTIMESTAMP: - if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { - mstate->dtms_walltimestamp = dtrace_gethrestime(); - mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; - } - return (mstate->dtms_walltimestamp); - - case DIF_VAR_IPL: - if (!dtrace_priv_kernel(state)) - return (0); - if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { - mstate->dtms_ipl = dtrace_getipl(); - mstate->dtms_present |= DTRACE_MSTATE_IPL; - } - return (mstate->dtms_ipl); - - case DIF_VAR_EPID: - ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); - return (mstate->dtms_epid); - - case DIF_VAR_ID: - ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); - return (mstate->dtms_probe->dtpr_id); - - case DIF_VAR_STACKDEPTH: - if (!dtrace_priv_kernel(state)) - return (0); - if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { - int aframes = mstate->dtms_probe->dtpr_aframes + 2; - - mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); - mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; - } - return (mstate->dtms_stackdepth); - - case DIF_VAR_USTACKDEPTH: - if (!dtrace_priv_proc(state)) - return (0); - if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { - /* - * See comment in DIF_VAR_PID. - */ - if (DTRACE_ANCHORED(mstate->dtms_probe) && - CPU_ON_INTR(CPU)) { - mstate->dtms_ustackdepth = 0; - } else { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); - mstate->dtms_ustackdepth = - dtrace_getustackdepth(); - DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); - } - mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; - } - return (mstate->dtms_ustackdepth); - - case DIF_VAR_CALLER: - if (!dtrace_priv_kernel(state)) - return (0); - if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { - int aframes = mstate->dtms_probe->dtpr_aframes + 2; - - if (!DTRACE_ANCHORED(mstate->dtms_probe)) { - /* - * If this is an unanchored probe, we are - * required to go through the slow path: - * dtrace_caller() only guarantees correct - * results for anchored probes. - */ - pc_t caller[2]; - - dtrace_getpcstack(caller, 2, aframes, - (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); - mstate->dtms_caller = caller[1]; - } else if ((mstate->dtms_caller = - dtrace_caller(aframes)) == -1) { - /* - * We have failed to do this the quick way; - * we must resort to the slower approach of - * calling dtrace_getpcstack(). - */ - pc_t caller; - - dtrace_getpcstack(&caller, 1, aframes, NULL); - mstate->dtms_caller = caller; - } - - mstate->dtms_present |= DTRACE_MSTATE_CALLER; - } - return (mstate->dtms_caller); - - case DIF_VAR_UCALLER: - if (!dtrace_priv_proc(state)) - return (0); - - if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { - uint64_t ustack[3]; - - /* - * dtrace_getupcstack() fills in the first uint64_t - * with the current PID. The second uint64_t will - * be the program counter at user-level. The third - * uint64_t will contain the caller, which is what - * we're after. - */ - ustack[2] = NULL; - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); - dtrace_getupcstack(ustack, 3); - DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); - mstate->dtms_ucaller = ustack[2]; - mstate->dtms_present |= DTRACE_MSTATE_UCALLER; - } - - return (mstate->dtms_ucaller); - - case DIF_VAR_PROBEPROV: - ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); - return (dtrace_dif_varstr( - (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, - state, mstate)); - - case DIF_VAR_PROBEMOD: - ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); - return (dtrace_dif_varstr( - (uintptr_t)mstate->dtms_probe->dtpr_mod, - state, mstate)); - - case DIF_VAR_PROBEFUNC: - ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); - return (dtrace_dif_varstr( - (uintptr_t)mstate->dtms_probe->dtpr_func, - state, mstate)); - - case DIF_VAR_PROBENAME: - ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); - return (dtrace_dif_varstr( - (uintptr_t)mstate->dtms_probe->dtpr_name, - state, mstate)); - - case DIF_VAR_PID: - if (!dtrace_priv_proc(state)) - return (0); - - /* - * Note that we are assuming that an unanchored probe is - * always due to a high-level interrupt. (And we're assuming - * that there is only a single high level interrupt.) - */ - if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) - return (pid0.pid_id); - - /* - * It is always safe to dereference one's own t_procp pointer: - * it always points to a valid, allocated proc structure. - * Further, it is always safe to dereference the p_pidp member - * of one's own proc structure. (These are truisms becuase - * threads and processes don't clean up their own state -- - * they leave that task to whomever reaps them.) - */ - return ((uint64_t)curthread->t_procp->p_pidp->pid_id); - - case DIF_VAR_PPID: - if (!dtrace_priv_proc(state)) - return (0); - - /* - * See comment in DIF_VAR_PID. - */ - if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) - return (pid0.pid_id); - - /* - * It is always safe to dereference one's own t_procp pointer: - * it always points to a valid, allocated proc structure. - * (This is true because threads don't clean up their own - * state -- they leave that task to whomever reaps them.) - */ - return ((uint64_t)curthread->t_procp->p_ppid); - - case DIF_VAR_TID: - /* - * See comment in DIF_VAR_PID. - */ - if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) - return (0); - - return ((uint64_t)curthread->t_tid); - - case DIF_VAR_EXECNAME: - if (!dtrace_priv_proc(state)) - return (0); - - /* - * See comment in DIF_VAR_PID. - */ - if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) - return ((uint64_t)(uintptr_t)p0.p_user.u_comm); - - /* - * It is always safe to dereference one's own t_procp pointer: - * it always points to a valid, allocated proc structure. - * (This is true because threads don't clean up their own - * state -- they leave that task to whomever reaps them.) - */ - return (dtrace_dif_varstr( - (uintptr_t)curthread->t_procp->p_user.u_comm, - state, mstate)); - - case DIF_VAR_ZONENAME: - if (!dtrace_priv_proc(state)) - return (0); - - /* - * See comment in DIF_VAR_PID. - */ - if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) - return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); - - /* - * It is always safe to dereference one's own t_procp pointer: - * it always points to a valid, allocated proc structure. - * (This is true because threads don't clean up their own - * state -- they leave that task to whomever reaps them.) - */ - return (dtrace_dif_varstr( - (uintptr_t)curthread->t_procp->p_zone->zone_name, - state, mstate)); - - case DIF_VAR_UID: - if (!dtrace_priv_proc(state)) - return (0); - - /* - * See comment in DIF_VAR_PID. - */ - if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) - return ((uint64_t)p0.p_cred->cr_uid); - - /* - * It is always safe to dereference one's own t_procp pointer: - * it always points to a valid, allocated proc structure. - * (This is true because threads don't clean up their own - * state -- they leave that task to whomever reaps them.) - * - * Additionally, it is safe to dereference one's own process - * credential, since this is never NULL after process birth. - */ - return ((uint64_t)curthread->t_procp->p_cred->cr_uid); - - case DIF_VAR_GID: - if (!dtrace_priv_proc(state)) - return (0); - - /* - * See comment in DIF_VAR_PID. - */ - if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) - return ((uint64_t)p0.p_cred->cr_gid); - - /* - * It is always safe to dereference one's own t_procp pointer: - * it always points to a valid, allocated proc structure. - * (This is true because threads don't clean up their own - * state -- they leave that task to whomever reaps them.) - * - * Additionally, it is safe to dereference one's own process - * credential, since this is never NULL after process birth. - */ - return ((uint64_t)curthread->t_procp->p_cred->cr_gid); - - case DIF_VAR_ERRNO: { - klwp_t *lwp; - if (!dtrace_priv_proc(state)) - return (0); - - /* - * See comment in DIF_VAR_PID. - */ - if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) - return (0); - - /* - * It is always safe to dereference one's own t_lwp pointer in - * the event that this pointer is non-NULL. (This is true - * because threads and lwps don't clean up their own state -- - * they leave that task to whomever reaps them.) - */ - if ((lwp = curthread->t_lwp) == NULL) - return (0); - - return ((uint64_t)lwp->lwp_errno); - } - default: - DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); - return (0); - } -} - -/* - * Emulate the execution of DTrace ID subroutines invoked by the call opcode. - * Notice that we don't bother validating the proper number of arguments or - * their types in the tuple stack. This isn't needed because all argument - * interpretation is safe because of our load safety -- the worst that can - * happen is that a bogus program can obtain bogus results. - */ -static void -dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, - dtrace_key_t *tupregs, int nargs, - dtrace_mstate_t *mstate, dtrace_state_t *state) -{ - volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; - volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; - dtrace_vstate_t *vstate = &state->dts_vstate; - - union { - mutex_impl_t mi; - uint64_t mx; - } m; - - union { - krwlock_t ri; - uintptr_t rw; - } r; - - switch (subr) { - case DIF_SUBR_RAND: - regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; - break; - - case DIF_SUBR_MUTEX_OWNED: - if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), - mstate, vstate)) { - regs[rd] = NULL; - break; - } - - m.mx = dtrace_load64(tupregs[0].dttk_value); - if (MUTEX_TYPE_ADAPTIVE(&m.mi)) - regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; - else - regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); - break; - - case DIF_SUBR_MUTEX_OWNER: - if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), - mstate, vstate)) { - regs[rd] = NULL; - break; - } - - m.mx = dtrace_load64(tupregs[0].dttk_value); - if (MUTEX_TYPE_ADAPTIVE(&m.mi) && - MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) - regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); - else - regs[rd] = 0; - break; - - case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: - if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), - mstate, vstate)) { - regs[rd] = NULL; - break; - } - - m.mx = dtrace_load64(tupregs[0].dttk_value); - regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); - break; - - case DIF_SUBR_MUTEX_TYPE_SPIN: - if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), - mstate, vstate)) { - regs[rd] = NULL; - break; - } - - m.mx = dtrace_load64(tupregs[0].dttk_value); - regs[rd] = MUTEX_TYPE_SPIN(&m.mi); - break; - - case DIF_SUBR_RW_READ_HELD: { - uintptr_t tmp; - - if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), - mstate, vstate)) { - regs[rd] = NULL; - break; - } - - r.rw = dtrace_loadptr(tupregs[0].dttk_value); - regs[rd] = _RW_READ_HELD(&r.ri, tmp); - break; - } - - case DIF_SUBR_RW_WRITE_HELD: - if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), - mstate, vstate)) { - regs[rd] = NULL; - break; - } - - r.rw = dtrace_loadptr(tupregs[0].dttk_value); - regs[rd] = _RW_WRITE_HELD(&r.ri); - break; - - case DIF_SUBR_RW_ISWRITER: - if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), - mstate, vstate)) { - regs[rd] = NULL; - break; - } - - r.rw = dtrace_loadptr(tupregs[0].dttk_value); - regs[rd] = _RW_ISWRITER(&r.ri); - break; - - case DIF_SUBR_BCOPY: { - /* - * We need to be sure that the destination is in the scratch - * region -- no other region is allowed. - */ - uintptr_t src = tupregs[0].dttk_value; - uintptr_t dest = tupregs[1].dttk_value; - size_t size = tupregs[2].dttk_value; - - if (!dtrace_inscratch(dest, size, mstate)) { - *flags |= CPU_DTRACE_BADADDR; - *illval = regs[rd]; - break; - } - - if (!dtrace_canload(src, size, mstate, vstate)) { - regs[rd] = NULL; - break; - } - - dtrace_bcopy((void *)src, (void *)dest, size); - break; - } - - case DIF_SUBR_ALLOCA: - case DIF_SUBR_COPYIN: { - uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); - uint64_t size = - tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; - size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; - - /* - * This action doesn't require any credential checks since - * probes will not activate in user contexts to which the - * enabling user does not have permissions. - */ - - /* - * Rounding up the user allocation size could have overflowed - * a large, bogus allocation (like -1ULL) to 0. - */ - if (scratch_size < size || - !DTRACE_INSCRATCH(mstate, scratch_size)) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - regs[rd] = NULL; - break; - } - - if (subr == DIF_SUBR_COPYIN) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); - dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); - DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); - } - - mstate->dtms_scratch_ptr += scratch_size; - regs[rd] = dest; - break; - } - - case DIF_SUBR_COPYINTO: { - uint64_t size = tupregs[1].dttk_value; - uintptr_t dest = tupregs[2].dttk_value; - - /* - * This action doesn't require any credential checks since - * probes will not activate in user contexts to which the - * enabling user does not have permissions. - */ - if (!dtrace_inscratch(dest, size, mstate)) { - *flags |= CPU_DTRACE_BADADDR; - *illval = regs[rd]; - break; - } - - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); - dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); - DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); - break; - } - - case DIF_SUBR_COPYINSTR: { - uintptr_t dest = mstate->dtms_scratch_ptr; - uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; - - if (nargs > 1 && tupregs[1].dttk_value < size) - size = tupregs[1].dttk_value + 1; - - /* - * This action doesn't require any credential checks since - * probes will not activate in user contexts to which the - * enabling user does not have permissions. - */ - if (!DTRACE_INSCRATCH(mstate, size)) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - regs[rd] = NULL; - break; - } - - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); - dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); - DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); - - ((char *)dest)[size - 1] = '\0'; - mstate->dtms_scratch_ptr += size; - regs[rd] = dest; - break; - } - - case DIF_SUBR_MSGSIZE: - case DIF_SUBR_MSGDSIZE: { - uintptr_t baddr = tupregs[0].dttk_value, daddr; - uintptr_t wptr, rptr; - size_t count = 0; - int cont = 0; - - while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { - - if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, - vstate)) { - regs[rd] = NULL; - break; - } - - wptr = dtrace_loadptr(baddr + - offsetof(mblk_t, b_wptr)); - - rptr = dtrace_loadptr(baddr + - offsetof(mblk_t, b_rptr)); - - if (wptr < rptr) { - *flags |= CPU_DTRACE_BADADDR; - *illval = tupregs[0].dttk_value; - break; - } - - daddr = dtrace_loadptr(baddr + - offsetof(mblk_t, b_datap)); - - baddr = dtrace_loadptr(baddr + - offsetof(mblk_t, b_cont)); - - /* - * We want to prevent against denial-of-service here, - * so we're only going to search the list for - * dtrace_msgdsize_max mblks. - */ - if (cont++ > dtrace_msgdsize_max) { - *flags |= CPU_DTRACE_ILLOP; - break; - } - - if (subr == DIF_SUBR_MSGDSIZE) { - if (dtrace_load8(daddr + - offsetof(dblk_t, db_type)) != M_DATA) - continue; - } - - count += wptr - rptr; - } - - if (!(*flags & CPU_DTRACE_FAULT)) - regs[rd] = count; - - break; - } - - case DIF_SUBR_PROGENYOF: { - pid_t pid = tupregs[0].dttk_value; - proc_t *p; - int rval = 0; - - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); - - for (p = curthread->t_procp; p != NULL; p = p->p_parent) { - if (p->p_pidp->pid_id == pid) { - rval = 1; - break; - } - } - - DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); - - regs[rd] = rval; - break; - } - - case DIF_SUBR_SPECULATION: - regs[rd] = dtrace_speculation(state); - break; - - case DIF_SUBR_COPYOUT: { - uintptr_t kaddr = tupregs[0].dttk_value; - uintptr_t uaddr = tupregs[1].dttk_value; - uint64_t size = tupregs[2].dttk_value; - - if (!dtrace_destructive_disallow && - dtrace_priv_proc_control(state) && - !dtrace_istoxic(kaddr, size)) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); - dtrace_copyout(kaddr, uaddr, size, flags); - DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); - } - break; - } - - case DIF_SUBR_COPYOUTSTR: { - uintptr_t kaddr = tupregs[0].dttk_value; - uintptr_t uaddr = tupregs[1].dttk_value; - uint64_t size = tupregs[2].dttk_value; - - if (!dtrace_destructive_disallow && - dtrace_priv_proc_control(state) && - !dtrace_istoxic(kaddr, size)) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); - dtrace_copyoutstr(kaddr, uaddr, size, flags); - DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); - } - break; - } - - case DIF_SUBR_STRLEN: { - size_t sz; - uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; - sz = dtrace_strlen((char *)addr, - state->dts_options[DTRACEOPT_STRSIZE]); - - if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { - regs[rd] = NULL; - break; - } - - regs[rd] = sz; - - break; - } - - case DIF_SUBR_STRCHR: - case DIF_SUBR_STRRCHR: { - /* - * We're going to iterate over the string looking for the - * specified character. We will iterate until we have reached - * the string length or we have found the character. If this - * is DIF_SUBR_STRRCHR, we will look for the last occurrence - * of the specified character instead of the first. - */ - uintptr_t saddr = tupregs[0].dttk_value; - uintptr_t addr = tupregs[0].dttk_value; - uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; - char c, target = (char)tupregs[1].dttk_value; - - for (regs[rd] = NULL; addr < limit; addr++) { - if ((c = dtrace_load8(addr)) == target) { - regs[rd] = addr; - - if (subr == DIF_SUBR_STRCHR) - break; - } - - if (c == '\0') - break; - } - - if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { - regs[rd] = NULL; - break; - } - - break; - } - - case DIF_SUBR_STRSTR: - case DIF_SUBR_INDEX: - case DIF_SUBR_RINDEX: { - /* - * We're going to iterate over the string looking for the - * specified string. We will iterate until we have reached - * the string length or we have found the string. (Yes, this - * is done in the most naive way possible -- but considering - * that the string we're searching for is likely to be - * relatively short, the complexity of Rabin-Karp or similar - * hardly seems merited.) - */ - char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; - char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; - uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; - size_t len = dtrace_strlen(addr, size); - size_t sublen = dtrace_strlen(substr, size); - char *limit = addr + len, *orig = addr; - int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; - int inc = 1; - - regs[rd] = notfound; - - if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { - regs[rd] = NULL; - break; - } - - if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, - vstate)) { - regs[rd] = NULL; - break; - } - - /* - * strstr() and index()/rindex() have similar semantics if - * both strings are the empty string: strstr() returns a - * pointer to the (empty) string, and index() and rindex() - * both return index 0 (regardless of any position argument). - */ - if (sublen == 0 && len == 0) { - if (subr == DIF_SUBR_STRSTR) - regs[rd] = (uintptr_t)addr; - else - regs[rd] = 0; - break; - } - - if (subr != DIF_SUBR_STRSTR) { - if (subr == DIF_SUBR_RINDEX) { - limit = orig - 1; - addr += len; - inc = -1; - } - - /* - * Both index() and rindex() take an optional position - * argument that denotes the starting position. - */ - if (nargs == 3) { - int64_t pos = (int64_t)tupregs[2].dttk_value; - - /* - * If the position argument to index() is - * negative, Perl implicitly clamps it at - * zero. This semantic is a little surprising - * given the special meaning of negative - * positions to similar Perl functions like - * substr(), but it appears to reflect a - * notion that index() can start from a - * negative index and increment its way up to - * the string. Given this notion, Perl's - * rindex() is at least self-consistent in - * that it implicitly clamps positions greater - * than the string length to be the string - * length. Where Perl completely loses - * coherence, however, is when the specified - * substring is the empty string (""). In - * this case, even if the position is - * negative, rindex() returns 0 -- and even if - * the position is greater than the length, - * index() returns the string length. These - * semantics violate the notion that index() - * should never return a value less than the - * specified position and that rindex() should - * never return a value greater than the - * specified position. (One assumes that - * these semantics are artifacts of Perl's - * implementation and not the results of - * deliberate design -- it beggars belief that - * even Larry Wall could desire such oddness.) - * While in the abstract one would wish for - * consistent position semantics across - * substr(), index() and rindex() -- or at the - * very least self-consistent position - * semantics for index() and rindex() -- we - * instead opt to keep with the extant Perl - * semantics, in all their broken glory. (Do - * we have more desire to maintain Perl's - * semantics than Perl does? Probably.) - */ - if (subr == DIF_SUBR_RINDEX) { - if (pos < 0) { - if (sublen == 0) - regs[rd] = 0; - break; - } - - if (pos > len) - pos = len; - } else { - if (pos < 0) - pos = 0; - - if (pos >= len) { - if (sublen == 0) - regs[rd] = len; - break; - } - } - - addr = orig + pos; - } - } - - for (regs[rd] = notfound; addr != limit; addr += inc) { - if (dtrace_strncmp(addr, substr, sublen) == 0) { - if (subr != DIF_SUBR_STRSTR) { - /* - * As D index() and rindex() are - * modeled on Perl (and not on awk), - * we return a zero-based (and not a - * one-based) index. (For you Perl - * weenies: no, we're not going to add - * $[ -- and shouldn't you be at a con - * or something?) - */ - regs[rd] = (uintptr_t)(addr - orig); - break; - } - - ASSERT(subr == DIF_SUBR_STRSTR); - regs[rd] = (uintptr_t)addr; - break; - } - } - - break; - } - - case DIF_SUBR_STRTOK: { - uintptr_t addr = tupregs[0].dttk_value; - uintptr_t tokaddr = tupregs[1].dttk_value; - uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; - uintptr_t limit, toklimit = tokaddr + size; - uint8_t c, tokmap[32]; /* 256 / 8 */ - char *dest = (char *)mstate->dtms_scratch_ptr; - int i; - - /* - * Check both the token buffer and (later) the input buffer, - * since both could be non-scratch addresses. - */ - if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { - regs[rd] = NULL; - break; - } - - if (!DTRACE_INSCRATCH(mstate, size)) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - regs[rd] = NULL; - break; - } - - if (addr == NULL) { - /* - * If the address specified is NULL, we use our saved - * strtok pointer from the mstate. Note that this - * means that the saved strtok pointer is _only_ - * valid within multiple enablings of the same probe -- - * it behaves like an implicit clause-local variable. - */ - addr = mstate->dtms_strtok; - } else { - /* - * If the user-specified address is non-NULL we must - * access check it. This is the only time we have - * a chance to do so, since this address may reside - * in the string table of this clause-- future calls - * (when we fetch addr from mstate->dtms_strtok) - * would fail this access check. - */ - if (!dtrace_strcanload(addr, size, mstate, vstate)) { - regs[rd] = NULL; - break; - } - } - - /* - * First, zero the token map, and then process the token - * string -- setting a bit in the map for every character - * found in the token string. - */ - for (i = 0; i < sizeof (tokmap); i++) - tokmap[i] = 0; - - for (; tokaddr < toklimit; tokaddr++) { - if ((c = dtrace_load8(tokaddr)) == '\0') - break; - - ASSERT((c >> 3) < sizeof (tokmap)); - tokmap[c >> 3] |= (1 << (c & 0x7)); - } - - for (limit = addr + size; addr < limit; addr++) { - /* - * We're looking for a character that is _not_ contained - * in the token string. - */ - if ((c = dtrace_load8(addr)) == '\0') - break; - - if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) - break; - } - - if (c == '\0') { - /* - * We reached the end of the string without finding - * any character that was not in the token string. - * We return NULL in this case, and we set the saved - * address to NULL as well. - */ - regs[rd] = NULL; - mstate->dtms_strtok = NULL; - break; - } - - /* - * From here on, we're copying into the destination string. - */ - for (i = 0; addr < limit && i < size - 1; addr++) { - if ((c = dtrace_load8(addr)) == '\0') - break; - - if (tokmap[c >> 3] & (1 << (c & 0x7))) - break; - - ASSERT(i < size); - dest[i++] = c; - } - - ASSERT(i < size); - dest[i] = '\0'; - regs[rd] = (uintptr_t)dest; - mstate->dtms_scratch_ptr += size; - mstate->dtms_strtok = addr; - break; - } - - case DIF_SUBR_SUBSTR: { - uintptr_t s = tupregs[0].dttk_value; - uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; - char *d = (char *)mstate->dtms_scratch_ptr; - int64_t index = (int64_t)tupregs[1].dttk_value; - int64_t remaining = (int64_t)tupregs[2].dttk_value; - size_t len = dtrace_strlen((char *)s, size); - int64_t i = 0; - - if (!dtrace_canload(s, len + 1, mstate, vstate)) { - regs[rd] = NULL; - break; - } - - if (nargs <= 2) - remaining = (int64_t)size; - - if (!DTRACE_INSCRATCH(mstate, size)) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - regs[rd] = NULL; - break; - } - - if (index < 0) { - index += len; - - if (index < 0 && index + remaining > 0) { - remaining += index; - index = 0; - } - } - - if (index >= len || index < 0) - index = len; - - for (d[0] = '\0'; remaining > 0; remaining--) { - if ((d[i++] = dtrace_load8(s++ + index)) == '\0') - break; - - if (i == size) { - d[i - 1] = '\0'; - break; - } - } - - mstate->dtms_scratch_ptr += size; - regs[rd] = (uintptr_t)d; - break; - } - - case DIF_SUBR_GETMAJOR: -#ifdef _LP64 - regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; -#else - regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; -#endif - break; - - case DIF_SUBR_GETMINOR: -#ifdef _LP64 - regs[rd] = tupregs[0].dttk_value & MAXMIN64; -#else - regs[rd] = tupregs[0].dttk_value & MAXMIN; -#endif - break; - - case DIF_SUBR_DDI_PATHNAME: { - /* - * This one is a galactic mess. We are going to roughly - * emulate ddi_pathname(), but it's made more complicated - * by the fact that we (a) want to include the minor name and - * (b) must proceed iteratively instead of recursively. - */ - uintptr_t dest = mstate->dtms_scratch_ptr; - uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; - char *start = (char *)dest, *end = start + size - 1; - uintptr_t daddr = tupregs[0].dttk_value; - int64_t minor = (int64_t)tupregs[1].dttk_value; - char *s; - int i, len, depth = 0; - - /* - * Due to all the pointer jumping we do and context we must - * rely upon, we just mandate that the user must have kernel - * read privileges to use this routine. - */ - if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { - *flags |= CPU_DTRACE_KPRIV; - *illval = daddr; - regs[rd] = NULL; - } - - if (!DTRACE_INSCRATCH(mstate, size)) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - regs[rd] = NULL; - break; - } - - *end = '\0'; - - /* - * We want to have a name for the minor. In order to do this, - * we need to walk the minor list from the devinfo. We want - * to be sure that we don't infinitely walk a circular list, - * so we check for circularity by sending a scout pointer - * ahead two elements for every element that we iterate over; - * if the list is circular, these will ultimately point to the - * same element. You may recognize this little trick as the - * answer to a stupid interview question -- one that always - * seems to be asked by those who had to have it laboriously - * explained to them, and who can't even concisely describe - * the conditions under which one would be forced to resort to - * this technique. Needless to say, those conditions are - * found here -- and probably only here. Is this is the only - * use of this infamous trick in shipping, production code? - * If it isn't, it probably should be... - */ - if (minor != -1) { - uintptr_t maddr = dtrace_loadptr(daddr + - offsetof(struct dev_info, devi_minor)); - - uintptr_t next = offsetof(struct ddi_minor_data, next); - uintptr_t name = offsetof(struct ddi_minor_data, - d_minor) + offsetof(struct ddi_minor, name); - uintptr_t dev = offsetof(struct ddi_minor_data, - d_minor) + offsetof(struct ddi_minor, dev); - uintptr_t scout; - - if (maddr != NULL) - scout = dtrace_loadptr(maddr + next); - - while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { - uint64_t m; -#ifdef _LP64 - m = dtrace_load64(maddr + dev) & MAXMIN64; -#else - m = dtrace_load32(maddr + dev) & MAXMIN; -#endif - if (m != minor) { - maddr = dtrace_loadptr(maddr + next); - - if (scout == NULL) - continue; - - scout = dtrace_loadptr(scout + next); - - if (scout == NULL) - continue; - - scout = dtrace_loadptr(scout + next); - - if (scout == NULL) - continue; - - if (scout == maddr) { - *flags |= CPU_DTRACE_ILLOP; - break; - } - - continue; - } - - /* - * We have the minor data. Now we need to - * copy the minor's name into the end of the - * pathname. - */ - s = (char *)dtrace_loadptr(maddr + name); - len = dtrace_strlen(s, size); - - if (*flags & CPU_DTRACE_FAULT) - break; - - if (len != 0) { - if ((end -= (len + 1)) < start) - break; - - *end = ':'; - } - - for (i = 1; i <= len; i++) - end[i] = dtrace_load8((uintptr_t)s++); - break; - } - } - - while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { - ddi_node_state_t devi_state; - - devi_state = dtrace_load32(daddr + - offsetof(struct dev_info, devi_node_state)); - - if (*flags & CPU_DTRACE_FAULT) - break; - - if (devi_state >= DS_INITIALIZED) { - s = (char *)dtrace_loadptr(daddr + - offsetof(struct dev_info, devi_addr)); - len = dtrace_strlen(s, size); - - if (*flags & CPU_DTRACE_FAULT) - break; - - if (len != 0) { - if ((end -= (len + 1)) < start) - break; - - *end = '@'; - } - - for (i = 1; i <= len; i++) - end[i] = dtrace_load8((uintptr_t)s++); - } - - /* - * Now for the node name... - */ - s = (char *)dtrace_loadptr(daddr + - offsetof(struct dev_info, devi_node_name)); - - daddr = dtrace_loadptr(daddr + - offsetof(struct dev_info, devi_parent)); - - /* - * If our parent is NULL (that is, if we're the root - * node), we're going to use the special path - * "devices". - */ - if (daddr == NULL) - s = "devices"; - - len = dtrace_strlen(s, size); - if (*flags & CPU_DTRACE_FAULT) - break; - - if ((end -= (len + 1)) < start) - break; - - for (i = 1; i <= len; i++) - end[i] = dtrace_load8((uintptr_t)s++); - *end = '/'; - - if (depth++ > dtrace_devdepth_max) { - *flags |= CPU_DTRACE_ILLOP; - break; - } - } - - if (end < start) - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - - if (daddr == NULL) { - regs[rd] = (uintptr_t)end; - mstate->dtms_scratch_ptr += size; - } - - break; - } - - case DIF_SUBR_STRJOIN: { - char *d = (char *)mstate->dtms_scratch_ptr; - uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; - uintptr_t s1 = tupregs[0].dttk_value; - uintptr_t s2 = tupregs[1].dttk_value; - int i = 0; - - if (!dtrace_strcanload(s1, size, mstate, vstate) || - !dtrace_strcanload(s2, size, mstate, vstate)) { - regs[rd] = NULL; - break; - } - - if (!DTRACE_INSCRATCH(mstate, size)) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - regs[rd] = NULL; - break; - } - - for (;;) { - if (i >= size) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - regs[rd] = NULL; - break; - } - - if ((d[i++] = dtrace_load8(s1++)) == '\0') { - i--; - break; - } - } - - for (;;) { - if (i >= size) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - regs[rd] = NULL; - break; - } - - if ((d[i++] = dtrace_load8(s2++)) == '\0') - break; - } - - if (i < size) { - mstate->dtms_scratch_ptr += i; - regs[rd] = (uintptr_t)d; - } - - break; - } - - case DIF_SUBR_LLTOSTR: { - int64_t i = (int64_t)tupregs[0].dttk_value; - int64_t val = i < 0 ? i * -1 : i; - uint64_t size = 22; /* enough room for 2^64 in decimal */ - char *end = (char *)mstate->dtms_scratch_ptr + size - 1; - - if (!DTRACE_INSCRATCH(mstate, size)) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - regs[rd] = NULL; - break; - } - - for (*end-- = '\0'; val; val /= 10) - *end-- = '0' + (val % 10); - - if (i == 0) - *end-- = '0'; - - if (i < 0) - *end-- = '-'; - - regs[rd] = (uintptr_t)end + 1; - mstate->dtms_scratch_ptr += size; - break; - } - - case DIF_SUBR_HTONS: - case DIF_SUBR_NTOHS: -#ifdef _BIG_ENDIAN - regs[rd] = (uint16_t)tupregs[0].dttk_value; -#else - regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); -#endif - break; - - - case DIF_SUBR_HTONL: - case DIF_SUBR_NTOHL: -#ifdef _BIG_ENDIAN - regs[rd] = (uint32_t)tupregs[0].dttk_value; -#else - regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); -#endif - break; - - - case DIF_SUBR_HTONLL: - case DIF_SUBR_NTOHLL: -#ifdef _BIG_ENDIAN - regs[rd] = (uint64_t)tupregs[0].dttk_value; -#else - regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); -#endif - break; - - - case DIF_SUBR_DIRNAME: - case DIF_SUBR_BASENAME: { - char *dest = (char *)mstate->dtms_scratch_ptr; - uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; - uintptr_t src = tupregs[0].dttk_value; - int i, j, len = dtrace_strlen((char *)src, size); - int lastbase = -1, firstbase = -1, lastdir = -1; - int start, end; - - if (!dtrace_canload(src, len + 1, mstate, vstate)) { - regs[rd] = NULL; - break; - } - - if (!DTRACE_INSCRATCH(mstate, size)) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - regs[rd] = NULL; - break; - } - - /* - * The basename and dirname for a zero-length string is - * defined to be "." - */ - if (len == 0) { - len = 1; - src = (uintptr_t)"."; - } - - /* - * Start from the back of the string, moving back toward the - * front until we see a character that isn't a slash. That - * character is the last character in the basename. - */ - for (i = len - 1; i >= 0; i--) { - if (dtrace_load8(src + i) != '/') - break; - } - - if (i >= 0) - lastbase = i; - - /* - * Starting from the last character in the basename, move - * towards the front until we find a slash. The character - * that we processed immediately before that is the first - * character in the basename. - */ - for (; i >= 0; i--) { - if (dtrace_load8(src + i) == '/') - break; - } - - if (i >= 0) - firstbase = i + 1; - - /* - * Now keep going until we find a non-slash character. That - * character is the last character in the dirname. - */ - for (; i >= 0; i--) { - if (dtrace_load8(src + i) != '/') - break; - } - - if (i >= 0) - lastdir = i; - - ASSERT(!(lastbase == -1 && firstbase != -1)); - ASSERT(!(firstbase == -1 && lastdir != -1)); - - if (lastbase == -1) { - /* - * We didn't find a non-slash character. We know that - * the length is non-zero, so the whole string must be - * slashes. In either the dirname or the basename - * case, we return '/'. - */ - ASSERT(firstbase == -1); - firstbase = lastbase = lastdir = 0; - } - - if (firstbase == -1) { - /* - * The entire string consists only of a basename - * component. If we're looking for dirname, we need - * to change our string to be just "."; if we're - * looking for a basename, we'll just set the first - * character of the basename to be 0. - */ - if (subr == DIF_SUBR_DIRNAME) { - ASSERT(lastdir == -1); - src = (uintptr_t)"."; - lastdir = 0; - } else { - firstbase = 0; - } - } - - if (subr == DIF_SUBR_DIRNAME) { - if (lastdir == -1) { - /* - * We know that we have a slash in the name -- - * or lastdir would be set to 0, above. And - * because lastdir is -1, we know that this - * slash must be the first character. (That - * is, the full string must be of the form - * "/basename".) In this case, the last - * character of the directory name is 0. - */ - lastdir = 0; - } - - start = 0; - end = lastdir; - } else { - ASSERT(subr == DIF_SUBR_BASENAME); - ASSERT(firstbase != -1 && lastbase != -1); - start = firstbase; - end = lastbase; - } - - for (i = start, j = 0; i <= end && j < size - 1; i++, j++) - dest[j] = dtrace_load8(src + i); - - dest[j] = '\0'; - regs[rd] = (uintptr_t)dest; - mstate->dtms_scratch_ptr += size; - break; - } - - case DIF_SUBR_CLEANPATH: { - char *dest = (char *)mstate->dtms_scratch_ptr, c; - uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; - uintptr_t src = tupregs[0].dttk_value; - int i = 0, j = 0; - - if (!dtrace_strcanload(src, size, mstate, vstate)) { - regs[rd] = NULL; - break; - } - - if (!DTRACE_INSCRATCH(mstate, size)) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - regs[rd] = NULL; - break; - } - - /* - * Move forward, loading each character. - */ - do { - c = dtrace_load8(src + i++); -next: - if (j + 5 >= size) /* 5 = strlen("/..c\0") */ - break; - - if (c != '/') { - dest[j++] = c; - continue; - } - - c = dtrace_load8(src + i++); - - if (c == '/') { - /* - * We have two slashes -- we can just advance - * to the next character. - */ - goto next; - } - - if (c != '.') { - /* - * This is not "." and it's not ".." -- we can - * just store the "/" and this character and - * drive on. - */ - dest[j++] = '/'; - dest[j++] = c; - continue; - } - - c = dtrace_load8(src + i++); - - if (c == '/') { - /* - * This is a "/./" component. We're not going - * to store anything in the destination buffer; - * we're just going to go to the next component. - */ - goto next; - } - - if (c != '.') { - /* - * This is not ".." -- we can just store the - * "/." and this character and continue - * processing. - */ - dest[j++] = '/'; - dest[j++] = '.'; - dest[j++] = c; - continue; - } - - c = dtrace_load8(src + i++); - - if (c != '/' && c != '\0') { - /* - * This is not ".." -- it's "..[mumble]". - * We'll store the "/.." and this character - * and continue processing. - */ - dest[j++] = '/'; - dest[j++] = '.'; - dest[j++] = '.'; - dest[j++] = c; - continue; - } - - /* - * This is "/../" or "/..\0". We need to back up - * our destination pointer until we find a "/". - */ - i--; - while (j != 0 && dest[--j] != '/') - continue; - - if (c == '\0') - dest[++j] = '/'; - } while (c != '\0'); - - dest[j] = '\0'; - regs[rd] = (uintptr_t)dest; - mstate->dtms_scratch_ptr += size; - break; - } - - case DIF_SUBR_INET_NTOA: - case DIF_SUBR_INET_NTOA6: - case DIF_SUBR_INET_NTOP: { - size_t size; - int af, argi, i; - char *base, *end; - - if (subr == DIF_SUBR_INET_NTOP) { - af = (int)tupregs[0].dttk_value; - argi = 1; - } else { - af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; - argi = 0; - } - - if (af == AF_INET) { - ipaddr_t ip4; - uint8_t *ptr8, val; - - /* - * Safely load the IPv4 address. - */ - ip4 = dtrace_load32(tupregs[argi].dttk_value); - - /* - * Check an IPv4 string will fit in scratch. - */ - size = INET_ADDRSTRLEN; - if (!DTRACE_INSCRATCH(mstate, size)) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - regs[rd] = NULL; - break; - } - base = (char *)mstate->dtms_scratch_ptr; - end = (char *)mstate->dtms_scratch_ptr + size - 1; - - /* - * Stringify as a dotted decimal quad. - */ - *end-- = '\0'; - ptr8 = (uint8_t *)&ip4; - for (i = 3; i >= 0; i--) { - val = ptr8[i]; - - if (val == 0) { - *end-- = '0'; - } else { - for (; val; val /= 10) { - *end-- = '0' + (val % 10); - } - } - - if (i > 0) - *end-- = '.'; - } - ASSERT(end + 1 >= base); - - } else if (af == AF_INET6) { - struct in6_addr ip6; - int firstzero, tryzero, numzero, v6end; - uint16_t val; - const char digits[] = "0123456789abcdef"; - - /* - * Stringify using RFC 1884 convention 2 - 16 bit - * hexadecimal values with a zero-run compression. - * Lower case hexadecimal digits are used. - * eg, fe80::214:4fff:fe0b:76c8. - * The IPv4 embedded form is returned for inet_ntop, - * just the IPv4 string is returned for inet_ntoa6. - */ - - /* - * Safely load the IPv6 address. - */ - dtrace_bcopy( - (void *)(uintptr_t)tupregs[argi].dttk_value, - (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); - - /* - * Check an IPv6 string will fit in scratch. - */ - size = INET6_ADDRSTRLEN; - if (!DTRACE_INSCRATCH(mstate, size)) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - regs[rd] = NULL; - break; - } - base = (char *)mstate->dtms_scratch_ptr; - end = (char *)mstate->dtms_scratch_ptr + size - 1; - *end-- = '\0'; - - /* - * Find the longest run of 16 bit zero values - * for the single allowed zero compression - "::". - */ - firstzero = -1; - tryzero = -1; - numzero = 1; - for (i = 0; i < sizeof (struct in6_addr); i++) { - if (ip6._S6_un._S6_u8[i] == 0 && - tryzero == -1 && i % 2 == 0) { - tryzero = i; - continue; - } - - if (tryzero != -1 && - (ip6._S6_un._S6_u8[i] != 0 || - i == sizeof (struct in6_addr) - 1)) { - - if (i - tryzero <= numzero) { - tryzero = -1; - continue; - } - - firstzero = tryzero; - numzero = i - i % 2 - tryzero; - tryzero = -1; - - if (ip6._S6_un._S6_u8[i] == 0 && - i == sizeof (struct in6_addr) - 1) - numzero += 2; - } - } - ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); - - /* - * Check for an IPv4 embedded address. - */ - v6end = sizeof (struct in6_addr) - 2; - if (IN6_IS_ADDR_V4MAPPED(&ip6) || - IN6_IS_ADDR_V4COMPAT(&ip6)) { - for (i = sizeof (struct in6_addr) - 1; - i >= DTRACE_V4MAPPED_OFFSET; i--) { - ASSERT(end >= base); - - val = ip6._S6_un._S6_u8[i]; - - if (val == 0) { - *end-- = '0'; - } else { - for (; val; val /= 10) { - *end-- = '0' + val % 10; - } - } - - if (i > DTRACE_V4MAPPED_OFFSET) - *end-- = '.'; - } - - if (subr == DIF_SUBR_INET_NTOA6) - goto inetout; - - /* - * Set v6end to skip the IPv4 address that - * we have already stringified. - */ - v6end = 10; - } - - /* - * Build the IPv6 string by working through the - * address in reverse. - */ - for (i = v6end; i >= 0; i -= 2) { - ASSERT(end >= base); - - if (i == firstzero + numzero - 2) { - *end-- = ':'; - *end-- = ':'; - i -= numzero - 2; - continue; - } - - if (i < 14 && i != firstzero - 2) - *end-- = ':'; - - val = (ip6._S6_un._S6_u8[i] << 8) + - ip6._S6_un._S6_u8[i + 1]; - - if (val == 0) { - *end-- = '0'; - } else { - for (; val; val /= 16) { - *end-- = digits[val % 16]; - } - } - } - ASSERT(end + 1 >= base); - - } else { - /* - * The user didn't use AH_INET or AH_INET6. - */ - DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); - regs[rd] = NULL; - break; - } - -inetout: regs[rd] = (uintptr_t)end + 1; - mstate->dtms_scratch_ptr += size; - break; - } - - } -} - -/* - * Emulate the execution of DTrace IR instructions specified by the given - * DIF object. This function is deliberately void of assertions as all of - * the necessary checks are handled by a call to dtrace_difo_validate(). - */ -static uint64_t -dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, - dtrace_vstate_t *vstate, dtrace_state_t *state) -{ - const dif_instr_t *text = difo->dtdo_buf; - const uint_t textlen = difo->dtdo_len; - const char *strtab = difo->dtdo_strtab; - const uint64_t *inttab = difo->dtdo_inttab; - - uint64_t rval = 0; - dtrace_statvar_t *svar; - dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; - dtrace_difv_t *v; - volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; - volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; - - dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ - uint64_t regs[DIF_DIR_NREGS]; - uint64_t *tmp; - - uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; - int64_t cc_r; - uint_t pc = 0, id, opc; - uint8_t ttop = 0; - dif_instr_t instr; - uint_t r1, r2, rd; - - /* - * We stash the current DIF object into the machine state: we need it - * for subsequent access checking. - */ - mstate->dtms_difo = difo; - - regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ - - while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { - opc = pc; - - instr = text[pc++]; - r1 = DIF_INSTR_R1(instr); - r2 = DIF_INSTR_R2(instr); - rd = DIF_INSTR_RD(instr); - - switch (DIF_INSTR_OP(instr)) { - case DIF_OP_OR: - regs[rd] = regs[r1] | regs[r2]; - break; - case DIF_OP_XOR: - regs[rd] = regs[r1] ^ regs[r2]; - break; - case DIF_OP_AND: - regs[rd] = regs[r1] & regs[r2]; - break; - case DIF_OP_SLL: - regs[rd] = regs[r1] << regs[r2]; - break; - case DIF_OP_SRL: - regs[rd] = regs[r1] >> regs[r2]; - break; - case DIF_OP_SUB: - regs[rd] = regs[r1] - regs[r2]; - break; - case DIF_OP_ADD: - regs[rd] = regs[r1] + regs[r2]; - break; - case DIF_OP_MUL: - regs[rd] = regs[r1] * regs[r2]; - break; - case DIF_OP_SDIV: - if (regs[r2] == 0) { - regs[rd] = 0; - *flags |= CPU_DTRACE_DIVZERO; - } else { - regs[rd] = (int64_t)regs[r1] / - (int64_t)regs[r2]; - } - break; - - case DIF_OP_UDIV: - if (regs[r2] == 0) { - regs[rd] = 0; - *flags |= CPU_DTRACE_DIVZERO; - } else { - regs[rd] = regs[r1] / regs[r2]; - } - break; - - case DIF_OP_SREM: - if (regs[r2] == 0) { - regs[rd] = 0; - *flags |= CPU_DTRACE_DIVZERO; - } else { - regs[rd] = (int64_t)regs[r1] % - (int64_t)regs[r2]; - } - break; - - case DIF_OP_UREM: - if (regs[r2] == 0) { - regs[rd] = 0; - *flags |= CPU_DTRACE_DIVZERO; - } else { - regs[rd] = regs[r1] % regs[r2]; - } - break; - - case DIF_OP_NOT: - regs[rd] = ~regs[r1]; - break; - case DIF_OP_MOV: - regs[rd] = regs[r1]; - break; - case DIF_OP_CMP: - cc_r = regs[r1] - regs[r2]; - cc_n = cc_r < 0; - cc_z = cc_r == 0; - cc_v = 0; - cc_c = regs[r1] < regs[r2]; - break; - case DIF_OP_TST: - cc_n = cc_v = cc_c = 0; - cc_z = regs[r1] == 0; - break; - case DIF_OP_BA: - pc = DIF_INSTR_LABEL(instr); - break; - case DIF_OP_BE: - if (cc_z) - pc = DIF_INSTR_LABEL(instr); - break; - case DIF_OP_BNE: - if (cc_z == 0) - pc = DIF_INSTR_LABEL(instr); - break; - case DIF_OP_BG: - if ((cc_z | (cc_n ^ cc_v)) == 0) - pc = DIF_INSTR_LABEL(instr); - break; - case DIF_OP_BGU: - if ((cc_c | cc_z) == 0) - pc = DIF_INSTR_LABEL(instr); - break; - case DIF_OP_BGE: - if ((cc_n ^ cc_v) == 0) - pc = DIF_INSTR_LABEL(instr); - break; - case DIF_OP_BGEU: - if (cc_c == 0) - pc = DIF_INSTR_LABEL(instr); - break; - case DIF_OP_BL: - if (cc_n ^ cc_v) - pc = DIF_INSTR_LABEL(instr); - break; - case DIF_OP_BLU: - if (cc_c) - pc = DIF_INSTR_LABEL(instr); - break; - case DIF_OP_BLE: - if (cc_z | (cc_n ^ cc_v)) - pc = DIF_INSTR_LABEL(instr); - break; - case DIF_OP_BLEU: - if (cc_c | cc_z) - pc = DIF_INSTR_LABEL(instr); - break; - case DIF_OP_RLDSB: - if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { - *flags |= CPU_DTRACE_KPRIV; - *illval = regs[r1]; - break; - } - /*FALLTHROUGH*/ - case DIF_OP_LDSB: - regs[rd] = (int8_t)dtrace_load8(regs[r1]); - break; - case DIF_OP_RLDSH: - if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { - *flags |= CPU_DTRACE_KPRIV; - *illval = regs[r1]; - break; - } - /*FALLTHROUGH*/ - case DIF_OP_LDSH: - regs[rd] = (int16_t)dtrace_load16(regs[r1]); - break; - case DIF_OP_RLDSW: - if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { - *flags |= CPU_DTRACE_KPRIV; - *illval = regs[r1]; - break; - } - /*FALLTHROUGH*/ - case DIF_OP_LDSW: - regs[rd] = (int32_t)dtrace_load32(regs[r1]); - break; - case DIF_OP_RLDUB: - if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { - *flags |= CPU_DTRACE_KPRIV; - *illval = regs[r1]; - break; - } - /*FALLTHROUGH*/ - case DIF_OP_LDUB: - regs[rd] = dtrace_load8(regs[r1]); - break; - case DIF_OP_RLDUH: - if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { - *flags |= CPU_DTRACE_KPRIV; - *illval = regs[r1]; - break; - } - /*FALLTHROUGH*/ - case DIF_OP_LDUH: - regs[rd] = dtrace_load16(regs[r1]); - break; - case DIF_OP_RLDUW: - if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { - *flags |= CPU_DTRACE_KPRIV; - *illval = regs[r1]; - break; - } - /*FALLTHROUGH*/ - case DIF_OP_LDUW: - regs[rd] = dtrace_load32(regs[r1]); - break; - case DIF_OP_RLDX: - if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { - *flags |= CPU_DTRACE_KPRIV; - *illval = regs[r1]; - break; - } - /*FALLTHROUGH*/ - case DIF_OP_LDX: - regs[rd] = dtrace_load64(regs[r1]); - break; - case DIF_OP_ULDSB: - regs[rd] = (int8_t) - dtrace_fuword8((void *)(uintptr_t)regs[r1]); - break; - case DIF_OP_ULDSH: - regs[rd] = (int16_t) - dtrace_fuword16((void *)(uintptr_t)regs[r1]); - break; - case DIF_OP_ULDSW: - regs[rd] = (int32_t) - dtrace_fuword32((void *)(uintptr_t)regs[r1]); - break; - case DIF_OP_ULDUB: - regs[rd] = - dtrace_fuword8((void *)(uintptr_t)regs[r1]); - break; - case DIF_OP_ULDUH: - regs[rd] = - dtrace_fuword16((void *)(uintptr_t)regs[r1]); - break; - case DIF_OP_ULDUW: - regs[rd] = - dtrace_fuword32((void *)(uintptr_t)regs[r1]); - break; - case DIF_OP_ULDX: - regs[rd] = - dtrace_fuword64((void *)(uintptr_t)regs[r1]); - break; - case DIF_OP_RET: - rval = regs[rd]; - pc = textlen; - break; - case DIF_OP_NOP: - break; - case DIF_OP_SETX: - regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; - break; - case DIF_OP_SETS: - regs[rd] = (uint64_t)(uintptr_t) - (strtab + DIF_INSTR_STRING(instr)); - break; - case DIF_OP_SCMP: { - size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; - uintptr_t s1 = regs[r1]; - uintptr_t s2 = regs[r2]; - - if (s1 != NULL && - !dtrace_strcanload(s1, sz, mstate, vstate)) - break; - if (s2 != NULL && - !dtrace_strcanload(s2, sz, mstate, vstate)) - break; - - cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); - - cc_n = cc_r < 0; - cc_z = cc_r == 0; - cc_v = cc_c = 0; - break; - } - case DIF_OP_LDGA: - regs[rd] = dtrace_dif_variable(mstate, state, - r1, regs[r2]); - break; - case DIF_OP_LDGS: - id = DIF_INSTR_VAR(instr); - - if (id >= DIF_VAR_OTHER_UBASE) { - uintptr_t a; - - id -= DIF_VAR_OTHER_UBASE; - svar = vstate->dtvs_globals[id]; - ASSERT(svar != NULL); - v = &svar->dtsv_var; - - if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { - regs[rd] = svar->dtsv_data; - break; - } - - a = (uintptr_t)svar->dtsv_data; - - if (*(uint8_t *)a == UINT8_MAX) { - /* - * If the 0th byte is set to UINT8_MAX - * then this is to be treated as a - * reference to a NULL variable. - */ - regs[rd] = NULL; - } else { - regs[rd] = a + sizeof (uint64_t); - } - - break; - } - - regs[rd] = dtrace_dif_variable(mstate, state, id, 0); - break; - - case DIF_OP_STGS: - id = DIF_INSTR_VAR(instr); - - ASSERT(id >= DIF_VAR_OTHER_UBASE); - id -= DIF_VAR_OTHER_UBASE; - - svar = vstate->dtvs_globals[id]; - ASSERT(svar != NULL); - v = &svar->dtsv_var; - - if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { - uintptr_t a = (uintptr_t)svar->dtsv_data; - - ASSERT(a != NULL); - ASSERT(svar->dtsv_size != 0); - - if (regs[rd] == NULL) { - *(uint8_t *)a = UINT8_MAX; - break; - } else { - *(uint8_t *)a = 0; - a += sizeof (uint64_t); - } - if (!dtrace_vcanload( - (void *)(uintptr_t)regs[rd], &v->dtdv_type, - mstate, vstate)) - break; - - dtrace_vcopy((void *)(uintptr_t)regs[rd], - (void *)a, &v->dtdv_type); - break; - } - - svar->dtsv_data = regs[rd]; - break; - - case DIF_OP_LDTA: - /* - * There are no DTrace built-in thread-local arrays at - * present. This opcode is saved for future work. - */ - *flags |= CPU_DTRACE_ILLOP; - regs[rd] = 0; - break; - - case DIF_OP_LDLS: - id = DIF_INSTR_VAR(instr); - - if (id < DIF_VAR_OTHER_UBASE) { - /* - * For now, this has no meaning. - */ - regs[rd] = 0; - break; - } - - id -= DIF_VAR_OTHER_UBASE; - - ASSERT(id < vstate->dtvs_nlocals); - ASSERT(vstate->dtvs_locals != NULL); - - svar = vstate->dtvs_locals[id]; - ASSERT(svar != NULL); - v = &svar->dtsv_var; - - if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { - uintptr_t a = (uintptr_t)svar->dtsv_data; - size_t sz = v->dtdv_type.dtdt_size; - - sz += sizeof (uint64_t); - ASSERT(svar->dtsv_size == NCPU * sz); - a += CPU->cpu_id * sz; - - if (*(uint8_t *)a == UINT8_MAX) { - /* - * If the 0th byte is set to UINT8_MAX - * then this is to be treated as a - * reference to a NULL variable. - */ - regs[rd] = NULL; - } else { - regs[rd] = a + sizeof (uint64_t); - } - - break; - } - - ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); - tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; - regs[rd] = tmp[CPU->cpu_id]; - break; - - case DIF_OP_STLS: - id = DIF_INSTR_VAR(instr); - - ASSERT(id >= DIF_VAR_OTHER_UBASE); - id -= DIF_VAR_OTHER_UBASE; - ASSERT(id < vstate->dtvs_nlocals); - - ASSERT(vstate->dtvs_locals != NULL); - svar = vstate->dtvs_locals[id]; - ASSERT(svar != NULL); - v = &svar->dtsv_var; - - if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { - uintptr_t a = (uintptr_t)svar->dtsv_data; - size_t sz = v->dtdv_type.dtdt_size; - - sz += sizeof (uint64_t); - ASSERT(svar->dtsv_size == NCPU * sz); - a += CPU->cpu_id * sz; - - if (regs[rd] == NULL) { - *(uint8_t *)a = UINT8_MAX; - break; - } else { - *(uint8_t *)a = 0; - a += sizeof (uint64_t); - } - - if (!dtrace_vcanload( - (void *)(uintptr_t)regs[rd], &v->dtdv_type, - mstate, vstate)) - break; - - dtrace_vcopy((void *)(uintptr_t)regs[rd], - (void *)a, &v->dtdv_type); - break; - } - - ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); - tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; - tmp[CPU->cpu_id] = regs[rd]; - break; - - case DIF_OP_LDTS: { - dtrace_dynvar_t *dvar; - dtrace_key_t *key; - - id = DIF_INSTR_VAR(instr); - ASSERT(id >= DIF_VAR_OTHER_UBASE); - id -= DIF_VAR_OTHER_UBASE; - v = &vstate->dtvs_tlocals[id]; - - key = &tupregs[DIF_DTR_NREGS]; - key[0].dttk_value = (uint64_t)id; - key[0].dttk_size = 0; - DTRACE_TLS_THRKEY(key[1].dttk_value); - key[1].dttk_size = 0; - - dvar = dtrace_dynvar(dstate, 2, key, - sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, - mstate, vstate); - - if (dvar == NULL) { - regs[rd] = 0; - break; - } - - if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { - regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; - } else { - regs[rd] = *((uint64_t *)dvar->dtdv_data); - } - - break; - } - - case DIF_OP_STTS: { - dtrace_dynvar_t *dvar; - dtrace_key_t *key; - - id = DIF_INSTR_VAR(instr); - ASSERT(id >= DIF_VAR_OTHER_UBASE); - id -= DIF_VAR_OTHER_UBASE; - - key = &tupregs[DIF_DTR_NREGS]; - key[0].dttk_value = (uint64_t)id; - key[0].dttk_size = 0; - DTRACE_TLS_THRKEY(key[1].dttk_value); - key[1].dttk_size = 0; - v = &vstate->dtvs_tlocals[id]; - - dvar = dtrace_dynvar(dstate, 2, key, - v->dtdv_type.dtdt_size > sizeof (uint64_t) ? - v->dtdv_type.dtdt_size : sizeof (uint64_t), - regs[rd] ? DTRACE_DYNVAR_ALLOC : - DTRACE_DYNVAR_DEALLOC, mstate, vstate); - - /* - * Given that we're storing to thread-local data, - * we need to flush our predicate cache. - */ - curthread->t_predcache = NULL; - - if (dvar == NULL) - break; - - if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { - if (!dtrace_vcanload( - (void *)(uintptr_t)regs[rd], - &v->dtdv_type, mstate, vstate)) - break; - - dtrace_vcopy((void *)(uintptr_t)regs[rd], - dvar->dtdv_data, &v->dtdv_type); - } else { - *((uint64_t *)dvar->dtdv_data) = regs[rd]; - } - - break; - } - - case DIF_OP_SRA: - regs[rd] = (int64_t)regs[r1] >> regs[r2]; - break; - - case DIF_OP_CALL: - dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, - regs, tupregs, ttop, mstate, state); - break; - - case DIF_OP_PUSHTR: - if (ttop == DIF_DTR_NREGS) { - *flags |= CPU_DTRACE_TUPOFLOW; - break; - } - - if (r1 == DIF_TYPE_STRING) { - /* - * If this is a string type and the size is 0, - * we'll use the system-wide default string - * size. Note that we are _not_ looking at - * the value of the DTRACEOPT_STRSIZE option; - * had this been set, we would expect to have - * a non-zero size value in the "pushtr". - */ - tupregs[ttop].dttk_size = - dtrace_strlen((char *)(uintptr_t)regs[rd], - regs[r2] ? regs[r2] : - dtrace_strsize_default) + 1; - } else { - tupregs[ttop].dttk_size = regs[r2]; - } - - tupregs[ttop++].dttk_value = regs[rd]; - break; - - case DIF_OP_PUSHTV: - if (ttop == DIF_DTR_NREGS) { - *flags |= CPU_DTRACE_TUPOFLOW; - break; - } - - tupregs[ttop].dttk_value = regs[rd]; - tupregs[ttop++].dttk_size = 0; - break; - - case DIF_OP_POPTS: - if (ttop != 0) - ttop--; - break; - - case DIF_OP_FLUSHTS: - ttop = 0; - break; - - case DIF_OP_LDGAA: - case DIF_OP_LDTAA: { - dtrace_dynvar_t *dvar; - dtrace_key_t *key = tupregs; - uint_t nkeys = ttop; - - id = DIF_INSTR_VAR(instr); - ASSERT(id >= DIF_VAR_OTHER_UBASE); - id -= DIF_VAR_OTHER_UBASE; - - key[nkeys].dttk_value = (uint64_t)id; - key[nkeys++].dttk_size = 0; - - if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { - DTRACE_TLS_THRKEY(key[nkeys].dttk_value); - key[nkeys++].dttk_size = 0; - v = &vstate->dtvs_tlocals[id]; - } else { - v = &vstate->dtvs_globals[id]->dtsv_var; - } - - dvar = dtrace_dynvar(dstate, nkeys, key, - v->dtdv_type.dtdt_size > sizeof (uint64_t) ? - v->dtdv_type.dtdt_size : sizeof (uint64_t), - DTRACE_DYNVAR_NOALLOC, mstate, vstate); - - if (dvar == NULL) { - regs[rd] = 0; - break; - } - - if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { - regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; - } else { - regs[rd] = *((uint64_t *)dvar->dtdv_data); - } - - break; - } - - case DIF_OP_STGAA: - case DIF_OP_STTAA: { - dtrace_dynvar_t *dvar; - dtrace_key_t *key = tupregs; - uint_t nkeys = ttop; - - id = DIF_INSTR_VAR(instr); - ASSERT(id >= DIF_VAR_OTHER_UBASE); - id -= DIF_VAR_OTHER_UBASE; - - key[nkeys].dttk_value = (uint64_t)id; - key[nkeys++].dttk_size = 0; - - if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { - DTRACE_TLS_THRKEY(key[nkeys].dttk_value); - key[nkeys++].dttk_size = 0; - v = &vstate->dtvs_tlocals[id]; - } else { - v = &vstate->dtvs_globals[id]->dtsv_var; - } - - dvar = dtrace_dynvar(dstate, nkeys, key, - v->dtdv_type.dtdt_size > sizeof (uint64_t) ? - v->dtdv_type.dtdt_size : sizeof (uint64_t), - regs[rd] ? DTRACE_DYNVAR_ALLOC : - DTRACE_DYNVAR_DEALLOC, mstate, vstate); - - if (dvar == NULL) - break; - - if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { - if (!dtrace_vcanload( - (void *)(uintptr_t)regs[rd], &v->dtdv_type, - mstate, vstate)) - break; - - dtrace_vcopy((void *)(uintptr_t)regs[rd], - dvar->dtdv_data, &v->dtdv_type); - } else { - *((uint64_t *)dvar->dtdv_data) = regs[rd]; - } - - break; - } - - case DIF_OP_ALLOCS: { - uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); - size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; - - /* - * Rounding up the user allocation size could have - * overflowed large, bogus allocations (like -1ULL) to - * 0. - */ - if (size < regs[r1] || - !DTRACE_INSCRATCH(mstate, size)) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - regs[rd] = NULL; - break; - } - - dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); - mstate->dtms_scratch_ptr += size; - regs[rd] = ptr; - break; - } - - case DIF_OP_COPYS: - if (!dtrace_canstore(regs[rd], regs[r2], - mstate, vstate)) { - *flags |= CPU_DTRACE_BADADDR; - *illval = regs[rd]; - break; - } - - if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) - break; - - dtrace_bcopy((void *)(uintptr_t)regs[r1], - (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); - break; - - case DIF_OP_STB: - if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { - *flags |= CPU_DTRACE_BADADDR; - *illval = regs[rd]; - break; - } - *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; - break; - - case DIF_OP_STH: - if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { - *flags |= CPU_DTRACE_BADADDR; - *illval = regs[rd]; - break; - } - if (regs[rd] & 1) { - *flags |= CPU_DTRACE_BADALIGN; - *illval = regs[rd]; - break; - } - *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; - break; - - case DIF_OP_STW: - if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { - *flags |= CPU_DTRACE_BADADDR; - *illval = regs[rd]; - break; - } - if (regs[rd] & 3) { - *flags |= CPU_DTRACE_BADALIGN; - *illval = regs[rd]; - break; - } - *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; - break; - - case DIF_OP_STX: - if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { - *flags |= CPU_DTRACE_BADADDR; - *illval = regs[rd]; - break; - } - if (regs[rd] & 7) { - *flags |= CPU_DTRACE_BADALIGN; - *illval = regs[rd]; - break; - } - *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; - break; - } - } - - if (!(*flags & CPU_DTRACE_FAULT)) - return (rval); - - mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); - mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; - - return (0); -} - -static void -dtrace_action_breakpoint(dtrace_ecb_t *ecb) -{ - dtrace_probe_t *probe = ecb->dte_probe; - dtrace_provider_t *prov = probe->dtpr_provider; - char c[DTRACE_FULLNAMELEN + 80], *str; - char *msg = "dtrace: breakpoint action at probe "; - char *ecbmsg = " (ecb "; - uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); - uintptr_t val = (uintptr_t)ecb; - int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; - - if (dtrace_destructive_disallow) - return; - - /* - * It's impossible to be taking action on the NULL probe. - */ - ASSERT(probe != NULL); - - /* - * This is a poor man's (destitute man's?) sprintf(): we want to - * print the provider name, module name, function name and name of - * the probe, along with the hex address of the ECB with the breakpoint - * action -- all of which we must place in the character buffer by - * hand. - */ - while (*msg != '\0') - c[i++] = *msg++; - - for (str = prov->dtpv_name; *str != '\0'; str++) - c[i++] = *str; - c[i++] = ':'; - - for (str = probe->dtpr_mod; *str != '\0'; str++) - c[i++] = *str; - c[i++] = ':'; - - for (str = probe->dtpr_func; *str != '\0'; str++) - c[i++] = *str; - c[i++] = ':'; - - for (str = probe->dtpr_name; *str != '\0'; str++) - c[i++] = *str; - - while (*ecbmsg != '\0') - c[i++] = *ecbmsg++; - - while (shift >= 0) { - mask = (uintptr_t)0xf << shift; - - if (val >= ((uintptr_t)1 << shift)) - c[i++] = "0123456789abcdef"[(val & mask) >> shift]; - shift -= 4; - } - - c[i++] = ')'; - c[i] = '\0'; - - debug_enter(c); -} - -static void -dtrace_action_panic(dtrace_ecb_t *ecb) -{ - dtrace_probe_t *probe = ecb->dte_probe; - - /* - * It's impossible to be taking action on the NULL probe. - */ - ASSERT(probe != NULL); - - if (dtrace_destructive_disallow) - return; - - if (dtrace_panicked != NULL) - return; - - if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) - return; - - /* - * We won the right to panic. (We want to be sure that only one - * thread calls panic() from dtrace_probe(), and that panic() is - * called exactly once.) - */ - dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", - probe->dtpr_provider->dtpv_name, probe->dtpr_mod, - probe->dtpr_func, probe->dtpr_name, (void *)ecb); -} - -static void -dtrace_action_raise(uint64_t sig) -{ - if (dtrace_destructive_disallow) - return; - - if (sig >= NSIG) { - DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); - return; - } - - /* - * raise() has a queue depth of 1 -- we ignore all subsequent - * invocations of the raise() action. - */ - if (curthread->t_dtrace_sig == 0) - curthread->t_dtrace_sig = (uint8_t)sig; - - curthread->t_sig_check = 1; - aston(curthread); -} - -static void -dtrace_action_stop(void) -{ - if (dtrace_destructive_disallow) - return; - - if (!curthread->t_dtrace_stop) { - curthread->t_dtrace_stop = 1; - curthread->t_sig_check = 1; - aston(curthread); - } -} - -static void -dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) -{ - hrtime_t now; - volatile uint16_t *flags; - cpu_t *cpu = CPU; - - if (dtrace_destructive_disallow) - return; - - flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; - - now = dtrace_gethrtime(); - - if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { - /* - * We need to advance the mark to the current time. - */ - cpu->cpu_dtrace_chillmark = now; - cpu->cpu_dtrace_chilled = 0; - } - - /* - * Now check to see if the requested chill time would take us over - * the maximum amount of time allowed in the chill interval. (Or - * worse, if the calculation itself induces overflow.) - */ - if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || - cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { - *flags |= CPU_DTRACE_ILLOP; - return; - } - - while (dtrace_gethrtime() - now < val) - continue; - - /* - * Normally, we assure that the value of the variable "timestamp" does - * not change within an ECB. The presence of chill() represents an - * exception to this rule, however. - */ - mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; - cpu->cpu_dtrace_chilled += val; -} - -static void -dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, - uint64_t *buf, uint64_t arg) -{ - int nframes = DTRACE_USTACK_NFRAMES(arg); - int strsize = DTRACE_USTACK_STRSIZE(arg); - uint64_t *pcs = &buf[1], *fps; - char *str = (char *)&pcs[nframes]; - int size, offs = 0, i, j; - uintptr_t old = mstate->dtms_scratch_ptr, saved; - uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; - char *sym; - - /* - * Should be taking a faster path if string space has not been - * allocated. - */ - ASSERT(strsize != 0); - - /* - * We will first allocate some temporary space for the frame pointers. - */ - fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); - size = (uintptr_t)fps - mstate->dtms_scratch_ptr + - (nframes * sizeof (uint64_t)); - - if (!DTRACE_INSCRATCH(mstate, size)) { - /* - * Not enough room for our frame pointers -- need to indicate - * that we ran out of scratch space. - */ - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); - return; - } - - mstate->dtms_scratch_ptr += size; - saved = mstate->dtms_scratch_ptr; - - /* - * Now get a stack with both program counters and frame pointers. - */ - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); - dtrace_getufpstack(buf, fps, nframes + 1); - DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); - - /* - * If that faulted, we're cooked. - */ - if (*flags & CPU_DTRACE_FAULT) - goto out; - - /* - * Now we want to walk up the stack, calling the USTACK helper. For - * each iteration, we restore the scratch pointer. - */ - for (i = 0; i < nframes; i++) { - mstate->dtms_scratch_ptr = saved; - - if (offs >= strsize) - break; - - sym = (char *)(uintptr_t)dtrace_helper( - DTRACE_HELPER_ACTION_USTACK, - mstate, state, pcs[i], fps[i]); - - /* - * If we faulted while running the helper, we're going to - * clear the fault and null out the corresponding string. - */ - if (*flags & CPU_DTRACE_FAULT) { - *flags &= ~CPU_DTRACE_FAULT; - str[offs++] = '\0'; - continue; - } - - if (sym == NULL) { - str[offs++] = '\0'; - continue; - } - - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); - - /* - * Now copy in the string that the helper returned to us. - */ - for (j = 0; offs + j < strsize; j++) { - if ((str[offs + j] = sym[j]) == '\0') - break; - } - - DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); - - offs += j + 1; - } - - if (offs >= strsize) { - /* - * If we didn't have room for all of the strings, we don't - * abort processing -- this needn't be a fatal error -- but we - * still want to increment a counter (dts_stkstroverflows) to - * allow this condition to be warned about. (If this is from - * a jstack() action, it is easily tuned via jstackstrsize.) - */ - dtrace_error(&state->dts_stkstroverflows); - } - - while (offs < strsize) - str[offs++] = '\0'; - -out: - mstate->dtms_scratch_ptr = old; -} - -/* - * If you're looking for the epicenter of DTrace, you just found it. This - * is the function called by the provider to fire a probe -- from which all - * subsequent probe-context DTrace activity emanates. - */ -void -dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, - uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) -{ - processorid_t cpuid; - dtrace_icookie_t cookie; - dtrace_probe_t *probe; - dtrace_mstate_t mstate; - dtrace_ecb_t *ecb; - dtrace_action_t *act; - intptr_t offs; - size_t size; - int vtime, onintr; - volatile uint16_t *flags; - hrtime_t now; - - /* - * Kick out immediately if this CPU is still being born (in which case - * curthread will be set to -1) or the current thread can't allow - * probes in its current context. - */ - if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) - return; - - cookie = dtrace_interrupt_disable(); - probe = dtrace_probes[id - 1]; - cpuid = CPU->cpu_id; - onintr = CPU_ON_INTR(CPU); - - if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && - probe->dtpr_predcache == curthread->t_predcache) { - /* - * We have hit in the predicate cache; we know that - * this predicate would evaluate to be false. - */ - dtrace_interrupt_enable(cookie); - return; - } - - if (panic_quiesce) { - /* - * We don't trace anything if we're panicking. - */ - dtrace_interrupt_enable(cookie); - return; - } - - now = dtrace_gethrtime(); - vtime = dtrace_vtime_references != 0; - - if (vtime && curthread->t_dtrace_start) - curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; - - mstate.dtms_difo = NULL; - mstate.dtms_probe = probe; - mstate.dtms_strtok = NULL; - mstate.dtms_arg[0] = arg0; - mstate.dtms_arg[1] = arg1; - mstate.dtms_arg[2] = arg2; - mstate.dtms_arg[3] = arg3; - mstate.dtms_arg[4] = arg4; - - flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; - - for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { - dtrace_predicate_t *pred = ecb->dte_predicate; - dtrace_state_t *state = ecb->dte_state; - dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; - dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; - dtrace_vstate_t *vstate = &state->dts_vstate; - dtrace_provider_t *prov = probe->dtpr_provider; - int committed = 0; - caddr_t tomax; - - /* - * A little subtlety with the following (seemingly innocuous) - * declaration of the automatic 'val': by looking at the - * code, you might think that it could be declared in the - * action processing loop, below. (That is, it's only used in - * the action processing loop.) However, it must be declared - * out of that scope because in the case of DIF expression - * arguments to aggregating actions, one iteration of the - * action loop will use the last iteration's value. - */ -#ifdef lint - uint64_t val = 0; -#else - uint64_t val; -#endif - - mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; - *flags &= ~CPU_DTRACE_ERROR; - - if (prov == dtrace_provider) { - /* - * If dtrace itself is the provider of this probe, - * we're only going to continue processing the ECB if - * arg0 (the dtrace_state_t) is equal to the ECB's - * creating state. (This prevents disjoint consumers - * from seeing one another's metaprobes.) - */ - if (arg0 != (uint64_t)(uintptr_t)state) - continue; - } - - if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { - /* - * We're not currently active. If our provider isn't - * the dtrace pseudo provider, we're not interested. - */ - if (prov != dtrace_provider) - continue; - - /* - * Now we must further check if we are in the BEGIN - * probe. If we are, we will only continue processing - * if we're still in WARMUP -- if one BEGIN enabling - * has invoked the exit() action, we don't want to - * evaluate subsequent BEGIN enablings. - */ - if (probe->dtpr_id == dtrace_probeid_begin && - state->dts_activity != DTRACE_ACTIVITY_WARMUP) { - ASSERT(state->dts_activity == - DTRACE_ACTIVITY_DRAINING); - continue; - } - } - - if (ecb->dte_cond) { - /* - * If the dte_cond bits indicate that this - * consumer is only allowed to see user-mode firings - * of this probe, call the provider's dtps_usermode() - * entry point to check that the probe was fired - * while in a user context. Skip this ECB if that's - * not the case. - */ - if ((ecb->dte_cond & DTRACE_COND_USERMODE) && - prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, - probe->dtpr_id, probe->dtpr_arg) == 0) - continue; - - /* - * This is more subtle than it looks. We have to be - * absolutely certain that CRED() isn't going to - * change out from under us so it's only legit to - * examine that structure if we're in constrained - * situations. Currently, the only times we'll this - * check is if a non-super-user has enabled the - * profile or syscall providers -- providers that - * allow visibility of all processes. For the - * profile case, the check above will ensure that - * we're examining a user context. - */ - if (ecb->dte_cond & DTRACE_COND_OWNER) { - cred_t *cr; - cred_t *s_cr = - ecb->dte_state->dts_cred.dcr_cred; - proc_t *proc; - - ASSERT(s_cr != NULL); - - if ((cr = CRED()) == NULL || - s_cr->cr_uid != cr->cr_uid || - s_cr->cr_uid != cr->cr_ruid || - s_cr->cr_uid != cr->cr_suid || - s_cr->cr_gid != cr->cr_gid || - s_cr->cr_gid != cr->cr_rgid || - s_cr->cr_gid != cr->cr_sgid || - (proc = ttoproc(curthread)) == NULL || - (proc->p_flag & SNOCD)) - continue; - } - - if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { - cred_t *cr; - cred_t *s_cr = - ecb->dte_state->dts_cred.dcr_cred; - - ASSERT(s_cr != NULL); - - if ((cr = CRED()) == NULL || - s_cr->cr_zone->zone_id != - cr->cr_zone->zone_id) - continue; - } - } - - if (now - state->dts_alive > dtrace_deadman_timeout) { - /* - * We seem to be dead. Unless we (a) have kernel - * destructive permissions (b) have expicitly enabled - * destructive actions and (c) destructive actions have - * not been disabled, we're going to transition into - * the KILLED state, from which no further processing - * on this state will be performed. - */ - if (!dtrace_priv_kernel_destructive(state) || - !state->dts_cred.dcr_destructive || - dtrace_destructive_disallow) { - void *activity = &state->dts_activity; - dtrace_activity_t current; - - do { - current = state->dts_activity; - } while (dtrace_cas32(activity, current, - DTRACE_ACTIVITY_KILLED) != current); - - continue; - } - } - - if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, - ecb->dte_alignment, state, &mstate)) < 0) - continue; - - tomax = buf->dtb_tomax; - ASSERT(tomax != NULL); - - if (ecb->dte_size != 0) - DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); - - mstate.dtms_epid = ecb->dte_epid; - mstate.dtms_present |= DTRACE_MSTATE_EPID; - - if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) - mstate.dtms_access = DTRACE_ACCESS_KERNEL; - else - mstate.dtms_access = 0; - - if (pred != NULL) { - dtrace_difo_t *dp = pred->dtp_difo; - int rval; - - rval = dtrace_dif_emulate(dp, &mstate, vstate, state); - - if (!(*flags & CPU_DTRACE_ERROR) && !rval) { - dtrace_cacheid_t cid = probe->dtpr_predcache; - - if (cid != DTRACE_CACHEIDNONE && !onintr) { - /* - * Update the predicate cache... - */ - ASSERT(cid == pred->dtp_cacheid); - curthread->t_predcache = cid; - } - - continue; - } - } - - for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && - act != NULL; act = act->dta_next) { - size_t valoffs; - dtrace_difo_t *dp; - dtrace_recdesc_t *rec = &act->dta_rec; - - size = rec->dtrd_size; - valoffs = offs + rec->dtrd_offset; - - if (DTRACEACT_ISAGG(act->dta_kind)) { - uint64_t v = 0xbad; - dtrace_aggregation_t *agg; - - agg = (dtrace_aggregation_t *)act; - - if ((dp = act->dta_difo) != NULL) - v = dtrace_dif_emulate(dp, - &mstate, vstate, state); - - if (*flags & CPU_DTRACE_ERROR) - continue; - - /* - * Note that we always pass the expression - * value from the previous iteration of the - * action loop. This value will only be used - * if there is an expression argument to the - * aggregating action, denoted by the - * dtag_hasarg field. - */ - dtrace_aggregate(agg, buf, - offs, aggbuf, v, val); - continue; - } - - switch (act->dta_kind) { - case DTRACEACT_STOP: - if (dtrace_priv_proc_destructive(state)) - dtrace_action_stop(); - continue; - - case DTRACEACT_BREAKPOINT: - if (dtrace_priv_kernel_destructive(state)) - dtrace_action_breakpoint(ecb); - continue; - - case DTRACEACT_PANIC: - if (dtrace_priv_kernel_destructive(state)) - dtrace_action_panic(ecb); - continue; - - case DTRACEACT_STACK: - if (!dtrace_priv_kernel(state)) - continue; - - dtrace_getpcstack((pc_t *)(tomax + valoffs), - size / sizeof (pc_t), probe->dtpr_aframes, - DTRACE_ANCHORED(probe) ? NULL : - (uint32_t *)arg0); - - continue; - - case DTRACEACT_JSTACK: - case DTRACEACT_USTACK: - if (!dtrace_priv_proc(state)) - continue; - - /* - * See comment in DIF_VAR_PID. - */ - if (DTRACE_ANCHORED(mstate.dtms_probe) && - CPU_ON_INTR(CPU)) { - int depth = DTRACE_USTACK_NFRAMES( - rec->dtrd_arg) + 1; - - dtrace_bzero((void *)(tomax + valoffs), - DTRACE_USTACK_STRSIZE(rec->dtrd_arg) - + depth * sizeof (uint64_t)); - - continue; - } - - if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && - curproc->p_dtrace_helpers != NULL) { - /* - * This is the slow path -- we have - * allocated string space, and we're - * getting the stack of a process that - * has helpers. Call into a separate - * routine to perform this processing. - */ - dtrace_action_ustack(&mstate, state, - (uint64_t *)(tomax + valoffs), - rec->dtrd_arg); - continue; - } - - DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); - dtrace_getupcstack((uint64_t *) - (tomax + valoffs), - DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); - DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); - continue; - - default: - break; - } - - dp = act->dta_difo; - ASSERT(dp != NULL); - - val = dtrace_dif_emulate(dp, &mstate, vstate, state); - - if (*flags & CPU_DTRACE_ERROR) - continue; - - switch (act->dta_kind) { - case DTRACEACT_SPECULATE: - ASSERT(buf == &state->dts_buffer[cpuid]); - buf = dtrace_speculation_buffer(state, - cpuid, val); - - if (buf == NULL) { - *flags |= CPU_DTRACE_DROP; - continue; - } - - offs = dtrace_buffer_reserve(buf, - ecb->dte_needed, ecb->dte_alignment, - state, NULL); - - if (offs < 0) { - *flags |= CPU_DTRACE_DROP; - continue; - } - - tomax = buf->dtb_tomax; - ASSERT(tomax != NULL); - - if (ecb->dte_size != 0) - DTRACE_STORE(uint32_t, tomax, offs, - ecb->dte_epid); - continue; - - case DTRACEACT_CHILL: - if (dtrace_priv_kernel_destructive(state)) - dtrace_action_chill(&mstate, val); - continue; - - case DTRACEACT_RAISE: - if (dtrace_priv_proc_destructive(state)) - dtrace_action_raise(val); - continue; - - case DTRACEACT_COMMIT: - ASSERT(!committed); - - /* - * We need to commit our buffer state. - */ - if (ecb->dte_size) - buf->dtb_offset = offs + ecb->dte_size; - buf = &state->dts_buffer[cpuid]; - dtrace_speculation_commit(state, cpuid, val); - committed = 1; - continue; - - case DTRACEACT_DISCARD: - dtrace_speculation_discard(state, cpuid, val); - continue; - - case DTRACEACT_DIFEXPR: - case DTRACEACT_LIBACT: - case DTRACEACT_PRINTF: - case DTRACEACT_PRINTA: - case DTRACEACT_SYSTEM: - case DTRACEACT_FREOPEN: - break; - - case DTRACEACT_SYM: - case DTRACEACT_MOD: - if (!dtrace_priv_kernel(state)) - continue; - break; - - case DTRACEACT_USYM: - case DTRACEACT_UMOD: - case DTRACEACT_UADDR: { - struct pid *pid = curthread->t_procp->p_pidp; - - if (!dtrace_priv_proc(state)) - continue; - - DTRACE_STORE(uint64_t, tomax, - valoffs, (uint64_t)pid->pid_id); - DTRACE_STORE(uint64_t, tomax, - valoffs + sizeof (uint64_t), val); - - continue; - } - - case DTRACEACT_EXIT: { - /* - * For the exit action, we are going to attempt - * to atomically set our activity to be - * draining. If this fails (either because - * another CPU has beat us to the exit action, - * or because our current activity is something - * other than ACTIVE or WARMUP), we will - * continue. This assures that the exit action - * can be successfully recorded at most once - * when we're in the ACTIVE state. If we're - * encountering the exit() action while in - * COOLDOWN, however, we want to honor the new - * status code. (We know that we're the only - * thread in COOLDOWN, so there is no race.) - */ - void *activity = &state->dts_activity; - dtrace_activity_t current = state->dts_activity; - - if (current == DTRACE_ACTIVITY_COOLDOWN) - break; - - if (current != DTRACE_ACTIVITY_WARMUP) - current = DTRACE_ACTIVITY_ACTIVE; - - if (dtrace_cas32(activity, current, - DTRACE_ACTIVITY_DRAINING) != current) { - *flags |= CPU_DTRACE_DROP; - continue; - } - - break; - } - - default: - ASSERT(0); - } - - if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { - uintptr_t end = valoffs + size; - - if (!dtrace_vcanload((void *)(uintptr_t)val, - &dp->dtdo_rtype, &mstate, vstate)) - continue; - - /* - * If this is a string, we're going to only - * load until we find the zero byte -- after - * which we'll store zero bytes. - */ - if (dp->dtdo_rtype.dtdt_kind == - DIF_TYPE_STRING) { - char c = '\0' + 1; - int intuple = act->dta_intuple; - size_t s; - - for (s = 0; s < size; s++) { - if (c != '\0') - c = dtrace_load8(val++); - - DTRACE_STORE(uint8_t, tomax, - valoffs++, c); - - if (c == '\0' && intuple) - break; - } - - continue; - } - - while (valoffs < end) { - DTRACE_STORE(uint8_t, tomax, valoffs++, - dtrace_load8(val++)); - } - - continue; - } - - switch (size) { - case 0: - break; - - case sizeof (uint8_t): - DTRACE_STORE(uint8_t, tomax, valoffs, val); - break; - case sizeof (uint16_t): - DTRACE_STORE(uint16_t, tomax, valoffs, val); - break; - case sizeof (uint32_t): - DTRACE_STORE(uint32_t, tomax, valoffs, val); - break; - case sizeof (uint64_t): - DTRACE_STORE(uint64_t, tomax, valoffs, val); - break; - default: - /* - * Any other size should have been returned by - * reference, not by value. - */ - ASSERT(0); - break; - } - } - - if (*flags & CPU_DTRACE_DROP) - continue; - - if (*flags & CPU_DTRACE_FAULT) { - int ndx; - dtrace_action_t *err; - - buf->dtb_errors++; - - if (probe->dtpr_id == dtrace_probeid_error) { - /* - * There's nothing we can do -- we had an - * error on the error probe. We bump an - * error counter to at least indicate that - * this condition happened. - */ - dtrace_error(&state->dts_dblerrors); - continue; - } - - if (vtime) { - /* - * Before recursing on dtrace_probe(), we - * need to explicitly clear out our start - * time to prevent it from being accumulated - * into t_dtrace_vtime. - */ - curthread->t_dtrace_start = 0; - } - - /* - * Iterate over the actions to figure out which action - * we were processing when we experienced the error. - * Note that act points _past_ the faulting action; if - * act is ecb->dte_action, the fault was in the - * predicate, if it's ecb->dte_action->dta_next it's - * in action #1, and so on. - */ - for (err = ecb->dte_action, ndx = 0; - err != act; err = err->dta_next, ndx++) - continue; - - dtrace_probe_error(state, ecb->dte_epid, ndx, - (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? - mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), - cpu_core[cpuid].cpuc_dtrace_illval); - - continue; - } - - if (!committed) - buf->dtb_offset = offs + ecb->dte_size; - } - - if (vtime) - curthread->t_dtrace_start = dtrace_gethrtime(); - - dtrace_interrupt_enable(cookie); -} - -/* - * DTrace Probe Hashing Functions - * - * The functions in this section (and indeed, the functions in remaining - * sections) are not _called_ from probe context. (Any exceptions to this are - * marked with a "Note:".) Rather, they are called from elsewhere in the - * DTrace framework to look-up probes in, add probes to and remove probes from - * the DTrace probe hashes. (Each probe is hashed by each element of the - * probe tuple -- allowing for fast lookups, regardless of what was - * specified.) - */ -static uint_t -dtrace_hash_str(char *p) -{ - unsigned int g; - uint_t hval = 0; - - while (*p) { - hval = (hval << 4) + *p++; - if ((g = (hval & 0xf0000000)) != 0) - hval ^= g >> 24; - hval &= ~g; - } - return (hval); -} - -static dtrace_hash_t * -dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) -{ - dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); - - hash->dth_stroffs = stroffs; - hash->dth_nextoffs = nextoffs; - hash->dth_prevoffs = prevoffs; - - hash->dth_size = 1; - hash->dth_mask = hash->dth_size - 1; - - hash->dth_tab = kmem_zalloc(hash->dth_size * - sizeof (dtrace_hashbucket_t *), KM_SLEEP); - - return (hash); -} - -static void -dtrace_hash_destroy(dtrace_hash_t *hash) -{ -#ifdef DEBUG - int i; - - for (i = 0; i < hash->dth_size; i++) - ASSERT(hash->dth_tab[i] == NULL); -#endif - - kmem_free(hash->dth_tab, - hash->dth_size * sizeof (dtrace_hashbucket_t *)); - kmem_free(hash, sizeof (dtrace_hash_t)); -} - -static void -dtrace_hash_resize(dtrace_hash_t *hash) -{ - int size = hash->dth_size, i, ndx; - int new_size = hash->dth_size << 1; - int new_mask = new_size - 1; - dtrace_hashbucket_t **new_tab, *bucket, *next; - - ASSERT((new_size & new_mask) == 0); - - new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); - - for (i = 0; i < size; i++) { - for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { - dtrace_probe_t *probe = bucket->dthb_chain; - - ASSERT(probe != NULL); - ndx = DTRACE_HASHSTR(hash, probe) & new_mask; - - next = bucket->dthb_next; - bucket->dthb_next = new_tab[ndx]; - new_tab[ndx] = bucket; - } - } - - kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); - hash->dth_tab = new_tab; - hash->dth_size = new_size; - hash->dth_mask = new_mask; -} - -static void -dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) -{ - int hashval = DTRACE_HASHSTR(hash, new); - int ndx = hashval & hash->dth_mask; - dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; - dtrace_probe_t **nextp, **prevp; - - for (; bucket != NULL; bucket = bucket->dthb_next) { - if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) - goto add; - } - - if ((hash->dth_nbuckets >> 1) > hash->dth_size) { - dtrace_hash_resize(hash); - dtrace_hash_add(hash, new); - return; - } - - bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); - bucket->dthb_next = hash->dth_tab[ndx]; - hash->dth_tab[ndx] = bucket; - hash->dth_nbuckets++; - -add: - nextp = DTRACE_HASHNEXT(hash, new); - ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); - *nextp = bucket->dthb_chain; - - if (bucket->dthb_chain != NULL) { - prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); - ASSERT(*prevp == NULL); - *prevp = new; - } - - bucket->dthb_chain = new; - bucket->dthb_len++; -} - -static dtrace_probe_t * -dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) -{ - int hashval = DTRACE_HASHSTR(hash, template); - int ndx = hashval & hash->dth_mask; - dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; - - for (; bucket != NULL; bucket = bucket->dthb_next) { - if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) - return (bucket->dthb_chain); - } - - return (NULL); -} - -static int -dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) -{ - int hashval = DTRACE_HASHSTR(hash, template); - int ndx = hashval & hash->dth_mask; - dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; - - for (; bucket != NULL; bucket = bucket->dthb_next) { - if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) - return (bucket->dthb_len); - } - - return (NULL); -} - -static void -dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) -{ - int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; - dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; - - dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); - dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); - - /* - * Find the bucket that we're removing this probe from. - */ - for (; bucket != NULL; bucket = bucket->dthb_next) { - if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) - break; - } - - ASSERT(bucket != NULL); - - if (*prevp == NULL) { - if (*nextp == NULL) { - /* - * The removed probe was the only probe on this - * bucket; we need to remove the bucket. - */ - dtrace_hashbucket_t *b = hash->dth_tab[ndx]; - - ASSERT(bucket->dthb_chain == probe); - ASSERT(b != NULL); - - if (b == bucket) { - hash->dth_tab[ndx] = bucket->dthb_next; - } else { - while (b->dthb_next != bucket) - b = b->dthb_next; - b->dthb_next = bucket->dthb_next; - } - - ASSERT(hash->dth_nbuckets > 0); - hash->dth_nbuckets--; - kmem_free(bucket, sizeof (dtrace_hashbucket_t)); - return; - } - - bucket->dthb_chain = *nextp; - } else { - *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; - } - - if (*nextp != NULL) - *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; -} - -/* - * DTrace Utility Functions - * - * These are random utility functions that are _not_ called from probe context. - */ -static int -dtrace_badattr(const dtrace_attribute_t *a) -{ - return (a->dtat_name > DTRACE_STABILITY_MAX || - a->dtat_data > DTRACE_STABILITY_MAX || - a->dtat_class > DTRACE_CLASS_MAX); -} - -/* - * Return a duplicate copy of a string. If the specified string is NULL, - * this function returns a zero-length string. - */ -static char * -dtrace_strdup(const char *str) -{ - char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); - - if (str != NULL) - (void) strcpy(new, str); - - return (new); -} - -#define DTRACE_ISALPHA(c) \ - (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) - -static int -dtrace_badname(const char *s) -{ - char c; - - if (s == NULL || (c = *s++) == '\0') - return (0); - - if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') - return (1); - - while ((c = *s++) != '\0') { - if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && - c != '-' && c != '_' && c != '.' && c != '`') - return (1); - } - - return (0); -} - -static void -dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) -{ - uint32_t priv; - - if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { - /* - * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. - */ - priv = DTRACE_PRIV_ALL; - } else { - *uidp = crgetuid(cr); - *zoneidp = crgetzoneid(cr); - - priv = 0; - if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) - priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; - else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) - priv |= DTRACE_PRIV_USER; - if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) - priv |= DTRACE_PRIV_PROC; - if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) - priv |= DTRACE_PRIV_OWNER; - if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) - priv |= DTRACE_PRIV_ZONEOWNER; - } - - *privp = priv; -} - -#ifdef DTRACE_ERRDEBUG -static void -dtrace_errdebug(const char *str) -{ - int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; - int occupied = 0; - - mutex_enter(&dtrace_errlock); - dtrace_errlast = str; - dtrace_errthread = curthread; - - while (occupied++ < DTRACE_ERRHASHSZ) { - if (dtrace_errhash[hval].dter_msg == str) { - dtrace_errhash[hval].dter_count++; - goto out; - } - - if (dtrace_errhash[hval].dter_msg != NULL) { - hval = (hval + 1) % DTRACE_ERRHASHSZ; - continue; - } - - dtrace_errhash[hval].dter_msg = str; - dtrace_errhash[hval].dter_count = 1; - goto out; - } - - panic("dtrace: undersized error hash"); -out: - mutex_exit(&dtrace_errlock); -} -#endif - -/* - * DTrace Matching Functions - * - * These functions are used to match groups of probes, given some elements of - * a probe tuple, or some globbed expressions for elements of a probe tuple. - */ -static int -dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, - zoneid_t zoneid) -{ - if (priv != DTRACE_PRIV_ALL) { - uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; - uint32_t match = priv & ppriv; - - /* - * No PRIV_DTRACE_* privileges... - */ - if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | - DTRACE_PRIV_KERNEL)) == 0) - return (0); - - /* - * No matching bits, but there were bits to match... - */ - if (match == 0 && ppriv != 0) - return (0); - - /* - * Need to have permissions to the process, but don't... - */ - if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && - uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { - return (0); - } - - /* - * Need to be in the same zone unless we possess the - * privilege to examine all zones. - */ - if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && - zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { - return (0); - } - } - - return (1); -} - -/* - * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which - * consists of input pattern strings and an ops-vector to evaluate them. - * This function returns >0 for match, 0 for no match, and <0 for error. - */ -static int -dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, - uint32_t priv, uid_t uid, zoneid_t zoneid) -{ - dtrace_provider_t *pvp = prp->dtpr_provider; - int rv; - - if (pvp->dtpv_defunct) - return (0); - - if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) - return (rv); - - if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) - return (rv); - - if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) - return (rv); - - if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) - return (rv); - - if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) - return (0); - - return (rv); -} - -/* - * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) - * interface for matching a glob pattern 'p' to an input string 's'. Unlike - * libc's version, the kernel version only applies to 8-bit ASCII strings. - * In addition, all of the recursion cases except for '*' matching have been - * unwound. For '*', we still implement recursive evaluation, but a depth - * counter is maintained and matching is aborted if we recurse too deep. - * The function returns 0 if no match, >0 if match, and <0 if recursion error. - */ -static int -dtrace_match_glob(const char *s, const char *p, int depth) -{ - const char *olds; - char s1, c; - int gs; - - if (depth > DTRACE_PROBEKEY_MAXDEPTH) - return (-1); - - if (s == NULL) - s = ""; /* treat NULL as empty string */ - -top: - olds = s; - s1 = *s++; - - if (p == NULL) - return (0); - - if ((c = *p++) == '\0') - return (s1 == '\0'); - - switch (c) { - case '[': { - int ok = 0, notflag = 0; - char lc = '\0'; - - if (s1 == '\0') - return (0); - - if (*p == '!') { - notflag = 1; - p++; - } - - if ((c = *p++) == '\0') - return (0); - - do { - if (c == '-' && lc != '\0' && *p != ']') { - if ((c = *p++) == '\0') - return (0); - if (c == '\\' && (c = *p++) == '\0') - return (0); - - if (notflag) { - if (s1 < lc || s1 > c) - ok++; - else - return (0); - } else if (lc <= s1 && s1 <= c) - ok++; - - } else if (c == '\\' && (c = *p++) == '\0') - return (0); - - lc = c; /* save left-hand 'c' for next iteration */ - - if (notflag) { - if (s1 != c) - ok++; - else - return (0); - } else if (s1 == c) - ok++; - - if ((c = *p++) == '\0') - return (0); - - } while (c != ']'); - - if (ok) - goto top; - - return (0); - } - - case '\\': - if ((c = *p++) == '\0') - return (0); - /*FALLTHRU*/ - - default: - if (c != s1) - return (0); - /*FALLTHRU*/ - - case '?': - if (s1 != '\0') - goto top; - return (0); - - case '*': - while (*p == '*') - p++; /* consecutive *'s are identical to a single one */ - - if (*p == '\0') - return (1); - - for (s = olds; *s != '\0'; s++) { - if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) - return (gs); - } - - return (0); - } -} - -/*ARGSUSED*/ -static int -dtrace_match_string(const char *s, const char *p, int depth) -{ - return (s != NULL && strcmp(s, p) == 0); -} - -/*ARGSUSED*/ -static int -dtrace_match_nul(const char *s, const char *p, int depth) -{ - return (1); /* always match the empty pattern */ -} - -/*ARGSUSED*/ -static int -dtrace_match_nonzero(const char *s, const char *p, int depth) -{ - return (s != NULL && s[0] != '\0'); -} - -static int -dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, - zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) -{ - dtrace_probe_t template, *probe; - dtrace_hash_t *hash = NULL; - int len, best = INT_MAX, nmatched = 0; - dtrace_id_t i; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - - /* - * If the probe ID is specified in the key, just lookup by ID and - * invoke the match callback once if a matching probe is found. - */ - if (pkp->dtpk_id != DTRACE_IDNONE) { - if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && - dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { - (void) (*matched)(probe, arg); - nmatched++; - } - return (nmatched); - } - - template.dtpr_mod = (char *)pkp->dtpk_mod; - template.dtpr_func = (char *)pkp->dtpk_func; - template.dtpr_name = (char *)pkp->dtpk_name; - - /* - * We want to find the most distinct of the module name, function - * name, and name. So for each one that is not a glob pattern or - * empty string, we perform a lookup in the corresponding hash and - * use the hash table with the fewest collisions to do our search. - */ - if (pkp->dtpk_mmatch == &dtrace_match_string && - (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { - best = len; - hash = dtrace_bymod; - } - - if (pkp->dtpk_fmatch == &dtrace_match_string && - (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { - best = len; - hash = dtrace_byfunc; - } - - if (pkp->dtpk_nmatch == &dtrace_match_string && - (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { - best = len; - hash = dtrace_byname; - } - - /* - * If we did not select a hash table, iterate over every probe and - * invoke our callback for each one that matches our input probe key. - */ - if (hash == NULL) { - for (i = 0; i < dtrace_nprobes; i++) { - if ((probe = dtrace_probes[i]) == NULL || - dtrace_match_probe(probe, pkp, priv, uid, - zoneid) <= 0) - continue; - - nmatched++; - - if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) - break; - } - - return (nmatched); - } - - /* - * If we selected a hash table, iterate over each probe of the same key - * name and invoke the callback for every probe that matches the other - * attributes of our input probe key. - */ - for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; - probe = *(DTRACE_HASHNEXT(hash, probe))) { - - if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) - continue; - - nmatched++; - - if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) - break; - } - - return (nmatched); -} - -/* - * Return the function pointer dtrace_probecmp() should use to compare the - * specified pattern with a string. For NULL or empty patterns, we select - * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). - * For non-empty non-glob strings, we use dtrace_match_string(). - */ -static dtrace_probekey_f * -dtrace_probekey_func(const char *p) -{ - char c; - - if (p == NULL || *p == '\0') - return (&dtrace_match_nul); - - while ((c = *p++) != '\0') { - if (c == '[' || c == '?' || c == '*' || c == '\\') - return (&dtrace_match_glob); - } - - return (&dtrace_match_string); -} - -/* - * Build a probe comparison key for use with dtrace_match_probe() from the - * given probe description. By convention, a null key only matches anchored - * probes: if each field is the empty string, reset dtpk_fmatch to - * dtrace_match_nonzero(). - */ -static void -dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) -{ - pkp->dtpk_prov = pdp->dtpd_provider; - pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); - - pkp->dtpk_mod = pdp->dtpd_mod; - pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); - - pkp->dtpk_func = pdp->dtpd_func; - pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); - - pkp->dtpk_name = pdp->dtpd_name; - pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); - - pkp->dtpk_id = pdp->dtpd_id; - - if (pkp->dtpk_id == DTRACE_IDNONE && - pkp->dtpk_pmatch == &dtrace_match_nul && - pkp->dtpk_mmatch == &dtrace_match_nul && - pkp->dtpk_fmatch == &dtrace_match_nul && - pkp->dtpk_nmatch == &dtrace_match_nul) - pkp->dtpk_fmatch = &dtrace_match_nonzero; -} - -/* - * DTrace Provider-to-Framework API Functions - * - * These functions implement much of the Provider-to-Framework API, as - * described in . The parts of the API not in this section are - * the functions in the API for probe management (found below), and - * dtrace_probe() itself (found above). - */ - -/* - * Register the calling provider with the DTrace framework. This should - * generally be called by DTrace providers in their attach(9E) entry point. - */ -int -dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, - cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) -{ - dtrace_provider_t *provider; - - if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { - cmn_err(CE_WARN, "failed to register provider '%s': invalid " - "arguments", name ? name : ""); - return (EINVAL); - } - - if (name[0] == '\0' || dtrace_badname(name)) { - cmn_err(CE_WARN, "failed to register provider '%s': invalid " - "provider name", name); - return (EINVAL); - } - - if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || - pops->dtps_enable == NULL || pops->dtps_disable == NULL || - pops->dtps_destroy == NULL || - ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { - cmn_err(CE_WARN, "failed to register provider '%s': invalid " - "provider ops", name); - return (EINVAL); - } - - if (dtrace_badattr(&pap->dtpa_provider) || - dtrace_badattr(&pap->dtpa_mod) || - dtrace_badattr(&pap->dtpa_func) || - dtrace_badattr(&pap->dtpa_name) || - dtrace_badattr(&pap->dtpa_args)) { - cmn_err(CE_WARN, "failed to register provider '%s': invalid " - "provider attributes", name); - return (EINVAL); - } - - if (priv & ~DTRACE_PRIV_ALL) { - cmn_err(CE_WARN, "failed to register provider '%s': invalid " - "privilege attributes", name); - return (EINVAL); - } - - if ((priv & DTRACE_PRIV_KERNEL) && - (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && - pops->dtps_usermode == NULL) { - cmn_err(CE_WARN, "failed to register provider '%s': need " - "dtps_usermode() op for given privilege attributes", name); - return (EINVAL); - } - - provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); - provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); - (void) strcpy(provider->dtpv_name, name); - - provider->dtpv_attr = *pap; - provider->dtpv_priv.dtpp_flags = priv; - if (cr != NULL) { - provider->dtpv_priv.dtpp_uid = crgetuid(cr); - provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); - } - provider->dtpv_pops = *pops; - - if (pops->dtps_provide == NULL) { - ASSERT(pops->dtps_provide_module != NULL); - provider->dtpv_pops.dtps_provide = - (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; - } - - if (pops->dtps_provide_module == NULL) { - ASSERT(pops->dtps_provide != NULL); - provider->dtpv_pops.dtps_provide_module = - (void (*)(void *, struct modctl *))dtrace_nullop; - } - - if (pops->dtps_suspend == NULL) { - ASSERT(pops->dtps_resume == NULL); - provider->dtpv_pops.dtps_suspend = - (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; - provider->dtpv_pops.dtps_resume = - (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; - } - - provider->dtpv_arg = arg; - *idp = (dtrace_provider_id_t)provider; - - if (pops == &dtrace_provider_ops) { - ASSERT(MUTEX_HELD(&dtrace_provider_lock)); - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(dtrace_anon.dta_enabling == NULL); - - /* - * We make sure that the DTrace provider is at the head of - * the provider chain. - */ - provider->dtpv_next = dtrace_provider; - dtrace_provider = provider; - return (0); - } - - mutex_enter(&dtrace_provider_lock); - mutex_enter(&dtrace_lock); - - /* - * If there is at least one provider registered, we'll add this - * provider after the first provider. - */ - if (dtrace_provider != NULL) { - provider->dtpv_next = dtrace_provider->dtpv_next; - dtrace_provider->dtpv_next = provider; - } else { - dtrace_provider = provider; - } - - if (dtrace_retained != NULL) { - dtrace_enabling_provide(provider); - - /* - * Now we need to call dtrace_enabling_matchall() -- which - * will acquire cpu_lock and dtrace_lock. We therefore need - * to drop all of our locks before calling into it... - */ - mutex_exit(&dtrace_lock); - mutex_exit(&dtrace_provider_lock); - dtrace_enabling_matchall(); - - return (0); - } - - mutex_exit(&dtrace_lock); - mutex_exit(&dtrace_provider_lock); - - return (0); -} - -/* - * Unregister the specified provider from the DTrace framework. This should - * generally be called by DTrace providers in their detach(9E) entry point. - */ -int -dtrace_unregister(dtrace_provider_id_t id) -{ - dtrace_provider_t *old = (dtrace_provider_t *)id; - dtrace_provider_t *prev = NULL; - int i, self = 0; - dtrace_probe_t *probe, *first = NULL; - - if (old->dtpv_pops.dtps_enable == - (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { - /* - * If DTrace itself is the provider, we're called with locks - * already held. - */ - ASSERT(old == dtrace_provider); - ASSERT(dtrace_devi != NULL); - ASSERT(MUTEX_HELD(&dtrace_provider_lock)); - ASSERT(MUTEX_HELD(&dtrace_lock)); - self = 1; - - if (dtrace_provider->dtpv_next != NULL) { - /* - * There's another provider here; return failure. - */ - return (EBUSY); - } - } else { - mutex_enter(&dtrace_provider_lock); - mutex_enter(&mod_lock); - mutex_enter(&dtrace_lock); - } - - /* - * If anyone has /dev/dtrace open, or if there are anonymous enabled - * probes, we refuse to let providers slither away, unless this - * provider has already been explicitly invalidated. - */ - if (!old->dtpv_defunct && - (dtrace_opens || (dtrace_anon.dta_state != NULL && - dtrace_anon.dta_state->dts_necbs > 0))) { - if (!self) { - mutex_exit(&dtrace_lock); - mutex_exit(&mod_lock); - mutex_exit(&dtrace_provider_lock); - } - return (EBUSY); - } - - /* - * Attempt to destroy the probes associated with this provider. - */ - for (i = 0; i < dtrace_nprobes; i++) { - if ((probe = dtrace_probes[i]) == NULL) - continue; - - if (probe->dtpr_provider != old) - continue; - - if (probe->dtpr_ecb == NULL) - continue; - - /* - * We have at least one ECB; we can't remove this provider. - */ - if (!self) { - mutex_exit(&dtrace_lock); - mutex_exit(&mod_lock); - mutex_exit(&dtrace_provider_lock); - } - return (EBUSY); - } - - /* - * All of the probes for this provider are disabled; we can safely - * remove all of them from their hash chains and from the probe array. - */ - for (i = 0; i < dtrace_nprobes; i++) { - if ((probe = dtrace_probes[i]) == NULL) - continue; - - if (probe->dtpr_provider != old) - continue; - - dtrace_probes[i] = NULL; - - dtrace_hash_remove(dtrace_bymod, probe); - dtrace_hash_remove(dtrace_byfunc, probe); - dtrace_hash_remove(dtrace_byname, probe); - - if (first == NULL) { - first = probe; - probe->dtpr_nextmod = NULL; - } else { - probe->dtpr_nextmod = first; - first = probe; - } - } - - /* - * The provider's probes have been removed from the hash chains and - * from the probe array. Now issue a dtrace_sync() to be sure that - * everyone has cleared out from any probe array processing. - */ - dtrace_sync(); - - for (probe = first; probe != NULL; probe = first) { - first = probe->dtpr_nextmod; - - old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, - probe->dtpr_arg); - kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); - kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); - kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); - vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); - kmem_free(probe, sizeof (dtrace_probe_t)); - } - - if ((prev = dtrace_provider) == old) { - ASSERT(self || dtrace_devi == NULL); - ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); - dtrace_provider = old->dtpv_next; - } else { - while (prev != NULL && prev->dtpv_next != old) - prev = prev->dtpv_next; - - if (prev == NULL) { - panic("attempt to unregister non-existent " - "dtrace provider %p\n", (void *)id); - } - - prev->dtpv_next = old->dtpv_next; - } - - if (!self) { - mutex_exit(&dtrace_lock); - mutex_exit(&mod_lock); - mutex_exit(&dtrace_provider_lock); - } - - kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); - kmem_free(old, sizeof (dtrace_provider_t)); - - return (0); -} - -/* - * Invalidate the specified provider. All subsequent probe lookups for the - * specified provider will fail, but its probes will not be removed. - */ -void -dtrace_invalidate(dtrace_provider_id_t id) -{ - dtrace_provider_t *pvp = (dtrace_provider_t *)id; - - ASSERT(pvp->dtpv_pops.dtps_enable != - (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); - - mutex_enter(&dtrace_provider_lock); - mutex_enter(&dtrace_lock); - - pvp->dtpv_defunct = 1; - - mutex_exit(&dtrace_lock); - mutex_exit(&dtrace_provider_lock); -} - -/* - * Indicate whether or not DTrace has attached. - */ -int -dtrace_attached(void) -{ - /* - * dtrace_provider will be non-NULL iff the DTrace driver has - * attached. (It's non-NULL because DTrace is always itself a - * provider.) - */ - return (dtrace_provider != NULL); -} - -/* - * Remove all the unenabled probes for the given provider. This function is - * not unlike dtrace_unregister(), except that it doesn't remove the provider - * -- just as many of its associated probes as it can. - */ -int -dtrace_condense(dtrace_provider_id_t id) -{ - dtrace_provider_t *prov = (dtrace_provider_t *)id; - int i; - dtrace_probe_t *probe; - - /* - * Make sure this isn't the dtrace provider itself. - */ - ASSERT(prov->dtpv_pops.dtps_enable != - (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); - - mutex_enter(&dtrace_provider_lock); - mutex_enter(&dtrace_lock); - - /* - * Attempt to destroy the probes associated with this provider. - */ - for (i = 0; i < dtrace_nprobes; i++) { - if ((probe = dtrace_probes[i]) == NULL) - continue; - - if (probe->dtpr_provider != prov) - continue; - - if (probe->dtpr_ecb != NULL) - continue; - - dtrace_probes[i] = NULL; - - dtrace_hash_remove(dtrace_bymod, probe); - dtrace_hash_remove(dtrace_byfunc, probe); - dtrace_hash_remove(dtrace_byname, probe); - - prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, - probe->dtpr_arg); - kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); - kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); - kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); - kmem_free(probe, sizeof (dtrace_probe_t)); - vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); - } - - mutex_exit(&dtrace_lock); - mutex_exit(&dtrace_provider_lock); - - return (0); -} - -/* - * DTrace Probe Management Functions - * - * The functions in this section perform the DTrace probe management, - * including functions to create probes, look-up probes, and call into the - * providers to request that probes be provided. Some of these functions are - * in the Provider-to-Framework API; these functions can be identified by the - * fact that they are not declared "static". - */ - -/* - * Create a probe with the specified module name, function name, and name. - */ -dtrace_id_t -dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, - const char *func, const char *name, int aframes, void *arg) -{ - dtrace_probe_t *probe, **probes; - dtrace_provider_t *provider = (dtrace_provider_t *)prov; - dtrace_id_t id; - - if (provider == dtrace_provider) { - ASSERT(MUTEX_HELD(&dtrace_lock)); - } else { - mutex_enter(&dtrace_lock); - } - - id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, - VM_BESTFIT | VM_SLEEP); - probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); - - probe->dtpr_id = id; - probe->dtpr_gen = dtrace_probegen++; - probe->dtpr_mod = dtrace_strdup(mod); - probe->dtpr_func = dtrace_strdup(func); - probe->dtpr_name = dtrace_strdup(name); - probe->dtpr_arg = arg; - probe->dtpr_aframes = aframes; - probe->dtpr_provider = provider; - - dtrace_hash_add(dtrace_bymod, probe); - dtrace_hash_add(dtrace_byfunc, probe); - dtrace_hash_add(dtrace_byname, probe); - - if (id - 1 >= dtrace_nprobes) { - size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); - size_t nsize = osize << 1; - - if (nsize == 0) { - ASSERT(osize == 0); - ASSERT(dtrace_probes == NULL); - nsize = sizeof (dtrace_probe_t *); - } - - probes = kmem_zalloc(nsize, KM_SLEEP); - - if (dtrace_probes == NULL) { - ASSERT(osize == 0); - dtrace_probes = probes; - dtrace_nprobes = 1; - } else { - dtrace_probe_t **oprobes = dtrace_probes; - - bcopy(oprobes, probes, osize); - dtrace_membar_producer(); - dtrace_probes = probes; - - dtrace_sync(); - - /* - * All CPUs are now seeing the new probes array; we can - * safely free the old array. - */ - kmem_free(oprobes, osize); - dtrace_nprobes <<= 1; - } - - ASSERT(id - 1 < dtrace_nprobes); - } - - ASSERT(dtrace_probes[id - 1] == NULL); - dtrace_probes[id - 1] = probe; - - if (provider != dtrace_provider) - mutex_exit(&dtrace_lock); - - return (id); -} - -static dtrace_probe_t * -dtrace_probe_lookup_id(dtrace_id_t id) -{ - ASSERT(MUTEX_HELD(&dtrace_lock)); - - if (id == 0 || id > dtrace_nprobes) - return (NULL); - - return (dtrace_probes[id - 1]); -} - -static int -dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) -{ - *((dtrace_id_t *)arg) = probe->dtpr_id; - - return (DTRACE_MATCH_DONE); -} - -/* - * Look up a probe based on provider and one or more of module name, function - * name and probe name. - */ -dtrace_id_t -dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, - const char *func, const char *name) -{ - dtrace_probekey_t pkey; - dtrace_id_t id; - int match; - - pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; - pkey.dtpk_pmatch = &dtrace_match_string; - pkey.dtpk_mod = mod; - pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; - pkey.dtpk_func = func; - pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; - pkey.dtpk_name = name; - pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; - pkey.dtpk_id = DTRACE_IDNONE; - - mutex_enter(&dtrace_lock); - match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, - dtrace_probe_lookup_match, &id); - mutex_exit(&dtrace_lock); - - ASSERT(match == 1 || match == 0); - return (match ? id : 0); -} - -/* - * Returns the probe argument associated with the specified probe. - */ -void * -dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) -{ - dtrace_probe_t *probe; - void *rval = NULL; - - mutex_enter(&dtrace_lock); - - if ((probe = dtrace_probe_lookup_id(pid)) != NULL && - probe->dtpr_provider == (dtrace_provider_t *)id) - rval = probe->dtpr_arg; - - mutex_exit(&dtrace_lock); - - return (rval); -} - -/* - * Copy a probe into a probe description. - */ -static void -dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) -{ - bzero(pdp, sizeof (dtrace_probedesc_t)); - pdp->dtpd_id = prp->dtpr_id; - - (void) strncpy(pdp->dtpd_provider, - prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); - - (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); - (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); - (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); -} - -/* - * Called to indicate that a probe -- or probes -- should be provided by a - * specfied provider. If the specified description is NULL, the provider will - * be told to provide all of its probes. (This is done whenever a new - * consumer comes along, or whenever a retained enabling is to be matched.) If - * the specified description is non-NULL, the provider is given the - * opportunity to dynamically provide the specified probe, allowing providers - * to support the creation of probes on-the-fly. (So-called _autocreated_ - * probes.) If the provider is NULL, the operations will be applied to all - * providers; if the provider is non-NULL the operations will only be applied - * to the specified provider. The dtrace_provider_lock must be held, and the - * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation - * will need to grab the dtrace_lock when it reenters the framework through - * dtrace_probe_lookup(), dtrace_probe_create(), etc. - */ -static void -dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) -{ - struct modctl *ctl; - int all = 0; - - ASSERT(MUTEX_HELD(&dtrace_provider_lock)); - - if (prv == NULL) { - all = 1; - prv = dtrace_provider; - } - - do { - /* - * First, call the blanket provide operation. - */ - prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); - - /* - * Now call the per-module provide operation. We will grab - * mod_lock to prevent the list from being modified. Note - * that this also prevents the mod_busy bits from changing. - * (mod_busy can only be changed with mod_lock held.) - */ - mutex_enter(&mod_lock); - - ctl = &modules; - do { - if (ctl->mod_busy || ctl->mod_mp == NULL) - continue; - - prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); - - } while ((ctl = ctl->mod_next) != &modules); - - mutex_exit(&mod_lock); - } while (all && (prv = prv->dtpv_next) != NULL); -} - -/* - * Iterate over each probe, and call the Framework-to-Provider API function - * denoted by offs. - */ -static void -dtrace_probe_foreach(uintptr_t offs) -{ - dtrace_provider_t *prov; - void (*func)(void *, dtrace_id_t, void *); - dtrace_probe_t *probe; - dtrace_icookie_t cookie; - int i; - - /* - * We disable interrupts to walk through the probe array. This is - * safe -- the dtrace_sync() in dtrace_unregister() assures that we - * won't see stale data. - */ - cookie = dtrace_interrupt_disable(); - - for (i = 0; i < dtrace_nprobes; i++) { - if ((probe = dtrace_probes[i]) == NULL) - continue; - - if (probe->dtpr_ecb == NULL) { - /* - * This probe isn't enabled -- don't call the function. - */ - continue; - } - - prov = probe->dtpr_provider; - func = *((void(**)(void *, dtrace_id_t, void *)) - ((uintptr_t)&prov->dtpv_pops + offs)); - - func(prov->dtpv_arg, i + 1, probe->dtpr_arg); - } - - dtrace_interrupt_enable(cookie); -} - -static int -dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) -{ - dtrace_probekey_t pkey; - uint32_t priv; - uid_t uid; - zoneid_t zoneid; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - dtrace_ecb_create_cache = NULL; - - if (desc == NULL) { - /* - * If we're passed a NULL description, we're being asked to - * create an ECB with a NULL probe. - */ - (void) dtrace_ecb_create_enable(NULL, enab); - return (0); - } - - dtrace_probekey(desc, &pkey); - dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, - &priv, &uid, &zoneid); - - return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, - enab)); -} - -/* - * DTrace Helper Provider Functions - */ -static void -dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) -{ - attr->dtat_name = DOF_ATTR_NAME(dofattr); - attr->dtat_data = DOF_ATTR_DATA(dofattr); - attr->dtat_class = DOF_ATTR_CLASS(dofattr); -} - -static void -dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, - const dof_provider_t *dofprov, char *strtab) -{ - hprov->dthpv_provname = strtab + dofprov->dofpv_name; - dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, - dofprov->dofpv_provattr); - dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, - dofprov->dofpv_modattr); - dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, - dofprov->dofpv_funcattr); - dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, - dofprov->dofpv_nameattr); - dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, - dofprov->dofpv_argsattr); -} - -static void -dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) -{ - uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; - dof_hdr_t *dof = (dof_hdr_t *)daddr; - dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; - dof_provider_t *provider; - dof_probe_t *probe; - uint32_t *off, *enoff; - uint8_t *arg; - char *strtab; - uint_t i, nprobes; - dtrace_helper_provdesc_t dhpv; - dtrace_helper_probedesc_t dhpb; - dtrace_meta_t *meta = dtrace_meta_pid; - dtrace_mops_t *mops = &meta->dtm_mops; - void *parg; - - provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); - str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + - provider->dofpv_strtab * dof->dofh_secsize); - prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + - provider->dofpv_probes * dof->dofh_secsize); - arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + - provider->dofpv_prargs * dof->dofh_secsize); - off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + - provider->dofpv_proffs * dof->dofh_secsize); - - strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); - off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); - arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); - enoff = NULL; - - /* - * See dtrace_helper_provider_validate(). - */ - if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && - provider->dofpv_prenoffs != DOF_SECT_NONE) { - enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + - provider->dofpv_prenoffs * dof->dofh_secsize); - enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); - } - - nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; - - /* - * Create the provider. - */ - dtrace_dofprov2hprov(&dhpv, provider, strtab); - - if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) - return; - - meta->dtm_count++; - - /* - * Create the probes. - */ - for (i = 0; i < nprobes; i++) { - probe = (dof_probe_t *)(uintptr_t)(daddr + - prb_sec->dofs_offset + i * prb_sec->dofs_entsize); - - dhpb.dthpb_mod = dhp->dofhp_mod; - dhpb.dthpb_func = strtab + probe->dofpr_func; - dhpb.dthpb_name = strtab + probe->dofpr_name; - dhpb.dthpb_base = probe->dofpr_addr; - dhpb.dthpb_offs = off + probe->dofpr_offidx; - dhpb.dthpb_noffs = probe->dofpr_noffs; - if (enoff != NULL) { - dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; - dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; - } else { - dhpb.dthpb_enoffs = NULL; - dhpb.dthpb_nenoffs = 0; - } - dhpb.dthpb_args = arg + probe->dofpr_argidx; - dhpb.dthpb_nargc = probe->dofpr_nargc; - dhpb.dthpb_xargc = probe->dofpr_xargc; - dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; - dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; - - mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); - } -} - -static void -dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) -{ - uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; - dof_hdr_t *dof = (dof_hdr_t *)daddr; - int i; - - ASSERT(MUTEX_HELD(&dtrace_meta_lock)); - - for (i = 0; i < dof->dofh_secnum; i++) { - dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + - dof->dofh_secoff + i * dof->dofh_secsize); - - if (sec->dofs_type != DOF_SECT_PROVIDER) - continue; - - dtrace_helper_provide_one(dhp, sec, pid); - } - - /* - * We may have just created probes, so we must now rematch against - * any retained enablings. Note that this call will acquire both - * cpu_lock and dtrace_lock; the fact that we are holding - * dtrace_meta_lock now is what defines the ordering with respect to - * these three locks. - */ - dtrace_enabling_matchall(); -} - -static void -dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) -{ - uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; - dof_hdr_t *dof = (dof_hdr_t *)daddr; - dof_sec_t *str_sec; - dof_provider_t *provider; - char *strtab; - dtrace_helper_provdesc_t dhpv; - dtrace_meta_t *meta = dtrace_meta_pid; - dtrace_mops_t *mops = &meta->dtm_mops; - - provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); - str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + - provider->dofpv_strtab * dof->dofh_secsize); - - strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); - - /* - * Create the provider. - */ - dtrace_dofprov2hprov(&dhpv, provider, strtab); - - mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); - - meta->dtm_count--; -} - -static void -dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) -{ - uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; - dof_hdr_t *dof = (dof_hdr_t *)daddr; - int i; - - ASSERT(MUTEX_HELD(&dtrace_meta_lock)); - - for (i = 0; i < dof->dofh_secnum; i++) { - dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + - dof->dofh_secoff + i * dof->dofh_secsize); - - if (sec->dofs_type != DOF_SECT_PROVIDER) - continue; - - dtrace_helper_provider_remove_one(dhp, sec, pid); - } -} - -/* - * DTrace Meta Provider-to-Framework API Functions - * - * These functions implement the Meta Provider-to-Framework API, as described - * in . - */ -int -dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, - dtrace_meta_provider_id_t *idp) -{ - dtrace_meta_t *meta; - dtrace_helpers_t *help, *next; - int i; - - *idp = DTRACE_METAPROVNONE; - - /* - * We strictly don't need the name, but we hold onto it for - * debuggability. All hail error queues! - */ - if (name == NULL) { - cmn_err(CE_WARN, "failed to register meta-provider: " - "invalid name"); - return (EINVAL); - } - - if (mops == NULL || - mops->dtms_create_probe == NULL || - mops->dtms_provide_pid == NULL || - mops->dtms_remove_pid == NULL) { - cmn_err(CE_WARN, "failed to register meta-register %s: " - "invalid ops", name); - return (EINVAL); - } - - meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); - meta->dtm_mops = *mops; - meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); - (void) strcpy(meta->dtm_name, name); - meta->dtm_arg = arg; - - mutex_enter(&dtrace_meta_lock); - mutex_enter(&dtrace_lock); - - if (dtrace_meta_pid != NULL) { - mutex_exit(&dtrace_lock); - mutex_exit(&dtrace_meta_lock); - cmn_err(CE_WARN, "failed to register meta-register %s: " - "user-land meta-provider exists", name); - kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); - kmem_free(meta, sizeof (dtrace_meta_t)); - return (EINVAL); - } - - dtrace_meta_pid = meta; - *idp = (dtrace_meta_provider_id_t)meta; - - /* - * If there are providers and probes ready to go, pass them - * off to the new meta provider now. - */ - - help = dtrace_deferred_pid; - dtrace_deferred_pid = NULL; - - mutex_exit(&dtrace_lock); - - while (help != NULL) { - for (i = 0; i < help->dthps_nprovs; i++) { - dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, - help->dthps_pid); - } - - next = help->dthps_next; - help->dthps_next = NULL; - help->dthps_prev = NULL; - help->dthps_deferred = 0; - help = next; - } - - mutex_exit(&dtrace_meta_lock); - - return (0); -} - -int -dtrace_meta_unregister(dtrace_meta_provider_id_t id) -{ - dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; - - mutex_enter(&dtrace_meta_lock); - mutex_enter(&dtrace_lock); - - if (old == dtrace_meta_pid) { - pp = &dtrace_meta_pid; - } else { - panic("attempt to unregister non-existent " - "dtrace meta-provider %p\n", (void *)old); - } - - if (old->dtm_count != 0) { - mutex_exit(&dtrace_lock); - mutex_exit(&dtrace_meta_lock); - return (EBUSY); - } - - *pp = NULL; - - mutex_exit(&dtrace_lock); - mutex_exit(&dtrace_meta_lock); - - kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); - kmem_free(old, sizeof (dtrace_meta_t)); - - return (0); -} - - -/* - * DTrace DIF Object Functions - */ -static int -dtrace_difo_err(uint_t pc, const char *format, ...) -{ - if (dtrace_err_verbose) { - va_list alist; - - (void) uprintf("dtrace DIF object error: [%u]: ", pc); - va_start(alist, format); - (void) vuprintf(format, alist); - va_end(alist); - } - -#ifdef DTRACE_ERRDEBUG - dtrace_errdebug(format); -#endif - return (1); -} - -/* - * Validate a DTrace DIF object by checking the IR instructions. The following - * rules are currently enforced by dtrace_difo_validate(): - * - * 1. Each instruction must have a valid opcode - * 2. Each register, string, variable, or subroutine reference must be valid - * 3. No instruction can modify register %r0 (must be zero) - * 4. All instruction reserved bits must be set to zero - * 5. The last instruction must be a "ret" instruction - * 6. All branch targets must reference a valid instruction _after_ the branch - */ -static int -dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, - cred_t *cr) -{ - int err = 0, i; - int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; - int kcheckload; - uint_t pc; - - kcheckload = cr == NULL || - (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; - - dp->dtdo_destructive = 0; - - for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { - dif_instr_t instr = dp->dtdo_buf[pc]; - - uint_t r1 = DIF_INSTR_R1(instr); - uint_t r2 = DIF_INSTR_R2(instr); - uint_t rd = DIF_INSTR_RD(instr); - uint_t rs = DIF_INSTR_RS(instr); - uint_t label = DIF_INSTR_LABEL(instr); - uint_t v = DIF_INSTR_VAR(instr); - uint_t subr = DIF_INSTR_SUBR(instr); - uint_t type = DIF_INSTR_TYPE(instr); - uint_t op = DIF_INSTR_OP(instr); - - switch (op) { - case DIF_OP_OR: - case DIF_OP_XOR: - case DIF_OP_AND: - case DIF_OP_SLL: - case DIF_OP_SRL: - case DIF_OP_SRA: - case DIF_OP_SUB: - case DIF_OP_ADD: - case DIF_OP_MUL: - case DIF_OP_SDIV: - case DIF_OP_UDIV: - case DIF_OP_SREM: - case DIF_OP_UREM: - case DIF_OP_COPYS: - if (r1 >= nregs) - err += efunc(pc, "invalid register %u\n", r1); - if (r2 >= nregs) - err += efunc(pc, "invalid register %u\n", r2); - if (rd >= nregs) - err += efunc(pc, "invalid register %u\n", rd); - if (rd == 0) - err += efunc(pc, "cannot write to %r0\n"); - break; - case DIF_OP_NOT: - case DIF_OP_MOV: - case DIF_OP_ALLOCS: - if (r1 >= nregs) - err += efunc(pc, "invalid register %u\n", r1); - if (r2 != 0) - err += efunc(pc, "non-zero reserved bits\n"); - if (rd >= nregs) - err += efunc(pc, "invalid register %u\n", rd); - if (rd == 0) - err += efunc(pc, "cannot write to %r0\n"); - break; - case DIF_OP_LDSB: - case DIF_OP_LDSH: - case DIF_OP_LDSW: - case DIF_OP_LDUB: - case DIF_OP_LDUH: - case DIF_OP_LDUW: - case DIF_OP_LDX: - if (r1 >= nregs) - err += efunc(pc, "invalid register %u\n", r1); - if (r2 != 0) - err += efunc(pc, "non-zero reserved bits\n"); - if (rd >= nregs) - err += efunc(pc, "invalid register %u\n", rd); - if (rd == 0) - err += efunc(pc, "cannot write to %r0\n"); - if (kcheckload) - dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + - DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); - break; - case DIF_OP_RLDSB: - case DIF_OP_RLDSH: - case DIF_OP_RLDSW: - case DIF_OP_RLDUB: - case DIF_OP_RLDUH: - case DIF_OP_RLDUW: - case DIF_OP_RLDX: - if (r1 >= nregs) - err += efunc(pc, "invalid register %u\n", r1); - if (r2 != 0) - err += efunc(pc, "non-zero reserved bits\n"); - if (rd >= nregs) - err += efunc(pc, "invalid register %u\n", rd); - if (rd == 0) - err += efunc(pc, "cannot write to %r0\n"); - break; - case DIF_OP_ULDSB: - case DIF_OP_ULDSH: - case DIF_OP_ULDSW: - case DIF_OP_ULDUB: - case DIF_OP_ULDUH: - case DIF_OP_ULDUW: - case DIF_OP_ULDX: - if (r1 >= nregs) - err += efunc(pc, "invalid register %u\n", r1); - if (r2 != 0) - err += efunc(pc, "non-zero reserved bits\n"); - if (rd >= nregs) - err += efunc(pc, "invalid register %u\n", rd); - if (rd == 0) - err += efunc(pc, "cannot write to %r0\n"); - break; - case DIF_OP_STB: - case DIF_OP_STH: - case DIF_OP_STW: - case DIF_OP_STX: - if (r1 >= nregs) - err += efunc(pc, "invalid register %u\n", r1); - if (r2 != 0) - err += efunc(pc, "non-zero reserved bits\n"); - if (rd >= nregs) - err += efunc(pc, "invalid register %u\n", rd); - if (rd == 0) - err += efunc(pc, "cannot write to 0 address\n"); - break; - case DIF_OP_CMP: - case DIF_OP_SCMP: - if (r1 >= nregs) - err += efunc(pc, "invalid register %u\n", r1); - if (r2 >= nregs) - err += efunc(pc, "invalid register %u\n", r2); - if (rd != 0) - err += efunc(pc, "non-zero reserved bits\n"); - break; - case DIF_OP_TST: - if (r1 >= nregs) - err += efunc(pc, "invalid register %u\n", r1); - if (r2 != 0 || rd != 0) - err += efunc(pc, "non-zero reserved bits\n"); - break; - case DIF_OP_BA: - case DIF_OP_BE: - case DIF_OP_BNE: - case DIF_OP_BG: - case DIF_OP_BGU: - case DIF_OP_BGE: - case DIF_OP_BGEU: - case DIF_OP_BL: - case DIF_OP_BLU: - case DIF_OP_BLE: - case DIF_OP_BLEU: - if (label >= dp->dtdo_len) { - err += efunc(pc, "invalid branch target %u\n", - label); - } - if (label <= pc) { - err += efunc(pc, "backward branch to %u\n", - label); - } - break; - case DIF_OP_RET: - if (r1 != 0 || r2 != 0) - err += efunc(pc, "non-zero reserved bits\n"); - if (rd >= nregs) - err += efunc(pc, "invalid register %u\n", rd); - break; - case DIF_OP_NOP: - case DIF_OP_POPTS: - case DIF_OP_FLUSHTS: - if (r1 != 0 || r2 != 0 || rd != 0) - err += efunc(pc, "non-zero reserved bits\n"); - break; - case DIF_OP_SETX: - if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { - err += efunc(pc, "invalid integer ref %u\n", - DIF_INSTR_INTEGER(instr)); - } - if (rd >= nregs) - err += efunc(pc, "invalid register %u\n", rd); - if (rd == 0) - err += efunc(pc, "cannot write to %r0\n"); - break; - case DIF_OP_SETS: - if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { - err += efunc(pc, "invalid string ref %u\n", - DIF_INSTR_STRING(instr)); - } - if (rd >= nregs) - err += efunc(pc, "invalid register %u\n", rd); - if (rd == 0) - err += efunc(pc, "cannot write to %r0\n"); - break; - case DIF_OP_LDGA: - case DIF_OP_LDTA: - if (r1 > DIF_VAR_ARRAY_MAX) - err += efunc(pc, "invalid array %u\n", r1); - if (r2 >= nregs) - err += efunc(pc, "invalid register %u\n", r2); - if (rd >= nregs) - err += efunc(pc, "invalid register %u\n", rd); - if (rd == 0) - err += efunc(pc, "cannot write to %r0\n"); - break; - case DIF_OP_LDGS: - case DIF_OP_LDTS: - case DIF_OP_LDLS: - case DIF_OP_LDGAA: - case DIF_OP_LDTAA: - if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) - err += efunc(pc, "invalid variable %u\n", v); - if (rd >= nregs) - err += efunc(pc, "invalid register %u\n", rd); - if (rd == 0) - err += efunc(pc, "cannot write to %r0\n"); - break; - case DIF_OP_STGS: - case DIF_OP_STTS: - case DIF_OP_STLS: - case DIF_OP_STGAA: - case DIF_OP_STTAA: - if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) - err += efunc(pc, "invalid variable %u\n", v); - if (rs >= nregs) - err += efunc(pc, "invalid register %u\n", rd); - break; - case DIF_OP_CALL: - if (subr > DIF_SUBR_MAX) - err += efunc(pc, "invalid subr %u\n", subr); - if (rd >= nregs) - err += efunc(pc, "invalid register %u\n", rd); - if (rd == 0) - err += efunc(pc, "cannot write to %r0\n"); - - if (subr == DIF_SUBR_COPYOUT || - subr == DIF_SUBR_COPYOUTSTR) { - dp->dtdo_destructive = 1; - } - break; - case DIF_OP_PUSHTR: - if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) - err += efunc(pc, "invalid ref type %u\n", type); - if (r2 >= nregs) - err += efunc(pc, "invalid register %u\n", r2); - if (rs >= nregs) - err += efunc(pc, "invalid register %u\n", rs); - break; - case DIF_OP_PUSHTV: - if (type != DIF_TYPE_CTF) - err += efunc(pc, "invalid val type %u\n", type); - if (r2 >= nregs) - err += efunc(pc, "invalid register %u\n", r2); - if (rs >= nregs) - err += efunc(pc, "invalid register %u\n", rs); - break; - default: - err += efunc(pc, "invalid opcode %u\n", - DIF_INSTR_OP(instr)); - } - } - - if (dp->dtdo_len != 0 && - DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { - err += efunc(dp->dtdo_len - 1, - "expected 'ret' as last DIF instruction\n"); - } - - if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { - /* - * If we're not returning by reference, the size must be either - * 0 or the size of one of the base types. - */ - switch (dp->dtdo_rtype.dtdt_size) { - case 0: - case sizeof (uint8_t): - case sizeof (uint16_t): - case sizeof (uint32_t): - case sizeof (uint64_t): - break; - - default: - err += efunc(dp->dtdo_len - 1, "bad return size"); - } - } - - for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { - dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; - dtrace_diftype_t *vt, *et; - uint_t id, ndx; - - if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && - v->dtdv_scope != DIFV_SCOPE_THREAD && - v->dtdv_scope != DIFV_SCOPE_LOCAL) { - err += efunc(i, "unrecognized variable scope %d\n", - v->dtdv_scope); - break; - } - - if (v->dtdv_kind != DIFV_KIND_ARRAY && - v->dtdv_kind != DIFV_KIND_SCALAR) { - err += efunc(i, "unrecognized variable type %d\n", - v->dtdv_kind); - break; - } - - if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { - err += efunc(i, "%d exceeds variable id limit\n", id); - break; - } - - if (id < DIF_VAR_OTHER_UBASE) - continue; - - /* - * For user-defined variables, we need to check that this - * definition is identical to any previous definition that we - * encountered. - */ - ndx = id - DIF_VAR_OTHER_UBASE; - - switch (v->dtdv_scope) { - case DIFV_SCOPE_GLOBAL: - if (ndx < vstate->dtvs_nglobals) { - dtrace_statvar_t *svar; - - if ((svar = vstate->dtvs_globals[ndx]) != NULL) - existing = &svar->dtsv_var; - } - - break; - - case DIFV_SCOPE_THREAD: - if (ndx < vstate->dtvs_ntlocals) - existing = &vstate->dtvs_tlocals[ndx]; - break; - - case DIFV_SCOPE_LOCAL: - if (ndx < vstate->dtvs_nlocals) { - dtrace_statvar_t *svar; - - if ((svar = vstate->dtvs_locals[ndx]) != NULL) - existing = &svar->dtsv_var; - } - - break; - } - - vt = &v->dtdv_type; - - if (vt->dtdt_flags & DIF_TF_BYREF) { - if (vt->dtdt_size == 0) { - err += efunc(i, "zero-sized variable\n"); - break; - } - - if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && - vt->dtdt_size > dtrace_global_maxsize) { - err += efunc(i, "oversized by-ref global\n"); - break; - } - } - - if (existing == NULL || existing->dtdv_id == 0) - continue; - - ASSERT(existing->dtdv_id == v->dtdv_id); - ASSERT(existing->dtdv_scope == v->dtdv_scope); - - if (existing->dtdv_kind != v->dtdv_kind) - err += efunc(i, "%d changed variable kind\n", id); - - et = &existing->dtdv_type; - - if (vt->dtdt_flags != et->dtdt_flags) { - err += efunc(i, "%d changed variable type flags\n", id); - break; - } - - if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { - err += efunc(i, "%d changed variable type size\n", id); - break; - } - } - - return (err); -} - -/* - * Validate a DTrace DIF object that it is to be used as a helper. Helpers - * are much more constrained than normal DIFOs. Specifically, they may - * not: - * - * 1. Make calls to subroutines other than copyin(), copyinstr() or - * miscellaneous string routines - * 2. Access DTrace variables other than the args[] array, and the - * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. - * 3. Have thread-local variables. - * 4. Have dynamic variables. - */ -static int -dtrace_difo_validate_helper(dtrace_difo_t *dp) -{ - int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; - int err = 0; - uint_t pc; - - for (pc = 0; pc < dp->dtdo_len; pc++) { - dif_instr_t instr = dp->dtdo_buf[pc]; - - uint_t v = DIF_INSTR_VAR(instr); - uint_t subr = DIF_INSTR_SUBR(instr); - uint_t op = DIF_INSTR_OP(instr); - - switch (op) { - case DIF_OP_OR: - case DIF_OP_XOR: - case DIF_OP_AND: - case DIF_OP_SLL: - case DIF_OP_SRL: - case DIF_OP_SRA: - case DIF_OP_SUB: - case DIF_OP_ADD: - case DIF_OP_MUL: - case DIF_OP_SDIV: - case DIF_OP_UDIV: - case DIF_OP_SREM: - case DIF_OP_UREM: - case DIF_OP_COPYS: - case DIF_OP_NOT: - case DIF_OP_MOV: - case DIF_OP_RLDSB: - case DIF_OP_RLDSH: - case DIF_OP_RLDSW: - case DIF_OP_RLDUB: - case DIF_OP_RLDUH: - case DIF_OP_RLDUW: - case DIF_OP_RLDX: - case DIF_OP_ULDSB: - case DIF_OP_ULDSH: - case DIF_OP_ULDSW: - case DIF_OP_ULDUB: - case DIF_OP_ULDUH: - case DIF_OP_ULDUW: - case DIF_OP_ULDX: - case DIF_OP_STB: - case DIF_OP_STH: - case DIF_OP_STW: - case DIF_OP_STX: - case DIF_OP_ALLOCS: - case DIF_OP_CMP: - case DIF_OP_SCMP: - case DIF_OP_TST: - case DIF_OP_BA: - case DIF_OP_BE: - case DIF_OP_BNE: - case DIF_OP_BG: - case DIF_OP_BGU: - case DIF_OP_BGE: - case DIF_OP_BGEU: - case DIF_OP_BL: - case DIF_OP_BLU: - case DIF_OP_BLE: - case DIF_OP_BLEU: - case DIF_OP_RET: - case DIF_OP_NOP: - case DIF_OP_POPTS: - case DIF_OP_FLUSHTS: - case DIF_OP_SETX: - case DIF_OP_SETS: - case DIF_OP_LDGA: - case DIF_OP_LDLS: - case DIF_OP_STGS: - case DIF_OP_STLS: - case DIF_OP_PUSHTR: - case DIF_OP_PUSHTV: - break; - - case DIF_OP_LDGS: - if (v >= DIF_VAR_OTHER_UBASE) - break; - - if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) - break; - - if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || - v == DIF_VAR_PPID || v == DIF_VAR_TID || - v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || - v == DIF_VAR_UID || v == DIF_VAR_GID) - break; - - err += efunc(pc, "illegal variable %u\n", v); - break; - - case DIF_OP_LDTA: - case DIF_OP_LDTS: - case DIF_OP_LDGAA: - case DIF_OP_LDTAA: - err += efunc(pc, "illegal dynamic variable load\n"); - break; - - case DIF_OP_STTS: - case DIF_OP_STGAA: - case DIF_OP_STTAA: - err += efunc(pc, "illegal dynamic variable store\n"); - break; - - case DIF_OP_CALL: - if (subr == DIF_SUBR_ALLOCA || - subr == DIF_SUBR_BCOPY || - subr == DIF_SUBR_COPYIN || - subr == DIF_SUBR_COPYINTO || - subr == DIF_SUBR_COPYINSTR || - subr == DIF_SUBR_INDEX || - subr == DIF_SUBR_INET_NTOA || - subr == DIF_SUBR_INET_NTOA6 || - subr == DIF_SUBR_INET_NTOP || - subr == DIF_SUBR_LLTOSTR || - subr == DIF_SUBR_RINDEX || - subr == DIF_SUBR_STRCHR || - subr == DIF_SUBR_STRJOIN || - subr == DIF_SUBR_STRRCHR || - subr == DIF_SUBR_STRSTR || - subr == DIF_SUBR_HTONS || - subr == DIF_SUBR_HTONL || - subr == DIF_SUBR_HTONLL || - subr == DIF_SUBR_NTOHS || - subr == DIF_SUBR_NTOHL || - subr == DIF_SUBR_NTOHLL) - break; - - err += efunc(pc, "invalid subr %u\n", subr); - break; - - default: - err += efunc(pc, "invalid opcode %u\n", - DIF_INSTR_OP(instr)); - } - } - - return (err); -} - -/* - * Returns 1 if the expression in the DIF object can be cached on a per-thread - * basis; 0 if not. - */ -static int -dtrace_difo_cacheable(dtrace_difo_t *dp) -{ - int i; - - if (dp == NULL) - return (0); - - for (i = 0; i < dp->dtdo_varlen; i++) { - dtrace_difv_t *v = &dp->dtdo_vartab[i]; - - if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) - continue; - - switch (v->dtdv_id) { - case DIF_VAR_CURTHREAD: - case DIF_VAR_PID: - case DIF_VAR_TID: - case DIF_VAR_EXECNAME: - case DIF_VAR_ZONENAME: - break; - - default: - return (0); - } - } - - /* - * This DIF object may be cacheable. Now we need to look for any - * array loading instructions, any memory loading instructions, or - * any stores to thread-local variables. - */ - for (i = 0; i < dp->dtdo_len; i++) { - uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); - - if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || - (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || - (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || - op == DIF_OP_LDGA || op == DIF_OP_STTS) - return (0); - } - - return (1); -} - -static void -dtrace_difo_hold(dtrace_difo_t *dp) -{ - int i; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - - dp->dtdo_refcnt++; - ASSERT(dp->dtdo_refcnt != 0); - - /* - * We need to check this DIF object for references to the variable - * DIF_VAR_VTIMESTAMP. - */ - for (i = 0; i < dp->dtdo_varlen; i++) { - dtrace_difv_t *v = &dp->dtdo_vartab[i]; - - if (v->dtdv_id != DIF_VAR_VTIMESTAMP) - continue; - - if (dtrace_vtime_references++ == 0) - dtrace_vtime_enable(); - } -} - -/* - * This routine calculates the dynamic variable chunksize for a given DIF - * object. The calculation is not fool-proof, and can probably be tricked by - * malicious DIF -- but it works for all compiler-generated DIF. Because this - * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail - * if a dynamic variable size exceeds the chunksize. - */ -static void -dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) -{ - uint64_t sval; - dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ - const dif_instr_t *text = dp->dtdo_buf; - uint_t pc, srd = 0; - uint_t ttop = 0; - size_t size, ksize; - uint_t id, i; - - for (pc = 0; pc < dp->dtdo_len; pc++) { - dif_instr_t instr = text[pc]; - uint_t op = DIF_INSTR_OP(instr); - uint_t rd = DIF_INSTR_RD(instr); - uint_t r1 = DIF_INSTR_R1(instr); - uint_t nkeys = 0; - uchar_t scope; - - dtrace_key_t *key = tupregs; - - switch (op) { - case DIF_OP_SETX: - sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; - srd = rd; - continue; - - case DIF_OP_STTS: - key = &tupregs[DIF_DTR_NREGS]; - key[0].dttk_size = 0; - key[1].dttk_size = 0; - nkeys = 2; - scope = DIFV_SCOPE_THREAD; - break; - - case DIF_OP_STGAA: - case DIF_OP_STTAA: - nkeys = ttop; - - if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) - key[nkeys++].dttk_size = 0; - - key[nkeys++].dttk_size = 0; - - if (op == DIF_OP_STTAA) { - scope = DIFV_SCOPE_THREAD; - } else { - scope = DIFV_SCOPE_GLOBAL; - } - - break; - - case DIF_OP_PUSHTR: - if (ttop == DIF_DTR_NREGS) - return; - - if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { - /* - * If the register for the size of the "pushtr" - * is %r0 (or the value is 0) and the type is - * a string, we'll use the system-wide default - * string size. - */ - tupregs[ttop++].dttk_size = - dtrace_strsize_default; - } else { - if (srd == 0) - return; - - tupregs[ttop++].dttk_size = sval; - } - - break; - - case DIF_OP_PUSHTV: - if (ttop == DIF_DTR_NREGS) - return; - - tupregs[ttop++].dttk_size = 0; - break; - - case DIF_OP_FLUSHTS: - ttop = 0; - break; - - case DIF_OP_POPTS: - if (ttop != 0) - ttop--; - break; - } - - sval = 0; - srd = 0; - - if (nkeys == 0) - continue; - - /* - * We have a dynamic variable allocation; calculate its size. - */ - for (ksize = 0, i = 0; i < nkeys; i++) - ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); - - size = sizeof (dtrace_dynvar_t); - size += sizeof (dtrace_key_t) * (nkeys - 1); - size += ksize; - - /* - * Now we need to determine the size of the stored data. - */ - id = DIF_INSTR_VAR(instr); - - for (i = 0; i < dp->dtdo_varlen; i++) { - dtrace_difv_t *v = &dp->dtdo_vartab[i]; - - if (v->dtdv_id == id && v->dtdv_scope == scope) { - size += v->dtdv_type.dtdt_size; - break; - } - } - - if (i == dp->dtdo_varlen) - return; - - /* - * We have the size. If this is larger than the chunk size - * for our dynamic variable state, reset the chunk size. - */ - size = P2ROUNDUP(size, sizeof (uint64_t)); - - if (size > vstate->dtvs_dynvars.dtds_chunksize) - vstate->dtvs_dynvars.dtds_chunksize = size; - } -} - -static void -dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) -{ - int i, oldsvars, osz, nsz, otlocals, ntlocals; - uint_t id; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); - - for (i = 0; i < dp->dtdo_varlen; i++) { - dtrace_difv_t *v = &dp->dtdo_vartab[i]; - dtrace_statvar_t *svar, ***svarp; - size_t dsize = 0; - uint8_t scope = v->dtdv_scope; - int *np; - - if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) - continue; - - id -= DIF_VAR_OTHER_UBASE; - - switch (scope) { - case DIFV_SCOPE_THREAD: - while (id >= (otlocals = vstate->dtvs_ntlocals)) { - dtrace_difv_t *tlocals; - - if ((ntlocals = (otlocals << 1)) == 0) - ntlocals = 1; - - osz = otlocals * sizeof (dtrace_difv_t); - nsz = ntlocals * sizeof (dtrace_difv_t); - - tlocals = kmem_zalloc(nsz, KM_SLEEP); - - if (osz != 0) { - bcopy(vstate->dtvs_tlocals, - tlocals, osz); - kmem_free(vstate->dtvs_tlocals, osz); - } - - vstate->dtvs_tlocals = tlocals; - vstate->dtvs_ntlocals = ntlocals; - } - - vstate->dtvs_tlocals[id] = *v; - continue; - - case DIFV_SCOPE_LOCAL: - np = &vstate->dtvs_nlocals; - svarp = &vstate->dtvs_locals; - - if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) - dsize = NCPU * (v->dtdv_type.dtdt_size + - sizeof (uint64_t)); - else - dsize = NCPU * sizeof (uint64_t); - - break; - - case DIFV_SCOPE_GLOBAL: - np = &vstate->dtvs_nglobals; - svarp = &vstate->dtvs_globals; - - if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) - dsize = v->dtdv_type.dtdt_size + - sizeof (uint64_t); - - break; - - default: - ASSERT(0); - } - - while (id >= (oldsvars = *np)) { - dtrace_statvar_t **statics; - int newsvars, oldsize, newsize; - - if ((newsvars = (oldsvars << 1)) == 0) - newsvars = 1; - - oldsize = oldsvars * sizeof (dtrace_statvar_t *); - newsize = newsvars * sizeof (dtrace_statvar_t *); - - statics = kmem_zalloc(newsize, KM_SLEEP); - - if (oldsize != 0) { - bcopy(*svarp, statics, oldsize); - kmem_free(*svarp, oldsize); - } - - *svarp = statics; - *np = newsvars; - } - - if ((svar = (*svarp)[id]) == NULL) { - svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); - svar->dtsv_var = *v; - - if ((svar->dtsv_size = dsize) != 0) { - svar->dtsv_data = (uint64_t)(uintptr_t) - kmem_zalloc(dsize, KM_SLEEP); - } - - (*svarp)[id] = svar; - } - - svar->dtsv_refcnt++; - } - - dtrace_difo_chunksize(dp, vstate); - dtrace_difo_hold(dp); -} - -static dtrace_difo_t * -dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) -{ - dtrace_difo_t *new; - size_t sz; - - ASSERT(dp->dtdo_buf != NULL); - ASSERT(dp->dtdo_refcnt != 0); - - new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); - - ASSERT(dp->dtdo_buf != NULL); - sz = dp->dtdo_len * sizeof (dif_instr_t); - new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); - bcopy(dp->dtdo_buf, new->dtdo_buf, sz); - new->dtdo_len = dp->dtdo_len; - - if (dp->dtdo_strtab != NULL) { - ASSERT(dp->dtdo_strlen != 0); - new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); - bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); - new->dtdo_strlen = dp->dtdo_strlen; - } - - if (dp->dtdo_inttab != NULL) { - ASSERT(dp->dtdo_intlen != 0); - sz = dp->dtdo_intlen * sizeof (uint64_t); - new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); - bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); - new->dtdo_intlen = dp->dtdo_intlen; - } - - if (dp->dtdo_vartab != NULL) { - ASSERT(dp->dtdo_varlen != 0); - sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); - new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); - bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); - new->dtdo_varlen = dp->dtdo_varlen; - } - - dtrace_difo_init(new, vstate); - return (new); -} - -static void -dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) -{ - int i; - - ASSERT(dp->dtdo_refcnt == 0); - - for (i = 0; i < dp->dtdo_varlen; i++) { - dtrace_difv_t *v = &dp->dtdo_vartab[i]; - dtrace_statvar_t *svar, **svarp; - uint_t id; - uint8_t scope = v->dtdv_scope; - int *np; - - switch (scope) { - case DIFV_SCOPE_THREAD: - continue; - - case DIFV_SCOPE_LOCAL: - np = &vstate->dtvs_nlocals; - svarp = vstate->dtvs_locals; - break; - - case DIFV_SCOPE_GLOBAL: - np = &vstate->dtvs_nglobals; - svarp = vstate->dtvs_globals; - break; - - default: - ASSERT(0); - } - - if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) - continue; - - id -= DIF_VAR_OTHER_UBASE; - ASSERT(id < *np); - - svar = svarp[id]; - ASSERT(svar != NULL); - ASSERT(svar->dtsv_refcnt > 0); - - if (--svar->dtsv_refcnt > 0) - continue; - - if (svar->dtsv_size != 0) { - ASSERT(svar->dtsv_data != NULL); - kmem_free((void *)(uintptr_t)svar->dtsv_data, - svar->dtsv_size); - } - - kmem_free(svar, sizeof (dtrace_statvar_t)); - svarp[id] = NULL; - } - - kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); - kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); - kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); - kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); - - kmem_free(dp, sizeof (dtrace_difo_t)); -} - -static void -dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) -{ - int i; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(dp->dtdo_refcnt != 0); - - for (i = 0; i < dp->dtdo_varlen; i++) { - dtrace_difv_t *v = &dp->dtdo_vartab[i]; - - if (v->dtdv_id != DIF_VAR_VTIMESTAMP) - continue; - - ASSERT(dtrace_vtime_references > 0); - if (--dtrace_vtime_references == 0) - dtrace_vtime_disable(); - } - - if (--dp->dtdo_refcnt == 0) - dtrace_difo_destroy(dp, vstate); -} - -/* - * DTrace Format Functions - */ -static uint16_t -dtrace_format_add(dtrace_state_t *state, char *str) -{ - char *fmt, **new; - uint16_t ndx, len = strlen(str) + 1; - - fmt = kmem_zalloc(len, KM_SLEEP); - bcopy(str, fmt, len); - - for (ndx = 0; ndx < state->dts_nformats; ndx++) { - if (state->dts_formats[ndx] == NULL) { - state->dts_formats[ndx] = fmt; - return (ndx + 1); - } - } - - if (state->dts_nformats == USHRT_MAX) { - /* - * This is only likely if a denial-of-service attack is being - * attempted. As such, it's okay to fail silently here. - */ - kmem_free(fmt, len); - return (0); - } - - /* - * For simplicity, we always resize the formats array to be exactly the - * number of formats. - */ - ndx = state->dts_nformats++; - new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); - - if (state->dts_formats != NULL) { - ASSERT(ndx != 0); - bcopy(state->dts_formats, new, ndx * sizeof (char *)); - kmem_free(state->dts_formats, ndx * sizeof (char *)); - } - - state->dts_formats = new; - state->dts_formats[ndx] = fmt; - - return (ndx + 1); -} - -static void -dtrace_format_remove(dtrace_state_t *state, uint16_t format) -{ - char *fmt; - - ASSERT(state->dts_formats != NULL); - ASSERT(format <= state->dts_nformats); - ASSERT(state->dts_formats[format - 1] != NULL); - - fmt = state->dts_formats[format - 1]; - kmem_free(fmt, strlen(fmt) + 1); - state->dts_formats[format - 1] = NULL; -} - -static void -dtrace_format_destroy(dtrace_state_t *state) -{ - int i; - - if (state->dts_nformats == 0) { - ASSERT(state->dts_formats == NULL); - return; - } - - ASSERT(state->dts_formats != NULL); - - for (i = 0; i < state->dts_nformats; i++) { - char *fmt = state->dts_formats[i]; - - if (fmt == NULL) - continue; - - kmem_free(fmt, strlen(fmt) + 1); - } - - kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); - state->dts_nformats = 0; - state->dts_formats = NULL; -} - -/* - * DTrace Predicate Functions - */ -static dtrace_predicate_t * -dtrace_predicate_create(dtrace_difo_t *dp) -{ - dtrace_predicate_t *pred; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(dp->dtdo_refcnt != 0); - - pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); - pred->dtp_difo = dp; - pred->dtp_refcnt = 1; - - if (!dtrace_difo_cacheable(dp)) - return (pred); - - if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { - /* - * This is only theoretically possible -- we have had 2^32 - * cacheable predicates on this machine. We cannot allow any - * more predicates to become cacheable: as unlikely as it is, - * there may be a thread caching a (now stale) predicate cache - * ID. (N.B.: the temptation is being successfully resisted to - * have this cmn_err() "Holy shit -- we executed this code!") - */ - return (pred); - } - - pred->dtp_cacheid = dtrace_predcache_id++; - - return (pred); -} - -static void -dtrace_predicate_hold(dtrace_predicate_t *pred) -{ - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); - ASSERT(pred->dtp_refcnt > 0); - - pred->dtp_refcnt++; -} - -static void -dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) -{ - dtrace_difo_t *dp = pred->dtp_difo; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(dp != NULL && dp->dtdo_refcnt != 0); - ASSERT(pred->dtp_refcnt > 0); - - if (--pred->dtp_refcnt == 0) { - dtrace_difo_release(pred->dtp_difo, vstate); - kmem_free(pred, sizeof (dtrace_predicate_t)); - } -} - -/* - * DTrace Action Description Functions - */ -static dtrace_actdesc_t * -dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, - uint64_t uarg, uint64_t arg) -{ - dtrace_actdesc_t *act; - - ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && - arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); - - act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); - act->dtad_kind = kind; - act->dtad_ntuple = ntuple; - act->dtad_uarg = uarg; - act->dtad_arg = arg; - act->dtad_refcnt = 1; - - return (act); -} - -static void -dtrace_actdesc_hold(dtrace_actdesc_t *act) -{ - ASSERT(act->dtad_refcnt >= 1); - act->dtad_refcnt++; -} - -static void -dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) -{ - dtrace_actkind_t kind = act->dtad_kind; - dtrace_difo_t *dp; - - ASSERT(act->dtad_refcnt >= 1); - - if (--act->dtad_refcnt != 0) - return; - - if ((dp = act->dtad_difo) != NULL) - dtrace_difo_release(dp, vstate); - - if (DTRACEACT_ISPRINTFLIKE(kind)) { - char *str = (char *)(uintptr_t)act->dtad_arg; - - ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || - (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); - - if (str != NULL) - kmem_free(str, strlen(str) + 1); - } - - kmem_free(act, sizeof (dtrace_actdesc_t)); -} - -/* - * DTrace ECB Functions - */ -static dtrace_ecb_t * -dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) -{ - dtrace_ecb_t *ecb; - dtrace_epid_t epid; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - - ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); - ecb->dte_predicate = NULL; - ecb->dte_probe = probe; - - /* - * The default size is the size of the default action: recording - * the epid. - */ - ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); - ecb->dte_alignment = sizeof (dtrace_epid_t); - - epid = state->dts_epid++; - - if (epid - 1 >= state->dts_necbs) { - dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; - int necbs = state->dts_necbs << 1; - - ASSERT(epid == state->dts_necbs + 1); - - if (necbs == 0) { - ASSERT(oecbs == NULL); - necbs = 1; - } - - ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); - - if (oecbs != NULL) - bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); - - dtrace_membar_producer(); - state->dts_ecbs = ecbs; - - if (oecbs != NULL) { - /* - * If this state is active, we must dtrace_sync() - * before we can free the old dts_ecbs array: we're - * coming in hot, and there may be active ring - * buffer processing (which indexes into the dts_ecbs - * array) on another CPU. - */ - if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) - dtrace_sync(); - - kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); - } - - dtrace_membar_producer(); - state->dts_necbs = necbs; - } - - ecb->dte_state = state; - - ASSERT(state->dts_ecbs[epid - 1] == NULL); - dtrace_membar_producer(); - state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; - - return (ecb); -} - -static void -dtrace_ecb_enable(dtrace_ecb_t *ecb) -{ - dtrace_probe_t *probe = ecb->dte_probe; - - ASSERT(MUTEX_HELD(&cpu_lock)); - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(ecb->dte_next == NULL); - - if (probe == NULL) { - /* - * This is the NULL probe -- there's nothing to do. - */ - return; - } - - if (probe->dtpr_ecb == NULL) { - dtrace_provider_t *prov = probe->dtpr_provider; - - /* - * We're the first ECB on this probe. - */ - probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; - - if (ecb->dte_predicate != NULL) - probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; - - prov->dtpv_pops.dtps_enable(prov->dtpv_arg, - probe->dtpr_id, probe->dtpr_arg); - } else { - /* - * This probe is already active. Swing the last pointer to - * point to the new ECB, and issue a dtrace_sync() to assure - * that all CPUs have seen the change. - */ - ASSERT(probe->dtpr_ecb_last != NULL); - probe->dtpr_ecb_last->dte_next = ecb; - probe->dtpr_ecb_last = ecb; - probe->dtpr_predcache = 0; - - dtrace_sync(); - } -} - -static void -dtrace_ecb_resize(dtrace_ecb_t *ecb) -{ - uint32_t maxalign = sizeof (dtrace_epid_t); - uint32_t align = sizeof (uint8_t), offs, diff; - dtrace_action_t *act; - int wastuple = 0; - uint32_t aggbase = UINT32_MAX; - dtrace_state_t *state = ecb->dte_state; - - /* - * If we record anything, we always record the epid. (And we always - * record it first.) - */ - offs = sizeof (dtrace_epid_t); - ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); - - for (act = ecb->dte_action; act != NULL; act = act->dta_next) { - dtrace_recdesc_t *rec = &act->dta_rec; - - if ((align = rec->dtrd_alignment) > maxalign) - maxalign = align; - - if (!wastuple && act->dta_intuple) { - /* - * This is the first record in a tuple. Align the - * offset to be at offset 4 in an 8-byte aligned - * block. - */ - diff = offs + sizeof (dtrace_aggid_t); - - if (diff = (diff & (sizeof (uint64_t) - 1))) - offs += sizeof (uint64_t) - diff; - - aggbase = offs - sizeof (dtrace_aggid_t); - ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); - } - - /*LINTED*/ - if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { - /* - * The current offset is not properly aligned; align it. - */ - offs += align - diff; - } - - rec->dtrd_offset = offs; - - if (offs + rec->dtrd_size > ecb->dte_needed) { - ecb->dte_needed = offs + rec->dtrd_size; - - if (ecb->dte_needed > state->dts_needed) - state->dts_needed = ecb->dte_needed; - } - - if (DTRACEACT_ISAGG(act->dta_kind)) { - dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; - dtrace_action_t *first = agg->dtag_first, *prev; - - ASSERT(rec->dtrd_size != 0 && first != NULL); - ASSERT(wastuple); - ASSERT(aggbase != UINT32_MAX); - - agg->dtag_base = aggbase; - - while ((prev = first->dta_prev) != NULL && - DTRACEACT_ISAGG(prev->dta_kind)) { - agg = (dtrace_aggregation_t *)prev; - first = agg->dtag_first; - } - - if (prev != NULL) { - offs = prev->dta_rec.dtrd_offset + - prev->dta_rec.dtrd_size; - } else { - offs = sizeof (dtrace_epid_t); - } - wastuple = 0; - } else { - if (!act->dta_intuple) - ecb->dte_size = offs + rec->dtrd_size; - - offs += rec->dtrd_size; - } - - wastuple = act->dta_intuple; - } - - if ((act = ecb->dte_action) != NULL && - !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && - ecb->dte_size == sizeof (dtrace_epid_t)) { - /* - * If the size is still sizeof (dtrace_epid_t), then all - * actions store no data; set the size to 0. - */ - ecb->dte_alignment = maxalign; - ecb->dte_size = 0; - - /* - * If the needed space is still sizeof (dtrace_epid_t), then - * all actions need no additional space; set the needed - * size to 0. - */ - if (ecb->dte_needed == sizeof (dtrace_epid_t)) - ecb->dte_needed = 0; - - return; - } - - /* - * Set our alignment, and make sure that the dte_size and dte_needed - * are aligned to the size of an EPID. - */ - ecb->dte_alignment = maxalign; - ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & - ~(sizeof (dtrace_epid_t) - 1); - ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & - ~(sizeof (dtrace_epid_t) - 1); - ASSERT(ecb->dte_size <= ecb->dte_needed); -} - -static dtrace_action_t * -dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) -{ - dtrace_aggregation_t *agg; - size_t size = sizeof (uint64_t); - int ntuple = desc->dtad_ntuple; - dtrace_action_t *act; - dtrace_recdesc_t *frec; - dtrace_aggid_t aggid; - dtrace_state_t *state = ecb->dte_state; - - agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); - agg->dtag_ecb = ecb; - - ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); - - switch (desc->dtad_kind) { - case DTRACEAGG_MIN: - agg->dtag_initial = INT64_MAX; - agg->dtag_aggregate = dtrace_aggregate_min; - break; - - case DTRACEAGG_MAX: - agg->dtag_initial = INT64_MIN; - agg->dtag_aggregate = dtrace_aggregate_max; - break; - - case DTRACEAGG_COUNT: - agg->dtag_aggregate = dtrace_aggregate_count; - break; - - case DTRACEAGG_QUANTIZE: - agg->dtag_aggregate = dtrace_aggregate_quantize; - size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * - sizeof (uint64_t); - break; - - case DTRACEAGG_LQUANTIZE: { - uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); - uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); - - agg->dtag_initial = desc->dtad_arg; - agg->dtag_aggregate = dtrace_aggregate_lquantize; - - if (step == 0 || levels == 0) - goto err; - - size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); - break; - } - - case DTRACEAGG_AVG: - agg->dtag_aggregate = dtrace_aggregate_avg; - size = sizeof (uint64_t) * 2; - break; - - case DTRACEAGG_STDDEV: - agg->dtag_aggregate = dtrace_aggregate_stddev; - size = sizeof (uint64_t) * 4; - break; - - case DTRACEAGG_SUM: - agg->dtag_aggregate = dtrace_aggregate_sum; - break; - - default: - goto err; - } - - agg->dtag_action.dta_rec.dtrd_size = size; - - if (ntuple == 0) - goto err; - - /* - * We must make sure that we have enough actions for the n-tuple. - */ - for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { - if (DTRACEACT_ISAGG(act->dta_kind)) - break; - - if (--ntuple == 0) { - /* - * This is the action with which our n-tuple begins. - */ - agg->dtag_first = act; - goto success; - } - } - - /* - * This n-tuple is short by ntuple elements. Return failure. - */ - ASSERT(ntuple != 0); -err: - kmem_free(agg, sizeof (dtrace_aggregation_t)); - return (NULL); - -success: - /* - * If the last action in the tuple has a size of zero, it's actually - * an expression argument for the aggregating action. - */ - ASSERT(ecb->dte_action_last != NULL); - act = ecb->dte_action_last; - - if (act->dta_kind == DTRACEACT_DIFEXPR) { - ASSERT(act->dta_difo != NULL); - - if (act->dta_difo->dtdo_rtype.dtdt_size == 0) - agg->dtag_hasarg = 1; - } - - /* - * We need to allocate an id for this aggregation. - */ - aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, - VM_BESTFIT | VM_SLEEP); - - if (aggid - 1 >= state->dts_naggregations) { - dtrace_aggregation_t **oaggs = state->dts_aggregations; - dtrace_aggregation_t **aggs; - int naggs = state->dts_naggregations << 1; - int onaggs = state->dts_naggregations; - - ASSERT(aggid == state->dts_naggregations + 1); - - if (naggs == 0) { - ASSERT(oaggs == NULL); - naggs = 1; - } - - aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); - - if (oaggs != NULL) { - bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); - kmem_free(oaggs, onaggs * sizeof (*aggs)); - } - - state->dts_aggregations = aggs; - state->dts_naggregations = naggs; - } - - ASSERT(state->dts_aggregations[aggid - 1] == NULL); - state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; - - frec = &agg->dtag_first->dta_rec; - if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) - frec->dtrd_alignment = sizeof (dtrace_aggid_t); - - for (act = agg->dtag_first; act != NULL; act = act->dta_next) { - ASSERT(!act->dta_intuple); - act->dta_intuple = 1; - } - - return (&agg->dtag_action); -} - -static void -dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) -{ - dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; - dtrace_state_t *state = ecb->dte_state; - dtrace_aggid_t aggid = agg->dtag_id; - - ASSERT(DTRACEACT_ISAGG(act->dta_kind)); - vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); - - ASSERT(state->dts_aggregations[aggid - 1] == agg); - state->dts_aggregations[aggid - 1] = NULL; - - kmem_free(agg, sizeof (dtrace_aggregation_t)); -} - -static int -dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) -{ - dtrace_action_t *action, *last; - dtrace_difo_t *dp = desc->dtad_difo; - uint32_t size = 0, align = sizeof (uint8_t), mask; - uint16_t format = 0; - dtrace_recdesc_t *rec; - dtrace_state_t *state = ecb->dte_state; - dtrace_optval_t *opt = state->dts_options, nframes, strsize; - uint64_t arg = desc->dtad_arg; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); - - if (DTRACEACT_ISAGG(desc->dtad_kind)) { - /* - * If this is an aggregating action, there must be neither - * a speculate nor a commit on the action chain. - */ - dtrace_action_t *act; - - for (act = ecb->dte_action; act != NULL; act = act->dta_next) { - if (act->dta_kind == DTRACEACT_COMMIT) - return (EINVAL); - - if (act->dta_kind == DTRACEACT_SPECULATE) - return (EINVAL); - } - - action = dtrace_ecb_aggregation_create(ecb, desc); - - if (action == NULL) - return (EINVAL); - } else { - if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || - (desc->dtad_kind == DTRACEACT_DIFEXPR && - dp != NULL && dp->dtdo_destructive)) { - state->dts_destructive = 1; - } - - switch (desc->dtad_kind) { - case DTRACEACT_PRINTF: - case DTRACEACT_PRINTA: - case DTRACEACT_SYSTEM: - case DTRACEACT_FREOPEN: - /* - * We know that our arg is a string -- turn it into a - * format. - */ - if (arg == NULL) { - ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); - format = 0; - } else { - ASSERT(arg != NULL); - ASSERT(arg > KERNELBASE); - format = dtrace_format_add(state, - (char *)(uintptr_t)arg); - } - - /*FALLTHROUGH*/ - case DTRACEACT_LIBACT: - case DTRACEACT_DIFEXPR: - if (dp == NULL) - return (EINVAL); - - if ((size = dp->dtdo_rtype.dtdt_size) != 0) - break; - - if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { - if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) - return (EINVAL); - - size = opt[DTRACEOPT_STRSIZE]; - } - - break; - - case DTRACEACT_STACK: - if ((nframes = arg) == 0) { - nframes = opt[DTRACEOPT_STACKFRAMES]; - ASSERT(nframes > 0); - arg = nframes; - } - - size = nframes * sizeof (pc_t); - break; - - case DTRACEACT_JSTACK: - if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) - strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; - - if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) - nframes = opt[DTRACEOPT_JSTACKFRAMES]; - - arg = DTRACE_USTACK_ARG(nframes, strsize); - - /*FALLTHROUGH*/ - case DTRACEACT_USTACK: - if (desc->dtad_kind != DTRACEACT_JSTACK && - (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { - strsize = DTRACE_USTACK_STRSIZE(arg); - nframes = opt[DTRACEOPT_USTACKFRAMES]; - ASSERT(nframes > 0); - arg = DTRACE_USTACK_ARG(nframes, strsize); - } - - /* - * Save a slot for the pid. - */ - size = (nframes + 1) * sizeof (uint64_t); - size += DTRACE_USTACK_STRSIZE(arg); - size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); - - break; - - case DTRACEACT_SYM: - case DTRACEACT_MOD: - if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != - sizeof (uint64_t)) || - (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) - return (EINVAL); - break; - - case DTRACEACT_USYM: - case DTRACEACT_UMOD: - case DTRACEACT_UADDR: - if (dp == NULL || - (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || - (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) - return (EINVAL); - - /* - * We have a slot for the pid, plus a slot for the - * argument. To keep things simple (aligned with - * bitness-neutral sizing), we store each as a 64-bit - * quantity. - */ - size = 2 * sizeof (uint64_t); - break; - - case DTRACEACT_STOP: - case DTRACEACT_BREAKPOINT: - case DTRACEACT_PANIC: - break; - - case DTRACEACT_CHILL: - case DTRACEACT_DISCARD: - case DTRACEACT_RAISE: - if (dp == NULL) - return (EINVAL); - break; - - case DTRACEACT_EXIT: - if (dp == NULL || - (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || - (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) - return (EINVAL); - break; - - case DTRACEACT_SPECULATE: - if (ecb->dte_size > sizeof (dtrace_epid_t)) - return (EINVAL); - - if (dp == NULL) - return (EINVAL); - - state->dts_speculates = 1; - break; - - case DTRACEACT_COMMIT: { - dtrace_action_t *act = ecb->dte_action; - - for (; act != NULL; act = act->dta_next) { - if (act->dta_kind == DTRACEACT_COMMIT) - return (EINVAL); - } - - if (dp == NULL) - return (EINVAL); - break; - } - - default: - return (EINVAL); - } - - if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { - /* - * If this is a data-storing action or a speculate, - * we must be sure that there isn't a commit on the - * action chain. - */ - dtrace_action_t *act = ecb->dte_action; - - for (; act != NULL; act = act->dta_next) { - if (act->dta_kind == DTRACEACT_COMMIT) - return (EINVAL); - } - } - - action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); - action->dta_rec.dtrd_size = size; - } - - action->dta_refcnt = 1; - rec = &action->dta_rec; - size = rec->dtrd_size; - - for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { - if (!(size & mask)) { - align = mask + 1; - break; - } - } - - action->dta_kind = desc->dtad_kind; - - if ((action->dta_difo = dp) != NULL) - dtrace_difo_hold(dp); - - rec->dtrd_action = action->dta_kind; - rec->dtrd_arg = arg; - rec->dtrd_uarg = desc->dtad_uarg; - rec->dtrd_alignment = (uint16_t)align; - rec->dtrd_format = format; - - if ((last = ecb->dte_action_last) != NULL) { - ASSERT(ecb->dte_action != NULL); - action->dta_prev = last; - last->dta_next = action; - } else { - ASSERT(ecb->dte_action == NULL); - ecb->dte_action = action; - } - - ecb->dte_action_last = action; - - return (0); -} - -static void -dtrace_ecb_action_remove(dtrace_ecb_t *ecb) -{ - dtrace_action_t *act = ecb->dte_action, *next; - dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; - dtrace_difo_t *dp; - uint16_t format; - - if (act != NULL && act->dta_refcnt > 1) { - ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); - act->dta_refcnt--; - } else { - for (; act != NULL; act = next) { - next = act->dta_next; - ASSERT(next != NULL || act == ecb->dte_action_last); - ASSERT(act->dta_refcnt == 1); - - if ((format = act->dta_rec.dtrd_format) != 0) - dtrace_format_remove(ecb->dte_state, format); - - if ((dp = act->dta_difo) != NULL) - dtrace_difo_release(dp, vstate); - - if (DTRACEACT_ISAGG(act->dta_kind)) { - dtrace_ecb_aggregation_destroy(ecb, act); - } else { - kmem_free(act, sizeof (dtrace_action_t)); - } - } - } - - ecb->dte_action = NULL; - ecb->dte_action_last = NULL; - ecb->dte_size = sizeof (dtrace_epid_t); -} - -static void -dtrace_ecb_disable(dtrace_ecb_t *ecb) -{ - /* - * We disable the ECB by removing it from its probe. - */ - dtrace_ecb_t *pecb, *prev = NULL; - dtrace_probe_t *probe = ecb->dte_probe; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - - if (probe == NULL) { - /* - * This is the NULL probe; there is nothing to disable. - */ - return; - } - - for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { - if (pecb == ecb) - break; - prev = pecb; - } - - ASSERT(pecb != NULL); - - if (prev == NULL) { - probe->dtpr_ecb = ecb->dte_next; - } else { - prev->dte_next = ecb->dte_next; - } - - if (ecb == probe->dtpr_ecb_last) { - ASSERT(ecb->dte_next == NULL); - probe->dtpr_ecb_last = prev; - } - - /* - * The ECB has been disconnected from the probe; now sync to assure - * that all CPUs have seen the change before returning. - */ - dtrace_sync(); - - if (probe->dtpr_ecb == NULL) { - /* - * That was the last ECB on the probe; clear the predicate - * cache ID for the probe, disable it and sync one more time - * to assure that we'll never hit it again. - */ - dtrace_provider_t *prov = probe->dtpr_provider; - - ASSERT(ecb->dte_next == NULL); - ASSERT(probe->dtpr_ecb_last == NULL); - probe->dtpr_predcache = DTRACE_CACHEIDNONE; - prov->dtpv_pops.dtps_disable(prov->dtpv_arg, - probe->dtpr_id, probe->dtpr_arg); - dtrace_sync(); - } else { - /* - * There is at least one ECB remaining on the probe. If there - * is _exactly_ one, set the probe's predicate cache ID to be - * the predicate cache ID of the remaining ECB. - */ - ASSERT(probe->dtpr_ecb_last != NULL); - ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); - - if (probe->dtpr_ecb == probe->dtpr_ecb_last) { - dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; - - ASSERT(probe->dtpr_ecb->dte_next == NULL); - - if (p != NULL) - probe->dtpr_predcache = p->dtp_cacheid; - } - - ecb->dte_next = NULL; - } -} - -static void -dtrace_ecb_destroy(dtrace_ecb_t *ecb) -{ - dtrace_state_t *state = ecb->dte_state; - dtrace_vstate_t *vstate = &state->dts_vstate; - dtrace_predicate_t *pred; - dtrace_epid_t epid = ecb->dte_epid; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(ecb->dte_next == NULL); - ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); - - if ((pred = ecb->dte_predicate) != NULL) - dtrace_predicate_release(pred, vstate); - - dtrace_ecb_action_remove(ecb); - - ASSERT(state->dts_ecbs[epid - 1] == ecb); - state->dts_ecbs[epid - 1] = NULL; - - kmem_free(ecb, sizeof (dtrace_ecb_t)); -} - -static dtrace_ecb_t * -dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, - dtrace_enabling_t *enab) -{ - dtrace_ecb_t *ecb; - dtrace_predicate_t *pred; - dtrace_actdesc_t *act; - dtrace_provider_t *prov; - dtrace_ecbdesc_t *desc = enab->dten_current; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(state != NULL); - - ecb = dtrace_ecb_add(state, probe); - ecb->dte_uarg = desc->dted_uarg; - - if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { - dtrace_predicate_hold(pred); - ecb->dte_predicate = pred; - } - - if (probe != NULL) { - /* - * If the provider shows more leg than the consumer is old - * enough to see, we need to enable the appropriate implicit - * predicate bits to prevent the ecb from activating at - * revealing times. - * - * Providers specifying DTRACE_PRIV_USER at register time - * are stating that they need the /proc-style privilege - * model to be enforced, and this is what DTRACE_COND_OWNER - * and DTRACE_COND_ZONEOWNER will then do at probe time. - */ - prov = probe->dtpr_provider; - if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && - (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) - ecb->dte_cond |= DTRACE_COND_OWNER; - - if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && - (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) - ecb->dte_cond |= DTRACE_COND_ZONEOWNER; - - /* - * If the provider shows us kernel innards and the user - * is lacking sufficient privilege, enable the - * DTRACE_COND_USERMODE implicit predicate. - */ - if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && - (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) - ecb->dte_cond |= DTRACE_COND_USERMODE; - } - - if (dtrace_ecb_create_cache != NULL) { - /* - * If we have a cached ecb, we'll use its action list instead - * of creating our own (saving both time and space). - */ - dtrace_ecb_t *cached = dtrace_ecb_create_cache; - dtrace_action_t *act = cached->dte_action; - - if (act != NULL) { - ASSERT(act->dta_refcnt > 0); - act->dta_refcnt++; - ecb->dte_action = act; - ecb->dte_action_last = cached->dte_action_last; - ecb->dte_needed = cached->dte_needed; - ecb->dte_size = cached->dte_size; - ecb->dte_alignment = cached->dte_alignment; - } - - return (ecb); - } - - for (act = desc->dted_action; act != NULL; act = act->dtad_next) { - if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { - dtrace_ecb_destroy(ecb); - return (NULL); - } - } - - dtrace_ecb_resize(ecb); - - return (dtrace_ecb_create_cache = ecb); -} - -static int -dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) -{ - dtrace_ecb_t *ecb; - dtrace_enabling_t *enab = arg; - dtrace_state_t *state = enab->dten_vstate->dtvs_state; - - ASSERT(state != NULL); - - if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { - /* - * This probe was created in a generation for which this - * enabling has previously created ECBs; we don't want to - * enable it again, so just kick out. - */ - return (DTRACE_MATCH_NEXT); - } - - if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) - return (DTRACE_MATCH_DONE); - - dtrace_ecb_enable(ecb); - return (DTRACE_MATCH_NEXT); -} - -static dtrace_ecb_t * -dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) -{ - dtrace_ecb_t *ecb; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - - if (id == 0 || id > state->dts_necbs) - return (NULL); - - ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); - ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); - - return (state->dts_ecbs[id - 1]); -} - -static dtrace_aggregation_t * -dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) -{ - dtrace_aggregation_t *agg; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - - if (id == 0 || id > state->dts_naggregations) - return (NULL); - - ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); - ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || - agg->dtag_id == id); - - return (state->dts_aggregations[id - 1]); -} - -/* - * DTrace Buffer Functions - * - * The following functions manipulate DTrace buffers. Most of these functions - * are called in the context of establishing or processing consumer state; - * exceptions are explicitly noted. - */ - -/* - * Note: called from cross call context. This function switches the two - * buffers on a given CPU. The atomicity of this operation is assured by - * disabling interrupts while the actual switch takes place; the disabling of - * interrupts serializes the execution with any execution of dtrace_probe() on - * the same CPU. - */ -static void -dtrace_buffer_switch(dtrace_buffer_t *buf) -{ - caddr_t tomax = buf->dtb_tomax; - caddr_t xamot = buf->dtb_xamot; - dtrace_icookie_t cookie; - - ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); - ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); - - cookie = dtrace_interrupt_disable(); - buf->dtb_tomax = xamot; - buf->dtb_xamot = tomax; - buf->dtb_xamot_drops = buf->dtb_drops; - buf->dtb_xamot_offset = buf->dtb_offset; - buf->dtb_xamot_errors = buf->dtb_errors; - buf->dtb_xamot_flags = buf->dtb_flags; - buf->dtb_offset = 0; - buf->dtb_drops = 0; - buf->dtb_errors = 0; - buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); - dtrace_interrupt_enable(cookie); -} - -/* - * Note: called from cross call context. This function activates a buffer - * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation - * is guaranteed by the disabling of interrupts. - */ -static void -dtrace_buffer_activate(dtrace_state_t *state) -{ - dtrace_buffer_t *buf; - dtrace_icookie_t cookie = dtrace_interrupt_disable(); - - buf = &state->dts_buffer[CPU->cpu_id]; - - if (buf->dtb_tomax != NULL) { - /* - * We might like to assert that the buffer is marked inactive, - * but this isn't necessarily true: the buffer for the CPU - * that processes the BEGIN probe has its buffer activated - * manually. In this case, we take the (harmless) action - * re-clearing the bit INACTIVE bit. - */ - buf->dtb_flags &= ~DTRACEBUF_INACTIVE; - } - - dtrace_interrupt_enable(cookie); -} - -static int -dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, - processorid_t cpu) -{ - cpu_t *cp; - dtrace_buffer_t *buf; - - ASSERT(MUTEX_HELD(&cpu_lock)); - ASSERT(MUTEX_HELD(&dtrace_lock)); - - if (size > dtrace_nonroot_maxsize && - !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) - return (EFBIG); - - cp = cpu_list; - - do { - if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) - continue; - - buf = &bufs[cp->cpu_id]; - - /* - * If there is already a buffer allocated for this CPU, it - * is only possible that this is a DR event. In this case, - * the buffer size must match our specified size. - */ - if (buf->dtb_tomax != NULL) { - ASSERT(buf->dtb_size == size); - continue; - } - - ASSERT(buf->dtb_xamot == NULL); - - if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) - goto err; - - buf->dtb_size = size; - buf->dtb_flags = flags; - buf->dtb_offset = 0; - buf->dtb_drops = 0; - - if (flags & DTRACEBUF_NOSWITCH) - continue; - - if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) - goto err; - } while ((cp = cp->cpu_next) != cpu_list); - - return (0); - -err: - cp = cpu_list; - - do { - if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) - continue; - - buf = &bufs[cp->cpu_id]; - - if (buf->dtb_xamot != NULL) { - ASSERT(buf->dtb_tomax != NULL); - ASSERT(buf->dtb_size == size); - kmem_free(buf->dtb_xamot, size); - } - - if (buf->dtb_tomax != NULL) { - ASSERT(buf->dtb_size == size); - kmem_free(buf->dtb_tomax, size); - } - - buf->dtb_tomax = NULL; - buf->dtb_xamot = NULL; - buf->dtb_size = 0; - } while ((cp = cp->cpu_next) != cpu_list); - - return (ENOMEM); -} - -/* - * Note: called from probe context. This function just increments the drop - * count on a buffer. It has been made a function to allow for the - * possibility of understanding the source of mysterious drop counts. (A - * problem for which one may be particularly disappointed that DTrace cannot - * be used to understand DTrace.) - */ -static void -dtrace_buffer_drop(dtrace_buffer_t *buf) -{ - buf->dtb_drops++; -} - -/* - * Note: called from probe context. This function is called to reserve space - * in a buffer. If mstate is non-NULL, sets the scratch base and size in the - * mstate. Returns the new offset in the buffer, or a negative value if an - * error has occurred. - */ -static intptr_t -dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, - dtrace_state_t *state, dtrace_mstate_t *mstate) -{ - intptr_t offs = buf->dtb_offset, soffs; - intptr_t woffs; - caddr_t tomax; - size_t total; - - if (buf->dtb_flags & DTRACEBUF_INACTIVE) - return (-1); - - if ((tomax = buf->dtb_tomax) == NULL) { - dtrace_buffer_drop(buf); - return (-1); - } - - if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { - while (offs & (align - 1)) { - /* - * Assert that our alignment is off by a number which - * is itself sizeof (uint32_t) aligned. - */ - ASSERT(!((align - (offs & (align - 1))) & - (sizeof (uint32_t) - 1))); - DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); - offs += sizeof (uint32_t); - } - - if ((soffs = offs + needed) > buf->dtb_size) { - dtrace_buffer_drop(buf); - return (-1); - } - - if (mstate == NULL) - return (offs); - - mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; - mstate->dtms_scratch_size = buf->dtb_size - soffs; - mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; - - return (offs); - } - - if (buf->dtb_flags & DTRACEBUF_FILL) { - if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && - (buf->dtb_flags & DTRACEBUF_FULL)) - return (-1); - goto out; - } - - total = needed + (offs & (align - 1)); - - /* - * For a ring buffer, life is quite a bit more complicated. Before - * we can store any padding, we need to adjust our wrapping offset. - * (If we've never before wrapped or we're not about to, no adjustment - * is required.) - */ - if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || - offs + total > buf->dtb_size) { - woffs = buf->dtb_xamot_offset; - - if (offs + total > buf->dtb_size) { - /* - * We can't fit in the end of the buffer. First, a - * sanity check that we can fit in the buffer at all. - */ - if (total > buf->dtb_size) { - dtrace_buffer_drop(buf); - return (-1); - } - - /* - * We're going to be storing at the top of the buffer, - * so now we need to deal with the wrapped offset. We - * only reset our wrapped offset to 0 if it is - * currently greater than the current offset. If it - * is less than the current offset, it is because a - * previous allocation induced a wrap -- but the - * allocation didn't subsequently take the space due - * to an error or false predicate evaluation. In this - * case, we'll just leave the wrapped offset alone: if - * the wrapped offset hasn't been advanced far enough - * for this allocation, it will be adjusted in the - * lower loop. - */ - if (buf->dtb_flags & DTRACEBUF_WRAPPED) { - if (woffs >= offs) - woffs = 0; - } else { - woffs = 0; - } - - /* - * Now we know that we're going to be storing to the - * top of the buffer and that there is room for us - * there. We need to clear the buffer from the current - * offset to the end (there may be old gunk there). - */ - while (offs < buf->dtb_size) - tomax[offs++] = 0; - - /* - * We need to set our offset to zero. And because we - * are wrapping, we need to set the bit indicating as - * much. We can also adjust our needed space back - * down to the space required by the ECB -- we know - * that the top of the buffer is aligned. - */ - offs = 0; - total = needed; - buf->dtb_flags |= DTRACEBUF_WRAPPED; - } else { - /* - * There is room for us in the buffer, so we simply - * need to check the wrapped offset. - */ - if (woffs < offs) { - /* - * The wrapped offset is less than the offset. - * This can happen if we allocated buffer space - * that induced a wrap, but then we didn't - * subsequently take the space due to an error - * or false predicate evaluation. This is - * okay; we know that _this_ allocation isn't - * going to induce a wrap. We still can't - * reset the wrapped offset to be zero, - * however: the space may have been trashed in - * the previous failed probe attempt. But at - * least the wrapped offset doesn't need to - * be adjusted at all... - */ - goto out; - } - } - - while (offs + total > woffs) { - dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); - size_t size; - - if (epid == DTRACE_EPIDNONE) { - size = sizeof (uint32_t); - } else { - ASSERT(epid <= state->dts_necbs); - ASSERT(state->dts_ecbs[epid - 1] != NULL); - - size = state->dts_ecbs[epid - 1]->dte_size; - } - - ASSERT(woffs + size <= buf->dtb_size); - ASSERT(size != 0); - - if (woffs + size == buf->dtb_size) { - /* - * We've reached the end of the buffer; we want - * to set the wrapped offset to 0 and break - * out. However, if the offs is 0, then we're - * in a strange edge-condition: the amount of - * space that we want to reserve plus the size - * of the record that we're overwriting is - * greater than the size of the buffer. This - * is problematic because if we reserve the - * space but subsequently don't consume it (due - * to a failed predicate or error) the wrapped - * offset will be 0 -- yet the EPID at offset 0 - * will not be committed. This situation is - * relatively easy to deal with: if we're in - * this case, the buffer is indistinguishable - * from one that hasn't wrapped; we need only - * finish the job by clearing the wrapped bit, - * explicitly setting the offset to be 0, and - * zero'ing out the old data in the buffer. - */ - if (offs == 0) { - buf->dtb_flags &= ~DTRACEBUF_WRAPPED; - buf->dtb_offset = 0; - woffs = total; - - while (woffs < buf->dtb_size) - tomax[woffs++] = 0; - } - - woffs = 0; - break; - } - - woffs += size; - } - - /* - * We have a wrapped offset. It may be that the wrapped offset - * has become zero -- that's okay. - */ - buf->dtb_xamot_offset = woffs; - } - -out: - /* - * Now we can plow the buffer with any necessary padding. - */ - while (offs & (align - 1)) { - /* - * Assert that our alignment is off by a number which - * is itself sizeof (uint32_t) aligned. - */ - ASSERT(!((align - (offs & (align - 1))) & - (sizeof (uint32_t) - 1))); - DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); - offs += sizeof (uint32_t); - } - - if (buf->dtb_flags & DTRACEBUF_FILL) { - if (offs + needed > buf->dtb_size - state->dts_reserve) { - buf->dtb_flags |= DTRACEBUF_FULL; - return (-1); - } - } - - if (mstate == NULL) - return (offs); - - /* - * For ring buffers and fill buffers, the scratch space is always - * the inactive buffer. - */ - mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; - mstate->dtms_scratch_size = buf->dtb_size; - mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; - - return (offs); -} - -static void -dtrace_buffer_polish(dtrace_buffer_t *buf) -{ - ASSERT(buf->dtb_flags & DTRACEBUF_RING); - ASSERT(MUTEX_HELD(&dtrace_lock)); - - if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) - return; - - /* - * We need to polish the ring buffer. There are three cases: - * - * - The first (and presumably most common) is that there is no gap - * between the buffer offset and the wrapped offset. In this case, - * there is nothing in the buffer that isn't valid data; we can - * mark the buffer as polished and return. - * - * - The second (less common than the first but still more common - * than the third) is that there is a gap between the buffer offset - * and the wrapped offset, and the wrapped offset is larger than the - * buffer offset. This can happen because of an alignment issue, or - * can happen because of a call to dtrace_buffer_reserve() that - * didn't subsequently consume the buffer space. In this case, - * we need to zero the data from the buffer offset to the wrapped - * offset. - * - * - The third (and least common) is that there is a gap between the - * buffer offset and the wrapped offset, but the wrapped offset is - * _less_ than the buffer offset. This can only happen because a - * call to dtrace_buffer_reserve() induced a wrap, but the space - * was not subsequently consumed. In this case, we need to zero the - * space from the offset to the end of the buffer _and_ from the - * top of the buffer to the wrapped offset. - */ - if (buf->dtb_offset < buf->dtb_xamot_offset) { - bzero(buf->dtb_tomax + buf->dtb_offset, - buf->dtb_xamot_offset - buf->dtb_offset); - } - - if (buf->dtb_offset > buf->dtb_xamot_offset) { - bzero(buf->dtb_tomax + buf->dtb_offset, - buf->dtb_size - buf->dtb_offset); - bzero(buf->dtb_tomax, buf->dtb_xamot_offset); - } -} - -static void -dtrace_buffer_free(dtrace_buffer_t *bufs) -{ - int i; - - for (i = 0; i < NCPU; i++) { - dtrace_buffer_t *buf = &bufs[i]; - - if (buf->dtb_tomax == NULL) { - ASSERT(buf->dtb_xamot == NULL); - ASSERT(buf->dtb_size == 0); - continue; - } - - if (buf->dtb_xamot != NULL) { - ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); - kmem_free(buf->dtb_xamot, buf->dtb_size); - } - - kmem_free(buf->dtb_tomax, buf->dtb_size); - buf->dtb_size = 0; - buf->dtb_tomax = NULL; - buf->dtb_xamot = NULL; - } -} - -/* - * DTrace Enabling Functions - */ -static dtrace_enabling_t * -dtrace_enabling_create(dtrace_vstate_t *vstate) -{ - dtrace_enabling_t *enab; - - enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); - enab->dten_vstate = vstate; - - return (enab); -} - -static void -dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) -{ - dtrace_ecbdesc_t **ndesc; - size_t osize, nsize; - - /* - * We can't add to enablings after we've enabled them, or after we've - * retained them. - */ - ASSERT(enab->dten_probegen == 0); - ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); - - if (enab->dten_ndesc < enab->dten_maxdesc) { - enab->dten_desc[enab->dten_ndesc++] = ecb; - return; - } - - osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); - - if (enab->dten_maxdesc == 0) { - enab->dten_maxdesc = 1; - } else { - enab->dten_maxdesc <<= 1; - } - - ASSERT(enab->dten_ndesc < enab->dten_maxdesc); - - nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); - ndesc = kmem_zalloc(nsize, KM_SLEEP); - bcopy(enab->dten_desc, ndesc, osize); - kmem_free(enab->dten_desc, osize); - - enab->dten_desc = ndesc; - enab->dten_desc[enab->dten_ndesc++] = ecb; -} - -static void -dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, - dtrace_probedesc_t *pd) -{ - dtrace_ecbdesc_t *new; - dtrace_predicate_t *pred; - dtrace_actdesc_t *act; - - /* - * We're going to create a new ECB description that matches the - * specified ECB in every way, but has the specified probe description. - */ - new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); - - if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) - dtrace_predicate_hold(pred); - - for (act = ecb->dted_action; act != NULL; act = act->dtad_next) - dtrace_actdesc_hold(act); - - new->dted_action = ecb->dted_action; - new->dted_pred = ecb->dted_pred; - new->dted_probe = *pd; - new->dted_uarg = ecb->dted_uarg; - - dtrace_enabling_add(enab, new); -} - -static void -dtrace_enabling_dump(dtrace_enabling_t *enab) -{ - int i; - - for (i = 0; i < enab->dten_ndesc; i++) { - dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; - - cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, - desc->dtpd_provider, desc->dtpd_mod, - desc->dtpd_func, desc->dtpd_name); - } -} - -static void -dtrace_enabling_destroy(dtrace_enabling_t *enab) -{ - int i; - dtrace_ecbdesc_t *ep; - dtrace_vstate_t *vstate = enab->dten_vstate; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - - for (i = 0; i < enab->dten_ndesc; i++) { - dtrace_actdesc_t *act, *next; - dtrace_predicate_t *pred; - - ep = enab->dten_desc[i]; - - if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) - dtrace_predicate_release(pred, vstate); - - for (act = ep->dted_action; act != NULL; act = next) { - next = act->dtad_next; - dtrace_actdesc_release(act, vstate); - } - - kmem_free(ep, sizeof (dtrace_ecbdesc_t)); - } - - kmem_free(enab->dten_desc, - enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); - - /* - * If this was a retained enabling, decrement the dts_nretained count - * and take it off of the dtrace_retained list. - */ - if (enab->dten_prev != NULL || enab->dten_next != NULL || - dtrace_retained == enab) { - ASSERT(enab->dten_vstate->dtvs_state != NULL); - ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); - enab->dten_vstate->dtvs_state->dts_nretained--; - } - - if (enab->dten_prev == NULL) { - if (dtrace_retained == enab) { - dtrace_retained = enab->dten_next; - - if (dtrace_retained != NULL) - dtrace_retained->dten_prev = NULL; - } - } else { - ASSERT(enab != dtrace_retained); - ASSERT(dtrace_retained != NULL); - enab->dten_prev->dten_next = enab->dten_next; - } - - if (enab->dten_next != NULL) { - ASSERT(dtrace_retained != NULL); - enab->dten_next->dten_prev = enab->dten_prev; - } - - kmem_free(enab, sizeof (dtrace_enabling_t)); -} - -static int -dtrace_enabling_retain(dtrace_enabling_t *enab) -{ - dtrace_state_t *state; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); - ASSERT(enab->dten_vstate != NULL); - - state = enab->dten_vstate->dtvs_state; - ASSERT(state != NULL); - - /* - * We only allow each state to retain dtrace_retain_max enablings. - */ - if (state->dts_nretained >= dtrace_retain_max) - return (ENOSPC); - - state->dts_nretained++; - - if (dtrace_retained == NULL) { - dtrace_retained = enab; - return (0); - } - - enab->dten_next = dtrace_retained; - dtrace_retained->dten_prev = enab; - dtrace_retained = enab; - - return (0); -} - -static int -dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, - dtrace_probedesc_t *create) -{ - dtrace_enabling_t *new, *enab; - int found = 0, err = ENOENT; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); - ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); - ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); - ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); - - new = dtrace_enabling_create(&state->dts_vstate); - - /* - * Iterate over all retained enablings, looking for enablings that - * match the specified state. - */ - for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { - int i; - - /* - * dtvs_state can only be NULL for helper enablings -- and - * helper enablings can't be retained. - */ - ASSERT(enab->dten_vstate->dtvs_state != NULL); - - if (enab->dten_vstate->dtvs_state != state) - continue; - - /* - * Now iterate over each probe description; we're looking for - * an exact match to the specified probe description. - */ - for (i = 0; i < enab->dten_ndesc; i++) { - dtrace_ecbdesc_t *ep = enab->dten_desc[i]; - dtrace_probedesc_t *pd = &ep->dted_probe; - - if (strcmp(pd->dtpd_provider, match->dtpd_provider)) - continue; - - if (strcmp(pd->dtpd_mod, match->dtpd_mod)) - continue; - - if (strcmp(pd->dtpd_func, match->dtpd_func)) - continue; - - if (strcmp(pd->dtpd_name, match->dtpd_name)) - continue; - - /* - * We have a winning probe! Add it to our growing - * enabling. - */ - found = 1; - dtrace_enabling_addlike(new, ep, create); - } - } - - if (!found || (err = dtrace_enabling_retain(new)) != 0) { - dtrace_enabling_destroy(new); - return (err); - } - - return (0); -} - -static void -dtrace_enabling_retract(dtrace_state_t *state) -{ - dtrace_enabling_t *enab, *next; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - - /* - * Iterate over all retained enablings, destroy the enablings retained - * for the specified state. - */ - for (enab = dtrace_retained; enab != NULL; enab = next) { - next = enab->dten_next; - - /* - * dtvs_state can only be NULL for helper enablings -- and - * helper enablings can't be retained. - */ - ASSERT(enab->dten_vstate->dtvs_state != NULL); - - if (enab->dten_vstate->dtvs_state == state) { - ASSERT(state->dts_nretained > 0); - dtrace_enabling_destroy(enab); - } - } - - ASSERT(state->dts_nretained == 0); -} - -static int -dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) -{ - int i = 0; - int matched = 0; - - ASSERT(MUTEX_HELD(&cpu_lock)); - ASSERT(MUTEX_HELD(&dtrace_lock)); - - for (i = 0; i < enab->dten_ndesc; i++) { - dtrace_ecbdesc_t *ep = enab->dten_desc[i]; - - enab->dten_current = ep; - enab->dten_error = 0; - - matched += dtrace_probe_enable(&ep->dted_probe, enab); - - if (enab->dten_error != 0) { - /* - * If we get an error half-way through enabling the - * probes, we kick out -- perhaps with some number of - * them enabled. Leaving enabled probes enabled may - * be slightly confusing for user-level, but we expect - * that no one will attempt to actually drive on in - * the face of such errors. If this is an anonymous - * enabling (indicated with a NULL nmatched pointer), - * we cmn_err() a message. We aren't expecting to - * get such an error -- such as it can exist at all, - * it would be a result of corrupted DOF in the driver - * properties. - */ - if (nmatched == NULL) { - cmn_err(CE_WARN, "dtrace_enabling_match() " - "error on %p: %d", (void *)ep, - enab->dten_error); - } - - return (enab->dten_error); - } - } - - enab->dten_probegen = dtrace_probegen; - if (nmatched != NULL) - *nmatched = matched; - - return (0); -} - -static void -dtrace_enabling_matchall(void) -{ - dtrace_enabling_t *enab; - - mutex_enter(&cpu_lock); - mutex_enter(&dtrace_lock); - - /* - * Because we can be called after dtrace_detach() has been called, we - * cannot assert that there are retained enablings. We can safely - * load from dtrace_retained, however: the taskq_destroy() at the - * end of dtrace_detach() will block pending our completion. - */ - for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) - (void) dtrace_enabling_match(enab, NULL); - - mutex_exit(&dtrace_lock); - mutex_exit(&cpu_lock); -} - -static int -dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched) -{ - dtrace_enabling_t *enab; - int matched, total = 0, err; - - ASSERT(MUTEX_HELD(&cpu_lock)); - ASSERT(MUTEX_HELD(&dtrace_lock)); - - for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { - ASSERT(enab->dten_vstate->dtvs_state != NULL); - - if (enab->dten_vstate->dtvs_state != state) - continue; - - if ((err = dtrace_enabling_match(enab, &matched)) != 0) - return (err); - - total += matched; - } - - if (nmatched != NULL) - *nmatched = total; - - return (0); -} - -/* - * If an enabling is to be enabled without having matched probes (that is, if - * dtrace_state_go() is to be called on the underlying dtrace_state_t), the - * enabling must be _primed_ by creating an ECB for every ECB description. - * This must be done to assure that we know the number of speculations, the - * number of aggregations, the minimum buffer size needed, etc. before we - * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually - * enabling any probes, we create ECBs for every ECB decription, but with a - * NULL probe -- which is exactly what this function does. - */ -static void -dtrace_enabling_prime(dtrace_state_t *state) -{ - dtrace_enabling_t *enab; - int i; - - for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { - ASSERT(enab->dten_vstate->dtvs_state != NULL); - - if (enab->dten_vstate->dtvs_state != state) - continue; - - /* - * We don't want to prime an enabling more than once, lest - * we allow a malicious user to induce resource exhaustion. - * (The ECBs that result from priming an enabling aren't - * leaked -- but they also aren't deallocated until the - * consumer state is destroyed.) - */ - if (enab->dten_primed) - continue; - - for (i = 0; i < enab->dten_ndesc; i++) { - enab->dten_current = enab->dten_desc[i]; - (void) dtrace_probe_enable(NULL, enab); - } - - enab->dten_primed = 1; - } -} - -/* - * Called to indicate that probes should be provided due to retained - * enablings. This is implemented in terms of dtrace_probe_provide(), but it - * must take an initial lap through the enabling calling the dtps_provide() - * entry point explicitly to allow for autocreated probes. - */ -static void -dtrace_enabling_provide(dtrace_provider_t *prv) -{ - int i, all = 0; - dtrace_probedesc_t desc; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(MUTEX_HELD(&dtrace_provider_lock)); - - if (prv == NULL) { - all = 1; - prv = dtrace_provider; - } - - do { - dtrace_enabling_t *enab = dtrace_retained; - void *parg = prv->dtpv_arg; - - for (; enab != NULL; enab = enab->dten_next) { - for (i = 0; i < enab->dten_ndesc; i++) { - desc = enab->dten_desc[i]->dted_probe; - mutex_exit(&dtrace_lock); - prv->dtpv_pops.dtps_provide(parg, &desc); - mutex_enter(&dtrace_lock); - } - } - } while (all && (prv = prv->dtpv_next) != NULL); - - mutex_exit(&dtrace_lock); - dtrace_probe_provide(NULL, all ? NULL : prv); - mutex_enter(&dtrace_lock); -} - -/* - * DTrace DOF Functions - */ -/*ARGSUSED*/ -static void -dtrace_dof_error(dof_hdr_t *dof, const char *str) -{ - if (dtrace_err_verbose) - cmn_err(CE_WARN, "failed to process DOF: %s", str); - -#ifdef DTRACE_ERRDEBUG - dtrace_errdebug(str); -#endif -} - -/* - * Create DOF out of a currently enabled state. Right now, we only create - * DOF containing the run-time options -- but this could be expanded to create - * complete DOF representing the enabled state. - */ -static dof_hdr_t * -dtrace_dof_create(dtrace_state_t *state) -{ - dof_hdr_t *dof; - dof_sec_t *sec; - dof_optdesc_t *opt; - int i, len = sizeof (dof_hdr_t) + - roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + - sizeof (dof_optdesc_t) * DTRACEOPT_MAX; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - - dof = kmem_zalloc(len, KM_SLEEP); - dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; - dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; - dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; - dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; - - dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; - dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; - dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; - dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; - dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; - dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; - - dof->dofh_flags = 0; - dof->dofh_hdrsize = sizeof (dof_hdr_t); - dof->dofh_secsize = sizeof (dof_sec_t); - dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ - dof->dofh_secoff = sizeof (dof_hdr_t); - dof->dofh_loadsz = len; - dof->dofh_filesz = len; - dof->dofh_pad = 0; - - /* - * Fill in the option section header... - */ - sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); - sec->dofs_type = DOF_SECT_OPTDESC; - sec->dofs_align = sizeof (uint64_t); - sec->dofs_flags = DOF_SECF_LOAD; - sec->dofs_entsize = sizeof (dof_optdesc_t); - - opt = (dof_optdesc_t *)((uintptr_t)sec + - roundup(sizeof (dof_sec_t), sizeof (uint64_t))); - - sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; - sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; - - for (i = 0; i < DTRACEOPT_MAX; i++) { - opt[i].dofo_option = i; - opt[i].dofo_strtab = DOF_SECIDX_NONE; - opt[i].dofo_value = state->dts_options[i]; - } - - return (dof); -} - -static dof_hdr_t * -dtrace_dof_copyin(uintptr_t uarg, int *errp) -{ - dof_hdr_t hdr, *dof; - - ASSERT(!MUTEX_HELD(&dtrace_lock)); - - /* - * First, we're going to copyin() the sizeof (dof_hdr_t). - */ - if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { - dtrace_dof_error(NULL, "failed to copyin DOF header"); - *errp = EFAULT; - return (NULL); - } - - /* - * Now we'll allocate the entire DOF and copy it in -- provided - * that the length isn't outrageous. - */ - if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { - dtrace_dof_error(&hdr, "load size exceeds maximum"); - *errp = E2BIG; - return (NULL); - } - - if (hdr.dofh_loadsz < sizeof (hdr)) { - dtrace_dof_error(&hdr, "invalid load size"); - *errp = EINVAL; - return (NULL); - } - - dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); - - if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) { - kmem_free(dof, hdr.dofh_loadsz); - *errp = EFAULT; - return (NULL); - } - - return (dof); -} - -static dof_hdr_t * -dtrace_dof_property(const char *name) -{ - uchar_t *buf; - uint64_t loadsz; - unsigned int len, i; - dof_hdr_t *dof; - - /* - * Unfortunately, array of values in .conf files are always (and - * only) interpreted to be integer arrays. We must read our DOF - * as an integer array, and then squeeze it into a byte array. - */ - if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, - (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) - return (NULL); - - for (i = 0; i < len; i++) - buf[i] = (uchar_t)(((int *)buf)[i]); - - if (len < sizeof (dof_hdr_t)) { - ddi_prop_free(buf); - dtrace_dof_error(NULL, "truncated header"); - return (NULL); - } - - if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { - ddi_prop_free(buf); - dtrace_dof_error(NULL, "truncated DOF"); - return (NULL); - } - - if (loadsz >= dtrace_dof_maxsize) { - ddi_prop_free(buf); - dtrace_dof_error(NULL, "oversized DOF"); - return (NULL); - } - - dof = kmem_alloc(loadsz, KM_SLEEP); - bcopy(buf, dof, loadsz); - ddi_prop_free(buf); - - return (dof); -} - -static void -dtrace_dof_destroy(dof_hdr_t *dof) -{ - kmem_free(dof, dof->dofh_loadsz); -} - -/* - * Return the dof_sec_t pointer corresponding to a given section index. If the - * index is not valid, dtrace_dof_error() is called and NULL is returned. If - * a type other than DOF_SECT_NONE is specified, the header is checked against - * this type and NULL is returned if the types do not match. - */ -static dof_sec_t * -dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) -{ - dof_sec_t *sec = (dof_sec_t *)(uintptr_t) - ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); - - if (i >= dof->dofh_secnum) { - dtrace_dof_error(dof, "referenced section index is invalid"); - return (NULL); - } - - if (!(sec->dofs_flags & DOF_SECF_LOAD)) { - dtrace_dof_error(dof, "referenced section is not loadable"); - return (NULL); - } - - if (type != DOF_SECT_NONE && type != sec->dofs_type) { - dtrace_dof_error(dof, "referenced section is the wrong type"); - return (NULL); - } - - return (sec); -} - -static dtrace_probedesc_t * -dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) -{ - dof_probedesc_t *probe; - dof_sec_t *strtab; - uintptr_t daddr = (uintptr_t)dof; - uintptr_t str; - size_t size; - - if (sec->dofs_type != DOF_SECT_PROBEDESC) { - dtrace_dof_error(dof, "invalid probe section"); - return (NULL); - } - - if (sec->dofs_align != sizeof (dof_secidx_t)) { - dtrace_dof_error(dof, "bad alignment in probe description"); - return (NULL); - } - - if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { - dtrace_dof_error(dof, "truncated probe description"); - return (NULL); - } - - probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); - strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); - - if (strtab == NULL) - return (NULL); - - str = daddr + strtab->dofs_offset; - size = strtab->dofs_size; - - if (probe->dofp_provider >= strtab->dofs_size) { - dtrace_dof_error(dof, "corrupt probe provider"); - return (NULL); - } - - (void) strncpy(desc->dtpd_provider, - (char *)(str + probe->dofp_provider), - MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); - - if (probe->dofp_mod >= strtab->dofs_size) { - dtrace_dof_error(dof, "corrupt probe module"); - return (NULL); - } - - (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), - MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); - - if (probe->dofp_func >= strtab->dofs_size) { - dtrace_dof_error(dof, "corrupt probe function"); - return (NULL); - } - - (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), - MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); - - if (probe->dofp_name >= strtab->dofs_size) { - dtrace_dof_error(dof, "corrupt probe name"); - return (NULL); - } - - (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), - MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); - - return (desc); -} - -static dtrace_difo_t * -dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, - cred_t *cr) -{ - dtrace_difo_t *dp; - size_t ttl = 0; - dof_difohdr_t *dofd; - uintptr_t daddr = (uintptr_t)dof; - size_t max = dtrace_difo_maxsize; - int i, l, n; - - static const struct { - int section; - int bufoffs; - int lenoffs; - int entsize; - int align; - const char *msg; - } difo[] = { - { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), - offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), - sizeof (dif_instr_t), "multiple DIF sections" }, - - { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), - offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), - sizeof (uint64_t), "multiple integer tables" }, - - { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), - offsetof(dtrace_difo_t, dtdo_strlen), 0, - sizeof (char), "multiple string tables" }, - - { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), - offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), - sizeof (uint_t), "multiple variable tables" }, - - { DOF_SECT_NONE, 0, 0, 0, NULL } - }; - - if (sec->dofs_type != DOF_SECT_DIFOHDR) { - dtrace_dof_error(dof, "invalid DIFO header section"); - return (NULL); - } - - if (sec->dofs_align != sizeof (dof_secidx_t)) { - dtrace_dof_error(dof, "bad alignment in DIFO header"); - return (NULL); - } - - if (sec->dofs_size < sizeof (dof_difohdr_t) || - sec->dofs_size % sizeof (dof_secidx_t)) { - dtrace_dof_error(dof, "bad size in DIFO header"); - return (NULL); - } - - dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); - n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; - - dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); - dp->dtdo_rtype = dofd->dofd_rtype; - - for (l = 0; l < n; l++) { - dof_sec_t *subsec; - void **bufp; - uint32_t *lenp; - - if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, - dofd->dofd_links[l])) == NULL) - goto err; /* invalid section link */ - - if (ttl + subsec->dofs_size > max) { - dtrace_dof_error(dof, "exceeds maximum size"); - goto err; - } - - ttl += subsec->dofs_size; - - for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { - if (subsec->dofs_type != difo[i].section) - continue; - - if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { - dtrace_dof_error(dof, "section not loaded"); - goto err; - } - - if (subsec->dofs_align != difo[i].align) { - dtrace_dof_error(dof, "bad alignment"); - goto err; - } - - bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); - lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); - - if (*bufp != NULL) { - dtrace_dof_error(dof, difo[i].msg); - goto err; - } - - if (difo[i].entsize != subsec->dofs_entsize) { - dtrace_dof_error(dof, "entry size mismatch"); - goto err; - } - - if (subsec->dofs_entsize != 0 && - (subsec->dofs_size % subsec->dofs_entsize) != 0) { - dtrace_dof_error(dof, "corrupt entry size"); - goto err; - } - - *lenp = subsec->dofs_size; - *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); - bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), - *bufp, subsec->dofs_size); - - if (subsec->dofs_entsize != 0) - *lenp /= subsec->dofs_entsize; - - break; - } - - /* - * If we encounter a loadable DIFO sub-section that is not - * known to us, assume this is a broken program and fail. - */ - if (difo[i].section == DOF_SECT_NONE && - (subsec->dofs_flags & DOF_SECF_LOAD)) { - dtrace_dof_error(dof, "unrecognized DIFO subsection"); - goto err; - } - } - - if (dp->dtdo_buf == NULL) { - /* - * We can't have a DIF object without DIF text. - */ - dtrace_dof_error(dof, "missing DIF text"); - goto err; - } - - /* - * Before we validate the DIF object, run through the variable table - * looking for the strings -- if any of their size are under, we'll set - * their size to be the system-wide default string size. Note that - * this should _not_ happen if the "strsize" option has been set -- - * in this case, the compiler should have set the size to reflect the - * setting of the option. - */ - for (i = 0; i < dp->dtdo_varlen; i++) { - dtrace_difv_t *v = &dp->dtdo_vartab[i]; - dtrace_diftype_t *t = &v->dtdv_type; - - if (v->dtdv_id < DIF_VAR_OTHER_UBASE) - continue; - - if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) - t->dtdt_size = dtrace_strsize_default; - } - - if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) - goto err; - - dtrace_difo_init(dp, vstate); - return (dp); - -err: - kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); - kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); - kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); - kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); - - kmem_free(dp, sizeof (dtrace_difo_t)); - return (NULL); -} - -static dtrace_predicate_t * -dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, - cred_t *cr) -{ - dtrace_difo_t *dp; - - if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) - return (NULL); - - return (dtrace_predicate_create(dp)); -} - -static dtrace_actdesc_t * -dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, - cred_t *cr) -{ - dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; - dof_actdesc_t *desc; - dof_sec_t *difosec; - size_t offs; - uintptr_t daddr = (uintptr_t)dof; - uint64_t arg; - dtrace_actkind_t kind; - - if (sec->dofs_type != DOF_SECT_ACTDESC) { - dtrace_dof_error(dof, "invalid action section"); - return (NULL); - } - - if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { - dtrace_dof_error(dof, "truncated action description"); - return (NULL); - } - - if (sec->dofs_align != sizeof (uint64_t)) { - dtrace_dof_error(dof, "bad alignment in action description"); - return (NULL); - } - - if (sec->dofs_size < sec->dofs_entsize) { - dtrace_dof_error(dof, "section entry size exceeds total size"); - return (NULL); - } - - if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { - dtrace_dof_error(dof, "bad entry size in action description"); - return (NULL); - } - - if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { - dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); - return (NULL); - } - - for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { - desc = (dof_actdesc_t *)(daddr + - (uintptr_t)sec->dofs_offset + offs); - kind = (dtrace_actkind_t)desc->dofa_kind; - - if (DTRACEACT_ISPRINTFLIKE(kind) && - (kind != DTRACEACT_PRINTA || - desc->dofa_strtab != DOF_SECIDX_NONE)) { - dof_sec_t *strtab; - char *str, *fmt; - uint64_t i; - - /* - * printf()-like actions must have a format string. - */ - if ((strtab = dtrace_dof_sect(dof, - DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) - goto err; - - str = (char *)((uintptr_t)dof + - (uintptr_t)strtab->dofs_offset); - - for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { - if (str[i] == '\0') - break; - } - - if (i >= strtab->dofs_size) { - dtrace_dof_error(dof, "bogus format string"); - goto err; - } - - if (i == desc->dofa_arg) { - dtrace_dof_error(dof, "empty format string"); - goto err; - } - - i -= desc->dofa_arg; - fmt = kmem_alloc(i + 1, KM_SLEEP); - bcopy(&str[desc->dofa_arg], fmt, i + 1); - arg = (uint64_t)(uintptr_t)fmt; - } else { - if (kind == DTRACEACT_PRINTA) { - ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); - arg = 0; - } else { - arg = desc->dofa_arg; - } - } - - act = dtrace_actdesc_create(kind, desc->dofa_ntuple, - desc->dofa_uarg, arg); - - if (last != NULL) { - last->dtad_next = act; - } else { - first = act; - } - - last = act; - - if (desc->dofa_difo == DOF_SECIDX_NONE) - continue; - - if ((difosec = dtrace_dof_sect(dof, - DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) - goto err; - - act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); - - if (act->dtad_difo == NULL) - goto err; - } - - ASSERT(first != NULL); - return (first); - -err: - for (act = first; act != NULL; act = next) { - next = act->dtad_next; - dtrace_actdesc_release(act, vstate); - } - - return (NULL); -} - -static dtrace_ecbdesc_t * -dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, - cred_t *cr) -{ - dtrace_ecbdesc_t *ep; - dof_ecbdesc_t *ecb; - dtrace_probedesc_t *desc; - dtrace_predicate_t *pred = NULL; - - if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { - dtrace_dof_error(dof, "truncated ECB description"); - return (NULL); - } - - if (sec->dofs_align != sizeof (uint64_t)) { - dtrace_dof_error(dof, "bad alignment in ECB description"); - return (NULL); - } - - ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); - sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); - - if (sec == NULL) - return (NULL); - - ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); - ep->dted_uarg = ecb->dofe_uarg; - desc = &ep->dted_probe; - - if (dtrace_dof_probedesc(dof, sec, desc) == NULL) - goto err; - - if (ecb->dofe_pred != DOF_SECIDX_NONE) { - if ((sec = dtrace_dof_sect(dof, - DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) - goto err; - - if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) - goto err; - - ep->dted_pred.dtpdd_predicate = pred; - } - - if (ecb->dofe_actions != DOF_SECIDX_NONE) { - if ((sec = dtrace_dof_sect(dof, - DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) - goto err; - - ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); - - if (ep->dted_action == NULL) - goto err; - } - - return (ep); - -err: - if (pred != NULL) - dtrace_predicate_release(pred, vstate); - kmem_free(ep, sizeof (dtrace_ecbdesc_t)); - return (NULL); -} - -/* - * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the - * specified DOF. At present, this amounts to simply adding 'ubase' to the - * site of any user SETX relocations to account for load object base address. - * In the future, if we need other relocations, this function can be extended. - */ -static int -dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) -{ - uintptr_t daddr = (uintptr_t)dof; - dof_relohdr_t *dofr = - (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); - dof_sec_t *ss, *rs, *ts; - dof_relodesc_t *r; - uint_t i, n; - - if (sec->dofs_size < sizeof (dof_relohdr_t) || - sec->dofs_align != sizeof (dof_secidx_t)) { - dtrace_dof_error(dof, "invalid relocation header"); - return (-1); - } - - ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); - rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); - ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); - - if (ss == NULL || rs == NULL || ts == NULL) - return (-1); /* dtrace_dof_error() has been called already */ - - if (rs->dofs_entsize < sizeof (dof_relodesc_t) || - rs->dofs_align != sizeof (uint64_t)) { - dtrace_dof_error(dof, "invalid relocation section"); - return (-1); - } - - r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); - n = rs->dofs_size / rs->dofs_entsize; - - for (i = 0; i < n; i++) { - uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; - - switch (r->dofr_type) { - case DOF_RELO_NONE: - break; - case DOF_RELO_SETX: - if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + - sizeof (uint64_t) > ts->dofs_size) { - dtrace_dof_error(dof, "bad relocation offset"); - return (-1); - } - - if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { - dtrace_dof_error(dof, "misaligned setx relo"); - return (-1); - } - - *(uint64_t *)taddr += ubase; - break; - default: - dtrace_dof_error(dof, "invalid relocation type"); - return (-1); - } - - r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); - } - - return (0); -} - -/* - * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated - * header: it should be at the front of a memory region that is at least - * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in - * size. It need not be validated in any other way. - */ -static int -dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, - dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) -{ - uint64_t len = dof->dofh_loadsz, seclen; - uintptr_t daddr = (uintptr_t)dof; - dtrace_ecbdesc_t *ep; - dtrace_enabling_t *enab; - uint_t i; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); - - /* - * Check the DOF header identification bytes. In addition to checking - * valid settings, we also verify that unused bits/bytes are zeroed so - * we can use them later without fear of regressing existing binaries. - */ - if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], - DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { - dtrace_dof_error(dof, "DOF magic string mismatch"); - return (-1); - } - - if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && - dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { - dtrace_dof_error(dof, "DOF has invalid data model"); - return (-1); - } - - if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { - dtrace_dof_error(dof, "DOF encoding mismatch"); - return (-1); - } - - if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && - dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { - dtrace_dof_error(dof, "DOF version mismatch"); - return (-1); - } - - if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { - dtrace_dof_error(dof, "DOF uses unsupported instruction set"); - return (-1); - } - - if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { - dtrace_dof_error(dof, "DOF uses too many integer registers"); - return (-1); - } - - if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { - dtrace_dof_error(dof, "DOF uses too many tuple registers"); - return (-1); - } - - for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { - if (dof->dofh_ident[i] != 0) { - dtrace_dof_error(dof, "DOF has invalid ident byte set"); - return (-1); - } - } - - if (dof->dofh_flags & ~DOF_FL_VALID) { - dtrace_dof_error(dof, "DOF has invalid flag bits set"); - return (-1); - } - - if (dof->dofh_secsize == 0) { - dtrace_dof_error(dof, "zero section header size"); - return (-1); - } - - /* - * Check that the section headers don't exceed the amount of DOF - * data. Note that we cast the section size and number of sections - * to uint64_t's to prevent possible overflow in the multiplication. - */ - seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; - - if (dof->dofh_secoff > len || seclen > len || - dof->dofh_secoff + seclen > len) { - dtrace_dof_error(dof, "truncated section headers"); - return (-1); - } - - if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { - dtrace_dof_error(dof, "misaligned section headers"); - return (-1); - } - - if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { - dtrace_dof_error(dof, "misaligned section size"); - return (-1); - } - - /* - * Take an initial pass through the section headers to be sure that - * the headers don't have stray offsets. If the 'noprobes' flag is - * set, do not permit sections relating to providers, probes, or args. - */ - for (i = 0; i < dof->dofh_secnum; i++) { - dof_sec_t *sec = (dof_sec_t *)(daddr + - (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); - - if (noprobes) { - switch (sec->dofs_type) { - case DOF_SECT_PROVIDER: - case DOF_SECT_PROBES: - case DOF_SECT_PRARGS: - case DOF_SECT_PROFFS: - dtrace_dof_error(dof, "illegal sections " - "for enabling"); - return (-1); - } - } - - if (!(sec->dofs_flags & DOF_SECF_LOAD)) - continue; /* just ignore non-loadable sections */ - - if (sec->dofs_align & (sec->dofs_align - 1)) { - dtrace_dof_error(dof, "bad section alignment"); - return (-1); - } - - if (sec->dofs_offset & (sec->dofs_align - 1)) { - dtrace_dof_error(dof, "misaligned section"); - return (-1); - } - - if (sec->dofs_offset > len || sec->dofs_size > len || - sec->dofs_offset + sec->dofs_size > len) { - dtrace_dof_error(dof, "corrupt section header"); - return (-1); - } - - if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + - sec->dofs_offset + sec->dofs_size - 1) != '\0') { - dtrace_dof_error(dof, "non-terminating string table"); - return (-1); - } - } - - /* - * Take a second pass through the sections and locate and perform any - * relocations that are present. We do this after the first pass to - * be sure that all sections have had their headers validated. - */ - for (i = 0; i < dof->dofh_secnum; i++) { - dof_sec_t *sec = (dof_sec_t *)(daddr + - (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); - - if (!(sec->dofs_flags & DOF_SECF_LOAD)) - continue; /* skip sections that are not loadable */ - - switch (sec->dofs_type) { - case DOF_SECT_URELHDR: - if (dtrace_dof_relocate(dof, sec, ubase) != 0) - return (-1); - break; - } - } - - if ((enab = *enabp) == NULL) - enab = *enabp = dtrace_enabling_create(vstate); - - for (i = 0; i < dof->dofh_secnum; i++) { - dof_sec_t *sec = (dof_sec_t *)(daddr + - (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); - - if (sec->dofs_type != DOF_SECT_ECBDESC) - continue; - - if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { - dtrace_enabling_destroy(enab); - *enabp = NULL; - return (-1); - } - - dtrace_enabling_add(enab, ep); - } - - return (0); -} - -/* - * Process DOF for any options. This routine assumes that the DOF has been - * at least processed by dtrace_dof_slurp(). - */ -static int -dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) -{ - int i, rval; - uint32_t entsize; - size_t offs; - dof_optdesc_t *desc; - - for (i = 0; i < dof->dofh_secnum; i++) { - dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + - (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); - - if (sec->dofs_type != DOF_SECT_OPTDESC) - continue; - - if (sec->dofs_align != sizeof (uint64_t)) { - dtrace_dof_error(dof, "bad alignment in " - "option description"); - return (EINVAL); - } - - if ((entsize = sec->dofs_entsize) == 0) { - dtrace_dof_error(dof, "zeroed option entry size"); - return (EINVAL); - } - - if (entsize < sizeof (dof_optdesc_t)) { - dtrace_dof_error(dof, "bad option entry size"); - return (EINVAL); - } - - for (offs = 0; offs < sec->dofs_size; offs += entsize) { - desc = (dof_optdesc_t *)((uintptr_t)dof + - (uintptr_t)sec->dofs_offset + offs); - - if (desc->dofo_strtab != DOF_SECIDX_NONE) { - dtrace_dof_error(dof, "non-zero option string"); - return (EINVAL); - } - - if (desc->dofo_value == DTRACEOPT_UNSET) { - dtrace_dof_error(dof, "unset option"); - return (EINVAL); - } - - if ((rval = dtrace_state_option(state, - desc->dofo_option, desc->dofo_value)) != 0) { - dtrace_dof_error(dof, "rejected option"); - return (rval); - } - } - } - - return (0); -} - -/* - * DTrace Consumer State Functions - */ -int -dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) -{ - size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; - void *base; - uintptr_t limit; - dtrace_dynvar_t *dvar, *next, *start; - int i; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); - - bzero(dstate, sizeof (dtrace_dstate_t)); - - if ((dstate->dtds_chunksize = chunksize) == 0) - dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; - - if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) - size = min; - - if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) - return (ENOMEM); - - dstate->dtds_size = size; - dstate->dtds_base = base; - dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); - bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); - - hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); - - if (hashsize != 1 && (hashsize & 1)) - hashsize--; - - dstate->dtds_hashsize = hashsize; - dstate->dtds_hash = dstate->dtds_base; - - /* - * Set all of our hash buckets to point to the single sink, and (if - * it hasn't already been set), set the sink's hash value to be the - * sink sentinel value. The sink is needed for dynamic variable - * lookups to know that they have iterated over an entire, valid hash - * chain. - */ - for (i = 0; i < hashsize; i++) - dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; - - if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) - dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; - - /* - * Determine number of active CPUs. Divide free list evenly among - * active CPUs. - */ - start = (dtrace_dynvar_t *) - ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); - limit = (uintptr_t)base + size; - - maxper = (limit - (uintptr_t)start) / NCPU; - maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; - - for (i = 0; i < NCPU; i++) { - dstate->dtds_percpu[i].dtdsc_free = dvar = start; - - /* - * If we don't even have enough chunks to make it once through - * NCPUs, we're just going to allocate everything to the first - * CPU. And if we're on the last CPU, we're going to allocate - * whatever is left over. In either case, we set the limit to - * be the limit of the dynamic variable space. - */ - if (maxper == 0 || i == NCPU - 1) { - limit = (uintptr_t)base + size; - start = NULL; - } else { - limit = (uintptr_t)start + maxper; - start = (dtrace_dynvar_t *)limit; - } - - ASSERT(limit <= (uintptr_t)base + size); - - for (;;) { - next = (dtrace_dynvar_t *)((uintptr_t)dvar + - dstate->dtds_chunksize); - - if ((uintptr_t)next + dstate->dtds_chunksize >= limit) - break; - - dvar->dtdv_next = next; - dvar = next; - } - - if (maxper == 0) - break; - } - - return (0); -} - -void -dtrace_dstate_fini(dtrace_dstate_t *dstate) -{ - ASSERT(MUTEX_HELD(&cpu_lock)); - - if (dstate->dtds_base == NULL) - return; - - kmem_free(dstate->dtds_base, dstate->dtds_size); - kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); -} - -static void -dtrace_vstate_fini(dtrace_vstate_t *vstate) -{ - /* - * Logical XOR, where are you? - */ - ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); - - if (vstate->dtvs_nglobals > 0) { - kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * - sizeof (dtrace_statvar_t *)); - } - - if (vstate->dtvs_ntlocals > 0) { - kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * - sizeof (dtrace_difv_t)); - } - - ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); - - if (vstate->dtvs_nlocals > 0) { - kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * - sizeof (dtrace_statvar_t *)); - } -} - -static void -dtrace_state_clean(dtrace_state_t *state) -{ - if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) - return; - - dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); - dtrace_speculation_clean(state); -} - -static void -dtrace_state_deadman(dtrace_state_t *state) -{ - hrtime_t now; - - dtrace_sync(); - - now = dtrace_gethrtime(); - - if (state != dtrace_anon.dta_state && - now - state->dts_laststatus >= dtrace_deadman_user) - return; - - /* - * We must be sure that dts_alive never appears to be less than the - * value upon entry to dtrace_state_deadman(), and because we lack a - * dtrace_cas64(), we cannot store to it atomically. We thus instead - * store INT64_MAX to it, followed by a memory barrier, followed by - * the new value. This assures that dts_alive never appears to be - * less than its true value, regardless of the order in which the - * stores to the underlying storage are issued. - */ - state->dts_alive = INT64_MAX; - dtrace_membar_producer(); - state->dts_alive = now; -} - -dtrace_state_t * -dtrace_state_create(dev_t *devp, cred_t *cr) -{ - minor_t minor; - major_t major; - char c[30]; - dtrace_state_t *state; - dtrace_optval_t *opt; - int bufsize = NCPU * sizeof (dtrace_buffer_t), i; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(MUTEX_HELD(&cpu_lock)); - - minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, - VM_BESTFIT | VM_SLEEP); - - if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { - vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); - return (NULL); - } - - state = ddi_get_soft_state(dtrace_softstate, minor); - state->dts_epid = DTRACE_EPIDNONE + 1; - - (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); - state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, - NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); - - if (devp != NULL) { - major = getemajor(*devp); - } else { - major = ddi_driver_major(dtrace_devi); - } - - state->dts_dev = makedevice(major, minor); - - if (devp != NULL) - *devp = state->dts_dev; - - /* - * We allocate NCPU buffers. On the one hand, this can be quite - * a bit of memory per instance (nearly 36K on a Starcat). On the - * other hand, it saves an additional memory reference in the probe - * path. - */ - state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); - state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); - state->dts_cleaner = CYCLIC_NONE; - state->dts_deadman = CYCLIC_NONE; - state->dts_vstate.dtvs_state = state; - - for (i = 0; i < DTRACEOPT_MAX; i++) - state->dts_options[i] = DTRACEOPT_UNSET; - - /* - * Set the default options. - */ - opt = state->dts_options; - opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; - opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; - opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; - opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; - opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; - opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; - opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; - opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; - opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; - opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; - opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; - opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; - opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; - opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; - - state->dts_activity = DTRACE_ACTIVITY_INACTIVE; - - /* - * Depending on the user credentials, we set flag bits which alter probe - * visibility or the amount of destructiveness allowed. In the case of - * actual anonymous tracing, or the possession of all privileges, all of - * the normal checks are bypassed. - */ - if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { - state->dts_cred.dcr_visible = DTRACE_CRV_ALL; - state->dts_cred.dcr_action = DTRACE_CRA_ALL; - } else { - /* - * Set up the credentials for this instantiation. We take a - * hold on the credential to prevent it from disappearing on - * us; this in turn prevents the zone_t referenced by this - * credential from disappearing. This means that we can - * examine the credential and the zone from probe context. - */ - crhold(cr); - state->dts_cred.dcr_cred = cr; - - /* - * CRA_PROC means "we have *some* privilege for dtrace" and - * unlocks the use of variables like pid, zonename, etc. - */ - if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || - PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { - state->dts_cred.dcr_action |= DTRACE_CRA_PROC; - } - - /* - * dtrace_user allows use of syscall and profile providers. - * If the user also has proc_owner and/or proc_zone, we - * extend the scope to include additional visibility and - * destructive power. - */ - if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { - if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { - state->dts_cred.dcr_visible |= - DTRACE_CRV_ALLPROC; - - state->dts_cred.dcr_action |= - DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; - } - - if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { - state->dts_cred.dcr_visible |= - DTRACE_CRV_ALLZONE; - - state->dts_cred.dcr_action |= - DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; - } - - /* - * If we have all privs in whatever zone this is, - * we can do destructive things to processes which - * have altered credentials. - */ - if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), - cr->cr_zone->zone_privset)) { - state->dts_cred.dcr_action |= - DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; - } - } - - /* - * Holding the dtrace_kernel privilege also implies that - * the user has the dtrace_user privilege from a visibility - * perspective. But without further privileges, some - * destructive actions are not available. - */ - if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { - /* - * Make all probes in all zones visible. However, - * this doesn't mean that all actions become available - * to all zones. - */ - state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | - DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; - - state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | - DTRACE_CRA_PROC; - /* - * Holding proc_owner means that destructive actions - * for *this* zone are allowed. - */ - if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) - state->dts_cred.dcr_action |= - DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; - - /* - * Holding proc_zone means that destructive actions - * for this user/group ID in all zones is allowed. - */ - if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) - state->dts_cred.dcr_action |= - DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; - - /* - * If we have all privs in whatever zone this is, - * we can do destructive things to processes which - * have altered credentials. - */ - if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), - cr->cr_zone->zone_privset)) { - state->dts_cred.dcr_action |= - DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; - } - } - - /* - * Holding the dtrace_proc privilege gives control over fasttrap - * and pid providers. We need to grant wider destructive - * privileges in the event that the user has proc_owner and/or - * proc_zone. - */ - if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { - if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) - state->dts_cred.dcr_action |= - DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; - - if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) - state->dts_cred.dcr_action |= - DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; - } - } - - return (state); -} - -static int -dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) -{ - dtrace_optval_t *opt = state->dts_options, size; - processorid_t cpu; - int flags = 0, rval; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(MUTEX_HELD(&cpu_lock)); - ASSERT(which < DTRACEOPT_MAX); - ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || - (state == dtrace_anon.dta_state && - state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); - - if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) - return (0); - - if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) - cpu = opt[DTRACEOPT_CPU]; - - if (which == DTRACEOPT_SPECSIZE) - flags |= DTRACEBUF_NOSWITCH; - - if (which == DTRACEOPT_BUFSIZE) { - if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) - flags |= DTRACEBUF_RING; - - if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) - flags |= DTRACEBUF_FILL; - - if (state != dtrace_anon.dta_state || - state->dts_activity != DTRACE_ACTIVITY_ACTIVE) - flags |= DTRACEBUF_INACTIVE; - } - - for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) { - /* - * The size must be 8-byte aligned. If the size is not 8-byte - * aligned, drop it down by the difference. - */ - if (size & (sizeof (uint64_t) - 1)) - size -= size & (sizeof (uint64_t) - 1); - - if (size < state->dts_reserve) { - /* - * Buffers always must be large enough to accommodate - * their prereserved space. We return E2BIG instead - * of ENOMEM in this case to allow for user-level - * software to differentiate the cases. - */ - return (E2BIG); - } - - rval = dtrace_buffer_alloc(buf, size, flags, cpu); - - if (rval != ENOMEM) { - opt[which] = size; - return (rval); - } - - if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) - return (rval); - } - - return (ENOMEM); -} - -static int -dtrace_state_buffers(dtrace_state_t *state) -{ - dtrace_speculation_t *spec = state->dts_speculations; - int rval, i; - - if ((rval = dtrace_state_buffer(state, state->dts_buffer, - DTRACEOPT_BUFSIZE)) != 0) - return (rval); - - if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, - DTRACEOPT_AGGSIZE)) != 0) - return (rval); - - for (i = 0; i < state->dts_nspeculations; i++) { - if ((rval = dtrace_state_buffer(state, - spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) - return (rval); - } - - return (0); -} - -static void -dtrace_state_prereserve(dtrace_state_t *state) -{ - dtrace_ecb_t *ecb; - dtrace_probe_t *probe; - - state->dts_reserve = 0; - - if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) - return; - - /* - * If our buffer policy is a "fill" buffer policy, we need to set the - * prereserved space to be the space required by the END probes. - */ - probe = dtrace_probes[dtrace_probeid_end - 1]; - ASSERT(probe != NULL); - - for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { - if (ecb->dte_state != state) - continue; - - state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; - } -} - -static int -dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) -{ - dtrace_optval_t *opt = state->dts_options, sz, nspec; - dtrace_speculation_t *spec; - dtrace_buffer_t *buf; - cyc_handler_t hdlr; - cyc_time_t when; - int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); - dtrace_icookie_t cookie; - - mutex_enter(&cpu_lock); - mutex_enter(&dtrace_lock); - - if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { - rval = EBUSY; - goto out; - } - - /* - * Before we can perform any checks, we must prime all of the - * retained enablings that correspond to this state. - */ - dtrace_enabling_prime(state); - - if (state->dts_destructive && !state->dts_cred.dcr_destructive) { - rval = EACCES; - goto out; - } - - dtrace_state_prereserve(state); - - /* - * Now we want to do is try to allocate our speculations. - * We do not automatically resize the number of speculations; if - * this fails, we will fail the operation. - */ - nspec = opt[DTRACEOPT_NSPEC]; - ASSERT(nspec != DTRACEOPT_UNSET); - - if (nspec > INT_MAX) { - rval = ENOMEM; - goto out; - } - - spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); - - if (spec == NULL) { - rval = ENOMEM; - goto out; - } - - state->dts_speculations = spec; - state->dts_nspeculations = (int)nspec; - - for (i = 0; i < nspec; i++) { - if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { - rval = ENOMEM; - goto err; - } - - spec[i].dtsp_buffer = buf; - } - - if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { - if (dtrace_anon.dta_state == NULL) { - rval = ENOENT; - goto out; - } - - if (state->dts_necbs != 0) { - rval = EALREADY; - goto out; - } - - state->dts_anon = dtrace_anon_grab(); - ASSERT(state->dts_anon != NULL); - state = state->dts_anon; - - /* - * We want "grabanon" to be set in the grabbed state, so we'll - * copy that option value from the grabbing state into the - * grabbed state. - */ - state->dts_options[DTRACEOPT_GRABANON] = - opt[DTRACEOPT_GRABANON]; - - *cpu = dtrace_anon.dta_beganon; - - /* - * If the anonymous state is active (as it almost certainly - * is if the anonymous enabling ultimately matched anything), - * we don't allow any further option processing -- but we - * don't return failure. - */ - if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) - goto out; - } - - if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && - opt[DTRACEOPT_AGGSIZE] != 0) { - if (state->dts_aggregations == NULL) { - /* - * We're not going to create an aggregation buffer - * because we don't have any ECBs that contain - * aggregations -- set this option to 0. - */ - opt[DTRACEOPT_AGGSIZE] = 0; - } else { - /* - * If we have an aggregation buffer, we must also have - * a buffer to use as scratch. - */ - if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || - opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { - opt[DTRACEOPT_BUFSIZE] = state->dts_needed; - } - } - } - - if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && - opt[DTRACEOPT_SPECSIZE] != 0) { - if (!state->dts_speculates) { - /* - * We're not going to create speculation buffers - * because we don't have any ECBs that actually - * speculate -- set the speculation size to 0. - */ - opt[DTRACEOPT_SPECSIZE] = 0; - } - } - - /* - * The bare minimum size for any buffer that we're actually going to - * do anything to is sizeof (uint64_t). - */ - sz = sizeof (uint64_t); - - if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || - (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || - (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { - /* - * A buffer size has been explicitly set to 0 (or to a size - * that will be adjusted to 0) and we need the space -- we - * need to return failure. We return ENOSPC to differentiate - * it from failing to allocate a buffer due to failure to meet - * the reserve (for which we return E2BIG). - */ - rval = ENOSPC; - goto out; - } - - if ((rval = dtrace_state_buffers(state)) != 0) - goto err; - - if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) - sz = dtrace_dstate_defsize; - - do { - rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); - - if (rval == 0) - break; - - if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) - goto err; - } while (sz >>= 1); - - opt[DTRACEOPT_DYNVARSIZE] = sz; - - if (rval != 0) - goto err; - - if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) - opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; - - if (opt[DTRACEOPT_CLEANRATE] == 0) - opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; - - if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) - opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; - - if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) - opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; - - hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; - hdlr.cyh_arg = state; - hdlr.cyh_level = CY_LOW_LEVEL; - - when.cyt_when = 0; - when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; - - state->dts_cleaner = cyclic_add(&hdlr, &when); - - hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; - hdlr.cyh_arg = state; - hdlr.cyh_level = CY_LOW_LEVEL; - - when.cyt_when = 0; - when.cyt_interval = dtrace_deadman_interval; - - state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); - state->dts_deadman = cyclic_add(&hdlr, &when); - - state->dts_activity = DTRACE_ACTIVITY_WARMUP; - - /* - * Now it's time to actually fire the BEGIN probe. We need to disable - * interrupts here both to record the CPU on which we fired the BEGIN - * probe (the data from this CPU will be processed first at user - * level) and to manually activate the buffer for this CPU. - */ - cookie = dtrace_interrupt_disable(); - *cpu = CPU->cpu_id; - ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); - state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; - - dtrace_probe(dtrace_probeid_begin, - (uint64_t)(uintptr_t)state, 0, 0, 0, 0); - dtrace_interrupt_enable(cookie); - /* - * We may have had an exit action from a BEGIN probe; only change our - * state to ACTIVE if we're still in WARMUP. - */ - ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || - state->dts_activity == DTRACE_ACTIVITY_DRAINING); - - if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) - state->dts_activity = DTRACE_ACTIVITY_ACTIVE; - - /* - * Regardless of whether or not now we're in ACTIVE or DRAINING, we - * want each CPU to transition its principal buffer out of the - * INACTIVE state. Doing this assures that no CPU will suddenly begin - * processing an ECB halfway down a probe's ECB chain; all CPUs will - * atomically transition from processing none of a state's ECBs to - * processing all of them. - */ - dtrace_xcall(DTRACE_CPUALL, - (dtrace_xcall_t)dtrace_buffer_activate, state); - goto out; - -err: - dtrace_buffer_free(state->dts_buffer); - dtrace_buffer_free(state->dts_aggbuffer); - - if ((nspec = state->dts_nspeculations) == 0) { - ASSERT(state->dts_speculations == NULL); - goto out; - } - - spec = state->dts_speculations; - ASSERT(spec != NULL); - - for (i = 0; i < state->dts_nspeculations; i++) { - if ((buf = spec[i].dtsp_buffer) == NULL) - break; - - dtrace_buffer_free(buf); - kmem_free(buf, bufsize); - } - - kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); - state->dts_nspeculations = 0; - state->dts_speculations = NULL; - -out: - mutex_exit(&dtrace_lock); - mutex_exit(&cpu_lock); - - return (rval); -} - -static int -dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) -{ - dtrace_icookie_t cookie; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - - if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && - state->dts_activity != DTRACE_ACTIVITY_DRAINING) - return (EINVAL); - - /* - * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync - * to be sure that every CPU has seen it. See below for the details - * on why this is done. - */ - state->dts_activity = DTRACE_ACTIVITY_DRAINING; - dtrace_sync(); - - /* - * By this point, it is impossible for any CPU to be still processing - * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to - * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any - * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() - * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN - * iff we're in the END probe. - */ - state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; - dtrace_sync(); - ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); - - /* - * Finally, we can release the reserve and call the END probe. We - * disable interrupts across calling the END probe to allow us to - * return the CPU on which we actually called the END probe. This - * allows user-land to be sure that this CPU's principal buffer is - * processed last. - */ - state->dts_reserve = 0; - - cookie = dtrace_interrupt_disable(); - *cpu = CPU->cpu_id; - dtrace_probe(dtrace_probeid_end, - (uint64_t)(uintptr_t)state, 0, 0, 0, 0); - dtrace_interrupt_enable(cookie); - - state->dts_activity = DTRACE_ACTIVITY_STOPPED; - dtrace_sync(); - - return (0); -} - -static int -dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, - dtrace_optval_t val) -{ - ASSERT(MUTEX_HELD(&dtrace_lock)); - - if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) - return (EBUSY); - - if (option >= DTRACEOPT_MAX) - return (EINVAL); - - if (option != DTRACEOPT_CPU && val < 0) - return (EINVAL); - - switch (option) { - case DTRACEOPT_DESTRUCTIVE: - if (dtrace_destructive_disallow) - return (EACCES); - - state->dts_cred.dcr_destructive = 1; - break; - - case DTRACEOPT_BUFSIZE: - case DTRACEOPT_DYNVARSIZE: - case DTRACEOPT_AGGSIZE: - case DTRACEOPT_SPECSIZE: - case DTRACEOPT_STRSIZE: - if (val < 0) - return (EINVAL); - - if (val >= LONG_MAX) { - /* - * If this is an otherwise negative value, set it to - * the highest multiple of 128m less than LONG_MAX. - * Technically, we're adjusting the size without - * regard to the buffer resizing policy, but in fact, - * this has no effect -- if we set the buffer size to - * ~LONG_MAX and the buffer policy is ultimately set to - * be "manual", the buffer allocation is guaranteed to - * fail, if only because the allocation requires two - * buffers. (We set the the size to the highest - * multiple of 128m because it ensures that the size - * will remain a multiple of a megabyte when - * repeatedly halved -- all the way down to 15m.) - */ - val = LONG_MAX - (1 << 27) + 1; - } - } - - state->dts_options[option] = val; - - return (0); -} - -static void -dtrace_state_destroy(dtrace_state_t *state) -{ - dtrace_ecb_t *ecb; - dtrace_vstate_t *vstate = &state->dts_vstate; - minor_t minor = getminor(state->dts_dev); - int i, bufsize = NCPU * sizeof (dtrace_buffer_t); - dtrace_speculation_t *spec = state->dts_speculations; - int nspec = state->dts_nspeculations; - uint32_t match; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(MUTEX_HELD(&cpu_lock)); - - /* - * First, retract any retained enablings for this state. - */ - dtrace_enabling_retract(state); - ASSERT(state->dts_nretained == 0); - - if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || - state->dts_activity == DTRACE_ACTIVITY_DRAINING) { - /* - * We have managed to come into dtrace_state_destroy() on a - * hot enabling -- almost certainly because of a disorderly - * shutdown of a consumer. (That is, a consumer that is - * exiting without having called dtrace_stop().) In this case, - * we're going to set our activity to be KILLED, and then - * issue a sync to be sure that everyone is out of probe - * context before we start blowing away ECBs. - */ - state->dts_activity = DTRACE_ACTIVITY_KILLED; - dtrace_sync(); - } - - /* - * Release the credential hold we took in dtrace_state_create(). - */ - if (state->dts_cred.dcr_cred != NULL) - crfree(state->dts_cred.dcr_cred); - - /* - * Now we can safely disable and destroy any enabled probes. Because - * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress - * (especially if they're all enabled), we take two passes through the - * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and - * in the second we disable whatever is left over. - */ - for (match = DTRACE_PRIV_KERNEL; ; match = 0) { - for (i = 0; i < state->dts_necbs; i++) { - if ((ecb = state->dts_ecbs[i]) == NULL) - continue; - - if (match && ecb->dte_probe != NULL) { - dtrace_probe_t *probe = ecb->dte_probe; - dtrace_provider_t *prov = probe->dtpr_provider; - - if (!(prov->dtpv_priv.dtpp_flags & match)) - continue; - } - - dtrace_ecb_disable(ecb); - dtrace_ecb_destroy(ecb); - } - - if (!match) - break; - } - - /* - * Before we free the buffers, perform one more sync to assure that - * every CPU is out of probe context. - */ - dtrace_sync(); - - dtrace_buffer_free(state->dts_buffer); - dtrace_buffer_free(state->dts_aggbuffer); - - for (i = 0; i < nspec; i++) - dtrace_buffer_free(spec[i].dtsp_buffer); - - if (state->dts_cleaner != CYCLIC_NONE) - cyclic_remove(state->dts_cleaner); - - if (state->dts_deadman != CYCLIC_NONE) - cyclic_remove(state->dts_deadman); - - dtrace_dstate_fini(&vstate->dtvs_dynvars); - dtrace_vstate_fini(vstate); - kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); - - if (state->dts_aggregations != NULL) { -#ifdef DEBUG - for (i = 0; i < state->dts_naggregations; i++) - ASSERT(state->dts_aggregations[i] == NULL); -#endif - ASSERT(state->dts_naggregations > 0); - kmem_free(state->dts_aggregations, - state->dts_naggregations * sizeof (dtrace_aggregation_t *)); - } - - kmem_free(state->dts_buffer, bufsize); - kmem_free(state->dts_aggbuffer, bufsize); - - for (i = 0; i < nspec; i++) - kmem_free(spec[i].dtsp_buffer, bufsize); - - kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); - - dtrace_format_destroy(state); - - vmem_destroy(state->dts_aggid_arena); - ddi_soft_state_free(dtrace_softstate, minor); - vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); -} - -/* - * DTrace Anonymous Enabling Functions - */ -static dtrace_state_t * -dtrace_anon_grab(void) -{ - dtrace_state_t *state; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - - if ((state = dtrace_anon.dta_state) == NULL) { - ASSERT(dtrace_anon.dta_enabling == NULL); - return (NULL); - } - - ASSERT(dtrace_anon.dta_enabling != NULL); - ASSERT(dtrace_retained != NULL); - - dtrace_enabling_destroy(dtrace_anon.dta_enabling); - dtrace_anon.dta_enabling = NULL; - dtrace_anon.dta_state = NULL; - - return (state); -} - -static void -dtrace_anon_property(void) -{ - int i, rv; - dtrace_state_t *state; - dof_hdr_t *dof; - char c[32]; /* enough for "dof-data-" + digits */ - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(MUTEX_HELD(&cpu_lock)); - - for (i = 0; ; i++) { - (void) snprintf(c, sizeof (c), "dof-data-%d", i); - - dtrace_err_verbose = 1; - - if ((dof = dtrace_dof_property(c)) == NULL) { - dtrace_err_verbose = 0; - break; - } - - /* - * We want to create anonymous state, so we need to transition - * the kernel debugger to indicate that DTrace is active. If - * this fails (e.g. because the debugger has modified text in - * some way), we won't continue with the processing. - */ - if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { - cmn_err(CE_NOTE, "kernel debugger active; anonymous " - "enabling ignored."); - dtrace_dof_destroy(dof); - break; - } - - /* - * If we haven't allocated an anonymous state, we'll do so now. - */ - if ((state = dtrace_anon.dta_state) == NULL) { - state = dtrace_state_create(NULL, NULL); - dtrace_anon.dta_state = state; - - if (state == NULL) { - /* - * This basically shouldn't happen: the only - * failure mode from dtrace_state_create() is a - * failure of ddi_soft_state_zalloc() that - * itself should never happen. Still, the - * interface allows for a failure mode, and - * we want to fail as gracefully as possible: - * we'll emit an error message and cease - * processing anonymous state in this case. - */ - cmn_err(CE_WARN, "failed to create " - "anonymous state"); - dtrace_dof_destroy(dof); - break; - } - } - - rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), - &dtrace_anon.dta_enabling, 0, B_TRUE); - - if (rv == 0) - rv = dtrace_dof_options(dof, state); - - dtrace_err_verbose = 0; - dtrace_dof_destroy(dof); - - if (rv != 0) { - /* - * This is malformed DOF; chuck any anonymous state - * that we created. - */ - ASSERT(dtrace_anon.dta_enabling == NULL); - dtrace_state_destroy(state); - dtrace_anon.dta_state = NULL; - break; - } - - ASSERT(dtrace_anon.dta_enabling != NULL); - } - - if (dtrace_anon.dta_enabling != NULL) { - int rval; - - /* - * dtrace_enabling_retain() can only fail because we are - * trying to retain more enablings than are allowed -- but - * we only have one anonymous enabling, and we are guaranteed - * to be allowed at least one retained enabling; we assert - * that dtrace_enabling_retain() returns success. - */ - rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); - ASSERT(rval == 0); - - dtrace_enabling_dump(dtrace_anon.dta_enabling); - } -} - -/* - * DTrace Helper Functions - */ -static void -dtrace_helper_trace(dtrace_helper_action_t *helper, - dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) -{ - uint32_t size, next, nnext, i; - dtrace_helptrace_t *ent; - uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; - - if (!dtrace_helptrace_enabled) - return; - - ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); - - /* - * What would a tracing framework be without its own tracing - * framework? (Well, a hell of a lot simpler, for starters...) - */ - size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * - sizeof (uint64_t) - sizeof (uint64_t); - - /* - * Iterate until we can allocate a slot in the trace buffer. - */ - do { - next = dtrace_helptrace_next; - - if (next + size < dtrace_helptrace_bufsize) { - nnext = next + size; - } else { - nnext = size; - } - } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); - - /* - * We have our slot; fill it in. - */ - if (nnext == size) - next = 0; - - ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; - ent->dtht_helper = helper; - ent->dtht_where = where; - ent->dtht_nlocals = vstate->dtvs_nlocals; - - ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? - mstate->dtms_fltoffs : -1; - ent->dtht_fault = DTRACE_FLAGS2FLT(flags); - ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; - - for (i = 0; i < vstate->dtvs_nlocals; i++) { - dtrace_statvar_t *svar; - - if ((svar = vstate->dtvs_locals[i]) == NULL) - continue; - - ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); - ent->dtht_locals[i] = - ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; - } -} - -static uint64_t -dtrace_helper(int which, dtrace_mstate_t *mstate, - dtrace_state_t *state, uint64_t arg0, uint64_t arg1) -{ - uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; - uint64_t sarg0 = mstate->dtms_arg[0]; - uint64_t sarg1 = mstate->dtms_arg[1]; - uint64_t rval; - dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; - dtrace_helper_action_t *helper; - dtrace_vstate_t *vstate; - dtrace_difo_t *pred; - int i, trace = dtrace_helptrace_enabled; - - ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); - - if (helpers == NULL) - return (0); - - if ((helper = helpers->dthps_actions[which]) == NULL) - return (0); - - vstate = &helpers->dthps_vstate; - mstate->dtms_arg[0] = arg0; - mstate->dtms_arg[1] = arg1; - - /* - * Now iterate over each helper. If its predicate evaluates to 'true', - * we'll call the corresponding actions. Note that the below calls - * to dtrace_dif_emulate() may set faults in machine state. This is - * okay: our caller (the outer dtrace_dif_emulate()) will simply plow - * the stored DIF offset with its own (which is the desired behavior). - * Also, note the calls to dtrace_dif_emulate() may allocate scratch - * from machine state; this is okay, too. - */ - for (; helper != NULL; helper = helper->dtha_next) { - if ((pred = helper->dtha_predicate) != NULL) { - if (trace) - dtrace_helper_trace(helper, mstate, vstate, 0); - - if (!dtrace_dif_emulate(pred, mstate, vstate, state)) - goto next; - - if (*flags & CPU_DTRACE_FAULT) - goto err; - } - - for (i = 0; i < helper->dtha_nactions; i++) { - if (trace) - dtrace_helper_trace(helper, - mstate, vstate, i + 1); - - rval = dtrace_dif_emulate(helper->dtha_actions[i], - mstate, vstate, state); - - if (*flags & CPU_DTRACE_FAULT) - goto err; - } - -next: - if (trace) - dtrace_helper_trace(helper, mstate, vstate, - DTRACE_HELPTRACE_NEXT); - } - - if (trace) - dtrace_helper_trace(helper, mstate, vstate, - DTRACE_HELPTRACE_DONE); - - /* - * Restore the arg0 that we saved upon entry. - */ - mstate->dtms_arg[0] = sarg0; - mstate->dtms_arg[1] = sarg1; - - return (rval); - -err: - if (trace) - dtrace_helper_trace(helper, mstate, vstate, - DTRACE_HELPTRACE_ERR); - - /* - * Restore the arg0 that we saved upon entry. - */ - mstate->dtms_arg[0] = sarg0; - mstate->dtms_arg[1] = sarg1; - - return (NULL); -} - -static void -dtrace_helper_action_destroy(dtrace_helper_action_t *helper, - dtrace_vstate_t *vstate) -{ - int i; - - if (helper->dtha_predicate != NULL) - dtrace_difo_release(helper->dtha_predicate, vstate); - - for (i = 0; i < helper->dtha_nactions; i++) { - ASSERT(helper->dtha_actions[i] != NULL); - dtrace_difo_release(helper->dtha_actions[i], vstate); - } - - kmem_free(helper->dtha_actions, - helper->dtha_nactions * sizeof (dtrace_difo_t *)); - kmem_free(helper, sizeof (dtrace_helper_action_t)); -} - -static int -dtrace_helper_destroygen(int gen) -{ - proc_t *p = curproc; - dtrace_helpers_t *help = p->p_dtrace_helpers; - dtrace_vstate_t *vstate; - int i; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - - if (help == NULL || gen > help->dthps_generation) - return (EINVAL); - - vstate = &help->dthps_vstate; - - for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { - dtrace_helper_action_t *last = NULL, *h, *next; - - for (h = help->dthps_actions[i]; h != NULL; h = next) { - next = h->dtha_next; - - if (h->dtha_generation == gen) { - if (last != NULL) { - last->dtha_next = next; - } else { - help->dthps_actions[i] = next; - } - - dtrace_helper_action_destroy(h, vstate); - } else { - last = h; - } - } - } - - /* - * Interate until we've cleared out all helper providers with the - * given generation number. - */ - for (;;) { - dtrace_helper_provider_t *prov; - - /* - * Look for a helper provider with the right generation. We - * have to start back at the beginning of the list each time - * because we drop dtrace_lock. It's unlikely that we'll make - * more than two passes. - */ - for (i = 0; i < help->dthps_nprovs; i++) { - prov = help->dthps_provs[i]; - - if (prov->dthp_generation == gen) - break; - } - - /* - * If there were no matches, we're done. - */ - if (i == help->dthps_nprovs) - break; - - /* - * Move the last helper provider into this slot. - */ - help->dthps_nprovs--; - help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; - help->dthps_provs[help->dthps_nprovs] = NULL; - - mutex_exit(&dtrace_lock); - - /* - * If we have a meta provider, remove this helper provider. - */ - mutex_enter(&dtrace_meta_lock); - if (dtrace_meta_pid != NULL) { - ASSERT(dtrace_deferred_pid == NULL); - dtrace_helper_provider_remove(&prov->dthp_prov, - p->p_pid); - } - mutex_exit(&dtrace_meta_lock); - - dtrace_helper_provider_destroy(prov); - - mutex_enter(&dtrace_lock); - } - - return (0); -} - -static int -dtrace_helper_validate(dtrace_helper_action_t *helper) -{ - int err = 0, i; - dtrace_difo_t *dp; - - if ((dp = helper->dtha_predicate) != NULL) - err += dtrace_difo_validate_helper(dp); - - for (i = 0; i < helper->dtha_nactions; i++) - err += dtrace_difo_validate_helper(helper->dtha_actions[i]); - - return (err == 0); -} - -static int -dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) -{ - dtrace_helpers_t *help; - dtrace_helper_action_t *helper, *last; - dtrace_actdesc_t *act; - dtrace_vstate_t *vstate; - dtrace_predicate_t *pred; - int count = 0, nactions = 0, i; - - if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) - return (EINVAL); - - help = curproc->p_dtrace_helpers; - last = help->dthps_actions[which]; - vstate = &help->dthps_vstate; - - for (count = 0; last != NULL; last = last->dtha_next) { - count++; - if (last->dtha_next == NULL) - break; - } - - /* - * If we already have dtrace_helper_actions_max helper actions for this - * helper action type, we'll refuse to add a new one. - */ - if (count >= dtrace_helper_actions_max) - return (ENOSPC); - - helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); - helper->dtha_generation = help->dthps_generation; - - if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { - ASSERT(pred->dtp_difo != NULL); - dtrace_difo_hold(pred->dtp_difo); - helper->dtha_predicate = pred->dtp_difo; - } - - for (act = ep->dted_action; act != NULL; act = act->dtad_next) { - if (act->dtad_kind != DTRACEACT_DIFEXPR) - goto err; - - if (act->dtad_difo == NULL) - goto err; - - nactions++; - } - - helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * - (helper->dtha_nactions = nactions), KM_SLEEP); - - for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { - dtrace_difo_hold(act->dtad_difo); - helper->dtha_actions[i++] = act->dtad_difo; - } - - if (!dtrace_helper_validate(helper)) - goto err; - - if (last == NULL) { - help->dthps_actions[which] = helper; - } else { - last->dtha_next = helper; - } - - if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { - dtrace_helptrace_nlocals = vstate->dtvs_nlocals; - dtrace_helptrace_next = 0; - } - - return (0); -err: - dtrace_helper_action_destroy(helper, vstate); - return (EINVAL); -} - -static void -dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, - dof_helper_t *dofhp) -{ - ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); - - mutex_enter(&dtrace_meta_lock); - mutex_enter(&dtrace_lock); - - if (!dtrace_attached() || dtrace_meta_pid == NULL) { - /* - * If the dtrace module is loaded but not attached, or if - * there aren't isn't a meta provider registered to deal with - * these provider descriptions, we need to postpone creating - * the actual providers until later. - */ - - if (help->dthps_next == NULL && help->dthps_prev == NULL && - dtrace_deferred_pid != help) { - help->dthps_deferred = 1; - help->dthps_pid = p->p_pid; - help->dthps_next = dtrace_deferred_pid; - help->dthps_prev = NULL; - if (dtrace_deferred_pid != NULL) - dtrace_deferred_pid->dthps_prev = help; - dtrace_deferred_pid = help; - } - - mutex_exit(&dtrace_lock); - - } else if (dofhp != NULL) { - /* - * If the dtrace module is loaded and we have a particular - * helper provider description, pass that off to the - * meta provider. - */ - - mutex_exit(&dtrace_lock); - - dtrace_helper_provide(dofhp, p->p_pid); - - } else { - /* - * Otherwise, just pass all the helper provider descriptions - * off to the meta provider. - */ - - int i; - mutex_exit(&dtrace_lock); - - for (i = 0; i < help->dthps_nprovs; i++) { - dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, - p->p_pid); - } - } - - mutex_exit(&dtrace_meta_lock); -} - -static int -dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) -{ - dtrace_helpers_t *help; - dtrace_helper_provider_t *hprov, **tmp_provs; - uint_t tmp_maxprovs, i; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - - help = curproc->p_dtrace_helpers; - ASSERT(help != NULL); - - /* - * If we already have dtrace_helper_providers_max helper providers, - * we're refuse to add a new one. - */ - if (help->dthps_nprovs >= dtrace_helper_providers_max) - return (ENOSPC); - - /* - * Check to make sure this isn't a duplicate. - */ - for (i = 0; i < help->dthps_nprovs; i++) { - if (dofhp->dofhp_addr == - help->dthps_provs[i]->dthp_prov.dofhp_addr) - return (EALREADY); - } - - hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); - hprov->dthp_prov = *dofhp; - hprov->dthp_ref = 1; - hprov->dthp_generation = gen; - - /* - * Allocate a bigger table for helper providers if it's already full. - */ - if (help->dthps_maxprovs == help->dthps_nprovs) { - tmp_maxprovs = help->dthps_maxprovs; - tmp_provs = help->dthps_provs; - - if (help->dthps_maxprovs == 0) - help->dthps_maxprovs = 2; - else - help->dthps_maxprovs *= 2; - if (help->dthps_maxprovs > dtrace_helper_providers_max) - help->dthps_maxprovs = dtrace_helper_providers_max; - - ASSERT(tmp_maxprovs < help->dthps_maxprovs); - - help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * - sizeof (dtrace_helper_provider_t *), KM_SLEEP); - - if (tmp_provs != NULL) { - bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * - sizeof (dtrace_helper_provider_t *)); - kmem_free(tmp_provs, tmp_maxprovs * - sizeof (dtrace_helper_provider_t *)); - } - } - - help->dthps_provs[help->dthps_nprovs] = hprov; - help->dthps_nprovs++; - - return (0); -} - -static void -dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) -{ - mutex_enter(&dtrace_lock); - - if (--hprov->dthp_ref == 0) { - dof_hdr_t *dof; - mutex_exit(&dtrace_lock); - dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; - dtrace_dof_destroy(dof); - kmem_free(hprov, sizeof (dtrace_helper_provider_t)); - } else { - mutex_exit(&dtrace_lock); - } -} - -static int -dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) -{ - uintptr_t daddr = (uintptr_t)dof; - dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; - dof_provider_t *provider; - dof_probe_t *probe; - uint8_t *arg; - char *strtab, *typestr; - dof_stridx_t typeidx; - size_t typesz; - uint_t nprobes, j, k; - - ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); - - if (sec->dofs_offset & (sizeof (uint_t) - 1)) { - dtrace_dof_error(dof, "misaligned section offset"); - return (-1); - } - - /* - * The section needs to be large enough to contain the DOF provider - * structure appropriate for the given version. - */ - if (sec->dofs_size < - ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? - offsetof(dof_provider_t, dofpv_prenoffs) : - sizeof (dof_provider_t))) { - dtrace_dof_error(dof, "provider section too small"); - return (-1); - } - - provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); - str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); - prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); - arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); - off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); - - if (str_sec == NULL || prb_sec == NULL || - arg_sec == NULL || off_sec == NULL) - return (-1); - - enoff_sec = NULL; - - if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && - provider->dofpv_prenoffs != DOF_SECT_NONE && - (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, - provider->dofpv_prenoffs)) == NULL) - return (-1); - - strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); - - if (provider->dofpv_name >= str_sec->dofs_size || - strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { - dtrace_dof_error(dof, "invalid provider name"); - return (-1); - } - - if (prb_sec->dofs_entsize == 0 || - prb_sec->dofs_entsize > prb_sec->dofs_size) { - dtrace_dof_error(dof, "invalid entry size"); - return (-1); - } - - if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { - dtrace_dof_error(dof, "misaligned entry size"); - return (-1); - } - - if (off_sec->dofs_entsize != sizeof (uint32_t)) { - dtrace_dof_error(dof, "invalid entry size"); - return (-1); - } - - if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { - dtrace_dof_error(dof, "misaligned section offset"); - return (-1); - } - - if (arg_sec->dofs_entsize != sizeof (uint8_t)) { - dtrace_dof_error(dof, "invalid entry size"); - return (-1); - } - - arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); - - nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; - - /* - * Take a pass through the probes to check for errors. - */ - for (j = 0; j < nprobes; j++) { - probe = (dof_probe_t *)(uintptr_t)(daddr + - prb_sec->dofs_offset + j * prb_sec->dofs_entsize); - - if (probe->dofpr_func >= str_sec->dofs_size) { - dtrace_dof_error(dof, "invalid function name"); - return (-1); - } - - if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { - dtrace_dof_error(dof, "function name too long"); - return (-1); - } - - if (probe->dofpr_name >= str_sec->dofs_size || - strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { - dtrace_dof_error(dof, "invalid probe name"); - return (-1); - } - - /* - * The offset count must not wrap the index, and the offsets - * must also not overflow the section's data. - */ - if (probe->dofpr_offidx + probe->dofpr_noffs < - probe->dofpr_offidx || - (probe->dofpr_offidx + probe->dofpr_noffs) * - off_sec->dofs_entsize > off_sec->dofs_size) { - dtrace_dof_error(dof, "invalid probe offset"); - return (-1); - } - - if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { - /* - * If there's no is-enabled offset section, make sure - * there aren't any is-enabled offsets. Otherwise - * perform the same checks as for probe offsets - * (immediately above). - */ - if (enoff_sec == NULL) { - if (probe->dofpr_enoffidx != 0 || - probe->dofpr_nenoffs != 0) { - dtrace_dof_error(dof, "is-enabled " - "offsets with null section"); - return (-1); - } - } else if (probe->dofpr_enoffidx + - probe->dofpr_nenoffs < probe->dofpr_enoffidx || - (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * - enoff_sec->dofs_entsize > enoff_sec->dofs_size) { - dtrace_dof_error(dof, "invalid is-enabled " - "offset"); - return (-1); - } - - if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { - dtrace_dof_error(dof, "zero probe and " - "is-enabled offsets"); - return (-1); - } - } else if (probe->dofpr_noffs == 0) { - dtrace_dof_error(dof, "zero probe offsets"); - return (-1); - } - - if (probe->dofpr_argidx + probe->dofpr_xargc < - probe->dofpr_argidx || - (probe->dofpr_argidx + probe->dofpr_xargc) * - arg_sec->dofs_entsize > arg_sec->dofs_size) { - dtrace_dof_error(dof, "invalid args"); - return (-1); - } - - typeidx = probe->dofpr_nargv; - typestr = strtab + probe->dofpr_nargv; - for (k = 0; k < probe->dofpr_nargc; k++) { - if (typeidx >= str_sec->dofs_size) { - dtrace_dof_error(dof, "bad " - "native argument type"); - return (-1); - } - - typesz = strlen(typestr) + 1; - if (typesz > DTRACE_ARGTYPELEN) { - dtrace_dof_error(dof, "native " - "argument type too long"); - return (-1); - } - typeidx += typesz; - typestr += typesz; - } - - typeidx = probe->dofpr_xargv; - typestr = strtab + probe->dofpr_xargv; - for (k = 0; k < probe->dofpr_xargc; k++) { - if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { - dtrace_dof_error(dof, "bad " - "native argument index"); - return (-1); - } - - if (typeidx >= str_sec->dofs_size) { - dtrace_dof_error(dof, "bad " - "translated argument type"); - return (-1); - } - - typesz = strlen(typestr) + 1; - if (typesz > DTRACE_ARGTYPELEN) { - dtrace_dof_error(dof, "translated argument " - "type too long"); - return (-1); - } - - typeidx += typesz; - typestr += typesz; - } - } - - return (0); -} - -static int -dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) -{ - dtrace_helpers_t *help; - dtrace_vstate_t *vstate; - dtrace_enabling_t *enab = NULL; - int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; - uintptr_t daddr = (uintptr_t)dof; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - - if ((help = curproc->p_dtrace_helpers) == NULL) - help = dtrace_helpers_create(curproc); - - vstate = &help->dthps_vstate; - - if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, - dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { - dtrace_dof_destroy(dof); - return (rv); - } - - /* - * Look for helper providers and validate their descriptions. - */ - if (dhp != NULL) { - for (i = 0; i < dof->dofh_secnum; i++) { - dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + - dof->dofh_secoff + i * dof->dofh_secsize); - - if (sec->dofs_type != DOF_SECT_PROVIDER) - continue; - - if (dtrace_helper_provider_validate(dof, sec) != 0) { - dtrace_enabling_destroy(enab); - dtrace_dof_destroy(dof); - return (-1); - } - - nprovs++; - } - } - - /* - * Now we need to walk through the ECB descriptions in the enabling. - */ - for (i = 0; i < enab->dten_ndesc; i++) { - dtrace_ecbdesc_t *ep = enab->dten_desc[i]; - dtrace_probedesc_t *desc = &ep->dted_probe; - - if (strcmp(desc->dtpd_provider, "dtrace") != 0) - continue; - - if (strcmp(desc->dtpd_mod, "helper") != 0) - continue; - - if (strcmp(desc->dtpd_func, "ustack") != 0) - continue; - - if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, - ep)) != 0) { - /* - * Adding this helper action failed -- we are now going - * to rip out the entire generation and return failure. - */ - (void) dtrace_helper_destroygen(help->dthps_generation); - dtrace_enabling_destroy(enab); - dtrace_dof_destroy(dof); - return (-1); - } - - nhelpers++; - } - - if (nhelpers < enab->dten_ndesc) - dtrace_dof_error(dof, "unmatched helpers"); - - gen = help->dthps_generation++; - dtrace_enabling_destroy(enab); - - if (dhp != NULL && nprovs > 0) { - dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; - if (dtrace_helper_provider_add(dhp, gen) == 0) { - mutex_exit(&dtrace_lock); - dtrace_helper_provider_register(curproc, help, dhp); - mutex_enter(&dtrace_lock); - - destroy = 0; - } - } - - if (destroy) - dtrace_dof_destroy(dof); - - return (gen); -} - -static dtrace_helpers_t * -dtrace_helpers_create(proc_t *p) -{ - dtrace_helpers_t *help; - - ASSERT(MUTEX_HELD(&dtrace_lock)); - ASSERT(p->p_dtrace_helpers == NULL); - - help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); - help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * - DTRACE_NHELPER_ACTIONS, KM_SLEEP); - - p->p_dtrace_helpers = help; - dtrace_helpers++; - - return (help); -} - -static void -dtrace_helpers_destroy(void) -{ - dtrace_helpers_t *help; - dtrace_vstate_t *vstate; - proc_t *p = curproc; - int i; - - mutex_enter(&dtrace_lock); - - ASSERT(p->p_dtrace_helpers != NULL); - ASSERT(dtrace_helpers > 0); - - help = p->p_dtrace_helpers; - vstate = &help->dthps_vstate; - - /* - * We're now going to lose the help from this process. - */ - p->p_dtrace_helpers = NULL; - dtrace_sync(); - - /* - * Destory the helper actions. - */ - for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { - dtrace_helper_action_t *h, *next; - - for (h = help->dthps_actions[i]; h != NULL; h = next) { - next = h->dtha_next; - dtrace_helper_action_destroy(h, vstate); - h = next; - } - } - - mutex_exit(&dtrace_lock); - - /* - * Destroy the helper providers. - */ - if (help->dthps_maxprovs > 0) { - mutex_enter(&dtrace_meta_lock); - if (dtrace_meta_pid != NULL) { - ASSERT(dtrace_deferred_pid == NULL); - - for (i = 0; i < help->dthps_nprovs; i++) { - dtrace_helper_provider_remove( - &help->dthps_provs[i]->dthp_prov, p->p_pid); - } - } else { - mutex_enter(&dtrace_lock); - ASSERT(help->dthps_deferred == 0 || - help->dthps_next != NULL || - help->dthps_prev != NULL || - help == dtrace_deferred_pid); - - /* - * Remove the helper from the deferred list. - */ - if (help->dthps_next != NULL) - help->dthps_next->dthps_prev = help->dthps_prev; - if (help->dthps_prev != NULL) - help->dthps_prev->dthps_next = help->dthps_next; - if (dtrace_deferred_pid == help) { - dtrace_deferred_pid = help->dthps_next; - ASSERT(help->dthps_prev == NULL); - } - - mutex_exit(&dtrace_lock); - } - - mutex_exit(&dtrace_meta_lock); - - for (i = 0; i < help->dthps_nprovs; i++) { - dtrace_helper_provider_destroy(help->dthps_provs[i]); - } - - kmem_free(help->dthps_provs, help->dthps_maxprovs * - sizeof (dtrace_helper_provider_t *)); - } - - mutex_enter(&dtrace_lock); - - dtrace_vstate_fini(&help->dthps_vstate); - kmem_free(help->dthps_actions, - sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); - kmem_free(help, sizeof (dtrace_helpers_t)); - - --dtrace_helpers; - mutex_exit(&dtrace_lock); -} - -static void -dtrace_helpers_duplicate(proc_t *from, proc_t *to) -{ - dtrace_helpers_t *help, *newhelp; - dtrace_helper_action_t *helper, *new, *last; - dtrace_difo_t *dp; - dtrace_vstate_t *vstate; - int i, j, sz, hasprovs = 0; - - mutex_enter(&dtrace_lock); - ASSERT(from->p_dtrace_helpers != NULL); - ASSERT(dtrace_helpers > 0); - - help = from->p_dtrace_helpers; - newhelp = dtrace_helpers_create(to); - ASSERT(to->p_dtrace_helpers != NULL); - - newhelp->dthps_generation = help->dthps_generation; - vstate = &newhelp->dthps_vstate; - - /* - * Duplicate the helper actions. - */ - for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { - if ((helper = help->dthps_actions[i]) == NULL) - continue; - - for (last = NULL; helper != NULL; helper = helper->dtha_next) { - new = kmem_zalloc(sizeof (dtrace_helper_action_t), - KM_SLEEP); - new->dtha_generation = helper->dtha_generation; - - if ((dp = helper->dtha_predicate) != NULL) { - dp = dtrace_difo_duplicate(dp, vstate); - new->dtha_predicate = dp; - } - - new->dtha_nactions = helper->dtha_nactions; - sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; - new->dtha_actions = kmem_alloc(sz, KM_SLEEP); - - for (j = 0; j < new->dtha_nactions; j++) { - dtrace_difo_t *dp = helper->dtha_actions[j]; - - ASSERT(dp != NULL); - dp = dtrace_difo_duplicate(dp, vstate); - new->dtha_actions[j] = dp; - } - - if (last != NULL) { - last->dtha_next = new; - } else { - newhelp->dthps_actions[i] = new; - } - - last = new; - } - } - - /* - * Duplicate the helper providers and register them with the - * DTrace framework. - */ - if (help->dthps_nprovs > 0) { - newhelp->dthps_nprovs = help->dthps_nprovs; - newhelp->dthps_maxprovs = help->dthps_nprovs; - newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * - sizeof (dtrace_helper_provider_t *), KM_SLEEP); - for (i = 0; i < newhelp->dthps_nprovs; i++) { - newhelp->dthps_provs[i] = help->dthps_provs[i]; - newhelp->dthps_provs[i]->dthp_ref++; - } - - hasprovs = 1; - } - - mutex_exit(&dtrace_lock); - - if (hasprovs) - dtrace_helper_provider_register(to, newhelp, NULL); -} - -/* - * DTrace Hook Functions - */ -static void -dtrace_module_loaded(struct modctl *ctl) -{ - dtrace_provider_t *prv; - - mutex_enter(&dtrace_provider_lock); - mutex_enter(&mod_lock); - - ASSERT(ctl->mod_busy); - - /* - * We're going to call each providers per-module provide operation - * specifying only this module. - */ - for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) - prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); - - mutex_exit(&mod_lock); - mutex_exit(&dtrace_provider_lock); - - /* - * If we have any retained enablings, we need to match against them. - * Enabling probes requires that cpu_lock be held, and we cannot hold - * cpu_lock here -- it is legal for cpu_lock to be held when loading a - * module. (In particular, this happens when loading scheduling - * classes.) So if we have any retained enablings, we need to dispatch - * our task queue to do the match for us. - */ - mutex_enter(&dtrace_lock); - - if (dtrace_retained == NULL) { - mutex_exit(&dtrace_lock); - return; - } - - (void) taskq_dispatch(dtrace_taskq, - (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); - - mutex_exit(&dtrace_lock); - - /* - * And now, for a little heuristic sleaze: in general, we want to - * match modules as soon as they load. However, we cannot guarantee - * this, because it would lead us to the lock ordering violation - * outlined above. The common case, of course, is that cpu_lock is - * _not_ held -- so we delay here for a clock tick, hoping that that's - * long enough for the task queue to do its work. If it's not, it's - * not a serious problem -- it just means that the module that we - * just loaded may not be immediately instrumentable. - */ - delay(1); -} - -static void -dtrace_module_unloaded(struct modctl *ctl) -{ - dtrace_probe_t template, *probe, *first, *next; - dtrace_provider_t *prov; - - template.dtpr_mod = ctl->mod_modname; - - mutex_enter(&dtrace_provider_lock); - mutex_enter(&mod_lock); - mutex_enter(&dtrace_lock); - - if (dtrace_bymod == NULL) { - /* - * The DTrace module is loaded (obviously) but not attached; - * we don't have any work to do. - */ - mutex_exit(&dtrace_provider_lock); - mutex_exit(&mod_lock); - mutex_exit(&dtrace_lock); - return; - } - - for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); - probe != NULL; probe = probe->dtpr_nextmod) { - if (probe->dtpr_ecb != NULL) { - mutex_exit(&dtrace_provider_lock); - mutex_exit(&mod_lock); - mutex_exit(&dtrace_lock); - - /* - * This shouldn't _actually_ be possible -- we're - * unloading a module that has an enabled probe in it. - * (It's normally up to the provider to make sure that - * this can't happen.) However, because dtps_enable() - * doesn't have a failure mode, there can be an - * enable/unload race. Upshot: we don't want to - * assert, but we're not going to disable the - * probe, either. - */ - if (dtrace_err_verbose) { - cmn_err(CE_WARN, "unloaded module '%s' had " - "enabled probes", ctl->mod_modname); - } - - return; - } - } - - probe = first; - - for (first = NULL; probe != NULL; probe = next) { - ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); - - dtrace_probes[probe->dtpr_id - 1] = NULL; - - next = probe->dtpr_nextmod; - dtrace_hash_remove(dtrace_bymod, probe); - dtrace_hash_remove(dtrace_byfunc, probe); - dtrace_hash_remove(dtrace_byname, probe); - - if (first == NULL) { - first = probe; - probe->dtpr_nextmod = NULL; - } else { - probe->dtpr_nextmod = first; - first = probe; - } - } - - /* - * We've removed all of the module's probes from the hash chains and - * from the probe array. Now issue a dtrace_sync() to be sure that - * everyone has cleared out from any probe array processing. - */ - dtrace_sync(); - - for (probe = first; probe != NULL; probe = first) { - first = probe->dtpr_nextmod; - prov = probe->dtpr_provider; - prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, - probe->dtpr_arg); - kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); - kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); - kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); - vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); - kmem_free(probe, sizeof (dtrace_probe_t)); - } - - mutex_exit(&dtrace_lock); - mutex_exit(&mod_lock); - mutex_exit(&dtrace_provider_lock); -} - -void -dtrace_suspend(void) -{ - dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); -} - -void -dtrace_resume(void) -{ - dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); -} - -static int -dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) -{ - ASSERT(MUTEX_HELD(&cpu_lock)); - mutex_enter(&dtrace_lock); - - switch (what) { - case CPU_CONFIG: { - dtrace_state_t *state; - dtrace_optval_t *opt, rs, c; - - /* - * For now, we only allocate a new buffer for anonymous state. - */ - if ((state = dtrace_anon.dta_state) == NULL) - break; - - if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) - break; - - opt = state->dts_options; - c = opt[DTRACEOPT_CPU]; - - if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) - break; - - /* - * Regardless of what the actual policy is, we're going to - * temporarily set our resize policy to be manual. We're - * also going to temporarily set our CPU option to denote - * the newly configured CPU. - */ - rs = opt[DTRACEOPT_BUFRESIZE]; - opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; - opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; - - (void) dtrace_state_buffers(state); - - opt[DTRACEOPT_BUFRESIZE] = rs; - opt[DTRACEOPT_CPU] = c; - - break; - } - - case CPU_UNCONFIG: - /* - * We don't free the buffer in the CPU_UNCONFIG case. (The - * buffer will be freed when the consumer exits.) - */ - break; - - default: - break; - } - - mutex_exit(&dtrace_lock); - return (0); -} - -static void -dtrace_cpu_setup_initial(processorid_t cpu) -{ - (void) dtrace_cpu_setup(CPU_CONFIG, cpu); -} - -static void -dtrace_toxrange_add(uintptr_t base, uintptr_t limit) -{ - if (dtrace_toxranges >= dtrace_toxranges_max) { - int osize, nsize; - dtrace_toxrange_t *range; - - osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); - - if (osize == 0) { - ASSERT(dtrace_toxrange == NULL); - ASSERT(dtrace_toxranges_max == 0); - dtrace_toxranges_max = 1; - } else { - dtrace_toxranges_max <<= 1; - } - - nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); - range = kmem_zalloc(nsize, KM_SLEEP); - - if (dtrace_toxrange != NULL) { - ASSERT(osize != 0); - bcopy(dtrace_toxrange, range, osize); - kmem_free(dtrace_toxrange, osize); - } - - dtrace_toxrange = range; - } - - ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); - ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); - - dtrace_toxrange[dtrace_toxranges].dtt_base = base; - dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; - dtrace_toxranges++; -} - -/* - * DTrace Driver Cookbook Functions - */ -/*ARGSUSED*/ -static int -dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) -{ - dtrace_provider_id_t id; - dtrace_state_t *state = NULL; - dtrace_enabling_t *enab; - - mutex_enter(&cpu_lock); - mutex_enter(&dtrace_provider_lock); - mutex_enter(&dtrace_lock); - - if (ddi_soft_state_init(&dtrace_softstate, - sizeof (dtrace_state_t), 0) != 0) { - cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); - mutex_exit(&cpu_lock); - mutex_exit(&dtrace_provider_lock); - mutex_exit(&dtrace_lock); - return (DDI_FAILURE); - } - - if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, - DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || - ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, - DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { - cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); - ddi_remove_minor_node(devi, NULL); - ddi_soft_state_fini(&dtrace_softstate); - mutex_exit(&cpu_lock); - mutex_exit(&dtrace_provider_lock); - mutex_exit(&dtrace_lock); - return (DDI_FAILURE); - } - - ddi_report_dev(devi); - dtrace_devi = devi; - - dtrace_modload = dtrace_module_loaded; - dtrace_modunload = dtrace_module_unloaded; - dtrace_cpu_init = dtrace_cpu_setup_initial; - dtrace_helpers_cleanup = dtrace_helpers_destroy; - dtrace_helpers_fork = dtrace_helpers_duplicate; - dtrace_cpustart_init = dtrace_suspend; - dtrace_cpustart_fini = dtrace_resume; - dtrace_debugger_init = dtrace_suspend; - dtrace_debugger_fini = dtrace_resume; - - register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); - - ASSERT(MUTEX_HELD(&cpu_lock)); - - dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, - NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); - dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, - UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, - VM_SLEEP | VMC_IDENTIFIER); - dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, - 1, INT_MAX, 0); - - dtrace_state_cache = kmem_cache_create("dtrace_state_cache", - sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, - NULL, NULL, NULL, NULL, NULL, 0); - - ASSERT(MUTEX_HELD(&cpu_lock)); - dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), - offsetof(dtrace_probe_t, dtpr_nextmod), - offsetof(dtrace_probe_t, dtpr_prevmod)); - - dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), - offsetof(dtrace_probe_t, dtpr_nextfunc), - offsetof(dtrace_probe_t, dtpr_prevfunc)); - - dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), - offsetof(dtrace_probe_t, dtpr_nextname), - offsetof(dtrace_probe_t, dtpr_prevname)); - - if (dtrace_retain_max < 1) { - cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " - "setting to 1", dtrace_retain_max); - dtrace_retain_max = 1; - } - - /* - * Now discover our toxic ranges. - */ - dtrace_toxic_ranges(dtrace_toxrange_add); - - /* - * Before we register ourselves as a provider to our own framework, - * we would like to assert that dtrace_provider is NULL -- but that's - * not true if we were loaded as a dependency of a DTrace provider. - * Once we've registered, we can assert that dtrace_provider is our - * pseudo provider. - */ - (void) dtrace_register("dtrace", &dtrace_provider_attr, - DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); - - ASSERT(dtrace_provider != NULL); - ASSERT((dtrace_provider_id_t)dtrace_provider == id); - - dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) - dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); - dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) - dtrace_provider, NULL, NULL, "END", 0, NULL); - dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) - dtrace_provider, NULL, NULL, "ERROR", 1, NULL); - - dtrace_anon_property(); - mutex_exit(&cpu_lock); - - /* - * If DTrace helper tracing is enabled, we need to allocate the - * trace buffer and initialize the values. - */ - if (dtrace_helptrace_enabled) { - ASSERT(dtrace_helptrace_buffer == NULL); - dtrace_helptrace_buffer = - kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); - dtrace_helptrace_next = 0; - } - - /* - * If there are already providers, we must ask them to provide their - * probes, and then match any anonymous enabling against them. Note - * that there should be no other retained enablings at this time: - * the only retained enablings at this time should be the anonymous - * enabling. - */ - if (dtrace_anon.dta_enabling != NULL) { - ASSERT(dtrace_retained == dtrace_anon.dta_enabling); - - dtrace_enabling_provide(NULL); - state = dtrace_anon.dta_state; - - /* - * We couldn't hold cpu_lock across the above call to - * dtrace_enabling_provide(), but we must hold it to actually - * enable the probes. We have to drop all of our locks, pick - * up cpu_lock, and regain our locks before matching the - * retained anonymous enabling. - */ - mutex_exit(&dtrace_lock); - mutex_exit(&dtrace_provider_lock); - - mutex_enter(&cpu_lock); - mutex_enter(&dtrace_provider_lock); - mutex_enter(&dtrace_lock); - - if ((enab = dtrace_anon.dta_enabling) != NULL) - (void) dtrace_enabling_match(enab, NULL); - - mutex_exit(&cpu_lock); - } - - mutex_exit(&dtrace_lock); - mutex_exit(&dtrace_provider_lock); - - if (state != NULL) { - /* - * If we created any anonymous state, set it going now. - */ - (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); - } - - return (DDI_SUCCESS); -} - -/*ARGSUSED*/ -static int -dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) -{ - dtrace_state_t *state; - uint32_t priv; - uid_t uid; - zoneid_t zoneid; - - if (getminor(*devp) == DTRACEMNRN_HELPER) - return (0); - - /* - * If this wasn't an open with the "helper" minor, then it must be - * the "dtrace" minor. - */ - ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE); - - /* - * If no DTRACE_PRIV_* bits are set in the credential, then the - * caller lacks sufficient permission to do anything with DTrace. - */ - dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); - if (priv == DTRACE_PRIV_NONE) - return (EACCES); - - /* - * Ask all providers to provide all their probes. - */ - mutex_enter(&dtrace_provider_lock); - dtrace_probe_provide(NULL, NULL); - mutex_exit(&dtrace_provider_lock); - - mutex_enter(&cpu_lock); - mutex_enter(&dtrace_lock); - dtrace_opens++; - dtrace_membar_producer(); - - /* - * If the kernel debugger is active (that is, if the kernel debugger - * modified text in some way), we won't allow the open. - */ - if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { - dtrace_opens--; - mutex_exit(&cpu_lock); - mutex_exit(&dtrace_lock); - return (EBUSY); - } - - state = dtrace_state_create(devp, cred_p); - mutex_exit(&cpu_lock); - - if (state == NULL) { - if (--dtrace_opens == 0) - (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); - mutex_exit(&dtrace_lock); - return (EAGAIN); - } - - mutex_exit(&dtrace_lock); - - return (0); -} - -/*ARGSUSED*/ -static int -dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) -{ - minor_t minor = getminor(dev); - dtrace_state_t *state; - - if (minor == DTRACEMNRN_HELPER) - return (0); - - state = ddi_get_soft_state(dtrace_softstate, minor); - - mutex_enter(&cpu_lock); - mutex_enter(&dtrace_lock); - - if (state->dts_anon) { - /* - * There is anonymous state. Destroy that first. - */ - ASSERT(dtrace_anon.dta_state == NULL); - dtrace_state_destroy(state->dts_anon); - } - - dtrace_state_destroy(state); - ASSERT(dtrace_opens > 0); - if (--dtrace_opens == 0) - (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); - - mutex_exit(&dtrace_lock); - mutex_exit(&cpu_lock); - - return (0); -} - -/*ARGSUSED*/ -static int -dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) -{ - int rval; - dof_helper_t help, *dhp = NULL; - - switch (cmd) { - case DTRACEHIOC_ADDDOF: - if (copyin((void *)arg, &help, sizeof (help)) != 0) { - dtrace_dof_error(NULL, "failed to copyin DOF helper"); - return (EFAULT); - } - - dhp = &help; - arg = (intptr_t)help.dofhp_dof; - /*FALLTHROUGH*/ - - case DTRACEHIOC_ADD: { - dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); - - if (dof == NULL) - return (rval); - - mutex_enter(&dtrace_lock); - - /* - * dtrace_helper_slurp() takes responsibility for the dof -- - * it may free it now or it may save it and free it later. - */ - if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { - *rv = rval; - rval = 0; - } else { - rval = EINVAL; - } - - mutex_exit(&dtrace_lock); - return (rval); - } - - case DTRACEHIOC_REMOVE: { - mutex_enter(&dtrace_lock); - rval = dtrace_helper_destroygen(arg); - mutex_exit(&dtrace_lock); - - return (rval); - } - - default: - break; - } - - return (ENOTTY); -} - -/*ARGSUSED*/ -static int -dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) -{ - minor_t minor = getminor(dev); - dtrace_state_t *state; - int rval; - - if (minor == DTRACEMNRN_HELPER) - return (dtrace_ioctl_helper(cmd, arg, rv)); - - state = ddi_get_soft_state(dtrace_softstate, minor); - - if (state->dts_anon) { - ASSERT(dtrace_anon.dta_state == NULL); - state = state->dts_anon; - } - - switch (cmd) { - case DTRACEIOC_PROVIDER: { - dtrace_providerdesc_t pvd; - dtrace_provider_t *pvp; - - if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) - return (EFAULT); - - pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; - mutex_enter(&dtrace_provider_lock); - - for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { - if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) - break; - } - - mutex_exit(&dtrace_provider_lock); - - if (pvp == NULL) - return (ESRCH); - - bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); - bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); - if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) - return (EFAULT); - - return (0); - } - - case DTRACEIOC_EPROBE: { - dtrace_eprobedesc_t epdesc; - dtrace_ecb_t *ecb; - dtrace_action_t *act; - void *buf; - size_t size; - uintptr_t dest; - int nrecs; - - if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) - return (EFAULT); - - mutex_enter(&dtrace_lock); - - if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { - mutex_exit(&dtrace_lock); - return (EINVAL); - } - - if (ecb->dte_probe == NULL) { - mutex_exit(&dtrace_lock); - return (EINVAL); - } - - epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; - epdesc.dtepd_uarg = ecb->dte_uarg; - epdesc.dtepd_size = ecb->dte_size; - - nrecs = epdesc.dtepd_nrecs; - epdesc.dtepd_nrecs = 0; - for (act = ecb->dte_action; act != NULL; act = act->dta_next) { - if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) - continue; - - epdesc.dtepd_nrecs++; - } - - /* - * Now that we have the size, we need to allocate a temporary - * buffer in which to store the complete description. We need - * the temporary buffer to be able to drop dtrace_lock() - * across the copyout(), below. - */ - size = sizeof (dtrace_eprobedesc_t) + - (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); - - buf = kmem_alloc(size, KM_SLEEP); - dest = (uintptr_t)buf; - - bcopy(&epdesc, (void *)dest, sizeof (epdesc)); - dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); - - for (act = ecb->dte_action; act != NULL; act = act->dta_next) { - if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) - continue; - - if (nrecs-- == 0) - break; - - bcopy(&act->dta_rec, (void *)dest, - sizeof (dtrace_recdesc_t)); - dest += sizeof (dtrace_recdesc_t); - } - - mutex_exit(&dtrace_lock); - - if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { - kmem_free(buf, size); - return (EFAULT); - } - - kmem_free(buf, size); - return (0); - } - - case DTRACEIOC_AGGDESC: { - dtrace_aggdesc_t aggdesc; - dtrace_action_t *act; - dtrace_aggregation_t *agg; - int nrecs; - uint32_t offs; - dtrace_recdesc_t *lrec; - void *buf; - size_t size; - uintptr_t dest; - - if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) - return (EFAULT); - - mutex_enter(&dtrace_lock); - - if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { - mutex_exit(&dtrace_lock); - return (EINVAL); - } - - aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; - - nrecs = aggdesc.dtagd_nrecs; - aggdesc.dtagd_nrecs = 0; - - offs = agg->dtag_base; - lrec = &agg->dtag_action.dta_rec; - aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; - - for (act = agg->dtag_first; ; act = act->dta_next) { - ASSERT(act->dta_intuple || - DTRACEACT_ISAGG(act->dta_kind)); - - /* - * If this action has a record size of zero, it - * denotes an argument to the aggregating action. - * Because the presence of this record doesn't (or - * shouldn't) affect the way the data is interpreted, - * we don't copy it out to save user-level the - * confusion of dealing with a zero-length record. - */ - if (act->dta_rec.dtrd_size == 0) { - ASSERT(agg->dtag_hasarg); - continue; - } - - aggdesc.dtagd_nrecs++; - - if (act == &agg->dtag_action) - break; - } - - /* - * Now that we have the size, we need to allocate a temporary - * buffer in which to store the complete description. We need - * the temporary buffer to be able to drop dtrace_lock() - * across the copyout(), below. - */ - size = sizeof (dtrace_aggdesc_t) + - (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); - - buf = kmem_alloc(size, KM_SLEEP); - dest = (uintptr_t)buf; - - bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); - dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); - - for (act = agg->dtag_first; ; act = act->dta_next) { - dtrace_recdesc_t rec = act->dta_rec; - - /* - * See the comment in the above loop for why we pass - * over zero-length records. - */ - if (rec.dtrd_size == 0) { - ASSERT(agg->dtag_hasarg); - continue; - } - - if (nrecs-- == 0) - break; - - rec.dtrd_offset -= offs; - bcopy(&rec, (void *)dest, sizeof (rec)); - dest += sizeof (dtrace_recdesc_t); - - if (act == &agg->dtag_action) - break; - } - - mutex_exit(&dtrace_lock); - - if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { - kmem_free(buf, size); - return (EFAULT); - } - - kmem_free(buf, size); - return (0); - } - - case DTRACEIOC_ENABLE: { - dof_hdr_t *dof; - dtrace_enabling_t *enab = NULL; - dtrace_vstate_t *vstate; - int err = 0; - - *rv = 0; - - /* - * If a NULL argument has been passed, we take this as our - * cue to reevaluate our enablings. - */ - if (arg == NULL) { - mutex_enter(&cpu_lock); - mutex_enter(&dtrace_lock); - err = dtrace_enabling_matchstate(state, rv); - mutex_exit(&dtrace_lock); - mutex_exit(&cpu_lock); - - return (err); - } - - if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) - return (rval); - - mutex_enter(&cpu_lock); - mutex_enter(&dtrace_lock); - vstate = &state->dts_vstate; - - if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { - mutex_exit(&dtrace_lock); - mutex_exit(&cpu_lock); - dtrace_dof_destroy(dof); - return (EBUSY); - } - - if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { - mutex_exit(&dtrace_lock); - mutex_exit(&cpu_lock); - dtrace_dof_destroy(dof); - return (EINVAL); - } - - if ((rval = dtrace_dof_options(dof, state)) != 0) { - dtrace_enabling_destroy(enab); - mutex_exit(&dtrace_lock); - mutex_exit(&cpu_lock); - dtrace_dof_destroy(dof); - return (rval); - } - - if ((err = dtrace_enabling_match(enab, rv)) == 0) { - err = dtrace_enabling_retain(enab); - } else { - dtrace_enabling_destroy(enab); - } - - mutex_exit(&cpu_lock); - mutex_exit(&dtrace_lock); - dtrace_dof_destroy(dof); - - return (err); - } - - case DTRACEIOC_REPLICATE: { - dtrace_repldesc_t desc; - dtrace_probedesc_t *match = &desc.dtrpd_match; - dtrace_probedesc_t *create = &desc.dtrpd_create; - int err; - - if (copyin((void *)arg, &desc, sizeof (desc)) != 0) - return (EFAULT); - - match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; - match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; - match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; - match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; - - create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; - create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; - create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; - create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; - - mutex_enter(&dtrace_lock); - err = dtrace_enabling_replicate(state, match, create); - mutex_exit(&dtrace_lock); - - return (err); - } - - case DTRACEIOC_PROBEMATCH: - case DTRACEIOC_PROBES: { - dtrace_probe_t *probe = NULL; - dtrace_probedesc_t desc; - dtrace_probekey_t pkey; - dtrace_id_t i; - int m = 0; - uint32_t priv; - uid_t uid; - zoneid_t zoneid; - - if (copyin((void *)arg, &desc, sizeof (desc)) != 0) - return (EFAULT); - - desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; - desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; - desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; - desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; - - /* - * Before we attempt to match this probe, we want to give - * all providers the opportunity to provide it. - */ - if (desc.dtpd_id == DTRACE_IDNONE) { - mutex_enter(&dtrace_provider_lock); - dtrace_probe_provide(&desc, NULL); - mutex_exit(&dtrace_provider_lock); - desc.dtpd_id++; - } - - if (cmd == DTRACEIOC_PROBEMATCH) { - dtrace_probekey(&desc, &pkey); - pkey.dtpk_id = DTRACE_IDNONE; - } - - dtrace_cred2priv(cr, &priv, &uid, &zoneid); - - mutex_enter(&dtrace_lock); - - if (cmd == DTRACEIOC_PROBEMATCH) { - for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { - if ((probe = dtrace_probes[i - 1]) != NULL && - (m = dtrace_match_probe(probe, &pkey, - priv, uid, zoneid)) != 0) - break; - } - - if (m < 0) { - mutex_exit(&dtrace_lock); - return (EINVAL); - } - - } else { - for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { - if ((probe = dtrace_probes[i - 1]) != NULL && - dtrace_match_priv(probe, priv, uid, zoneid)) - break; - } - } - - if (probe == NULL) { - mutex_exit(&dtrace_lock); - return (ESRCH); - } - - dtrace_probe_description(probe, &desc); - mutex_exit(&dtrace_lock); - - if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) - return (EFAULT); - - return (0); - } - - case DTRACEIOC_PROBEARG: { - dtrace_argdesc_t desc; - dtrace_probe_t *probe; - dtrace_provider_t *prov; - - if (copyin((void *)arg, &desc, sizeof (desc)) != 0) - return (EFAULT); - - if (desc.dtargd_id == DTRACE_IDNONE) - return (EINVAL); - - if (desc.dtargd_ndx == DTRACE_ARGNONE) - return (EINVAL); - - mutex_enter(&dtrace_provider_lock); - mutex_enter(&mod_lock); - mutex_enter(&dtrace_lock); - - if (desc.dtargd_id > dtrace_nprobes) { - mutex_exit(&dtrace_lock); - mutex_exit(&mod_lock); - mutex_exit(&dtrace_provider_lock); - return (EINVAL); - } - - if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { - mutex_exit(&dtrace_lock); - mutex_exit(&mod_lock); - mutex_exit(&dtrace_provider_lock); - return (EINVAL); - } - - mutex_exit(&dtrace_lock); - - prov = probe->dtpr_provider; - - if (prov->dtpv_pops.dtps_getargdesc == NULL) { - /* - * There isn't any typed information for this probe. - * Set the argument number to DTRACE_ARGNONE. - */ - desc.dtargd_ndx = DTRACE_ARGNONE; - } else { - desc.dtargd_native[0] = '\0'; - desc.dtargd_xlate[0] = '\0'; - desc.dtargd_mapping = desc.dtargd_ndx; - - prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, - probe->dtpr_id, probe->dtpr_arg, &desc); - } - - mutex_exit(&mod_lock); - mutex_exit(&dtrace_provider_lock); - - if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) - return (EFAULT); - - return (0); - } - - case DTRACEIOC_GO: { - processorid_t cpuid; - rval = dtrace_state_go(state, &cpuid); - - if (rval != 0) - return (rval); - - if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) - return (EFAULT); - - return (0); - } - - case DTRACEIOC_STOP: { - processorid_t cpuid; - - mutex_enter(&dtrace_lock); - rval = dtrace_state_stop(state, &cpuid); - mutex_exit(&dtrace_lock); - - if (rval != 0) - return (rval); - - if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) - return (EFAULT); - - return (0); - } - - case DTRACEIOC_DOFGET: { - dof_hdr_t hdr, *dof; - uint64_t len; - - if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) - return (EFAULT); - - mutex_enter(&dtrace_lock); - dof = dtrace_dof_create(state); - mutex_exit(&dtrace_lock); - - len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); - rval = copyout(dof, (void *)arg, len); - dtrace_dof_destroy(dof); - - return (rval == 0 ? 0 : EFAULT); - } - - case DTRACEIOC_AGGSNAP: - case DTRACEIOC_BUFSNAP: { - dtrace_bufdesc_t desc; - caddr_t cached; - dtrace_buffer_t *buf; - - if (copyin((void *)arg, &desc, sizeof (desc)) != 0) - return (EFAULT); - - if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) - return (EINVAL); - - mutex_enter(&dtrace_lock); - - if (cmd == DTRACEIOC_BUFSNAP) { - buf = &state->dts_buffer[desc.dtbd_cpu]; - } else { - buf = &state->dts_aggbuffer[desc.dtbd_cpu]; - } - - if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { - size_t sz = buf->dtb_offset; - - if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { - mutex_exit(&dtrace_lock); - return (EBUSY); - } - - /* - * If this buffer has already been consumed, we're - * going to indicate that there's nothing left here - * to consume. - */ - if (buf->dtb_flags & DTRACEBUF_CONSUMED) { - mutex_exit(&dtrace_lock); - - desc.dtbd_size = 0; - desc.dtbd_drops = 0; - desc.dtbd_errors = 0; - desc.dtbd_oldest = 0; - sz = sizeof (desc); - - if (copyout(&desc, (void *)arg, sz) != 0) - return (EFAULT); - - return (0); - } - - /* - * If this is a ring buffer that has wrapped, we want - * to copy the whole thing out. - */ - if (buf->dtb_flags & DTRACEBUF_WRAPPED) { - dtrace_buffer_polish(buf); - sz = buf->dtb_size; - } - - if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { - mutex_exit(&dtrace_lock); - return (EFAULT); - } - - desc.dtbd_size = sz; - desc.dtbd_drops = buf->dtb_drops; - desc.dtbd_errors = buf->dtb_errors; - desc.dtbd_oldest = buf->dtb_xamot_offset; - - mutex_exit(&dtrace_lock); - - if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) - return (EFAULT); - - buf->dtb_flags |= DTRACEBUF_CONSUMED; - - return (0); - } - - if (buf->dtb_tomax == NULL) { - ASSERT(buf->dtb_xamot == NULL); - mutex_exit(&dtrace_lock); - return (ENOENT); - } - - cached = buf->dtb_tomax; - ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); - - dtrace_xcall(desc.dtbd_cpu, - (dtrace_xcall_t)dtrace_buffer_switch, buf); - - state->dts_errors += buf->dtb_xamot_errors; - - /* - * If the buffers did not actually switch, then the cross call - * did not take place -- presumably because the given CPU is - * not in the ready set. If this is the case, we'll return - * ENOENT. - */ - if (buf->dtb_tomax == cached) { - ASSERT(buf->dtb_xamot != cached); - mutex_exit(&dtrace_lock); - return (ENOENT); - } - - ASSERT(cached == buf->dtb_xamot); - - /* - * We have our snapshot; now copy it out. - */ - if (copyout(buf->dtb_xamot, desc.dtbd_data, - buf->dtb_xamot_offset) != 0) { - mutex_exit(&dtrace_lock); - return (EFAULT); - } - - desc.dtbd_size = buf->dtb_xamot_offset; - desc.dtbd_drops = buf->dtb_xamot_drops; - desc.dtbd_errors = buf->dtb_xamot_errors; - desc.dtbd_oldest = 0; - - mutex_exit(&dtrace_lock); - - /* - * Finally, copy out the buffer description. - */ - if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) - return (EFAULT); - - return (0); - } - - case DTRACEIOC_CONF: { - dtrace_conf_t conf; - - bzero(&conf, sizeof (conf)); - conf.dtc_difversion = DIF_VERSION; - conf.dtc_difintregs = DIF_DIR_NREGS; - conf.dtc_diftupregs = DIF_DTR_NREGS; - conf.dtc_ctfmodel = CTF_MODEL_NATIVE; - - if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) - return (EFAULT); - - return (0); - } - - case DTRACEIOC_STATUS: { - dtrace_status_t stat; - dtrace_dstate_t *dstate; - int i, j; - uint64_t nerrs; - - /* - * See the comment in dtrace_state_deadman() for the reason - * for setting dts_laststatus to INT64_MAX before setting - * it to the correct value. - */ - state->dts_laststatus = INT64_MAX; - dtrace_membar_producer(); - state->dts_laststatus = dtrace_gethrtime(); - - bzero(&stat, sizeof (stat)); - - mutex_enter(&dtrace_lock); - - if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { - mutex_exit(&dtrace_lock); - return (ENOENT); - } - - if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) - stat.dtst_exiting = 1; - - nerrs = state->dts_errors; - dstate = &state->dts_vstate.dtvs_dynvars; - - for (i = 0; i < NCPU; i++) { - dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; - - stat.dtst_dyndrops += dcpu->dtdsc_drops; - stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; - stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; - - if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) - stat.dtst_filled++; - - nerrs += state->dts_buffer[i].dtb_errors; - - for (j = 0; j < state->dts_nspeculations; j++) { - dtrace_speculation_t *spec; - dtrace_buffer_t *buf; - - spec = &state->dts_speculations[j]; - buf = &spec->dtsp_buffer[i]; - stat.dtst_specdrops += buf->dtb_xamot_drops; - } - } - - stat.dtst_specdrops_busy = state->dts_speculations_busy; - stat.dtst_specdrops_unavail = state->dts_speculations_unavail; - stat.dtst_stkstroverflows = state->dts_stkstroverflows; - stat.dtst_dblerrors = state->dts_dblerrors; - stat.dtst_killed = - (state->dts_activity == DTRACE_ACTIVITY_KILLED); - stat.dtst_errors = nerrs; - - mutex_exit(&dtrace_lock); - - if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) - return (EFAULT); - - return (0); - } - - case DTRACEIOC_FORMAT: { - dtrace_fmtdesc_t fmt; - char *str; - int len; - - if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) - return (EFAULT); - - mutex_enter(&dtrace_lock); - - if (fmt.dtfd_format == 0 || - fmt.dtfd_format > state->dts_nformats) { - mutex_exit(&dtrace_lock); - return (EINVAL); - } - - /* - * Format strings are allocated contiguously and they are - * never freed; if a format index is less than the number - * of formats, we can assert that the format map is non-NULL - * and that the format for the specified index is non-NULL. - */ - ASSERT(state->dts_formats != NULL); - str = state->dts_formats[fmt.dtfd_format - 1]; - ASSERT(str != NULL); - - len = strlen(str) + 1; - - if (len > fmt.dtfd_length) { - fmt.dtfd_length = len; - - if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { - mutex_exit(&dtrace_lock); - return (EINVAL); - } - } else { - if (copyout(str, fmt.dtfd_string, len) != 0) { - mutex_exit(&dtrace_lock); - return (EINVAL); - } - } - - mutex_exit(&dtrace_lock); - return (0); - } - - default: - break; - } - - return (ENOTTY); -} - -/*ARGSUSED*/ -static int -dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) -{ - dtrace_state_t *state; - - switch (cmd) { - case DDI_DETACH: - break; - - case DDI_SUSPEND: - return (DDI_SUCCESS); - - default: - return (DDI_FAILURE); - } - - mutex_enter(&cpu_lock); - mutex_enter(&dtrace_provider_lock); - mutex_enter(&dtrace_lock); - - ASSERT(dtrace_opens == 0); - - if (dtrace_helpers > 0) { - mutex_exit(&dtrace_provider_lock); - mutex_exit(&dtrace_lock); - mutex_exit(&cpu_lock); - return (DDI_FAILURE); - } - - if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { - mutex_exit(&dtrace_provider_lock); - mutex_exit(&dtrace_lock); - mutex_exit(&cpu_lock); - return (DDI_FAILURE); - } - - dtrace_provider = NULL; - - if ((state = dtrace_anon_grab()) != NULL) { - /* - * If there were ECBs on this state, the provider should - * have not been allowed to detach; assert that there is - * none. - */ - ASSERT(state->dts_necbs == 0); - dtrace_state_destroy(state); - - /* - * If we're being detached with anonymous state, we need to - * indicate to the kernel debugger that DTrace is now inactive. - */ - (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); - } - - bzero(&dtrace_anon, sizeof (dtrace_anon_t)); - unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); - dtrace_cpu_init = NULL; - dtrace_helpers_cleanup = NULL; - dtrace_helpers_fork = NULL; - dtrace_cpustart_init = NULL; - dtrace_cpustart_fini = NULL; - dtrace_debugger_init = NULL; - dtrace_debugger_fini = NULL; - dtrace_modload = NULL; - dtrace_modunload = NULL; - - mutex_exit(&cpu_lock); - - if (dtrace_helptrace_enabled) { - kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); - dtrace_helptrace_buffer = NULL; - } - - kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); - dtrace_probes = NULL; - dtrace_nprobes = 0; - - dtrace_hash_destroy(dtrace_bymod); - dtrace_hash_destroy(dtrace_byfunc); - dtrace_hash_destroy(dtrace_byname); - dtrace_bymod = NULL; - dtrace_byfunc = NULL; - dtrace_byname = NULL; - - kmem_cache_destroy(dtrace_state_cache); - vmem_destroy(dtrace_minor); - vmem_destroy(dtrace_arena); - - if (dtrace_toxrange != NULL) { - kmem_free(dtrace_toxrange, - dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); - dtrace_toxrange = NULL; - dtrace_toxranges = 0; - dtrace_toxranges_max = 0; - } - - ddi_remove_minor_node(dtrace_devi, NULL); - dtrace_devi = NULL; - - ddi_soft_state_fini(&dtrace_softstate); - - ASSERT(dtrace_vtime_references == 0); - ASSERT(dtrace_opens == 0); - ASSERT(dtrace_retained == NULL); - - mutex_exit(&dtrace_lock); - mutex_exit(&dtrace_provider_lock); - - /* - * We don't destroy the task queue until after we have dropped our - * locks (taskq_destroy() may block on running tasks). To prevent - * attempting to do work after we have effectively detached but before - * the task queue has been destroyed, all tasks dispatched via the - * task queue must check that DTrace is still attached before - * performing any operation. - */ - taskq_destroy(dtrace_taskq); - dtrace_taskq = NULL; - - return (DDI_SUCCESS); -} - -/*ARGSUSED*/ -static int -dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) -{ - int error; - - switch (infocmd) { - case DDI_INFO_DEVT2DEVINFO: - *result = (void *)dtrace_devi; - error = DDI_SUCCESS; - break; - case DDI_INFO_DEVT2INSTANCE: - *result = (void *)0; - error = DDI_SUCCESS; - break; - default: - error = DDI_FAILURE; - } - return (error); -} - -static struct cb_ops dtrace_cb_ops = { - dtrace_open, /* open */ - dtrace_close, /* close */ - nulldev, /* strategy */ - nulldev, /* print */ - nodev, /* dump */ - nodev, /* read */ - nodev, /* write */ - dtrace_ioctl, /* ioctl */ - nodev, /* devmap */ - nodev, /* mmap */ - nodev, /* segmap */ - nochpoll, /* poll */ - ddi_prop_op, /* cb_prop_op */ - 0, /* streamtab */ - D_NEW | D_MP /* Driver compatibility flag */ -}; - -static struct dev_ops dtrace_ops = { - DEVO_REV, /* devo_rev */ - 0, /* refcnt */ - dtrace_info, /* get_dev_info */ - nulldev, /* identify */ - nulldev, /* probe */ - dtrace_attach, /* attach */ - dtrace_detach, /* detach */ - nodev, /* reset */ - &dtrace_cb_ops, /* driver operations */ - NULL, /* bus operations */ - nodev /* dev power */ -}; - -static struct modldrv modldrv = { - &mod_driverops, /* module type (this is a pseudo driver) */ - "Dynamic Tracing", /* name of module */ - &dtrace_ops, /* driver ops */ -}; - -static struct modlinkage modlinkage = { - MODREV_1, - (void *)&modldrv, - NULL -}; - -int -_init(void) -{ - return (mod_install(&modlinkage)); -} - -int -_info(struct modinfo *modinfop) -{ - return (mod_info(&modlinkage, modinfop)); -} - -int -_fini(void) -{ - return (mod_remove(&modlinkage)); -} diff --git a/cddl/contrib/opensolaris/uts/common/dtrace/fasttrap.c b/cddl/contrib/opensolaris/uts/common/dtrace/fasttrap.c deleted file mode 100644 index dd78b48..0000000 --- a/cddl/contrib/opensolaris/uts/common/dtrace/fasttrap.c +++ /dev/null @@ -1,2346 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2007 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -/* - * User-Land Trap-Based Tracing - * ---------------------------- - * - * The fasttrap provider allows DTrace consumers to instrument any user-level - * instruction to gather data; this includes probes with semantic - * signifigance like entry and return as well as simple offsets into the - * function. While the specific techniques used are very ISA specific, the - * methodology is generalizable to any architecture. - * - * - * The General Methodology - * ----------------------- - * - * With the primary goal of tracing every user-land instruction and the - * limitation that we can't trust user space so don't want to rely on much - * information there, we begin by replacing the instructions we want to trace - * with trap instructions. Each instruction we overwrite is saved into a hash - * table keyed by process ID and pc address. When we enter the kernel due to - * this trap instruction, we need the effects of the replaced instruction to - * appear to have occurred before we proceed with the user thread's - * execution. - * - * Each user level thread is represented by a ulwp_t structure which is - * always easily accessible through a register. The most basic way to produce - * the effects of the instruction we replaced is to copy that instruction out - * to a bit of scratch space reserved in the user thread's ulwp_t structure - * (a sort of kernel-private thread local storage), set the PC to that - * scratch space and single step. When we reenter the kernel after single - * stepping the instruction we must then adjust the PC to point to what would - * normally be the next instruction. Of course, special care must be taken - * for branches and jumps, but these represent such a small fraction of any - * instruction set that writing the code to emulate these in the kernel is - * not too difficult. - * - * Return probes may require several tracepoints to trace every return site, - * and, conversely, each tracepoint may activate several probes (the entry - * and offset 0 probes, for example). To solve this muliplexing problem, - * tracepoints contain lists of probes to activate and probes contain lists - * of tracepoints to enable. If a probe is activated, it adds its ID to - * existing tracepoints or creates new ones as necessary. - * - * Most probes are activated _before_ the instruction is executed, but return - * probes are activated _after_ the effects of the last instruction of the - * function are visible. Return probes must be fired _after_ we have - * single-stepped the instruction whereas all other probes are fired - * beforehand. - * - * - * Lock Ordering - * ------------- - * - * The lock ordering below -- both internally and with respect to the DTrace - * framework -- is a little tricky and bears some explanation. Each provider - * has a lock (ftp_mtx) that protects its members including reference counts - * for enabled probes (ftp_rcount), consumers actively creating probes - * (ftp_ccount) and USDT consumers (ftp_mcount); all three prevent a provider - * from being freed. A provider is looked up by taking the bucket lock for the - * provider hash table, and is returned with its lock held. The provider lock - * may be taken in functions invoked by the DTrace framework, but may not be - * held while calling functions in the DTrace framework. - * - * To ensure consistency over multiple calls to the DTrace framework, the - * creation lock (ftp_cmtx) should be held. Naturally, the creation lock may - * not be taken when holding the provider lock as that would create a cyclic - * lock ordering. In situations where one would naturally take the provider - * lock and then the creation lock, we instead up a reference count to prevent - * the provider from disappearing, drop the provider lock, and acquire the - * creation lock. - * - * Briefly: - * bucket lock before provider lock - * DTrace before provider lock - * creation lock before DTrace - * never hold the provider lock and creation lock simultaneously - */ - -static dev_info_t *fasttrap_devi; -static dtrace_meta_provider_id_t fasttrap_meta_id; - -static timeout_id_t fasttrap_timeout; -static kmutex_t fasttrap_cleanup_mtx; -static uint_t fasttrap_cleanup_work; - -/* - * Generation count on modifications to the global tracepoint lookup table. - */ -static volatile uint64_t fasttrap_mod_gen; - -/* - * When the fasttrap provider is loaded, fasttrap_max is set to either - * FASTTRAP_MAX_DEFAULT or the value for fasttrap-max-probes in the - * fasttrap.conf file. Each time a probe is created, fasttrap_total is - * incremented by the number of tracepoints that may be associated with that - * probe; fasttrap_total is capped at fasttrap_max. - */ -#define FASTTRAP_MAX_DEFAULT 250000 -static uint32_t fasttrap_max; -static uint32_t fasttrap_total; - - -#define FASTTRAP_TPOINTS_DEFAULT_SIZE 0x4000 -#define FASTTRAP_PROVIDERS_DEFAULT_SIZE 0x100 -#define FASTTRAP_PROCS_DEFAULT_SIZE 0x100 - -#define FASTTRAP_PID_NAME "pid" - -fasttrap_hash_t fasttrap_tpoints; -static fasttrap_hash_t fasttrap_provs; -static fasttrap_hash_t fasttrap_procs; - -static uint64_t fasttrap_pid_count; /* pid ref count */ -static kmutex_t fasttrap_count_mtx; /* lock on ref count */ - -#define FASTTRAP_ENABLE_FAIL 1 -#define FASTTRAP_ENABLE_PARTIAL 2 - -static int fasttrap_tracepoint_enable(proc_t *, fasttrap_probe_t *, uint_t); -static void fasttrap_tracepoint_disable(proc_t *, fasttrap_probe_t *, uint_t); - -static fasttrap_provider_t *fasttrap_provider_lookup(pid_t, const char *, - const dtrace_pattr_t *); -static void fasttrap_provider_retire(pid_t, const char *, int); -static void fasttrap_provider_free(fasttrap_provider_t *); - -static fasttrap_proc_t *fasttrap_proc_lookup(pid_t); -static void fasttrap_proc_release(fasttrap_proc_t *); - -#define FASTTRAP_PROVS_INDEX(pid, name) \ - ((fasttrap_hash_str(name) + (pid)) & fasttrap_provs.fth_mask) - -#define FASTTRAP_PROCS_INDEX(pid) ((pid) & fasttrap_procs.fth_mask) - -static int -fasttrap_highbit(ulong_t i) -{ - int h = 1; - - if (i == 0) - return (0); -#ifdef _LP64 - if (i & 0xffffffff00000000ul) { - h += 32; i >>= 32; - } -#endif - if (i & 0xffff0000) { - h += 16; i >>= 16; - } - if (i & 0xff00) { - h += 8; i >>= 8; - } - if (i & 0xf0) { - h += 4; i >>= 4; - } - if (i & 0xc) { - h += 2; i >>= 2; - } - if (i & 0x2) { - h += 1; - } - return (h); -} - -static uint_t -fasttrap_hash_str(const char *p) -{ - unsigned int g; - uint_t hval = 0; - - while (*p) { - hval = (hval << 4) + *p++; - if ((g = (hval & 0xf0000000)) != 0) - hval ^= g >> 24; - hval &= ~g; - } - return (hval); -} - -void -fasttrap_sigtrap(proc_t *p, kthread_t *t, uintptr_t pc) -{ - sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP); - - sqp->sq_info.si_signo = SIGTRAP; - sqp->sq_info.si_code = TRAP_DTRACE; - sqp->sq_info.si_addr = (caddr_t)pc; - - mutex_enter(&p->p_lock); - sigaddqa(p, t, sqp); - mutex_exit(&p->p_lock); - - if (t != NULL) - aston(t); -} - -/* - * This function ensures that no threads are actively using the memory - * associated with probes that were formerly live. - */ -static void -fasttrap_mod_barrier(uint64_t gen) -{ - int i; - - if (gen < fasttrap_mod_gen) - return; - - fasttrap_mod_gen++; - - for (i = 0; i < NCPU; i++) { - mutex_enter(&cpu_core[i].cpuc_pid_lock); - mutex_exit(&cpu_core[i].cpuc_pid_lock); - } -} - -/* - * This is the timeout's callback for cleaning up the providers and their - * probes. - */ -/*ARGSUSED*/ -static void -fasttrap_pid_cleanup_cb(void *data) -{ - fasttrap_provider_t **fpp, *fp; - fasttrap_bucket_t *bucket; - dtrace_provider_id_t provid; - int i, later; - - static volatile int in = 0; - ASSERT(in == 0); - in = 1; - - mutex_enter(&fasttrap_cleanup_mtx); - while (fasttrap_cleanup_work) { - fasttrap_cleanup_work = 0; - mutex_exit(&fasttrap_cleanup_mtx); - - later = 0; - - /* - * Iterate over all the providers trying to remove the marked - * ones. If a provider is marked but not retired, we just - * have to take a crack at removing it -- it's no big deal if - * we can't. - */ - for (i = 0; i < fasttrap_provs.fth_nent; i++) { - bucket = &fasttrap_provs.fth_table[i]; - mutex_enter(&bucket->ftb_mtx); - fpp = (fasttrap_provider_t **)&bucket->ftb_data; - - while ((fp = *fpp) != NULL) { - if (!fp->ftp_marked) { - fpp = &fp->ftp_next; - continue; - } - - mutex_enter(&fp->ftp_mtx); - - /* - * If this provider has consumers actively - * creating probes (ftp_ccount) or is a USDT - * provider (ftp_mcount), we can't unregister - * or even condense. - */ - if (fp->ftp_ccount != 0 || - fp->ftp_mcount != 0) { - mutex_exit(&fp->ftp_mtx); - fp->ftp_marked = 0; - continue; - } - - if (!fp->ftp_retired || fp->ftp_rcount != 0) - fp->ftp_marked = 0; - - mutex_exit(&fp->ftp_mtx); - - /* - * If we successfully unregister this - * provider we can remove it from the hash - * chain and free the memory. If our attempt - * to unregister fails and this is a retired - * provider, increment our flag to try again - * pretty soon. If we've consumed more than - * half of our total permitted number of - * probes call dtrace_condense() to try to - * clean out the unenabled probes. - */ - provid = fp->ftp_provid; - if (dtrace_unregister(provid) != 0) { - if (fasttrap_total > fasttrap_max / 2) - (void) dtrace_condense(provid); - later += fp->ftp_marked; - fpp = &fp->ftp_next; - } else { - *fpp = fp->ftp_next; - fasttrap_provider_free(fp); - } - } - mutex_exit(&bucket->ftb_mtx); - } - - mutex_enter(&fasttrap_cleanup_mtx); - } - - ASSERT(fasttrap_timeout != 0); - - /* - * If we were unable to remove a retired provider, try again after - * a second. This situation can occur in certain circumstances where - * providers cannot be unregistered even though they have no probes - * enabled because of an execution of dtrace -l or something similar. - * If the timeout has been disabled (set to 1 because we're trying - * to detach), we set fasttrap_cleanup_work to ensure that we'll - * get a chance to do that work if and when the timeout is reenabled - * (if detach fails). - */ - if (later > 0 && fasttrap_timeout != (timeout_id_t)1) - fasttrap_timeout = timeout(&fasttrap_pid_cleanup_cb, NULL, hz); - else if (later > 0) - fasttrap_cleanup_work = 1; - else - fasttrap_timeout = 0; - - mutex_exit(&fasttrap_cleanup_mtx); - in = 0; -} - -/* - * Activates the asynchronous cleanup mechanism. - */ -static void -fasttrap_pid_cleanup(void) -{ - mutex_enter(&fasttrap_cleanup_mtx); - fasttrap_cleanup_work = 1; - if (fasttrap_timeout == 0) - fasttrap_timeout = timeout(&fasttrap_pid_cleanup_cb, NULL, 1); - mutex_exit(&fasttrap_cleanup_mtx); -} - -/* - * This is called from cfork() via dtrace_fasttrap_fork(). The child - * process's address space is a (roughly) a copy of the parent process's so - * we have to remove all the instrumentation we had previously enabled in the - * parent. - */ -static void -fasttrap_fork(proc_t *p, proc_t *cp) -{ - pid_t ppid = p->p_pid; - int i; - - ASSERT(curproc == p); - ASSERT(p->p_proc_flag & P_PR_LOCK); - ASSERT(p->p_dtrace_count > 0); - ASSERT(cp->p_dtrace_count == 0); - - /* - * This would be simpler and faster if we maintained per-process - * hash tables of enabled tracepoints. It could, however, potentially - * slow down execution of a tracepoint since we'd need to go - * through two levels of indirection. In the future, we should - * consider either maintaining per-process ancillary lists of - * enabled tracepoints or hanging a pointer to a per-process hash - * table of enabled tracepoints off the proc structure. - */ - - /* - * We don't have to worry about the child process disappearing - * because we're in fork(). - */ - mutex_enter(&cp->p_lock); - sprlock_proc(cp); - mutex_exit(&cp->p_lock); - - /* - * Iterate over every tracepoint looking for ones that belong to the - * parent process, and remove each from the child process. - */ - for (i = 0; i < fasttrap_tpoints.fth_nent; i++) { - fasttrap_tracepoint_t *tp; - fasttrap_bucket_t *bucket = &fasttrap_tpoints.fth_table[i]; - - mutex_enter(&bucket->ftb_mtx); - for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { - if (tp->ftt_pid == ppid && - tp->ftt_proc->ftpc_acount != 0) { - int ret = fasttrap_tracepoint_remove(cp, tp); - ASSERT(ret == 0); - } - } - mutex_exit(&bucket->ftb_mtx); - } - - mutex_enter(&cp->p_lock); - sprunlock(cp); -} - -/* - * This is called from proc_exit() or from exec_common() if p_dtrace_probes - * is set on the proc structure to indicate that there is a pid provider - * associated with this process. - */ -static void -fasttrap_exec_exit(proc_t *p) -{ - ASSERT(p == curproc); - ASSERT(MUTEX_HELD(&p->p_lock)); - - mutex_exit(&p->p_lock); - - /* - * We clean up the pid provider for this process here; user-land - * static probes are handled by the meta-provider remove entry point. - */ - fasttrap_provider_retire(p->p_pid, FASTTRAP_PID_NAME, 0); - - mutex_enter(&p->p_lock); -} - - -/*ARGSUSED*/ -static void -fasttrap_pid_provide(void *arg, const dtrace_probedesc_t *desc) -{ - /* - * There are no "default" pid probes. - */ -} - -static int -fasttrap_tracepoint_enable(proc_t *p, fasttrap_probe_t *probe, uint_t index) -{ - fasttrap_tracepoint_t *tp, *new_tp = NULL; - fasttrap_bucket_t *bucket; - fasttrap_id_t *id; - pid_t pid; - uintptr_t pc; - - ASSERT(index < probe->ftp_ntps); - - pid = probe->ftp_pid; - pc = probe->ftp_tps[index].fit_tp->ftt_pc; - id = &probe->ftp_tps[index].fit_id; - - ASSERT(probe->ftp_tps[index].fit_tp->ftt_pid == pid); - - ASSERT(!(p->p_flag & SVFORK)); - - /* - * Before we make any modifications, make sure we've imposed a barrier - * on the generation in which this probe was last modified. - */ - fasttrap_mod_barrier(probe->ftp_gen); - - bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; - - /* - * If the tracepoint has already been enabled, just add our id to the - * list of interested probes. This may be our second time through - * this path in which case we'll have constructed the tracepoint we'd - * like to install. If we can't find a match, and have an allocated - * tracepoint ready to go, enable that one now. - * - * A tracepoint whose process is defunct is also considered defunct. - */ -again: - mutex_enter(&bucket->ftb_mtx); - for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { - if (tp->ftt_pid != pid || tp->ftt_pc != pc || - tp->ftt_proc->ftpc_acount == 0) - continue; - - /* - * Now that we've found a matching tracepoint, it would be - * a decent idea to confirm that the tracepoint is still - * enabled and the trap instruction hasn't been overwritten. - * Since this is a little hairy, we'll punt for now. - */ - - /* - * This can't be the first interested probe. We don't have - * to worry about another thread being in the midst of - * deleting this tracepoint (which would be the only valid - * reason for a tracepoint to have no interested probes) - * since we're holding P_PR_LOCK for this process. - */ - ASSERT(tp->ftt_ids != NULL || tp->ftt_retids != NULL); - - switch (id->fti_ptype) { - case DTFTP_ENTRY: - case DTFTP_OFFSETS: - case DTFTP_IS_ENABLED: - id->fti_next = tp->ftt_ids; - membar_producer(); - tp->ftt_ids = id; - membar_producer(); - break; - - case DTFTP_RETURN: - case DTFTP_POST_OFFSETS: - id->fti_next = tp->ftt_retids; - membar_producer(); - tp->ftt_retids = id; - membar_producer(); - break; - - default: - ASSERT(0); - } - - mutex_exit(&bucket->ftb_mtx); - - if (new_tp != NULL) { - new_tp->ftt_ids = NULL; - new_tp->ftt_retids = NULL; - } - - return (0); - } - - /* - * If we have a good tracepoint ready to go, install it now while - * we have the lock held and no one can screw with us. - */ - if (new_tp != NULL) { - int rc = 0; - - new_tp->ftt_next = bucket->ftb_data; - membar_producer(); - bucket->ftb_data = new_tp; - membar_producer(); - mutex_exit(&bucket->ftb_mtx); - - /* - * Activate the tracepoint in the ISA-specific manner. - * If this fails, we need to report the failure, but - * indicate that this tracepoint must still be disabled - * by calling fasttrap_tracepoint_disable(). - */ - if (fasttrap_tracepoint_install(p, new_tp) != 0) - rc = FASTTRAP_ENABLE_PARTIAL; - - /* - * Increment the count of the number of tracepoints active in - * the victim process. - */ - ASSERT(p->p_proc_flag & P_PR_LOCK); - p->p_dtrace_count++; - - return (rc); - } - - mutex_exit(&bucket->ftb_mtx); - - /* - * Initialize the tracepoint that's been preallocated with the probe. - */ - new_tp = probe->ftp_tps[index].fit_tp; - - ASSERT(new_tp->ftt_pid == pid); - ASSERT(new_tp->ftt_pc == pc); - ASSERT(new_tp->ftt_proc == probe->ftp_prov->ftp_proc); - ASSERT(new_tp->ftt_ids == NULL); - ASSERT(new_tp->ftt_retids == NULL); - - switch (id->fti_ptype) { - case DTFTP_ENTRY: - case DTFTP_OFFSETS: - case DTFTP_IS_ENABLED: - id->fti_next = NULL; - new_tp->ftt_ids = id; - break; - - case DTFTP_RETURN: - case DTFTP_POST_OFFSETS: - id->fti_next = NULL; - new_tp->ftt_retids = id; - break; - - default: - ASSERT(0); - } - - /* - * If the ISA-dependent initialization goes to plan, go back to the - * beginning and try to install this freshly made tracepoint. - */ - if (fasttrap_tracepoint_init(p, new_tp, pc, id->fti_ptype) == 0) - goto again; - - new_tp->ftt_ids = NULL; - new_tp->ftt_retids = NULL; - - return (FASTTRAP_ENABLE_FAIL); -} - -static void -fasttrap_tracepoint_disable(proc_t *p, fasttrap_probe_t *probe, uint_t index) -{ - fasttrap_bucket_t *bucket; - fasttrap_provider_t *provider = probe->ftp_prov; - fasttrap_tracepoint_t **pp, *tp; - fasttrap_id_t *id, **idp; - pid_t pid; - uintptr_t pc; - - ASSERT(index < probe->ftp_ntps); - - pid = probe->ftp_pid; - pc = probe->ftp_tps[index].fit_tp->ftt_pc; - id = &probe->ftp_tps[index].fit_id; - - ASSERT(probe->ftp_tps[index].fit_tp->ftt_pid == pid); - - /* - * Find the tracepoint and make sure that our id is one of the - * ones registered with it. - */ - bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; - mutex_enter(&bucket->ftb_mtx); - for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { - if (tp->ftt_pid == pid && tp->ftt_pc == pc && - tp->ftt_proc == provider->ftp_proc) - break; - } - - /* - * If we somehow lost this tracepoint, we're in a world of hurt. - */ - ASSERT(tp != NULL); - - switch (id->fti_ptype) { - case DTFTP_ENTRY: - case DTFTP_OFFSETS: - case DTFTP_IS_ENABLED: - ASSERT(tp->ftt_ids != NULL); - idp = &tp->ftt_ids; - break; - - case DTFTP_RETURN: - case DTFTP_POST_OFFSETS: - ASSERT(tp->ftt_retids != NULL); - idp = &tp->ftt_retids; - break; - - default: - ASSERT(0); - } - - while ((*idp)->fti_probe != probe) { - idp = &(*idp)->fti_next; - ASSERT(*idp != NULL); - } - - id = *idp; - *idp = id->fti_next; - membar_producer(); - - ASSERT(id->fti_probe == probe); - - /* - * If there are other registered enablings of this tracepoint, we're - * all done, but if this was the last probe assocated with this - * this tracepoint, we need to remove and free it. - */ - if (tp->ftt_ids != NULL || tp->ftt_retids != NULL) { - - /* - * If the current probe's tracepoint is in use, swap it - * for an unused tracepoint. - */ - if (tp == probe->ftp_tps[index].fit_tp) { - fasttrap_probe_t *tmp_probe; - fasttrap_tracepoint_t **tmp_tp; - uint_t tmp_index; - - if (tp->ftt_ids != NULL) { - tmp_probe = tp->ftt_ids->fti_probe; - /* LINTED - alignment */ - tmp_index = FASTTRAP_ID_INDEX(tp->ftt_ids); - tmp_tp = &tmp_probe->ftp_tps[tmp_index].fit_tp; - } else { - tmp_probe = tp->ftt_retids->fti_probe; - /* LINTED - alignment */ - tmp_index = FASTTRAP_ID_INDEX(tp->ftt_retids); - tmp_tp = &tmp_probe->ftp_tps[tmp_index].fit_tp; - } - - ASSERT(*tmp_tp != NULL); - ASSERT(*tmp_tp != probe->ftp_tps[index].fit_tp); - ASSERT((*tmp_tp)->ftt_ids == NULL); - ASSERT((*tmp_tp)->ftt_retids == NULL); - - probe->ftp_tps[index].fit_tp = *tmp_tp; - *tmp_tp = tp; - } - - mutex_exit(&bucket->ftb_mtx); - - /* - * Tag the modified probe with the generation in which it was - * changed. - */ - probe->ftp_gen = fasttrap_mod_gen; - return; - } - - mutex_exit(&bucket->ftb_mtx); - - /* - * We can't safely remove the tracepoint from the set of active - * tracepoints until we've actually removed the fasttrap instruction - * from the process's text. We can, however, operate on this - * tracepoint secure in the knowledge that no other thread is going to - * be looking at it since we hold P_PR_LOCK on the process if it's - * live or we hold the provider lock on the process if it's dead and - * gone. - */ - - /* - * We only need to remove the actual instruction if we're looking - * at an existing process - */ - if (p != NULL) { - /* - * If we fail to restore the instruction we need to kill - * this process since it's in a completely unrecoverable - * state. - */ - if (fasttrap_tracepoint_remove(p, tp) != 0) - fasttrap_sigtrap(p, NULL, pc); - - /* - * Decrement the count of the number of tracepoints active - * in the victim process. - */ - ASSERT(p->p_proc_flag & P_PR_LOCK); - p->p_dtrace_count--; - } - - /* - * Remove the probe from the hash table of active tracepoints. - */ - mutex_enter(&bucket->ftb_mtx); - pp = (fasttrap_tracepoint_t **)&bucket->ftb_data; - ASSERT(*pp != NULL); - while (*pp != tp) { - pp = &(*pp)->ftt_next; - ASSERT(*pp != NULL); - } - - *pp = tp->ftt_next; - membar_producer(); - - mutex_exit(&bucket->ftb_mtx); - - /* - * Tag the modified probe with the generation in which it was changed. - */ - probe->ftp_gen = fasttrap_mod_gen; -} - -static void -fasttrap_enable_callbacks(void) -{ - /* - * We don't have to play the rw lock game here because we're - * providing something rather than taking something away -- - * we can be sure that no threads have tried to follow this - * function pointer yet. - */ - mutex_enter(&fasttrap_count_mtx); - if (fasttrap_pid_count == 0) { - ASSERT(dtrace_pid_probe_ptr == NULL); - ASSERT(dtrace_return_probe_ptr == NULL); - dtrace_pid_probe_ptr = &fasttrap_pid_probe; - dtrace_return_probe_ptr = &fasttrap_return_probe; - } - ASSERT(dtrace_pid_probe_ptr == &fasttrap_pid_probe); - ASSERT(dtrace_return_probe_ptr == &fasttrap_return_probe); - fasttrap_pid_count++; - mutex_exit(&fasttrap_count_mtx); -} - -static void -fasttrap_disable_callbacks(void) -{ - ASSERT(MUTEX_HELD(&cpu_lock)); - - mutex_enter(&fasttrap_count_mtx); - ASSERT(fasttrap_pid_count > 0); - fasttrap_pid_count--; - if (fasttrap_pid_count == 0) { - cpu_t *cur, *cpu = CPU; - - for (cur = cpu->cpu_next_onln; cur != cpu; - cur = cur->cpu_next_onln) { - rw_enter(&cur->cpu_ft_lock, RW_WRITER); - } - - dtrace_pid_probe_ptr = NULL; - dtrace_return_probe_ptr = NULL; - - for (cur = cpu->cpu_next_onln; cur != cpu; - cur = cur->cpu_next_onln) { - rw_exit(&cur->cpu_ft_lock); - } - } - mutex_exit(&fasttrap_count_mtx); -} - -/*ARGSUSED*/ -static void -fasttrap_pid_enable(void *arg, dtrace_id_t id, void *parg) -{ - fasttrap_probe_t *probe = parg; - proc_t *p; - int i, rc; - - ASSERT(probe != NULL); - ASSERT(!probe->ftp_enabled); - ASSERT(id == probe->ftp_id); - ASSERT(MUTEX_HELD(&cpu_lock)); - - /* - * Increment the count of enabled probes on this probe's provider; - * the provider can't go away while the probe still exists. We - * must increment this even if we aren't able to properly enable - * this probe. - */ - mutex_enter(&probe->ftp_prov->ftp_mtx); - probe->ftp_prov->ftp_rcount++; - mutex_exit(&probe->ftp_prov->ftp_mtx); - - /* - * If this probe's provider is retired (meaning it was valid in a - * previously exec'ed incarnation of this address space), bail out. The - * provider can't go away while we're in this code path. - */ - if (probe->ftp_prov->ftp_retired) - return; - - /* - * If we can't find the process, it may be that we're in the context of - * a fork in which the traced process is being born and we're copying - * USDT probes. Otherwise, the process is gone so bail. - */ - if ((p = sprlock(probe->ftp_pid)) == NULL) { - if ((curproc->p_flag & SFORKING) == 0) - return; - - mutex_enter(&pidlock); - p = prfind(probe->ftp_pid); - - /* - * Confirm that curproc is indeed forking the process in which - * we're trying to enable probes. - */ - ASSERT(p != NULL); - ASSERT(p->p_parent == curproc); - ASSERT(p->p_stat == SIDL); - - mutex_enter(&p->p_lock); - mutex_exit(&pidlock); - - sprlock_proc(p); - } - - ASSERT(!(p->p_flag & SVFORK)); - mutex_exit(&p->p_lock); - - /* - * We have to enable the trap entry point before any user threads have - * the chance to execute the trap instruction we're about to place - * in their process's text. - */ - fasttrap_enable_callbacks(); - - /* - * Enable all the tracepoints and add this probe's id to each - * tracepoint's list of active probes. - */ - for (i = 0; i < probe->ftp_ntps; i++) { - if ((rc = fasttrap_tracepoint_enable(p, probe, i)) != 0) { - /* - * If enabling the tracepoint failed completely, - * we don't have to disable it; if the failure - * was only partial we must disable it. - */ - if (rc == FASTTRAP_ENABLE_FAIL) - i--; - else - ASSERT(rc == FASTTRAP_ENABLE_PARTIAL); - - /* - * Back up and pull out all the tracepoints we've - * created so far for this probe. - */ - while (i >= 0) { - fasttrap_tracepoint_disable(p, probe, i); - i--; - } - - mutex_enter(&p->p_lock); - sprunlock(p); - - /* - * Since we're not actually enabling this probe, - * drop our reference on the trap table entry. - */ - fasttrap_disable_callbacks(); - return; - } - } - - mutex_enter(&p->p_lock); - sprunlock(p); - - probe->ftp_enabled = 1; -} - -/*ARGSUSED*/ -static void -fasttrap_pid_disable(void *arg, dtrace_id_t id, void *parg) -{ - fasttrap_probe_t *probe = parg; - fasttrap_provider_t *provider = probe->ftp_prov; - proc_t *p; - int i, whack = 0; - - ASSERT(id == probe->ftp_id); - - /* - * We won't be able to acquire a /proc-esque lock on the process - * iff the process is dead and gone. In this case, we rely on the - * provider lock as a point of mutual exclusion to prevent other - * DTrace consumers from disabling this probe. - */ - if ((p = sprlock(probe->ftp_pid)) != NULL) { - ASSERT(!(p->p_flag & SVFORK)); - mutex_exit(&p->p_lock); - } - - mutex_enter(&provider->ftp_mtx); - - /* - * Disable all the associated tracepoints (for fully enabled probes). - */ - if (probe->ftp_enabled) { - for (i = 0; i < probe->ftp_ntps; i++) { - fasttrap_tracepoint_disable(p, probe, i); - } - } - - ASSERT(provider->ftp_rcount > 0); - provider->ftp_rcount--; - - if (p != NULL) { - /* - * Even though we may not be able to remove it entirely, we - * mark this retired provider to get a chance to remove some - * of the associated probes. - */ - if (provider->ftp_retired && !provider->ftp_marked) - whack = provider->ftp_marked = 1; - mutex_exit(&provider->ftp_mtx); - - mutex_enter(&p->p_lock); - sprunlock(p); - } else { - /* - * If the process is dead, we're just waiting for the - * last probe to be disabled to be able to free it. - */ - if (provider->ftp_rcount == 0 && !provider->ftp_marked) - whack = provider->ftp_marked = 1; - mutex_exit(&provider->ftp_mtx); - } - - if (whack) - fasttrap_pid_cleanup(); - - if (!probe->ftp_enabled) - return; - - probe->ftp_enabled = 0; - - ASSERT(MUTEX_HELD(&cpu_lock)); - fasttrap_disable_callbacks(); -} - -/*ARGSUSED*/ -static void -fasttrap_pid_getargdesc(void *arg, dtrace_id_t id, void *parg, - dtrace_argdesc_t *desc) -{ - fasttrap_probe_t *probe = parg; - char *str; - int i, ndx; - - desc->dtargd_native[0] = '\0'; - desc->dtargd_xlate[0] = '\0'; - - if (probe->ftp_prov->ftp_retired != 0 || - desc->dtargd_ndx >= probe->ftp_nargs) { - desc->dtargd_ndx = DTRACE_ARGNONE; - return; - } - - ndx = (probe->ftp_argmap != NULL) ? - probe->ftp_argmap[desc->dtargd_ndx] : desc->dtargd_ndx; - - str = probe->ftp_ntypes; - for (i = 0; i < ndx; i++) { - str += strlen(str) + 1; - } - - ASSERT(strlen(str + 1) < sizeof (desc->dtargd_native)); - (void) strcpy(desc->dtargd_native, str); - - if (probe->ftp_xtypes == NULL) - return; - - str = probe->ftp_xtypes; - for (i = 0; i < desc->dtargd_ndx; i++) { - str += strlen(str) + 1; - } - - ASSERT(strlen(str + 1) < sizeof (desc->dtargd_xlate)); - (void) strcpy(desc->dtargd_xlate, str); -} - -/*ARGSUSED*/ -static void -fasttrap_pid_destroy(void *arg, dtrace_id_t id, void *parg) -{ - fasttrap_probe_t *probe = parg; - int i; - size_t size; - - ASSERT(probe != NULL); - ASSERT(!probe->ftp_enabled); - ASSERT(fasttrap_total >= probe->ftp_ntps); - - atomic_add_32(&fasttrap_total, -probe->ftp_ntps); - size = offsetof(fasttrap_probe_t, ftp_tps[probe->ftp_ntps]); - - if (probe->ftp_gen + 1 >= fasttrap_mod_gen) - fasttrap_mod_barrier(probe->ftp_gen); - - for (i = 0; i < probe->ftp_ntps; i++) { - kmem_free(probe->ftp_tps[i].fit_tp, - sizeof (fasttrap_tracepoint_t)); - } - - kmem_free(probe, size); -} - - -static const dtrace_pattr_t pid_attr = { -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -}; - -static dtrace_pops_t pid_pops = { - fasttrap_pid_provide, - NULL, - fasttrap_pid_enable, - fasttrap_pid_disable, - NULL, - NULL, - fasttrap_pid_getargdesc, - fasttrap_pid_getarg, - NULL, - fasttrap_pid_destroy -}; - -static dtrace_pops_t usdt_pops = { - fasttrap_pid_provide, - NULL, - fasttrap_pid_enable, - fasttrap_pid_disable, - NULL, - NULL, - fasttrap_pid_getargdesc, - fasttrap_usdt_getarg, - NULL, - fasttrap_pid_destroy -}; - -static fasttrap_proc_t * -fasttrap_proc_lookup(pid_t pid) -{ - fasttrap_bucket_t *bucket; - fasttrap_proc_t *fprc, *new_fprc; - - bucket = &fasttrap_procs.fth_table[FASTTRAP_PROCS_INDEX(pid)]; - mutex_enter(&bucket->ftb_mtx); - - for (fprc = bucket->ftb_data; fprc != NULL; fprc = fprc->ftpc_next) { - if (fprc->ftpc_pid == pid && fprc->ftpc_acount != 0) { - mutex_enter(&fprc->ftpc_mtx); - mutex_exit(&bucket->ftb_mtx); - fprc->ftpc_rcount++; - atomic_add_64(&fprc->ftpc_acount, 1); - mutex_exit(&fprc->ftpc_mtx); - - return (fprc); - } - } - - /* - * Drop the bucket lock so we don't try to perform a sleeping - * allocation under it. - */ - mutex_exit(&bucket->ftb_mtx); - - new_fprc = kmem_zalloc(sizeof (fasttrap_proc_t), KM_SLEEP); - new_fprc->ftpc_pid = pid; - new_fprc->ftpc_rcount = 1; - new_fprc->ftpc_acount = 1; - - mutex_enter(&bucket->ftb_mtx); - - /* - * Take another lap through the list to make sure a proc hasn't - * been created for this pid while we weren't under the bucket lock. - */ - for (fprc = bucket->ftb_data; fprc != NULL; fprc = fprc->ftpc_next) { - if (fprc->ftpc_pid == pid && fprc->ftpc_acount != 0) { - mutex_enter(&fprc->ftpc_mtx); - mutex_exit(&bucket->ftb_mtx); - fprc->ftpc_rcount++; - atomic_add_64(&fprc->ftpc_acount, 1); - mutex_exit(&fprc->ftpc_mtx); - - kmem_free(new_fprc, sizeof (fasttrap_proc_t)); - - return (fprc); - } - } - - new_fprc->ftpc_next = bucket->ftb_data; - bucket->ftb_data = new_fprc; - - mutex_exit(&bucket->ftb_mtx); - - return (new_fprc); -} - -static void -fasttrap_proc_release(fasttrap_proc_t *proc) -{ - fasttrap_bucket_t *bucket; - fasttrap_proc_t *fprc, **fprcp; - pid_t pid = proc->ftpc_pid; - - mutex_enter(&proc->ftpc_mtx); - - ASSERT(proc->ftpc_rcount != 0); - - if (--proc->ftpc_rcount != 0) { - mutex_exit(&proc->ftpc_mtx); - return; - } - - mutex_exit(&proc->ftpc_mtx); - - /* - * There should definitely be no live providers associated with this - * process at this point. - */ - ASSERT(proc->ftpc_acount == 0); - - bucket = &fasttrap_procs.fth_table[FASTTRAP_PROCS_INDEX(pid)]; - mutex_enter(&bucket->ftb_mtx); - - fprcp = (fasttrap_proc_t **)&bucket->ftb_data; - while ((fprc = *fprcp) != NULL) { - if (fprc == proc) - break; - - fprcp = &fprc->ftpc_next; - } - - /* - * Something strange has happened if we can't find the proc. - */ - ASSERT(fprc != NULL); - - *fprcp = fprc->ftpc_next; - - mutex_exit(&bucket->ftb_mtx); - - kmem_free(fprc, sizeof (fasttrap_proc_t)); -} - -/* - * Lookup a fasttrap-managed provider based on its name and associated pid. - * If the pattr argument is non-NULL, this function instantiates the provider - * if it doesn't exist otherwise it returns NULL. The provider is returned - * with its lock held. - */ -static fasttrap_provider_t * -fasttrap_provider_lookup(pid_t pid, const char *name, - const dtrace_pattr_t *pattr) -{ - fasttrap_provider_t *fp, *new_fp = NULL; - fasttrap_bucket_t *bucket; - char provname[DTRACE_PROVNAMELEN]; - proc_t *p; - cred_t *cred; - - ASSERT(strlen(name) < sizeof (fp->ftp_name)); - ASSERT(pattr != NULL); - - bucket = &fasttrap_provs.fth_table[FASTTRAP_PROVS_INDEX(pid, name)]; - mutex_enter(&bucket->ftb_mtx); - - /* - * Take a lap through the list and return the match if we find it. - */ - for (fp = bucket->ftb_data; fp != NULL; fp = fp->ftp_next) { - if (fp->ftp_pid == pid && strcmp(fp->ftp_name, name) == 0 && - !fp->ftp_retired) { - mutex_enter(&fp->ftp_mtx); - mutex_exit(&bucket->ftb_mtx); - return (fp); - } - } - - /* - * Drop the bucket lock so we don't try to perform a sleeping - * allocation under it. - */ - mutex_exit(&bucket->ftb_mtx); - - /* - * Make sure the process exists, isn't a child created as the result - * of a vfork(2), and isn't a zombie (but may be in fork). - */ - mutex_enter(&pidlock); - if ((p = prfind(pid)) == NULL) { - mutex_exit(&pidlock); - return (NULL); - } - mutex_enter(&p->p_lock); - mutex_exit(&pidlock); - if (p->p_flag & (SVFORK | SEXITING)) { - mutex_exit(&p->p_lock); - return (NULL); - } - - /* - * Increment p_dtrace_probes so that the process knows to inform us - * when it exits or execs. fasttrap_provider_free() decrements this - * when we're done with this provider. - */ - p->p_dtrace_probes++; - - /* - * Grab the credentials for this process so we have - * something to pass to dtrace_register(). - */ - mutex_enter(&p->p_crlock); - crhold(p->p_cred); - cred = p->p_cred; - mutex_exit(&p->p_crlock); - mutex_exit(&p->p_lock); - - new_fp = kmem_zalloc(sizeof (fasttrap_provider_t), KM_SLEEP); - new_fp->ftp_pid = pid; - new_fp->ftp_proc = fasttrap_proc_lookup(pid); - - ASSERT(new_fp->ftp_proc != NULL); - - mutex_enter(&bucket->ftb_mtx); - - /* - * Take another lap through the list to make sure a provider hasn't - * been created for this pid while we weren't under the bucket lock. - */ - for (fp = bucket->ftb_data; fp != NULL; fp = fp->ftp_next) { - if (fp->ftp_pid == pid && strcmp(fp->ftp_name, name) == 0 && - !fp->ftp_retired) { - mutex_enter(&fp->ftp_mtx); - mutex_exit(&bucket->ftb_mtx); - fasttrap_provider_free(new_fp); - crfree(cred); - return (fp); - } - } - - (void) strcpy(new_fp->ftp_name, name); - - /* - * Fail and return NULL if either the provider name is too long - * or we fail to register this new provider with the DTrace - * framework. Note that this is the only place we ever construct - * the full provider name -- we keep it in pieces in the provider - * structure. - */ - if (snprintf(provname, sizeof (provname), "%s%u", name, (uint_t)pid) >= - sizeof (provname) || - dtrace_register(provname, pattr, - DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER, cred, - pattr == &pid_attr ? &pid_pops : &usdt_pops, new_fp, - &new_fp->ftp_provid) != 0) { - mutex_exit(&bucket->ftb_mtx); - fasttrap_provider_free(new_fp); - crfree(cred); - return (NULL); - } - - new_fp->ftp_next = bucket->ftb_data; - bucket->ftb_data = new_fp; - - mutex_enter(&new_fp->ftp_mtx); - mutex_exit(&bucket->ftb_mtx); - - crfree(cred); - return (new_fp); -} - -static void -fasttrap_provider_free(fasttrap_provider_t *provider) -{ - pid_t pid = provider->ftp_pid; - proc_t *p; - - /* - * There need to be no associated enabled probes, no consumers - * creating probes, and no meta providers referencing this provider. - */ - ASSERT(provider->ftp_rcount == 0); - ASSERT(provider->ftp_ccount == 0); - ASSERT(provider->ftp_mcount == 0); - - fasttrap_proc_release(provider->ftp_proc); - - kmem_free(provider, sizeof (fasttrap_provider_t)); - - /* - * Decrement p_dtrace_probes on the process whose provider we're - * freeing. We don't have to worry about clobbering somone else's - * modifications to it because we have locked the bucket that - * corresponds to this process's hash chain in the provider hash - * table. Don't sweat it if we can't find the process. - */ - mutex_enter(&pidlock); - if ((p = prfind(pid)) == NULL) { - mutex_exit(&pidlock); - return; - } - - mutex_enter(&p->p_lock); - mutex_exit(&pidlock); - - p->p_dtrace_probes--; - mutex_exit(&p->p_lock); -} - -static void -fasttrap_provider_retire(pid_t pid, const char *name, int mprov) -{ - fasttrap_provider_t *fp; - fasttrap_bucket_t *bucket; - dtrace_provider_id_t provid; - - ASSERT(strlen(name) < sizeof (fp->ftp_name)); - - bucket = &fasttrap_provs.fth_table[FASTTRAP_PROVS_INDEX(pid, name)]; - mutex_enter(&bucket->ftb_mtx); - - for (fp = bucket->ftb_data; fp != NULL; fp = fp->ftp_next) { - if (fp->ftp_pid == pid && strcmp(fp->ftp_name, name) == 0 && - !fp->ftp_retired) - break; - } - - if (fp == NULL) { - mutex_exit(&bucket->ftb_mtx); - return; - } - - mutex_enter(&fp->ftp_mtx); - ASSERT(!mprov || fp->ftp_mcount > 0); - if (mprov && --fp->ftp_mcount != 0) { - mutex_exit(&fp->ftp_mtx); - mutex_exit(&bucket->ftb_mtx); - return; - } - - /* - * Mark the provider to be removed in our post-processing step, mark it - * retired, and drop the active count on its proc. Marking it indicates - * that we should try to remove it; setting the retired flag indicates - * that we're done with this provider; dropping the active the proc - * releases our hold, and when this reaches zero (as it will during - * exit or exec) the proc and associated providers become defunct. - * - * We obviously need to take the bucket lock before the provider lock - * to perform the lookup, but we need to drop the provider lock - * before calling into the DTrace framework since we acquire the - * provider lock in callbacks invoked from the DTrace framework. The - * bucket lock therefore protects the integrity of the provider hash - * table. - */ - atomic_add_64(&fp->ftp_proc->ftpc_acount, -1); - fp->ftp_retired = 1; - fp->ftp_marked = 1; - provid = fp->ftp_provid; - mutex_exit(&fp->ftp_mtx); - - /* - * We don't have to worry about invalidating the same provider twice - * since fasttrap_provider_lookup() will ignore provider that have - * been marked as retired. - */ - dtrace_invalidate(provid); - - mutex_exit(&bucket->ftb_mtx); - - fasttrap_pid_cleanup(); -} - -static int -fasttrap_uint32_cmp(const void *ap, const void *bp) -{ - return (*(const uint32_t *)ap - *(const uint32_t *)bp); -} - -static int -fasttrap_uint64_cmp(const void *ap, const void *bp) -{ - return (*(const uint64_t *)ap - *(const uint64_t *)bp); -} - -static int -fasttrap_add_probe(fasttrap_probe_spec_t *pdata) -{ - fasttrap_provider_t *provider; - fasttrap_probe_t *pp; - fasttrap_tracepoint_t *tp; - char *name; - int i, aframes, whack; - - /* - * There needs to be at least one desired trace point. - */ - if (pdata->ftps_noffs == 0) - return (EINVAL); - - switch (pdata->ftps_type) { - case DTFTP_ENTRY: - name = "entry"; - aframes = FASTTRAP_ENTRY_AFRAMES; - break; - case DTFTP_RETURN: - name = "return"; - aframes = FASTTRAP_RETURN_AFRAMES; - break; - case DTFTP_OFFSETS: - name = NULL; - break; - default: - return (EINVAL); - } - - if ((provider = fasttrap_provider_lookup(pdata->ftps_pid, - FASTTRAP_PID_NAME, &pid_attr)) == NULL) - return (ESRCH); - - /* - * Increment this reference count to indicate that a consumer is - * actively adding a new probe associated with this provider. This - * prevents the provider from being deleted -- we'll need to check - * for pending deletions when we drop this reference count. - */ - provider->ftp_ccount++; - mutex_exit(&provider->ftp_mtx); - - /* - * Grab the creation lock to ensure consistency between calls to - * dtrace_probe_lookup() and dtrace_probe_create() in the face of - * other threads creating probes. We must drop the provider lock - * before taking this lock to avoid a three-way deadlock with the - * DTrace framework. - */ - mutex_enter(&provider->ftp_cmtx); - - if (name == NULL) { - for (i = 0; i < pdata->ftps_noffs; i++) { - char name_str[17]; - - (void) sprintf(name_str, "%llx", - (unsigned long long)pdata->ftps_offs[i]); - - if (dtrace_probe_lookup(provider->ftp_provid, - pdata->ftps_mod, pdata->ftps_func, name_str) != 0) - continue; - - atomic_add_32(&fasttrap_total, 1); - - if (fasttrap_total > fasttrap_max) { - atomic_add_32(&fasttrap_total, -1); - goto no_mem; - } - - pp = kmem_zalloc(sizeof (fasttrap_probe_t), KM_SLEEP); - - pp->ftp_prov = provider; - pp->ftp_faddr = pdata->ftps_pc; - pp->ftp_fsize = pdata->ftps_size; - pp->ftp_pid = pdata->ftps_pid; - pp->ftp_ntps = 1; - - tp = kmem_zalloc(sizeof (fasttrap_tracepoint_t), - KM_SLEEP); - - tp->ftt_proc = provider->ftp_proc; - tp->ftt_pc = pdata->ftps_offs[i] + pdata->ftps_pc; - tp->ftt_pid = pdata->ftps_pid; - - pp->ftp_tps[0].fit_tp = tp; - pp->ftp_tps[0].fit_id.fti_probe = pp; - pp->ftp_tps[0].fit_id.fti_ptype = pdata->ftps_type; - - pp->ftp_id = dtrace_probe_create(provider->ftp_provid, - pdata->ftps_mod, pdata->ftps_func, name_str, - FASTTRAP_OFFSET_AFRAMES, pp); - } - - } else if (dtrace_probe_lookup(provider->ftp_provid, pdata->ftps_mod, - pdata->ftps_func, name) == 0) { - atomic_add_32(&fasttrap_total, pdata->ftps_noffs); - - if (fasttrap_total > fasttrap_max) { - atomic_add_32(&fasttrap_total, -pdata->ftps_noffs); - goto no_mem; - } - - /* - * Make sure all tracepoint program counter values are unique. - * We later assume that each probe has exactly one tracepoint - * for a given pc. - */ - qsort(pdata->ftps_offs, pdata->ftps_noffs, - sizeof (uint64_t), fasttrap_uint64_cmp); - for (i = 1; i < pdata->ftps_noffs; i++) { - if (pdata->ftps_offs[i] > pdata->ftps_offs[i - 1]) - continue; - - atomic_add_32(&fasttrap_total, -pdata->ftps_noffs); - goto no_mem; - } - - ASSERT(pdata->ftps_noffs > 0); - pp = kmem_zalloc(offsetof(fasttrap_probe_t, - ftp_tps[pdata->ftps_noffs]), KM_SLEEP); - - pp->ftp_prov = provider; - pp->ftp_faddr = pdata->ftps_pc; - pp->ftp_fsize = pdata->ftps_size; - pp->ftp_pid = pdata->ftps_pid; - pp->ftp_ntps = pdata->ftps_noffs; - - for (i = 0; i < pdata->ftps_noffs; i++) { - tp = kmem_zalloc(sizeof (fasttrap_tracepoint_t), - KM_SLEEP); - - tp->ftt_proc = provider->ftp_proc; - tp->ftt_pc = pdata->ftps_offs[i] + pdata->ftps_pc; - tp->ftt_pid = pdata->ftps_pid; - - pp->ftp_tps[i].fit_tp = tp; - pp->ftp_tps[i].fit_id.fti_probe = pp; - pp->ftp_tps[i].fit_id.fti_ptype = pdata->ftps_type; - } - - pp->ftp_id = dtrace_probe_create(provider->ftp_provid, - pdata->ftps_mod, pdata->ftps_func, name, aframes, pp); - } - - mutex_exit(&provider->ftp_cmtx); - - /* - * We know that the provider is still valid since we incremented the - * creation reference count. If someone tried to clean up this provider - * while we were using it (e.g. because the process called exec(2) or - * exit(2)), take note of that and try to clean it up now. - */ - mutex_enter(&provider->ftp_mtx); - provider->ftp_ccount--; - whack = provider->ftp_retired; - mutex_exit(&provider->ftp_mtx); - - if (whack) - fasttrap_pid_cleanup(); - - return (0); - -no_mem: - /* - * If we've exhausted the allowable resources, we'll try to remove - * this provider to free some up. This is to cover the case where - * the user has accidentally created many more probes than was - * intended (e.g. pid123:::). - */ - mutex_exit(&provider->ftp_cmtx); - mutex_enter(&provider->ftp_mtx); - provider->ftp_ccount--; - provider->ftp_marked = 1; - mutex_exit(&provider->ftp_mtx); - - fasttrap_pid_cleanup(); - - return (ENOMEM); -} - -/*ARGSUSED*/ -static void * -fasttrap_meta_provide(void *arg, dtrace_helper_provdesc_t *dhpv, pid_t pid) -{ - fasttrap_provider_t *provider; - - /* - * A 32-bit unsigned integer (like a pid for example) can be - * expressed in 10 or fewer decimal digits. Make sure that we'll - * have enough space for the provider name. - */ - if (strlen(dhpv->dthpv_provname) + 10 >= - sizeof (provider->ftp_name)) { - cmn_err(CE_WARN, "failed to instantiate provider %s: " - "name too long to accomodate pid", dhpv->dthpv_provname); - return (NULL); - } - - /* - * Don't let folks spoof the true pid provider. - */ - if (strcmp(dhpv->dthpv_provname, FASTTRAP_PID_NAME) == 0) { - cmn_err(CE_WARN, "failed to instantiate provider %s: " - "%s is an invalid name", dhpv->dthpv_provname, - FASTTRAP_PID_NAME); - return (NULL); - } - - /* - * The highest stability class that fasttrap supports is ISA; cap - * the stability of the new provider accordingly. - */ - if (dhpv->dthpv_pattr.dtpa_provider.dtat_class > DTRACE_CLASS_ISA) - dhpv->dthpv_pattr.dtpa_provider.dtat_class = DTRACE_CLASS_ISA; - if (dhpv->dthpv_pattr.dtpa_mod.dtat_class > DTRACE_CLASS_ISA) - dhpv->dthpv_pattr.dtpa_mod.dtat_class = DTRACE_CLASS_ISA; - if (dhpv->dthpv_pattr.dtpa_func.dtat_class > DTRACE_CLASS_ISA) - dhpv->dthpv_pattr.dtpa_func.dtat_class = DTRACE_CLASS_ISA; - if (dhpv->dthpv_pattr.dtpa_name.dtat_class > DTRACE_CLASS_ISA) - dhpv->dthpv_pattr.dtpa_name.dtat_class = DTRACE_CLASS_ISA; - if (dhpv->dthpv_pattr.dtpa_args.dtat_class > DTRACE_CLASS_ISA) - dhpv->dthpv_pattr.dtpa_args.dtat_class = DTRACE_CLASS_ISA; - - if ((provider = fasttrap_provider_lookup(pid, dhpv->dthpv_provname, - &dhpv->dthpv_pattr)) == NULL) { - cmn_err(CE_WARN, "failed to instantiate provider %s for " - "process %u", dhpv->dthpv_provname, (uint_t)pid); - return (NULL); - } - - /* - * Up the meta provider count so this provider isn't removed until - * the meta provider has been told to remove it. - */ - provider->ftp_mcount++; - - mutex_exit(&provider->ftp_mtx); - - return (provider); -} - -/*ARGSUSED*/ -static void -fasttrap_meta_create_probe(void *arg, void *parg, - dtrace_helper_probedesc_t *dhpb) -{ - fasttrap_provider_t *provider = parg; - fasttrap_probe_t *pp; - fasttrap_tracepoint_t *tp; - int i, j; - uint32_t ntps; - - /* - * Since the meta provider count is non-zero we don't have to worry - * about this provider disappearing. - */ - ASSERT(provider->ftp_mcount > 0); - - /* - * The offsets must be unique. - */ - qsort(dhpb->dthpb_offs, dhpb->dthpb_noffs, sizeof (uint32_t), - fasttrap_uint32_cmp); - for (i = 1; i < dhpb->dthpb_noffs; i++) { - if (dhpb->dthpb_base + dhpb->dthpb_offs[i] <= - dhpb->dthpb_base + dhpb->dthpb_offs[i - 1]) - return; - } - - qsort(dhpb->dthpb_enoffs, dhpb->dthpb_nenoffs, sizeof (uint32_t), - fasttrap_uint32_cmp); - for (i = 1; i < dhpb->dthpb_nenoffs; i++) { - if (dhpb->dthpb_base + dhpb->dthpb_enoffs[i] <= - dhpb->dthpb_base + dhpb->dthpb_enoffs[i - 1]) - return; - } - - /* - * Grab the creation lock to ensure consistency between calls to - * dtrace_probe_lookup() and dtrace_probe_create() in the face of - * other threads creating probes. - */ - mutex_enter(&provider->ftp_cmtx); - - if (dtrace_probe_lookup(provider->ftp_provid, dhpb->dthpb_mod, - dhpb->dthpb_func, dhpb->dthpb_name) != 0) { - mutex_exit(&provider->ftp_cmtx); - return; - } - - ntps = dhpb->dthpb_noffs + dhpb->dthpb_nenoffs; - ASSERT(ntps > 0); - - atomic_add_32(&fasttrap_total, ntps); - - if (fasttrap_total > fasttrap_max) { - atomic_add_32(&fasttrap_total, -ntps); - mutex_exit(&provider->ftp_cmtx); - return; - } - - pp = kmem_zalloc(offsetof(fasttrap_probe_t, ftp_tps[ntps]), KM_SLEEP); - - pp->ftp_prov = provider; - pp->ftp_pid = provider->ftp_pid; - pp->ftp_ntps = ntps; - pp->ftp_nargs = dhpb->dthpb_xargc; - pp->ftp_xtypes = dhpb->dthpb_xtypes; - pp->ftp_ntypes = dhpb->dthpb_ntypes; - - /* - * First create a tracepoint for each actual point of interest. - */ - for (i = 0; i < dhpb->dthpb_noffs; i++) { - tp = kmem_zalloc(sizeof (fasttrap_tracepoint_t), KM_SLEEP); - - tp->ftt_proc = provider->ftp_proc; - tp->ftt_pc = dhpb->dthpb_base + dhpb->dthpb_offs[i]; - tp->ftt_pid = provider->ftp_pid; - - pp->ftp_tps[i].fit_tp = tp; - pp->ftp_tps[i].fit_id.fti_probe = pp; -#ifdef __sparc - pp->ftp_tps[i].fit_id.fti_ptype = DTFTP_POST_OFFSETS; -#else - pp->ftp_tps[i].fit_id.fti_ptype = DTFTP_OFFSETS; -#endif - } - - /* - * Then create a tracepoint for each is-enabled point. - */ - for (j = 0; i < ntps; i++, j++) { - tp = kmem_zalloc(sizeof (fasttrap_tracepoint_t), KM_SLEEP); - - tp->ftt_proc = provider->ftp_proc; - tp->ftt_pc = dhpb->dthpb_base + dhpb->dthpb_enoffs[j]; - tp->ftt_pid = provider->ftp_pid; - - pp->ftp_tps[i].fit_tp = tp; - pp->ftp_tps[i].fit_id.fti_probe = pp; - pp->ftp_tps[i].fit_id.fti_ptype = DTFTP_IS_ENABLED; - } - - /* - * If the arguments are shuffled around we set the argument remapping - * table. Later, when the probe fires, we only remap the arguments - * if the table is non-NULL. - */ - for (i = 0; i < dhpb->dthpb_xargc; i++) { - if (dhpb->dthpb_args[i] != i) { - pp->ftp_argmap = dhpb->dthpb_args; - break; - } - } - - /* - * The probe is fully constructed -- register it with DTrace. - */ - pp->ftp_id = dtrace_probe_create(provider->ftp_provid, dhpb->dthpb_mod, - dhpb->dthpb_func, dhpb->dthpb_name, FASTTRAP_OFFSET_AFRAMES, pp); - - mutex_exit(&provider->ftp_cmtx); -} - -/*ARGSUSED*/ -static void -fasttrap_meta_remove(void *arg, dtrace_helper_provdesc_t *dhpv, pid_t pid) -{ - /* - * Clean up the USDT provider. There may be active consumers of the - * provider busy adding probes, no damage will actually befall the - * provider until that count has dropped to zero. This just puts - * the provider on death row. - */ - fasttrap_provider_retire(pid, dhpv->dthpv_provname, 1); -} - -static dtrace_mops_t fasttrap_mops = { - fasttrap_meta_create_probe, - fasttrap_meta_provide, - fasttrap_meta_remove -}; - -/*ARGSUSED*/ -static int -fasttrap_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) -{ - return (0); -} - -/*ARGSUSED*/ -static int -fasttrap_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) -{ - if (!dtrace_attached()) - return (EAGAIN); - - if (cmd == FASTTRAPIOC_MAKEPROBE) { - fasttrap_probe_spec_t *uprobe = (void *)arg; - fasttrap_probe_spec_t *probe; - uint64_t noffs; - size_t size; - int ret; - char *c; - - if (copyin(&uprobe->ftps_noffs, &noffs, - sizeof (uprobe->ftps_noffs))) - return (EFAULT); - - /* - * Probes must have at least one tracepoint. - */ - if (noffs == 0) - return (EINVAL); - - size = sizeof (fasttrap_probe_spec_t) + - sizeof (probe->ftps_offs[0]) * (noffs - 1); - - if (size > 1024 * 1024) - return (ENOMEM); - - probe = kmem_alloc(size, KM_SLEEP); - - if (copyin(uprobe, probe, size) != 0) { - kmem_free(probe, size); - return (EFAULT); - } - - /* - * Verify that the function and module strings contain no - * funny characters. - */ - for (c = &probe->ftps_func[0]; *c != '\0'; c++) { - if (*c < 0x20 || 0x7f <= *c) { - ret = EINVAL; - goto err; - } - } - - for (c = &probe->ftps_mod[0]; *c != '\0'; c++) { - if (*c < 0x20 || 0x7f <= *c) { - ret = EINVAL; - goto err; - } - } - - if (!PRIV_POLICY_CHOICE(cr, PRIV_ALL, B_FALSE)) { - proc_t *p; - pid_t pid = probe->ftps_pid; - - mutex_enter(&pidlock); - /* - * Report an error if the process doesn't exist - * or is actively being birthed. - */ - if ((p = prfind(pid)) == NULL || p->p_stat == SIDL) { - mutex_exit(&pidlock); - return (ESRCH); - } - mutex_enter(&p->p_lock); - mutex_exit(&pidlock); - - if ((ret = priv_proc_cred_perm(cr, p, NULL, - VREAD | VWRITE)) != 0) { - mutex_exit(&p->p_lock); - return (ret); - } - - mutex_exit(&p->p_lock); - } - - ret = fasttrap_add_probe(probe); -err: - kmem_free(probe, size); - - return (ret); - - } else if (cmd == FASTTRAPIOC_GETINSTR) { - fasttrap_instr_query_t instr; - fasttrap_tracepoint_t *tp; - uint_t index; - int ret; - - if (copyin((void *)arg, &instr, sizeof (instr)) != 0) - return (EFAULT); - - if (!PRIV_POLICY_CHOICE(cr, PRIV_ALL, B_FALSE)) { - proc_t *p; - pid_t pid = instr.ftiq_pid; - - mutex_enter(&pidlock); - /* - * Report an error if the process doesn't exist - * or is actively being birthed. - */ - if ((p = prfind(pid)) == NULL || p->p_stat == SIDL) { - mutex_exit(&pidlock); - return (ESRCH); - } - mutex_enter(&p->p_lock); - mutex_exit(&pidlock); - - if ((ret = priv_proc_cred_perm(cr, p, NULL, - VREAD)) != 0) { - mutex_exit(&p->p_lock); - return (ret); - } - - mutex_exit(&p->p_lock); - } - - index = FASTTRAP_TPOINTS_INDEX(instr.ftiq_pid, instr.ftiq_pc); - - mutex_enter(&fasttrap_tpoints.fth_table[index].ftb_mtx); - tp = fasttrap_tpoints.fth_table[index].ftb_data; - while (tp != NULL) { - if (instr.ftiq_pid == tp->ftt_pid && - instr.ftiq_pc == tp->ftt_pc && - tp->ftt_proc->ftpc_acount != 0) - break; - - tp = tp->ftt_next; - } - - if (tp == NULL) { - mutex_exit(&fasttrap_tpoints.fth_table[index].ftb_mtx); - return (ENOENT); - } - - bcopy(&tp->ftt_instr, &instr.ftiq_instr, - sizeof (instr.ftiq_instr)); - mutex_exit(&fasttrap_tpoints.fth_table[index].ftb_mtx); - - if (copyout(&instr, (void *)arg, sizeof (instr)) != 0) - return (EFAULT); - - return (0); - } - - return (EINVAL); -} - -static struct cb_ops fasttrap_cb_ops = { - fasttrap_open, /* open */ - nodev, /* close */ - nulldev, /* strategy */ - nulldev, /* print */ - nodev, /* dump */ - nodev, /* read */ - nodev, /* write */ - fasttrap_ioctl, /* ioctl */ - nodev, /* devmap */ - nodev, /* mmap */ - nodev, /* segmap */ - nochpoll, /* poll */ - ddi_prop_op, /* cb_prop_op */ - 0, /* streamtab */ - D_NEW | D_MP /* Driver compatibility flag */ -}; - -/*ARGSUSED*/ -static int -fasttrap_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) -{ - int error; - - switch (infocmd) { - case DDI_INFO_DEVT2DEVINFO: - *result = (void *)fasttrap_devi; - error = DDI_SUCCESS; - break; - case DDI_INFO_DEVT2INSTANCE: - *result = (void *)0; - error = DDI_SUCCESS; - break; - default: - error = DDI_FAILURE; - } - return (error); -} - -static int -fasttrap_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) -{ - ulong_t nent; - - switch (cmd) { - case DDI_ATTACH: - break; - case DDI_RESUME: - return (DDI_SUCCESS); - default: - return (DDI_FAILURE); - } - - if (ddi_create_minor_node(devi, "fasttrap", S_IFCHR, 0, - DDI_PSEUDO, NULL) == DDI_FAILURE) { - ddi_remove_minor_node(devi, NULL); - return (DDI_FAILURE); - } - - ddi_report_dev(devi); - fasttrap_devi = devi; - - /* - * Install our hooks into fork(2), exec(2), and exit(2). - */ - dtrace_fasttrap_fork_ptr = &fasttrap_fork; - dtrace_fasttrap_exit_ptr = &fasttrap_exec_exit; - dtrace_fasttrap_exec_ptr = &fasttrap_exec_exit; - - fasttrap_max = ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, - "fasttrap-max-probes", FASTTRAP_MAX_DEFAULT); - fasttrap_total = 0; - - /* - * Conjure up the tracepoints hashtable... - */ - nent = ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, - "fasttrap-hash-size", FASTTRAP_TPOINTS_DEFAULT_SIZE); - - if (nent == 0 || nent > 0x1000000) - nent = FASTTRAP_TPOINTS_DEFAULT_SIZE; - - if ((nent & (nent - 1)) == 0) - fasttrap_tpoints.fth_nent = nent; - else - fasttrap_tpoints.fth_nent = 1 << fasttrap_highbit(nent); - ASSERT(fasttrap_tpoints.fth_nent > 0); - fasttrap_tpoints.fth_mask = fasttrap_tpoints.fth_nent - 1; - fasttrap_tpoints.fth_table = kmem_zalloc(fasttrap_tpoints.fth_nent * - sizeof (fasttrap_bucket_t), KM_SLEEP); - - /* - * ... and the providers hash table... - */ - nent = FASTTRAP_PROVIDERS_DEFAULT_SIZE; - if ((nent & (nent - 1)) == 0) - fasttrap_provs.fth_nent = nent; - else - fasttrap_provs.fth_nent = 1 << fasttrap_highbit(nent); - ASSERT(fasttrap_provs.fth_nent > 0); - fasttrap_provs.fth_mask = fasttrap_provs.fth_nent - 1; - fasttrap_provs.fth_table = kmem_zalloc(fasttrap_provs.fth_nent * - sizeof (fasttrap_bucket_t), KM_SLEEP); - - /* - * ... and the procs hash table. - */ - nent = FASTTRAP_PROCS_DEFAULT_SIZE; - if ((nent & (nent - 1)) == 0) - fasttrap_procs.fth_nent = nent; - else - fasttrap_procs.fth_nent = 1 << fasttrap_highbit(nent); - ASSERT(fasttrap_procs.fth_nent > 0); - fasttrap_procs.fth_mask = fasttrap_procs.fth_nent - 1; - fasttrap_procs.fth_table = kmem_zalloc(fasttrap_procs.fth_nent * - sizeof (fasttrap_bucket_t), KM_SLEEP); - - (void) dtrace_meta_register("fasttrap", &fasttrap_mops, NULL, - &fasttrap_meta_id); - - return (DDI_SUCCESS); -} - -static int -fasttrap_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) -{ - int i, fail = 0; - timeout_id_t tmp; - - switch (cmd) { - case DDI_DETACH: - break; - case DDI_SUSPEND: - return (DDI_SUCCESS); - default: - return (DDI_FAILURE); - } - - /* - * Unregister the meta-provider to make sure no new fasttrap- - * managed providers come along while we're trying to close up - * shop. If we fail to detach, we'll need to re-register as a - * meta-provider. We can fail to unregister as a meta-provider - * if providers we manage still exist. - */ - if (fasttrap_meta_id != DTRACE_METAPROVNONE && - dtrace_meta_unregister(fasttrap_meta_id) != 0) - return (DDI_FAILURE); - - /* - * Prevent any new timeouts from running by setting fasttrap_timeout - * to a non-zero value, and wait for the current timeout to complete. - */ - mutex_enter(&fasttrap_cleanup_mtx); - fasttrap_cleanup_work = 0; - - while (fasttrap_timeout != (timeout_id_t)1) { - tmp = fasttrap_timeout; - fasttrap_timeout = (timeout_id_t)1; - - if (tmp != 0) { - mutex_exit(&fasttrap_cleanup_mtx); - (void) untimeout(tmp); - mutex_enter(&fasttrap_cleanup_mtx); - } - } - - fasttrap_cleanup_work = 0; - mutex_exit(&fasttrap_cleanup_mtx); - - /* - * Iterate over all of our providers. If there's still a process - * that corresponds to that pid, fail to detach. - */ - for (i = 0; i < fasttrap_provs.fth_nent; i++) { - fasttrap_provider_t **fpp, *fp; - fasttrap_bucket_t *bucket = &fasttrap_provs.fth_table[i]; - - mutex_enter(&bucket->ftb_mtx); - fpp = (fasttrap_provider_t **)&bucket->ftb_data; - while ((fp = *fpp) != NULL) { - /* - * Acquire and release the lock as a simple way of - * waiting for any other consumer to finish with - * this provider. A thread must first acquire the - * bucket lock so there's no chance of another thread - * blocking on the provider's lock. - */ - mutex_enter(&fp->ftp_mtx); - mutex_exit(&fp->ftp_mtx); - - if (dtrace_unregister(fp->ftp_provid) != 0) { - fail = 1; - fpp = &fp->ftp_next; - } else { - *fpp = fp->ftp_next; - fasttrap_provider_free(fp); - } - } - - mutex_exit(&bucket->ftb_mtx); - } - - if (fail) { - uint_t work; - /* - * If we're failing to detach, we need to unblock timeouts - * and start a new timeout if any work has accumulated while - * we've been unsuccessfully trying to detach. - */ - mutex_enter(&fasttrap_cleanup_mtx); - fasttrap_timeout = 0; - work = fasttrap_cleanup_work; - mutex_exit(&fasttrap_cleanup_mtx); - - if (work) - fasttrap_pid_cleanup(); - - (void) dtrace_meta_register("fasttrap", &fasttrap_mops, NULL, - &fasttrap_meta_id); - - return (DDI_FAILURE); - } - -#ifdef DEBUG - mutex_enter(&fasttrap_count_mtx); - ASSERT(fasttrap_pid_count == 0); - mutex_exit(&fasttrap_count_mtx); -#endif - - kmem_free(fasttrap_tpoints.fth_table, - fasttrap_tpoints.fth_nent * sizeof (fasttrap_bucket_t)); - fasttrap_tpoints.fth_nent = 0; - - kmem_free(fasttrap_provs.fth_table, - fasttrap_provs.fth_nent * sizeof (fasttrap_bucket_t)); - fasttrap_provs.fth_nent = 0; - - kmem_free(fasttrap_procs.fth_table, - fasttrap_procs.fth_nent * sizeof (fasttrap_bucket_t)); - fasttrap_procs.fth_nent = 0; - - /* - * We know there are no tracepoints in any process anywhere in - * the system so there is no process which has its p_dtrace_count - * greater than zero, therefore we know that no thread can actively - * be executing code in fasttrap_fork(). Similarly for p_dtrace_probes - * and fasttrap_exec() and fasttrap_exit(). - */ - ASSERT(dtrace_fasttrap_fork_ptr == &fasttrap_fork); - dtrace_fasttrap_fork_ptr = NULL; - - ASSERT(dtrace_fasttrap_exec_ptr == &fasttrap_exec_exit); - dtrace_fasttrap_exec_ptr = NULL; - - ASSERT(dtrace_fasttrap_exit_ptr == &fasttrap_exec_exit); - dtrace_fasttrap_exit_ptr = NULL; - - ddi_remove_minor_node(devi, NULL); - - return (DDI_SUCCESS); -} - -static struct dev_ops fasttrap_ops = { - DEVO_REV, /* devo_rev */ - 0, /* refcnt */ - fasttrap_info, /* get_dev_info */ - nulldev, /* identify */ - nulldev, /* probe */ - fasttrap_attach, /* attach */ - fasttrap_detach, /* detach */ - nodev, /* reset */ - &fasttrap_cb_ops, /* driver operations */ - NULL, /* bus operations */ - nodev /* dev power */ -}; - -/* - * Module linkage information for the kernel. - */ -static struct modldrv modldrv = { - &mod_driverops, /* module type (this is a pseudo driver) */ - "Fasttrap Tracing", /* name of module */ - &fasttrap_ops, /* driver ops */ -}; - -static struct modlinkage modlinkage = { - MODREV_1, - (void *)&modldrv, - NULL -}; - -int -_init(void) -{ - return (mod_install(&modlinkage)); -} - -int -_info(struct modinfo *modinfop) -{ - return (mod_info(&modlinkage, modinfop)); -} - -int -_fini(void) -{ - return (mod_remove(&modlinkage)); -} diff --git a/cddl/contrib/opensolaris/uts/common/dtrace/lockstat.c b/cddl/contrib/opensolaris/uts/common/dtrace/lockstat.c deleted file mode 100644 index 3eb76a0..0000000 --- a/cddl/contrib/opensolaris/uts/common/dtrace/lockstat.c +++ /dev/null @@ -1,341 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include - -typedef struct lockstat_probe { - const char *lsp_func; - const char *lsp_name; - int lsp_probe; - dtrace_id_t lsp_id; -} lockstat_probe_t; - -lockstat_probe_t lockstat_probes[] = -{ - { LS_MUTEX_ENTER, LSA_ACQUIRE, LS_MUTEX_ENTER_ACQUIRE }, - { LS_MUTEX_ENTER, LSA_BLOCK, LS_MUTEX_ENTER_BLOCK }, - { LS_MUTEX_ENTER, LSA_SPIN, LS_MUTEX_ENTER_SPIN }, - { LS_MUTEX_EXIT, LSA_RELEASE, LS_MUTEX_EXIT_RELEASE }, - { LS_MUTEX_DESTROY, LSA_RELEASE, LS_MUTEX_DESTROY_RELEASE }, - { LS_MUTEX_TRYENTER, LSA_ACQUIRE, LS_MUTEX_TRYENTER_ACQUIRE }, - { LS_LOCK_SET, LSS_ACQUIRE, LS_LOCK_SET_ACQUIRE }, - { LS_LOCK_SET, LSS_SPIN, LS_LOCK_SET_SPIN }, - { LS_LOCK_SET_SPL, LSS_ACQUIRE, LS_LOCK_SET_SPL_ACQUIRE }, - { LS_LOCK_SET_SPL, LSS_SPIN, LS_LOCK_SET_SPL_SPIN }, - { LS_LOCK_TRY, LSS_ACQUIRE, LS_LOCK_TRY_ACQUIRE }, - { LS_LOCK_CLEAR, LSS_RELEASE, LS_LOCK_CLEAR_RELEASE }, - { LS_LOCK_CLEAR_SPLX, LSS_RELEASE, LS_LOCK_CLEAR_SPLX_RELEASE }, - { LS_CLOCK_UNLOCK, LSS_RELEASE, LS_CLOCK_UNLOCK_RELEASE }, - { LS_RW_ENTER, LSR_ACQUIRE, LS_RW_ENTER_ACQUIRE }, - { LS_RW_ENTER, LSR_BLOCK, LS_RW_ENTER_BLOCK }, - { LS_RW_EXIT, LSR_RELEASE, LS_RW_EXIT_RELEASE }, - { LS_RW_TRYENTER, LSR_ACQUIRE, LS_RW_TRYENTER_ACQUIRE }, - { LS_RW_TRYUPGRADE, LSR_UPGRADE, LS_RW_TRYUPGRADE_UPGRADE }, - { LS_RW_DOWNGRADE, LSR_DOWNGRADE, LS_RW_DOWNGRADE_DOWNGRADE }, - { LS_THREAD_LOCK, LST_SPIN, LS_THREAD_LOCK_SPIN }, - { LS_THREAD_LOCK_HIGH, LST_SPIN, LS_THREAD_LOCK_HIGH_SPIN }, - { NULL } -}; - -static dev_info_t *lockstat_devi; /* saved in xxattach() for xxinfo() */ -static kmutex_t lockstat_test; /* for testing purposes only */ -static dtrace_provider_id_t lockstat_id; - -/*ARGSUSED*/ -static void -lockstat_enable(void *arg, dtrace_id_t id, void *parg) -{ - lockstat_probe_t *probe = parg; - - ASSERT(!lockstat_probemap[probe->lsp_probe]); - - lockstat_probemap[probe->lsp_probe] = id; - membar_producer(); - - lockstat_hot_patch(); - membar_producer(); - - /* - * Immediately generate a record for the lockstat_test mutex - * to verify that the mutex hot-patch code worked as expected. - */ - mutex_enter(&lockstat_test); - mutex_exit(&lockstat_test); -} - -/*ARGSUSED*/ -static void -lockstat_disable(void *arg, dtrace_id_t id, void *parg) -{ - lockstat_probe_t *probe = parg; - int i; - - ASSERT(lockstat_probemap[probe->lsp_probe]); - - lockstat_probemap[probe->lsp_probe] = 0; - lockstat_hot_patch(); - membar_producer(); - - /* - * See if we have any probes left enabled. - */ - for (i = 0; i < LS_NPROBES; i++) { - if (lockstat_probemap[i]) { - /* - * This probe is still enabled. We don't need to deal - * with waiting for all threads to be out of the - * lockstat critical sections; just return. - */ - return; - } - } - - /* - * The delay() here isn't as cheesy as you might think. We don't - * want to busy-loop in the kernel, so we have to give up the - * CPU between calls to lockstat_active_threads(); that much is - * obvious. But the reason it's a do..while loop rather than a - * while loop is subtle. The memory barrier above guarantees that - * no threads will enter the lockstat code from this point forward. - * However, another thread could already be executing lockstat code - * without our knowledge if the update to its t_lockstat field hasn't - * cleared its CPU's store buffer. Delaying for one clock tick - * guarantees that either (1) the thread will have *ample* time to - * complete its work, or (2) the thread will be preempted, in which - * case it will have to grab and release a dispatcher lock, which - * will flush that CPU's store buffer. Either way we're covered. - */ - do { - delay(1); - } while (lockstat_active_threads()); -} - -/*ARGSUSED*/ -static int -lockstat_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) -{ - return (0); -} - -/* ARGSUSED */ -static int -lockstat_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) -{ - int error; - - switch (infocmd) { - case DDI_INFO_DEVT2DEVINFO: - *result = (void *) lockstat_devi; - error = DDI_SUCCESS; - break; - case DDI_INFO_DEVT2INSTANCE: - *result = (void *)0; - error = DDI_SUCCESS; - break; - default: - error = DDI_FAILURE; - } - return (error); -} - -/*ARGSUSED*/ -static void -lockstat_provide(void *arg, const dtrace_probedesc_t *desc) -{ - int i = 0; - - for (i = 0; lockstat_probes[i].lsp_func != NULL; i++) { - lockstat_probe_t *probe = &lockstat_probes[i]; - - if (dtrace_probe_lookup(lockstat_id, "genunix", - probe->lsp_func, probe->lsp_name) != 0) - continue; - - ASSERT(!probe->lsp_id); - probe->lsp_id = dtrace_probe_create(lockstat_id, - "genunix", probe->lsp_func, probe->lsp_name, - 1, probe); - } -} - -/*ARGSUSED*/ -static void -lockstat_destroy(void *arg, dtrace_id_t id, void *parg) -{ - lockstat_probe_t *probe = parg; - - ASSERT(!lockstat_probemap[probe->lsp_probe]); - probe->lsp_id = 0; -} - -static dtrace_pattr_t lockstat_attr = { -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, -}; - -static dtrace_pops_t lockstat_pops = { - lockstat_provide, - NULL, - lockstat_enable, - lockstat_disable, - NULL, - NULL, - NULL, - NULL, - NULL, - lockstat_destroy -}; - -static int -lockstat_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) -{ - switch (cmd) { - case DDI_ATTACH: - break; - case DDI_RESUME: - return (DDI_SUCCESS); - default: - return (DDI_FAILURE); - } - - if (ddi_create_minor_node(devi, "lockstat", S_IFCHR, 0, - DDI_PSEUDO, 0) == DDI_FAILURE || - dtrace_register("lockstat", &lockstat_attr, DTRACE_PRIV_KERNEL, - NULL, &lockstat_pops, NULL, &lockstat_id) != 0) { - ddi_remove_minor_node(devi, NULL); - return (DDI_FAILURE); - } - - lockstat_probe = dtrace_probe; - membar_producer(); - - ddi_report_dev(devi); - lockstat_devi = devi; - return (DDI_SUCCESS); -} - -static int -lockstat_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) -{ - switch (cmd) { - case DDI_DETACH: - break; - case DDI_SUSPEND: - return (DDI_SUCCESS); - default: - return (DDI_FAILURE); - } - - if (dtrace_unregister(lockstat_id) != 0) - return (DDI_FAILURE); - - ddi_remove_minor_node(devi, NULL); - return (DDI_SUCCESS); -} - -/* - * Configuration data structures - */ -static struct cb_ops lockstat_cb_ops = { - lockstat_open, /* open */ - nodev, /* close */ - nulldev, /* strategy */ - nulldev, /* print */ - nodev, /* dump */ - nodev, /* read */ - nodev, /* write */ - nodev, /* ioctl */ - nodev, /* devmap */ - nodev, /* mmap */ - nodev, /* segmap */ - nochpoll, /* poll */ - ddi_prop_op, /* cb_prop_op */ - 0, /* streamtab */ - D_MP | D_NEW /* Driver compatibility flag */ -}; - -static struct dev_ops lockstat_ops = { - DEVO_REV, /* devo_rev, */ - 0, /* refcnt */ - lockstat_info, /* getinfo */ - nulldev, /* identify */ - nulldev, /* probe */ - lockstat_attach, /* attach */ - lockstat_detach, /* detach */ - nulldev, /* reset */ - &lockstat_cb_ops, /* cb_ops */ - NULL, /* bus_ops */ -}; - -static struct modldrv modldrv = { - &mod_driverops, /* Type of module. This one is a driver */ - "Lock Statistics %I%", /* name of module */ - &lockstat_ops, /* driver ops */ -}; - -static struct modlinkage modlinkage = { - MODREV_1, (void *)&modldrv, NULL -}; - -int -_init(void) -{ - return (mod_install(&modlinkage)); -} - -int -_fini(void) -{ - return (mod_remove(&modlinkage)); -} - -int -_info(struct modinfo *modinfop) -{ - return (mod_info(&modlinkage, modinfop)); -} diff --git a/cddl/contrib/opensolaris/uts/common/dtrace/profile.c b/cddl/contrib/opensolaris/uts/common/dtrace/profile.c deleted file mode 100644 index 8de919a..0000000 --- a/cddl/contrib/opensolaris/uts/common/dtrace/profile.c +++ /dev/null @@ -1,576 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2007 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -static dev_info_t *profile_devi; -static dtrace_provider_id_t profile_id; - -/* - * Regardless of platform, the stack frames look like this in the case of the - * profile provider: - * - * profile_fire - * cyclic_expire - * cyclic_fire - * [ cbe ] - * [ interrupt code ] - * - * On x86, there are five frames from the generic interrupt code; further, the - * interrupted instruction appears as its own stack frame, giving us a total of - * 10. - * - * On SPARC, the picture is further complicated because the compiler - * optimizes away tail-calls -- so the following frames are optimized away: - * - * profile_fire - * cyclic_expire - * - * This gives three frames. However, on DEBUG kernels, the cyclic_expire - * frame cannot be tail-call eliminated, yielding four frames in this case. - * - * All of the above constraints lead to the mess below. Yes, the profile - * provider should ideally figure this out on-the-fly by hitting one of its own - * probes and then walking its own stack trace. This is complicated, however, - * and the static definition doesn't seem to be overly brittle. Still, we - * allow for a manual override in case we get it completely wrong. - */ -#ifdef __x86 -#define PROF_ARTIFICIAL_FRAMES 10 -#else -#ifdef __sparc -#ifdef DEBUG -#define PROF_ARTIFICIAL_FRAMES 4 -#else -#define PROF_ARTIFICIAL_FRAMES 3 -#endif -#endif -#endif - -#define PROF_NAMELEN 15 - -#define PROF_PROFILE 0 -#define PROF_TICK 1 -#define PROF_PREFIX_PROFILE "profile-" -#define PROF_PREFIX_TICK "tick-" - -typedef struct profile_probe { - char prof_name[PROF_NAMELEN]; - dtrace_id_t prof_id; - int prof_kind; - hrtime_t prof_interval; - cyclic_id_t prof_cyclic; -} profile_probe_t; - -typedef struct profile_probe_percpu { - hrtime_t profc_expected; - hrtime_t profc_interval; - profile_probe_t *profc_probe; -} profile_probe_percpu_t; - -hrtime_t profile_interval_min = NANOSEC / 5000; /* 5000 hz */ -int profile_aframes = 0; /* override */ - -static int profile_rates[] = { - 97, 199, 499, 997, 1999, - 4001, 4999, 0, 0, 0, - 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0 -}; - -static int profile_ticks[] = { - 1, 10, 100, 500, 1000, - 5000, 0, 0, 0, 0, - 0, 0, 0, 0, 0 -}; - -/* - * profile_max defines the upper bound on the number of profile probes that - * can exist (this is to prevent malicious or clumsy users from exhausing - * system resources by creating a slew of profile probes). At mod load time, - * this gets its value from PROFILE_MAX_DEFAULT or profile-max-probes if it's - * present in the profile.conf file. - */ -#define PROFILE_MAX_DEFAULT 1000 /* default max. number of probes */ -static uint32_t profile_max; /* maximum number of profile probes */ -static uint32_t profile_total; /* current number of profile probes */ - -static void -profile_fire(void *arg) -{ - profile_probe_percpu_t *pcpu = arg; - profile_probe_t *prof = pcpu->profc_probe; - hrtime_t late; - - late = dtrace_gethrtime() - pcpu->profc_expected; - pcpu->profc_expected += pcpu->profc_interval; - - dtrace_probe(prof->prof_id, CPU->cpu_profile_pc, - CPU->cpu_profile_upc, late, 0, 0); -} - -static void -profile_tick(void *arg) -{ - profile_probe_t *prof = arg; - - dtrace_probe(prof->prof_id, CPU->cpu_profile_pc, - CPU->cpu_profile_upc, 0, 0, 0); -} - -static void -profile_create(hrtime_t interval, const char *name, int kind) -{ - profile_probe_t *prof; - int nr_frames = PROF_ARTIFICIAL_FRAMES + dtrace_mach_aframes(); - - if (profile_aframes) - nr_frames = profile_aframes; - - if (interval < profile_interval_min) - return; - - if (dtrace_probe_lookup(profile_id, NULL, NULL, name) != 0) - return; - - atomic_add_32(&profile_total, 1); - if (profile_total > profile_max) { - atomic_add_32(&profile_total, -1); - return; - } - - prof = kmem_zalloc(sizeof (profile_probe_t), KM_SLEEP); - (void) strcpy(prof->prof_name, name); - prof->prof_interval = interval; - prof->prof_cyclic = CYCLIC_NONE; - prof->prof_kind = kind; - prof->prof_id = dtrace_probe_create(profile_id, - NULL, NULL, name, nr_frames, prof); -} - -/*ARGSUSED*/ -static void -profile_provide(void *arg, const dtrace_probedesc_t *desc) -{ - int i, j, rate, kind; - hrtime_t val = 0, mult = 1, len; - const char *name, *suffix = NULL; - - const struct { - char *prefix; - int kind; - } types[] = { - { PROF_PREFIX_PROFILE, PROF_PROFILE }, - { PROF_PREFIX_TICK, PROF_TICK }, - { NULL, NULL } - }; - - const struct { - char *name; - hrtime_t mult; - } suffixes[] = { - { "ns", NANOSEC / NANOSEC }, - { "nsec", NANOSEC / NANOSEC }, - { "us", NANOSEC / MICROSEC }, - { "usec", NANOSEC / MICROSEC }, - { "ms", NANOSEC / MILLISEC }, - { "msec", NANOSEC / MILLISEC }, - { "s", NANOSEC / SEC }, - { "sec", NANOSEC / SEC }, - { "m", NANOSEC * (hrtime_t)60 }, - { "min", NANOSEC * (hrtime_t)60 }, - { "h", NANOSEC * (hrtime_t)(60 * 60) }, - { "hour", NANOSEC * (hrtime_t)(60 * 60) }, - { "d", NANOSEC * (hrtime_t)(24 * 60 * 60) }, - { "day", NANOSEC * (hrtime_t)(24 * 60 * 60) }, - { "hz", 0 }, - { NULL } - }; - - if (desc == NULL) { - char n[PROF_NAMELEN]; - - /* - * If no description was provided, provide all of our probes. - */ - for (i = 0; i < sizeof (profile_rates) / sizeof (int); i++) { - if ((rate = profile_rates[i]) == 0) - continue; - - (void) snprintf(n, PROF_NAMELEN, "%s%d", - PROF_PREFIX_PROFILE, rate); - profile_create(NANOSEC / rate, n, PROF_PROFILE); - } - - for (i = 0; i < sizeof (profile_ticks) / sizeof (int); i++) { - if ((rate = profile_ticks[i]) == 0) - continue; - - (void) snprintf(n, PROF_NAMELEN, "%s%d", - PROF_PREFIX_TICK, rate); - profile_create(NANOSEC / rate, n, PROF_TICK); - } - - return; - } - - name = desc->dtpd_name; - - for (i = 0; types[i].prefix != NULL; i++) { - len = strlen(types[i].prefix); - - if (strncmp(name, types[i].prefix, len) != 0) - continue; - break; - } - - if (types[i].prefix == NULL) - return; - - kind = types[i].kind; - j = strlen(name) - len; - - /* - * We need to start before any time suffix. - */ - for (j = strlen(name); j >= len; j--) { - if (name[j] >= '0' && name[j] <= '9') - break; - suffix = &name[j]; - } - - ASSERT(suffix != NULL); - - /* - * Now determine the numerical value present in the probe name. - */ - for (; j >= len; j--) { - if (name[j] < '0' || name[j] > '9') - return; - - val += (name[j] - '0') * mult; - mult *= (hrtime_t)10; - } - - if (val == 0) - return; - - /* - * Look-up the suffix to determine the multiplier. - */ - for (i = 0, mult = 0; suffixes[i].name != NULL; i++) { - if (strcasecmp(suffixes[i].name, suffix) == 0) { - mult = suffixes[i].mult; - break; - } - } - - if (suffixes[i].name == NULL && *suffix != '\0') - return; - - if (mult == 0) { - /* - * The default is frequency-per-second. - */ - val = NANOSEC / val; - } else { - val *= mult; - } - - profile_create(val, name, kind); -} - -/*ARGSUSED*/ -static void -profile_destroy(void *arg, dtrace_id_t id, void *parg) -{ - profile_probe_t *prof = parg; - - ASSERT(prof->prof_cyclic == CYCLIC_NONE); - kmem_free(prof, sizeof (profile_probe_t)); - - ASSERT(profile_total >= 1); - atomic_add_32(&profile_total, -1); -} - -/*ARGSUSED*/ -static void -profile_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) -{ - profile_probe_t *prof = arg; - profile_probe_percpu_t *pcpu; - - pcpu = kmem_zalloc(sizeof (profile_probe_percpu_t), KM_SLEEP); - pcpu->profc_probe = prof; - - hdlr->cyh_func = profile_fire; - hdlr->cyh_arg = pcpu; - hdlr->cyh_level = CY_HIGH_LEVEL; - - when->cyt_interval = prof->prof_interval; - when->cyt_when = dtrace_gethrtime() + when->cyt_interval; - - pcpu->profc_expected = when->cyt_when; - pcpu->profc_interval = when->cyt_interval; -} - -/*ARGSUSED*/ -static void -profile_offline(void *arg, cpu_t *cpu, void *oarg) -{ - profile_probe_percpu_t *pcpu = oarg; - - ASSERT(pcpu->profc_probe == arg); - kmem_free(pcpu, sizeof (profile_probe_percpu_t)); -} - -/*ARGSUSED*/ -static void -profile_enable(void *arg, dtrace_id_t id, void *parg) -{ - profile_probe_t *prof = parg; - cyc_omni_handler_t omni; - cyc_handler_t hdlr; - cyc_time_t when; - - ASSERT(prof->prof_interval != 0); - ASSERT(MUTEX_HELD(&cpu_lock)); - - if (prof->prof_kind == PROF_TICK) { - hdlr.cyh_func = profile_tick; - hdlr.cyh_arg = prof; - hdlr.cyh_level = CY_HIGH_LEVEL; - - when.cyt_interval = prof->prof_interval; - when.cyt_when = dtrace_gethrtime() + when.cyt_interval; - } else { - ASSERT(prof->prof_kind == PROF_PROFILE); - omni.cyo_online = profile_online; - omni.cyo_offline = profile_offline; - omni.cyo_arg = prof; - } - - if (prof->prof_kind == PROF_TICK) { - prof->prof_cyclic = cyclic_add(&hdlr, &when); - } else { - prof->prof_cyclic = cyclic_add_omni(&omni); - } -} - -/*ARGSUSED*/ -static void -profile_disable(void *arg, dtrace_id_t id, void *parg) -{ - profile_probe_t *prof = parg; - - ASSERT(prof->prof_cyclic != CYCLIC_NONE); - ASSERT(MUTEX_HELD(&cpu_lock)); - - cyclic_remove(prof->prof_cyclic); - prof->prof_cyclic = CYCLIC_NONE; -} - -/*ARGSUSED*/ -static int -profile_usermode(void *arg, dtrace_id_t id, void *parg) -{ - return (CPU->cpu_profile_pc == 0); -} - -static dtrace_pattr_t profile_attr = { -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, -{ DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, -}; - -static dtrace_pops_t profile_pops = { - profile_provide, - NULL, - profile_enable, - profile_disable, - NULL, - NULL, - NULL, - NULL, - profile_usermode, - profile_destroy -}; - -static int -profile_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) -{ - switch (cmd) { - case DDI_ATTACH: - break; - case DDI_RESUME: - return (DDI_SUCCESS); - default: - return (DDI_FAILURE); - } - - if (ddi_create_minor_node(devi, "profile", S_IFCHR, 0, - DDI_PSEUDO, NULL) == DDI_FAILURE || - dtrace_register("profile", &profile_attr, - DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER, NULL, - &profile_pops, NULL, &profile_id) != 0) { - ddi_remove_minor_node(devi, NULL); - return (DDI_FAILURE); - } - - profile_max = ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, - "profile-max-probes", PROFILE_MAX_DEFAULT); - - ddi_report_dev(devi); - profile_devi = devi; - return (DDI_SUCCESS); -} - -static int -profile_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) -{ - switch (cmd) { - case DDI_DETACH: - break; - case DDI_SUSPEND: - return (DDI_SUCCESS); - default: - return (DDI_FAILURE); - } - - if (dtrace_unregister(profile_id) != 0) - return (DDI_FAILURE); - - ddi_remove_minor_node(devi, NULL); - return (DDI_SUCCESS); -} - -/*ARGSUSED*/ -static int -profile_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) -{ - int error; - - switch (infocmd) { - case DDI_INFO_DEVT2DEVINFO: - *result = (void *)profile_devi; - error = DDI_SUCCESS; - break; - case DDI_INFO_DEVT2INSTANCE: - *result = (void *)0; - error = DDI_SUCCESS; - break; - default: - error = DDI_FAILURE; - } - return (error); -} - -/*ARGSUSED*/ -static int -profile_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) -{ - return (0); -} - -static struct cb_ops profile_cb_ops = { - profile_open, /* open */ - nodev, /* close */ - nulldev, /* strategy */ - nulldev, /* print */ - nodev, /* dump */ - nodev, /* read */ - nodev, /* write */ - nodev, /* ioctl */ - nodev, /* devmap */ - nodev, /* mmap */ - nodev, /* segmap */ - nochpoll, /* poll */ - ddi_prop_op, /* cb_prop_op */ - 0, /* streamtab */ - D_NEW | D_MP /* Driver compatibility flag */ -}; - -static struct dev_ops profile_ops = { - DEVO_REV, /* devo_rev, */ - 0, /* refcnt */ - profile_info, /* get_dev_info */ - nulldev, /* identify */ - nulldev, /* probe */ - profile_attach, /* attach */ - profile_detach, /* detach */ - nodev, /* reset */ - &profile_cb_ops, /* driver operations */ - NULL, /* bus operations */ - nodev /* dev power */ -}; - -/* - * Module linkage information for the kernel. - */ -static struct modldrv modldrv = { - &mod_driverops, /* module type (this is a pseudo driver) */ - "Profile Interrupt Tracing", /* name of module */ - &profile_ops, /* driver ops */ -}; - -static struct modlinkage modlinkage = { - MODREV_1, - (void *)&modldrv, - NULL -}; - -int -_init(void) -{ - return (mod_install(&modlinkage)); -} - -int -_info(struct modinfo *modinfop) -{ - return (mod_info(&modlinkage, modinfop)); -} - -int -_fini(void) -{ - return (mod_remove(&modlinkage)); -} diff --git a/cddl/contrib/opensolaris/uts/common/dtrace/sdt_subr.c b/cddl/contrib/opensolaris/uts/common/dtrace/sdt_subr.c deleted file mode 100644 index 66ff8a9..0000000 --- a/cddl/contrib/opensolaris/uts/common/dtrace/sdt_subr.c +++ /dev/null @@ -1,888 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include - -static dtrace_pattr_t vtrace_attr = { -{ DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_ISA }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_ISA }, -}; - -static dtrace_pattr_t info_attr = { -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA }, -}; - -static dtrace_pattr_t fpu_attr = { -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_CPU }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA }, -}; - -static dtrace_pattr_t fsinfo_attr = { -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, -}; - -static dtrace_pattr_t stab_attr = { -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, -}; - -static dtrace_pattr_t sdt_attr = { -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA }, -}; - -static dtrace_pattr_t xpv_attr = { -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_PLATFORM }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_PLATFORM }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_PLATFORM }, -}; - -sdt_provider_t sdt_providers[] = { - { "vtrace", "__vtrace_", &vtrace_attr, 0 }, - { "sysinfo", "__cpu_sysinfo_", &info_attr, 0 }, - { "vminfo", "__cpu_vminfo_", &info_attr, 0 }, - { "fpuinfo", "__fpuinfo_", &fpu_attr, 0 }, - { "sched", "__sched_", &stab_attr, 0 }, - { "proc", "__proc_", &stab_attr, 0 }, - { "io", "__io_", &stab_attr, 0 }, - { "mib", "__mib_", &stab_attr, 0 }, - { "fsinfo", "__fsinfo_", &fsinfo_attr, 0 }, - { "nfsv3", "__nfsv3_", &stab_attr, 0 }, - { "nfsv4", "__nfsv4_", &stab_attr, 0 }, - { "xpv", "__xpv_", &xpv_attr, 0 }, - { "sysevent", "__sysevent_", &stab_attr, 0 }, - { "sdt", NULL, &sdt_attr, 0 }, - { NULL } -}; - -sdt_argdesc_t sdt_args[] = { - { "sched", "wakeup", 0, 0, "kthread_t *", "lwpsinfo_t *" }, - { "sched", "wakeup", 1, 0, "kthread_t *", "psinfo_t *" }, - { "sched", "dequeue", 0, 0, "kthread_t *", "lwpsinfo_t *" }, - { "sched", "dequeue", 1, 0, "kthread_t *", "psinfo_t *" }, - { "sched", "dequeue", 2, 1, "disp_t *", "cpuinfo_t *" }, - { "sched", "enqueue", 0, 0, "kthread_t *", "lwpsinfo_t *" }, - { "sched", "enqueue", 1, 0, "kthread_t *", "psinfo_t *" }, - { "sched", "enqueue", 2, 1, "disp_t *", "cpuinfo_t *" }, - { "sched", "enqueue", 3, 2, "int" }, - { "sched", "off-cpu", 0, 0, "kthread_t *", "lwpsinfo_t *" }, - { "sched", "off-cpu", 1, 0, "kthread_t *", "psinfo_t *" }, - { "sched", "tick", 0, 0, "kthread_t *", "lwpsinfo_t *" }, - { "sched", "tick", 1, 0, "kthread_t *", "psinfo_t *" }, - { "sched", "change-pri", 0, 0, "kthread_t *", "lwpsinfo_t *" }, - { "sched", "change-pri", 1, 0, "kthread_t *", "psinfo_t *" }, - { "sched", "change-pri", 2, 1, "pri_t" }, - { "sched", "schedctl-nopreempt", 0, 0, "kthread_t *", "lwpsinfo_t *" }, - { "sched", "schedctl-nopreempt", 1, 0, "kthread_t *", "psinfo_t *" }, - { "sched", "schedctl-nopreempt", 2, 1, "int" }, - { "sched", "schedctl-preempt", 0, 0, "kthread_t *", "lwpsinfo_t *" }, - { "sched", "schedctl-preempt", 1, 0, "kthread_t *", "psinfo_t *" }, - { "sched", "schedctl-yield", 0, 0, "int" }, - { "sched", "surrender", 0, 0, "kthread_t *", "lwpsinfo_t *" }, - { "sched", "surrender", 1, 0, "kthread_t *", "psinfo_t *" }, - { "sched", "cpucaps-sleep", 0, 0, "kthread_t *", "lwpsinfo_t *" }, - { "sched", "cpucaps-sleep", 1, 0, "kthread_t *", "psinfo_t *" }, - { "sched", "cpucaps-wakeup", 0, 0, "kthread_t *", "lwpsinfo_t *" }, - { "sched", "cpucaps-wakeup", 1, 0, "kthread_t *", "psinfo_t *" }, - - { "proc", "create", 0, 0, "proc_t *", "psinfo_t *" }, - { "proc", "exec", 0, 0, "string" }, - { "proc", "exec-failure", 0, 0, "int" }, - { "proc", "exit", 0, 0, "int" }, - { "proc", "fault", 0, 0, "int" }, - { "proc", "fault", 1, 1, "siginfo_t *" }, - { "proc", "lwp-create", 0, 0, "kthread_t *", "lwpsinfo_t *" }, - { "proc", "lwp-create", 1, 0, "kthread_t *", "psinfo_t *" }, - { "proc", "signal-clear", 0, 0, "int" }, - { "proc", "signal-clear", 1, 1, "siginfo_t *" }, - { "proc", "signal-discard", 0, 0, "kthread_t *", "lwpsinfo_t *" }, - { "proc", "signal-discard", 1, 1, "proc_t *", "psinfo_t *" }, - { "proc", "signal-discard", 2, 2, "int" }, - { "proc", "signal-handle", 0, 0, "int" }, - { "proc", "signal-handle", 1, 1, "siginfo_t *" }, - { "proc", "signal-handle", 2, 2, "void (*)(void)" }, - { "proc", "signal-send", 0, 0, "kthread_t *", "lwpsinfo_t *" }, - { "proc", "signal-send", 1, 0, "kthread_t *", "psinfo_t *" }, - { "proc", "signal-send", 2, 1, "int" }, - - { "io", "start", 0, 0, "buf_t *", "bufinfo_t *" }, - { "io", "start", 1, 0, "buf_t *", "devinfo_t *" }, - { "io", "start", 2, 0, "buf_t *", "fileinfo_t *" }, - { "io", "done", 0, 0, "buf_t *", "bufinfo_t *" }, - { "io", "done", 1, 0, "buf_t *", "devinfo_t *" }, - { "io", "done", 2, 0, "buf_t *", "fileinfo_t *" }, - { "io", "wait-start", 0, 0, "buf_t *", "bufinfo_t *" }, - { "io", "wait-start", 1, 0, "buf_t *", "devinfo_t *" }, - { "io", "wait-start", 2, 0, "buf_t *", "fileinfo_t *" }, - { "io", "wait-done", 0, 0, "buf_t *", "bufinfo_t *" }, - { "io", "wait-done", 1, 0, "buf_t *", "devinfo_t *" }, - { "io", "wait-done", 2, 0, "buf_t *", "fileinfo_t *" }, - - { "mib", NULL, 0, 0, "int" }, - - { "fsinfo", NULL, 0, 0, "vnode_t *", "fileinfo_t *" }, - { "fsinfo", NULL, 1, 1, "int", "int" }, - - { "nfsv3", "op-getattr-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-getattr-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-getattr-start", 2, 3, "GETATTR3args *" }, - { "nfsv3", "op-getattr-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-getattr-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-getattr-done", 2, 3, "GETATTR3res *" }, - { "nfsv3", "op-setattr-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-setattr-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-setattr-start", 2, 3, "SETATTR3args *" }, - { "nfsv3", "op-setattr-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-setattr-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-setattr-done", 2, 3, "SETATTR3res *" }, - { "nfsv3", "op-lookup-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-lookup-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-lookup-start", 2, 3, "LOOKUP3args *" }, - { "nfsv3", "op-lookup-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-lookup-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-lookup-done", 2, 3, "LOOKUP3res *" }, - { "nfsv3", "op-access-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-access-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-access-start", 2, 3, "ACCESS3args *" }, - { "nfsv3", "op-access-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-access-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-access-done", 2, 3, "ACCESS3res *" }, - { "nfsv3", "op-commit-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-commit-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-commit-start", 2, 3, "COMMIT3args *" }, - { "nfsv3", "op-commit-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-commit-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-commit-done", 2, 3, "COMMIT3res *" }, - { "nfsv3", "op-create-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-create-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-create-start", 2, 3, "CREATE3args *" }, - { "nfsv3", "op-create-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-create-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-create-done", 2, 3, "CREATE3res *" }, - { "nfsv3", "op-fsinfo-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-fsinfo-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-fsinfo-start", 2, 3, "FSINFO3args *" }, - { "nfsv3", "op-fsinfo-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-fsinfo-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-fsinfo-done", 2, 3, "FSINFO3res *" }, - { "nfsv3", "op-fsstat-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-fsstat-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-fsstat-start", 2, 3, "FSSTAT3args *" }, - { "nfsv3", "op-fsstat-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-fsstat-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-fsstat-done", 2, 3, "FSSTAT3res *" }, - { "nfsv3", "op-link-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-link-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-link-start", 2, 3, "LINK3args *" }, - { "nfsv3", "op-link-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-link-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-link-done", 2, 3, "LINK3res *" }, - { "nfsv3", "op-mkdir-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-mkdir-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-mkdir-start", 2, 3, "MKDIR3args *" }, - { "nfsv3", "op-mkdir-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-mkdir-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-mkdir-done", 2, 3, "MKDIR3res *" }, - { "nfsv3", "op-mknod-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-mknod-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-mknod-start", 2, 3, "MKNOD3args *" }, - { "nfsv3", "op-mknod-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-mknod-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-mknod-done", 2, 3, "MKNOD3res *" }, - { "nfsv3", "op-null-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-null-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-null-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-null-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-pathconf-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-pathconf-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-pathconf-start", 2, 3, "PATHCONF3args *" }, - { "nfsv3", "op-pathconf-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-pathconf-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-pathconf-done", 2, 3, "PATHCONF3res *" }, - { "nfsv3", "op-read-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-read-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-read-start", 2, 3, "READ3args *" }, - { "nfsv3", "op-read-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-read-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-read-done", 2, 3, "READ3res *" }, - { "nfsv3", "op-readdir-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-readdir-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-readdir-start", 2, 3, "READDIR3args *" }, - { "nfsv3", "op-readdir-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-readdir-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-readdir-done", 2, 3, "READDIR3res *" }, - { "nfsv3", "op-readdirplus-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-readdirplus-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-readdirplus-start", 2, 3, "READDIRPLUS3args *" }, - { "nfsv3", "op-readdirplus-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-readdirplus-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-readdirplus-done", 2, 3, "READDIRPLUS3res *" }, - { "nfsv3", "op-readlink-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-readlink-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-readlink-start", 2, 3, "READLINK3args *" }, - { "nfsv3", "op-readlink-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-readlink-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-readlink-done", 2, 3, "READLINK3res *" }, - { "nfsv3", "op-remove-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-remove-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-remove-start", 2, 3, "REMOVE3args *" }, - { "nfsv3", "op-remove-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-remove-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-remove-done", 2, 3, "REMOVE3res *" }, - { "nfsv3", "op-rename-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-rename-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-rename-start", 2, 3, "RENAME3args *" }, - { "nfsv3", "op-rename-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-rename-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-rename-done", 2, 3, "RENAME3res *" }, - { "nfsv3", "op-rmdir-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-rmdir-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-rmdir-start", 2, 3, "RMDIR3args *" }, - { "nfsv3", "op-rmdir-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-rmdir-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-rmdir-done", 2, 3, "RMDIR3res *" }, - { "nfsv3", "op-setattr-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-setattr-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-setattr-start", 2, 3, "SETATTR3args *" }, - { "nfsv3", "op-setattr-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-setattr-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-setattr-done", 2, 3, "SETATTR3res *" }, - { "nfsv3", "op-symlink-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-symlink-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-symlink-start", 2, 3, "SYMLINK3args *" }, - { "nfsv3", "op-symlink-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-symlink-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-symlink-done", 2, 3, "SYMLINK3res *" }, - { "nfsv3", "op-write-start", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-write-start", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-write-start", 2, 3, "WRITE3args *" }, - { "nfsv3", "op-write-done", 0, 0, "struct svc_req *", - "conninfo_t *" }, - { "nfsv3", "op-write-done", 1, 1, "nfsv3oparg_t *", - "nfsv3opinfo_t *" }, - { "nfsv3", "op-write-done", 2, 3, "WRITE3res *" }, - - { "nfsv4", "null-start", 0, 0, "struct svc_req *", "conninfo_t *" }, - { "nfsv4", "null-done", 0, 0, "struct svc_req *", "conninfo_t *" }, - { "nfsv4", "compound-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "compound-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "compound-start", 2, 1, "COMPOUND4args *" }, - { "nfsv4", "compound-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "compound-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "compound-done", 2, 1, "COMPOUND4res *" }, - { "nfsv4", "op-access-start", 0, 0, "struct compound_state *", - "conninfo_t *"}, - { "nfsv4", "op-access-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-access-start", 2, 1, "ACCESS4args *" }, - { "nfsv4", "op-access-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-access-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-access-done", 2, 1, "ACCESS4res *" }, - { "nfsv4", "op-close-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-close-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-close-start", 2, 1, "CLOSE4args *" }, - { "nfsv4", "op-close-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-close-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-close-done", 2, 1, "CLOSE4res *" }, - { "nfsv4", "op-commit-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-commit-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-commit-start", 2, 1, "COMMIT4args *" }, - { "nfsv4", "op-commit-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-commit-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-commit-done", 2, 1, "COMMIT4res *" }, - { "nfsv4", "op-create-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-create-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-create-start", 2, 1, "CREATE4args *" }, - { "nfsv4", "op-create-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-create-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-create-done", 2, 1, "CREATE4res *" }, - { "nfsv4", "op-delegpurge-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-delegpurge-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-delegpurge-start", 2, 1, "DELEGPURGE4args *" }, - { "nfsv4", "op-delegpurge-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-delegpurge-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-delegpurge-done", 2, 1, "DELEGPURGE4res *" }, - { "nfsv4", "op-delegreturn-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-delegreturn-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-delegreturn-start", 2, 1, "DELEGRETURN4args *" }, - { "nfsv4", "op-delegreturn-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-delegreturn-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-delegreturn-done", 2, 1, "DELEGRETURN4res *" }, - { "nfsv4", "op-getattr-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-getattr-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-getattr-start", 2, 1, "GETATTR4args *" }, - { "nfsv4", "op-getattr-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-getattr-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-getattr-done", 2, 1, "GETATTR4res *" }, - { "nfsv4", "op-getfh-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-getfh-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-getfh-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-getfh-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-getfh-done", 2, 1, "GETFH4res *" }, - { "nfsv4", "op-link-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-link-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-link-start", 2, 1, "LINK4args *" }, - { "nfsv4", "op-link-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-link-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-link-done", 2, 1, "LINK4res *" }, - { "nfsv4", "op-lock-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-lock-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-lock-start", 2, 1, "LOCK4args *" }, - { "nfsv4", "op-lock-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-lock-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-lock-done", 2, 1, "LOCK4res *" }, - { "nfsv4", "op-lockt-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-lockt-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-lockt-start", 2, 1, "LOCKT4args *" }, - { "nfsv4", "op-lockt-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-lockt-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-lockt-done", 2, 1, "LOCKT4res *" }, - { "nfsv4", "op-locku-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-locku-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-locku-start", 2, 1, "LOCKU4args *" }, - { "nfsv4", "op-locku-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-locku-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-locku-done", 2, 1, "LOCKU4res *" }, - { "nfsv4", "op-lookup-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-lookup-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-lookup-start", 2, 1, "LOOKUP4args *" }, - { "nfsv4", "op-lookup-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-lookup-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-lookup-done", 2, 1, "LOOKUP4res *" }, - { "nfsv4", "op-lookupp-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-lookupp-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-lookupp-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-lookupp-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-lookupp-done", 2, 1, "LOOKUPP4res *" }, - { "nfsv4", "op-nverify-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-nverify-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-nverify-start", 2, 1, "NVERIFY4args *" }, - { "nfsv4", "op-nverify-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-nverify-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-nverify-done", 2, 1, "NVERIFY4res *" }, - { "nfsv4", "op-open-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-open-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-open-start", 2, 1, "OPEN4args *" }, - { "nfsv4", "op-open-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-open-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-open-done", 2, 1, "OPEN4res *" }, - { "nfsv4", "op-open-confirm-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-open-confirm-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-open-confirm-start", 2, 1, "OPEN_CONFIRM4args *" }, - { "nfsv4", "op-open-confirm-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-open-confirm-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-open-confirm-done", 2, 1, "OPEN_CONFIRM4res *" }, - { "nfsv4", "op-open-downgrade-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-open-downgrade-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-open-downgrade-start", 2, 1, "OPEN_DOWNGRADE4args *" }, - { "nfsv4", "op-open-downgrade-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-open-downgrade-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-open-downgrade-done", 2, 1, "OPEN_DOWNGRADE4res *" }, - { "nfsv4", "op-openattr-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-openattr-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-openattr-start", 2, 1, "OPENATTR4args *" }, - { "nfsv4", "op-openattr-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-openattr-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-openattr-done", 2, 1, "OPENATTR4res *" }, - { "nfsv4", "op-putfh-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-putfh-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-putfh-start", 2, 1, "PUTFH4args *" }, - { "nfsv4", "op-putfh-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-putfh-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-putfh-done", 2, 1, "PUTFH4res *" }, - { "nfsv4", "op-putpubfh-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-putpubfh-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-putpubfh-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-putpubfh-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-putpubfh-done", 2, 1, "PUTPUBFH4res *" }, - { "nfsv4", "op-putrootfh-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-putrootfh-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-putrootfh-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-putrootfh-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-putrootfh-done", 2, 1, "PUTROOTFH4res *" }, - { "nfsv4", "op-read-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-read-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-read-start", 2, 1, "READ4args *" }, - { "nfsv4", "op-read-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-read-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-read-done", 2, 1, "READ4res *" }, - { "nfsv4", "op-readdir-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-readdir-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-readdir-start", 2, 1, "READDIR4args *" }, - { "nfsv4", "op-readdir-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-readdir-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-readdir-done", 2, 1, "READDIR4res *" }, - { "nfsv4", "op-readlink-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-readlink-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-readlink-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-readlink-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-readlink-done", 2, 1, "READLINK4res *" }, - { "nfsv4", "op-release-lockowner-start", 0, 0, - "struct compound_state *", "conninfo_t *" }, - { "nfsv4", "op-release-lockowner-start", 1, 0, - "struct compound_state *", "nfsv4opinfo_t *" }, - { "nfsv4", "op-release-lockowner-start", 2, 1, - "RELEASE_LOCKOWNER4args *" }, - { "nfsv4", "op-release-lockowner-done", 0, 0, - "struct compound_state *", "conninfo_t *" }, - { "nfsv4", "op-release-lockowner-done", 1, 0, - "struct compound_state *", "nfsv4opinfo_t *" }, - { "nfsv4", "op-release-lockowner-done", 2, 1, - "RELEASE_LOCKOWNER4res *" }, - { "nfsv4", "op-remove-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-remove-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-remove-start", 2, 1, "REMOVE4args *" }, - { "nfsv4", "op-remove-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-remove-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-remove-done", 2, 1, "REMOVE4res *" }, - { "nfsv4", "op-rename-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-rename-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-rename-start", 2, 1, "RENAME4args *" }, - { "nfsv4", "op-rename-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-rename-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-rename-done", 2, 1, "RENAME4res *" }, - { "nfsv4", "op-renew-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-renew-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-renew-start", 2, 1, "RENEW4args *" }, - { "nfsv4", "op-renew-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-renew-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-renew-done", 2, 1, "RENEW4res *" }, - { "nfsv4", "op-restorefh-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-restorefh-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-restorefh-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-restorefh-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-restorefh-done", 2, 1, "RESTOREFH4res *" }, - { "nfsv4", "op-savefh-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-savefh-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-savefh-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-savefh-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-savefh-done", 2, 1, "SAVEFH4res *" }, - { "nfsv4", "op-secinfo-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-secinfo-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-secinfo-start", 2, 1, "SECINFO4args *" }, - { "nfsv4", "op-secinfo-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-secinfo-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-secinfo-done", 2, 1, "SECINFO4res *" }, - { "nfsv4", "op-setattr-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-setattr-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-setattr-start", 2, 1, "SETATTR4args *" }, - { "nfsv4", "op-setattr-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-setattr-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-setattr-done", 2, 1, "SETATTR4res *" }, - { "nfsv4", "op-setclientid-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-setclientid-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-setclientid-start", 2, 1, "SETCLIENTID4args *" }, - { "nfsv4", "op-setclientid-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-setclientid-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-setclientid-done", 2, 1, "SETCLIENTID4res *" }, - { "nfsv4", "op-setclientid-confirm-start", 0, 0, - "struct compound_state *", "conninfo_t *" }, - { "nfsv4", "op-setclientid-confirm-start", 1, 0, - "struct compound_state *", "nfsv4opinfo_t *" }, - { "nfsv4", "op-setclientid-confirm-start", 2, 1, - "SETCLIENTID_CONFIRM4args *" }, - { "nfsv4", "op-setclientid-confirm-done", 0, 0, - "struct compound_state *", "conninfo_t *" }, - { "nfsv4", "op-setclientid-confirm-done", 1, 0, - "struct compound_state *", "nfsv4opinfo_t *" }, - { "nfsv4", "op-setclientid-confirm-done", 2, 1, - "SETCLIENTID_CONFIRM4res *" }, - { "nfsv4", "op-verify-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-verify-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-verify-start", 2, 1, "VERIFY4args *" }, - { "nfsv4", "op-verify-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-verify-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-verify-done", 2, 1, "VERIFY4res *" }, - { "nfsv4", "op-write-start", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-write-start", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-write-start", 2, 1, "WRITE4args *" }, - { "nfsv4", "op-write-done", 0, 0, "struct compound_state *", - "conninfo_t *" }, - { "nfsv4", "op-write-done", 1, 0, "struct compound_state *", - "nfsv4opinfo_t *" }, - { "nfsv4", "op-write-done", 2, 1, "WRITE4res *" }, - { "nfsv4", "cb-recall-start", 0, 0, "rfs4_client_t *", - "conninfo_t *" }, - { "nfsv4", "cb-recall-start", 1, 1, "rfs4_deleg_state_t *", - "nfsv4cbinfo_t *" }, - { "nfsv4", "cb-recall-start", 2, 2, "CB_RECALL4args *" }, - { "nfsv4", "cb-recall-done", 0, 0, "rfs4_client_t *", - "conninfo_t *" }, - { "nfsv4", "cb-recall-done", 1, 1, "rfs4_deleg_state_t *", - "nfsv4cbinfo_t *" }, - { "nfsv4", "cb-recall-done", 2, 2, "CB_RECALL4res *" }, - - { "sysevent", "post", 0, 0, "evch_bind_t *", "syseventchaninfo_t *" }, - { "sysevent", "post", 1, 1, "sysevent_impl_t *", "syseventinfo_t *" }, - - { "xpv", "add-to-physmap-end", 0, 0, "int" }, - { "xpv", "add-to-physmap-start", 0, 0, "domid_t" }, - { "xpv", "add-to-physmap-start", 1, 1, "uint_t" }, - { "xpv", "add-to-physmap-start", 2, 2, "ulong_t" }, - { "xpv", "add-to-physmap-start", 3, 3, "ulong_t" }, - { "xpv", "decrease-reservation-end", 0, 0, "int" }, - { "xpv", "decrease-reservation-start", 0, 0, "domid_t" }, - { "xpv", "decrease-reservation-start", 1, 1, "ulong_t" }, - { "xpv", "decrease-reservation-start", 2, 2, "uint_t" }, - { "xpv", "decrease-reservation-start", 3, 3, "ulong_t *" }, - { "xpv", "dom-create-start", 0, 0, "xen_domctl_t *" }, - { "xpv", "dom-destroy-start", 0, 0, "domid_t" }, - { "xpv", "dom-pause-start", 0, 0, "domid_t" }, - { "xpv", "dom-unpause-start", 0, 0, "domid_t" }, - { "xpv", "dom-create-end", 0, 0, "int" }, - { "xpv", "dom-destroy-end", 0, 0, "int" }, - { "xpv", "dom-pause-end", 0, 0, "int" }, - { "xpv", "dom-unpause-end", 0, 0, "int" }, - { "xpv", "evtchn-op-end", 0, 0, "int" }, - { "xpv", "evtchn-op-start", 0, 0, "int" }, - { "xpv", "evtchn-op-start", 1, 1, "void *" }, - { "xpv", "increase-reservation-end", 0, 0, "int" }, - { "xpv", "increase-reservation-start", 0, 0, "domid_t" }, - { "xpv", "increase-reservation-start", 1, 1, "ulong_t" }, - { "xpv", "increase-reservation-start", 2, 2, "uint_t" }, - { "xpv", "increase-reservation-start", 3, 3, "ulong_t *" }, - { "xpv", "mmap-end", 0, 0, "int" }, - { "xpv", "mmap-entry", 0, 0, "ulong_t" }, - { "xpv", "mmap-entry", 1, 1, "ulong_t" }, - { "xpv", "mmap-entry", 2, 2, "ulong_t" }, - { "xpv", "mmap-start", 0, 0, "domid_t" }, - { "xpv", "mmap-start", 1, 1, "int" }, - { "xpv", "mmap-start", 2, 2, "privcmd_mmap_entry_t *" }, - { "xpv", "mmapbatch-end", 0, 0, "int" }, - { "xpv", "mmapbatch-end", 1, 1, "struct seg *" }, - { "xpv", "mmapbatch-end", 2, 2, "caddr_t" }, - { "xpv", "mmapbatch-start", 0, 0, "domid_t" }, - { "xpv", "mmapbatch-start", 1, 1, "int" }, - { "xpv", "mmapbatch-start", 2, 2, "caddr_t" }, - { "xpv", "mmu-ext-op-end", 0, 0, "int" }, - { "xpv", "mmu-ext-op-start", 0, 0, "int" }, - { "xpv", "mmu-ext-op-start", 1, 1, "struct mmuext_op *" }, - { "xpv", "mmu-update-start", 0, 0, "int" }, - { "xpv", "mmu-update-start", 1, 1, "int" }, - { "xpv", "mmu-update-start", 2, 2, "mmu_update_t *" }, - { "xpv", "mmu-update-end", 0, 0, "int" }, - { "xpv", "populate-physmap-end", 0, 0, "int" }, - { "xpv", "populate-physmap-start", 0, 0, "domid_t" }, - { "xpv", "populate-physmap-start", 1, 1, "ulong_t" }, - { "xpv", "populate-physmap-start", 2, 2, "ulong_t *" }, - { "xpv", "set-memory-map-end", 0, 0, "int" }, - { "xpv", "set-memory-map-start", 0, 0, "domid_t" }, - { "xpv", "set-memory-map-start", 1, 1, "int" }, - { "xpv", "set-memory-map-start", 2, 2, "struct xen_memory_map *" }, - { "xpv", "setvcpucontext-end", 0, 0, "int" }, - { "xpv", "setvcpucontext-start", 0, 0, "domid_t" }, - { "xpv", "setvcpucontext-start", 1, 1, "vcpu_guest_context_t *" }, - { NULL } -}; - -/*ARGSUSED*/ -void -sdt_getargdesc(void *arg, dtrace_id_t id, void *parg, dtrace_argdesc_t *desc) -{ - sdt_probe_t *sdp = parg; - int i; - - desc->dtargd_native[0] = '\0'; - desc->dtargd_xlate[0] = '\0'; - - for (i = 0; sdt_args[i].sda_provider != NULL; i++) { - sdt_argdesc_t *a = &sdt_args[i]; - - if (strcmp(sdp->sdp_provider->sdtp_name, a->sda_provider) != 0) - continue; - - if (a->sda_name != NULL && - strcmp(sdp->sdp_name, a->sda_name) != 0) - continue; - - if (desc->dtargd_ndx != a->sda_ndx) - continue; - - if (a->sda_native != NULL) - (void) strcpy(desc->dtargd_native, a->sda_native); - - if (a->sda_xlate != NULL) - (void) strcpy(desc->dtargd_xlate, a->sda_xlate); - - desc->dtargd_mapping = a->sda_mapping; - return; - } - - desc->dtargd_ndx = DTRACE_ARGNONE; -} diff --git a/cddl/contrib/opensolaris/uts/common/dtrace/systrace.c b/cddl/contrib/opensolaris/uts/common/dtrace/systrace.c deleted file mode 100644 index be14660..0000000 --- a/cddl/contrib/opensolaris/uts/common/dtrace/systrace.c +++ /dev/null @@ -1,373 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2006 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include -#include -#include -#include -#include -#include - -#define SYSTRACE_ARTIFICIAL_FRAMES 1 - -#define SYSTRACE_SHIFT 16 -#define SYSTRACE_ISENTRY(x) ((int)(x) >> SYSTRACE_SHIFT) -#define SYSTRACE_SYSNUM(x) ((int)(x) & ((1 << SYSTRACE_SHIFT) - 1)) -#define SYSTRACE_ENTRY(id) ((1 << SYSTRACE_SHIFT) | (id)) -#define SYSTRACE_RETURN(id) (id) - -#if ((1 << SYSTRACE_SHIFT) <= NSYSCALL) -#error 1 << SYSTRACE_SHIFT must exceed number of system calls -#endif - -static dev_info_t *systrace_devi; -static dtrace_provider_id_t systrace_id; - -static void -systrace_init(struct sysent *actual, systrace_sysent_t **interposed) -{ - systrace_sysent_t *sysent = *interposed; - int i; - - if (sysent == NULL) { - *interposed = sysent = kmem_zalloc(sizeof (systrace_sysent_t) * - NSYSCALL, KM_SLEEP); - } - - for (i = 0; i < NSYSCALL; i++) { - struct sysent *a = &actual[i]; - systrace_sysent_t *s = &sysent[i]; - - if (LOADABLE_SYSCALL(a) && !LOADED_SYSCALL(a)) - continue; - - if (a->sy_callc == dtrace_systrace_syscall) - continue; - -#ifdef _SYSCALL32_IMPL - if (a->sy_callc == dtrace_systrace_syscall32) - continue; -#endif - - s->stsy_underlying = a->sy_callc; - } -} - -/*ARGSUSED*/ -static void -systrace_provide(void *arg, const dtrace_probedesc_t *desc) -{ - int i; - - if (desc != NULL) - return; - - systrace_init(sysent, &systrace_sysent); -#ifdef _SYSCALL32_IMPL - systrace_init(sysent32, &systrace_sysent32); -#endif - - for (i = 0; i < NSYSCALL; i++) { - if (systrace_sysent[i].stsy_underlying == NULL) - continue; - - if (dtrace_probe_lookup(systrace_id, NULL, - syscallnames[i], "entry") != 0) - continue; - - (void) dtrace_probe_create(systrace_id, NULL, syscallnames[i], - "entry", SYSTRACE_ARTIFICIAL_FRAMES, - (void *)((uintptr_t)SYSTRACE_ENTRY(i))); - (void) dtrace_probe_create(systrace_id, NULL, syscallnames[i], - "return", SYSTRACE_ARTIFICIAL_FRAMES, - (void *)((uintptr_t)SYSTRACE_RETURN(i))); - - systrace_sysent[i].stsy_entry = DTRACE_IDNONE; - systrace_sysent[i].stsy_return = DTRACE_IDNONE; -#ifdef _SYSCALL32_IMPL - systrace_sysent32[i].stsy_entry = DTRACE_IDNONE; - systrace_sysent32[i].stsy_return = DTRACE_IDNONE; -#endif - } -} - -/*ARGSUSED*/ -static void -systrace_destroy(void *arg, dtrace_id_t id, void *parg) -{ - int sysnum = SYSTRACE_SYSNUM((uintptr_t)parg); - - /* - * There's nothing to do here but assert that we have actually been - * disabled. - */ - if (SYSTRACE_ISENTRY((uintptr_t)parg)) { - ASSERT(systrace_sysent[sysnum].stsy_entry == DTRACE_IDNONE); -#ifdef _SYSCALL32_IMPL - ASSERT(systrace_sysent32[sysnum].stsy_entry == DTRACE_IDNONE); -#endif - } else { - ASSERT(systrace_sysent[sysnum].stsy_return == DTRACE_IDNONE); -#ifdef _SYSCALL32_IMPL - ASSERT(systrace_sysent32[sysnum].stsy_return == DTRACE_IDNONE); -#endif - } -} - -/*ARGSUSED*/ -static void -systrace_enable(void *arg, dtrace_id_t id, void *parg) -{ - int sysnum = SYSTRACE_SYSNUM((uintptr_t)parg); - int enabled = (systrace_sysent[sysnum].stsy_entry != DTRACE_IDNONE || - systrace_sysent[sysnum].stsy_return != DTRACE_IDNONE); - - if (SYSTRACE_ISENTRY((uintptr_t)parg)) { - systrace_sysent[sysnum].stsy_entry = id; -#ifdef _SYSCALL32_IMPL - systrace_sysent32[sysnum].stsy_entry = id; -#endif - } else { - systrace_sysent[sysnum].stsy_return = id; -#ifdef _SYSCALL32_IMPL - systrace_sysent32[sysnum].stsy_return = id; -#endif - } - - if (enabled) { - ASSERT(sysent[sysnum].sy_callc == dtrace_systrace_syscall); - return; - } - - (void) casptr(&sysent[sysnum].sy_callc, - (void *)systrace_sysent[sysnum].stsy_underlying, - (void *)dtrace_systrace_syscall); -#ifdef _SYSCALL32_IMPL - (void) casptr(&sysent32[sysnum].sy_callc, - (void *)systrace_sysent32[sysnum].stsy_underlying, - (void *)dtrace_systrace_syscall32); -#endif -} - -/*ARGSUSED*/ -static void -systrace_disable(void *arg, dtrace_id_t id, void *parg) -{ - int sysnum = SYSTRACE_SYSNUM((uintptr_t)parg); - int disable = (systrace_sysent[sysnum].stsy_entry == DTRACE_IDNONE || - systrace_sysent[sysnum].stsy_return == DTRACE_IDNONE); - - if (disable) { - (void) casptr(&sysent[sysnum].sy_callc, - (void *)dtrace_systrace_syscall, - (void *)systrace_sysent[sysnum].stsy_underlying); - -#ifdef _SYSCALL32_IMPL - (void) casptr(&sysent32[sysnum].sy_callc, - (void *)dtrace_systrace_syscall32, - (void *)systrace_sysent32[sysnum].stsy_underlying); -#endif - } - - if (SYSTRACE_ISENTRY((uintptr_t)parg)) { - systrace_sysent[sysnum].stsy_entry = DTRACE_IDNONE; -#ifdef _SYSCALL32_IMPL - systrace_sysent32[sysnum].stsy_entry = DTRACE_IDNONE; -#endif - } else { - systrace_sysent[sysnum].stsy_return = DTRACE_IDNONE; -#ifdef _SYSCALL32_IMPL - systrace_sysent32[sysnum].stsy_return = DTRACE_IDNONE; -#endif - } -} - -static dtrace_pattr_t systrace_attr = { -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA }, -{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, -{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA }, -}; - -static dtrace_pops_t systrace_pops = { - systrace_provide, - NULL, - systrace_enable, - systrace_disable, - NULL, - NULL, - NULL, - NULL, - NULL, - systrace_destroy -}; - -static int -systrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) -{ - switch (cmd) { - case DDI_ATTACH: - break; - case DDI_RESUME: - return (DDI_SUCCESS); - default: - return (DDI_FAILURE); - } - - systrace_probe = (void (*)())dtrace_probe; - membar_enter(); - - if (ddi_create_minor_node(devi, "systrace", S_IFCHR, 0, - DDI_PSEUDO, NULL) == DDI_FAILURE || - dtrace_register("syscall", &systrace_attr, DTRACE_PRIV_USER, NULL, - &systrace_pops, NULL, &systrace_id) != 0) { - systrace_probe = systrace_stub; - ddi_remove_minor_node(devi, NULL); - return (DDI_FAILURE); - } - - ddi_report_dev(devi); - systrace_devi = devi; - - return (DDI_SUCCESS); -} - -static int -systrace_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) -{ - switch (cmd) { - case DDI_DETACH: - break; - case DDI_SUSPEND: - return (DDI_SUCCESS); - default: - return (DDI_FAILURE); - } - - if (dtrace_unregister(systrace_id) != 0) - return (DDI_FAILURE); - - ddi_remove_minor_node(devi, NULL); - systrace_probe = systrace_stub; - return (DDI_SUCCESS); -} - -/*ARGSUSED*/ -static int -systrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) -{ - int error; - - switch (infocmd) { - case DDI_INFO_DEVT2DEVINFO: - *result = (void *)systrace_devi; - error = DDI_SUCCESS; - break; - case DDI_INFO_DEVT2INSTANCE: - *result = (void *)0; - error = DDI_SUCCESS; - break; - default: - error = DDI_FAILURE; - } - return (error); -} - -/*ARGSUSED*/ -static int -systrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) -{ - return (0); -} - -static struct cb_ops systrace_cb_ops = { - systrace_open, /* open */ - nodev, /* close */ - nulldev, /* strategy */ - nulldev, /* print */ - nodev, /* dump */ - nodev, /* read */ - nodev, /* write */ - nodev, /* ioctl */ - nodev, /* devmap */ - nodev, /* mmap */ - nodev, /* segmap */ - nochpoll, /* poll */ - ddi_prop_op, /* cb_prop_op */ - 0, /* streamtab */ - D_NEW | D_MP /* Driver compatibility flag */ -}; - -static struct dev_ops systrace_ops = { - DEVO_REV, /* devo_rev, */ - 0, /* refcnt */ - systrace_info, /* get_dev_info */ - nulldev, /* identify */ - nulldev, /* probe */ - systrace_attach, /* attach */ - systrace_detach, /* detach */ - nodev, /* reset */ - &systrace_cb_ops, /* driver operations */ - NULL, /* bus operations */ - nodev /* dev power */ -}; - -/* - * Module linkage information for the kernel. - */ -static struct modldrv modldrv = { - &mod_driverops, /* module type (this is a pseudo driver) */ - "System Call Tracing", /* name of module */ - &systrace_ops, /* driver ops */ -}; - -static struct modlinkage modlinkage = { - MODREV_1, - (void *)&modldrv, - NULL -}; - -int -_init(void) -{ - return (mod_install(&modlinkage)); -} - -int -_info(struct modinfo *modinfop) -{ - return (mod_info(&modlinkage, modinfop)); -} - -int -_fini(void) -{ - return (mod_remove(&modlinkage)); -} diff --git a/cddl/contrib/opensolaris/uts/common/sys/cmn_err.h b/cddl/contrib/opensolaris/uts/common/sys/cmn_err.h deleted file mode 100644 index e710d8e..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/cmn_err.h +++ /dev/null @@ -1,128 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ -/* All Rights Reserved */ - - -/* - * Copyright 2004 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _SYS_CMN_ERR_H -#define _SYS_CMN_ERR_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#if defined(_KERNEL) && !defined(_ASM) -#include -#endif - -#ifdef __cplusplus -extern "C" { -#endif - -/* Common error handling severity levels */ - -#define CE_CONT 0 /* continuation */ -#define CE_NOTE 1 /* notice */ -#define CE_WARN 2 /* warning */ -#define CE_PANIC 3 /* panic */ -#define CE_IGNORE 4 /* print nothing */ - -#ifndef _ASM - -#ifdef _KERNEL - -/*PRINTFLIKE2*/ -extern void cmn_err(int, const char *, ...) - __KPRINTFLIKE(2); -#pragma rarely_called(cmn_err) - -extern void vzcmn_err(zoneid_t, int, const char *, __va_list) - __KVPRINTFLIKE(3); -#pragma rarely_called(vzcmn_err) - -extern void vcmn_err(int, const char *, __va_list) - __KVPRINTFLIKE(2); -#pragma rarely_called(vcmn_err) - -/*PRINTFLIKE3*/ -extern void zcmn_err(zoneid_t, int, const char *, ...) - __KPRINTFLIKE(3); -#pragma rarely_called(zcmn_err) - -/*PRINTFLIKE1*/ -extern void printf(const char *, ...) - __KPRINTFLIKE(1); -#pragma rarely_called(printf) - -extern void vzprintf(zoneid_t, const char *, __va_list) - __KVPRINTFLIKE(2); -#pragma rarely_called(vzprintf) - -/*PRINTFLIKE2*/ -extern void zprintf(zoneid_t, const char *, ...) - __KPRINTFLIKE(2); -#pragma rarely_called(zprintf) - -extern void vprintf(const char *, __va_list) - __KVPRINTFLIKE(1); -#pragma rarely_called(vprintf) - -/*PRINTFLIKE1*/ -extern void uprintf(const char *, ...) - __KPRINTFLIKE(1); -#pragma rarely_called(uprintf) - -extern void vuprintf(const char *, __va_list) - __KVPRINTFLIKE(1); -#pragma rarely_called(vuprintf) - -/*PRINTFLIKE3*/ -extern size_t snprintf(char *, size_t, const char *, ...) - __KPRINTFLIKE(3); -extern size_t vsnprintf(char *, size_t, const char *, __va_list) - __KVPRINTFLIKE(3); -/*PRINTFLIKE2*/ -extern char *sprintf(char *, const char *, ...) - __KPRINTFLIKE(2); -extern char *vsprintf(char *, const char *, __va_list) - __KVPRINTFLIKE(2); - -/*PRINTFLIKE1*/ -extern void panic(const char *, ...) - __KPRINTFLIKE(1) __NORETURN; -#pragma rarely_called(panic) - -extern void vpanic(const char *, __va_list) - __KVPRINTFLIKE(1) __NORETURN; -#pragma rarely_called(vpanic) - -#endif /* _KERNEL */ -#endif /* !_ASM */ - -#ifdef __cplusplus -} -#endif - -#endif /* _SYS_CMN_ERR_H */ diff --git a/cddl/contrib/opensolaris/uts/common/sys/cpupart.h b/cddl/contrib/opensolaris/uts/common/sys/cpupart.h deleted file mode 100644 index b9e0da4..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/cpupart.h +++ /dev/null @@ -1,162 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2007 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _SYS_CPUPART_H -#define _SYS_CPUPART_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#ifdef __cplusplus -extern "C" { -#endif - -#ifdef _KERNEL - -typedef int cpupartid_t; - -/* - * Special partition id. - */ -#define CP_DEFAULT 0 - -/* - * Flags for cpupart_list() - */ -#define CP_ALL 0 /* return all cpu partitions */ -#define CP_NONEMPTY 1 /* return only non-empty ones */ - -#if defined(_MACHDEP) -struct mach_cpupart { - cpuset_t mc_haltset; -}; - -extern struct mach_cpupart cp_default_mach; -#else -struct mach_cpupart; -#endif - -typedef struct cpupart { - disp_t cp_kp_queue; /* partition-wide kpreempt queue */ - cpupartid_t cp_id; /* partition ID */ - int cp_ncpus; /* number of online processors */ - struct cpupart *cp_next; /* next partition in list */ - struct cpupart *cp_prev; /* previous partition in list */ - struct cpu *cp_cpulist; /* processor list */ - struct kstat *cp_kstat; /* per-partition statistics */ - - /* - * cp_nrunnable and cp_nrunning are used to calculate load average. - */ - uint_t cp_nrunnable; /* current # of runnable threads */ - uint_t cp_nrunning; /* current # of running threads */ - - /* - * cp_updates, cp_nrunnable_cum, cp_nwaiting_cum, and cp_hp_avenrun - * are used to generate kstat information on an as-needed basis. - */ - uint64_t cp_updates; /* number of statistics updates */ - uint64_t cp_nrunnable_cum; /* cum. # of runnable threads */ - uint64_t cp_nwaiting_cum; /* cum. # of waiting threads */ - - struct loadavg_s cp_loadavg; /* cpupart loadavg */ - - klgrpset_t cp_lgrpset; /* set of lgroups on which this */ - /* partition has cpus */ - lpl_t *cp_lgrploads; /* table of load averages for this */ - /* partition, indexed by lgrp ID */ - int cp_nlgrploads; /* size of cp_lgrploads table */ - uint64_t cp_hp_avenrun[3]; /* high-precision load average */ - uint_t cp_attr; /* bitmask of attributes */ - lgrp_gen_t cp_gen; /* generation number */ - lgrp_id_t cp_lgrp_hint; /* last home lgroup chosen */ - bitset_t cp_cmt_pgs; /* CMT PGs represented */ - - struct mach_cpupart *cp_mach; /* mach-specific */ -} cpupart_t; - -typedef struct cpupart_kstat { - kstat_named_t cpk_updates; /* number of updates */ - kstat_named_t cpk_runnable; /* cum # of runnable threads */ - kstat_named_t cpk_waiting; /* cum # waiting for I/O */ - kstat_named_t cpk_ncpus; /* current # of CPUs */ - kstat_named_t cpk_avenrun_1min; /* 1-minute load average */ - kstat_named_t cpk_avenrun_5min; /* 5-minute load average */ - kstat_named_t cpk_avenrun_15min; /* 15-minute load average */ -} cpupart_kstat_t; - -/* - * Macro to obtain the maximum run priority for the global queue associated - * with given cpu partition. - */ -#define CP_MAXRUNPRI(cp) ((cp)->cp_kp_queue.disp_maxrunpri) - -/* - * This macro is used to determine if the given thread must surrender - * CPU to higher priority runnable threads on one of its dispatch queues. - * This should really be defined in but it is not because - * including there would cause recursive includes. - */ -#define DISP_MUST_SURRENDER(t) \ - ((DISP_MAXRUNPRI(t) > DISP_PRIO(t)) || \ - (CP_MAXRUNPRI(t->t_cpupart) > DISP_PRIO(t))) - -extern cpupart_t cp_default; -extern cpupart_t *cp_list_head; -extern uint_t cp_numparts; -extern uint_t cp_numparts_nonempty; - -extern void cpupart_initialize_default(); -extern cpupart_t *cpupart_find(psetid_t); -extern int cpupart_create(psetid_t *); -extern int cpupart_destroy(psetid_t); -extern psetid_t cpupart_query_cpu(cpu_t *); -extern int cpupart_attach_cpu(psetid_t, cpu_t *, int); -extern int cpupart_get_cpus(psetid_t *, processorid_t *, uint_t *); -extern int cpupart_bind_thread(kthread_id_t, psetid_t, int, void *, - void *); -extern void cpupart_kpqalloc(pri_t); -extern int cpupart_get_loadavg(psetid_t, int *, int); -extern uint_t cpupart_list(psetid_t *, uint_t, int); -extern int cpupart_setattr(psetid_t, uint_t); -extern int cpupart_getattr(psetid_t, uint_t *); - -#endif /* _KERNEL */ - -#ifdef __cplusplus -} -#endif - -#endif /* _SYS_CPUPART_H */ diff --git a/cddl/contrib/opensolaris/uts/common/sys/cpuvar.h b/cddl/contrib/opensolaris/uts/common/sys/cpuvar.h deleted file mode 100644 index c7b76b3..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/cpuvar.h +++ /dev/null @@ -1,737 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _SYS_CPUVAR_H -#define _SYS_CPUVAR_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include /* has cpu_stat_t definition */ -#include -#include - -#if (defined(_KERNEL) || defined(_KMEMUSER)) && defined(_MACHDEP) -#include -#endif - -#include -#include -#include -#include -#include -#if defined(__GNUC__) && defined(_ASM_INLINES) && defined(_KERNEL) && \ - (defined(__i386) || defined(__amd64)) -#include -#endif - -#ifdef __cplusplus -extern "C" { -#endif - -struct squeue_set_s; - -#define CPU_CACHE_COHERENCE_SIZE 64 -#define S_LOADAVG_SZ 11 -#define S_MOVAVG_SZ 10 - -struct loadavg_s { - int lg_cur; /* current loadavg entry */ - unsigned int lg_len; /* number entries recorded */ - hrtime_t lg_total; /* used to temporarily hold load totals */ - hrtime_t lg_loads[S_LOADAVG_SZ]; /* table of recorded entries */ -}; - -/* - * For fast event tracing. - */ -struct ftrace_record; -typedef struct ftrace_data { - int ftd_state; /* ftrace flags */ - kmutex_t ftd_unused; /* ftrace buffer lock, unused */ - struct ftrace_record *ftd_cur; /* current record */ - struct ftrace_record *ftd_first; /* first record */ - struct ftrace_record *ftd_last; /* last record */ -} ftrace_data_t; - -struct cyc_cpu; -struct nvlist; - -/* - * Per-CPU data. - * - * Be careful adding new members: if they are not the same in all modules (e.g. - * change size depending on a #define), CTF uniquification can fail to work - * properly. Furthermore, this is transitive in that it applies recursively to - * all types pointed to by cpu_t. - */ -typedef struct cpu { - processorid_t cpu_id; /* CPU number */ - processorid_t cpu_seqid; /* sequential CPU id (0..ncpus-1) */ - volatile cpu_flag_t cpu_flags; /* flags indicating CPU state */ - struct cpu *cpu_self; /* pointer to itself */ - kthread_t *cpu_thread; /* current thread */ - kthread_t *cpu_idle_thread; /* idle thread for this CPU */ - kthread_t *cpu_pause_thread; /* pause thread for this CPU */ - klwp_id_t cpu_lwp; /* current lwp (if any) */ - klwp_id_t cpu_fpowner; /* currently loaded fpu owner */ - struct cpupart *cpu_part; /* partition with this CPU */ - struct lgrp_ld *cpu_lpl; /* pointer to this cpu's load */ - int cpu_cache_offset; /* see kmem.c for details */ - - /* - * Links to other CPUs. It is safe to walk these lists if - * one of the following is true: - * - cpu_lock held - * - preemption disabled via kpreempt_disable - * - PIL >= DISP_LEVEL - * - acting thread is an interrupt thread - * - all other CPUs are paused - */ - struct cpu *cpu_next; /* next existing CPU */ - struct cpu *cpu_prev; /* prev existing CPU */ - struct cpu *cpu_next_onln; /* next online (enabled) CPU */ - struct cpu *cpu_prev_onln; /* prev online (enabled) CPU */ - struct cpu *cpu_next_part; /* next CPU in partition */ - struct cpu *cpu_prev_part; /* prev CPU in partition */ - struct cpu *cpu_next_lgrp; /* next CPU in latency group */ - struct cpu *cpu_prev_lgrp; /* prev CPU in latency group */ - struct cpu *cpu_next_lpl; /* next CPU in lgrp partition */ - struct cpu *cpu_prev_lpl; - - struct cpu_pg *cpu_pg; /* cpu's processor groups */ - - void *cpu_reserved[4]; /* reserved for future use */ - - /* - * Scheduling variables. - */ - disp_t *cpu_disp; /* dispatch queue data */ - /* - * Note that cpu_disp is set before the CPU is added to the system - * and is never modified. Hence, no additional locking is needed - * beyond what's necessary to access the cpu_t structure. - */ - char cpu_runrun; /* scheduling flag - set to preempt */ - char cpu_kprunrun; /* force kernel preemption */ - pri_t cpu_chosen_level; /* priority at which cpu */ - /* was chosen for scheduling */ - kthread_t *cpu_dispthread; /* thread selected for dispatch */ - disp_lock_t cpu_thread_lock; /* dispatcher lock on current thread */ - uint8_t cpu_disp_flags; /* flags used by dispatcher */ - /* - * The following field is updated when ever the cpu_dispthread - * changes. Also in places, where the current thread(cpu_dispthread) - * priority changes. This is used in disp_lowpri_cpu() - */ - pri_t cpu_dispatch_pri; /* priority of cpu_dispthread */ - clock_t cpu_last_swtch; /* last time switched to new thread */ - - /* - * Interrupt data. - */ - caddr_t cpu_intr_stack; /* interrupt stack */ - kthread_t *cpu_intr_thread; /* interrupt thread list */ - uint_t cpu_intr_actv; /* interrupt levels active (bitmask) */ - int cpu_base_spl; /* priority for highest rupt active */ - - /* - * Statistics. - */ - cpu_stats_t cpu_stats; /* per-CPU statistics */ - struct kstat *cpu_info_kstat; /* kstat for cpu info */ - - uintptr_t cpu_profile_pc; /* kernel PC in profile interrupt */ - uintptr_t cpu_profile_upc; /* user PC in profile interrupt */ - uintptr_t cpu_profile_pil; /* PIL when profile interrupted */ - - ftrace_data_t cpu_ftrace; /* per cpu ftrace data */ - - clock_t cpu_deadman_lbolt; /* used by deadman() */ - uint_t cpu_deadman_countdown; /* used by deadman() */ - - kmutex_t cpu_cpc_ctxlock; /* protects context for idle thread */ - kcpc_ctx_t *cpu_cpc_ctx; /* performance counter context */ - - /* - * Configuration information for the processor_info system call. - */ - processor_info_t cpu_type_info; /* config info */ - time_t cpu_state_begin; /* when CPU entered current state */ - char cpu_cpr_flags; /* CPR related info */ - struct cyc_cpu *cpu_cyclic; /* per cpu cyclic subsystem data */ - struct squeue_set_s *cpu_squeue_set; /* per cpu squeue set */ - struct nvlist *cpu_props; /* pool-related properties */ - - krwlock_t cpu_ft_lock; /* DTrace: fasttrap lock */ - uintptr_t cpu_dtrace_caller; /* DTrace: caller, if any */ - hrtime_t cpu_dtrace_chillmark; /* DTrace: chill mark time */ - hrtime_t cpu_dtrace_chilled; /* DTrace: total chill time */ - volatile uint16_t cpu_mstate; /* cpu microstate */ - volatile uint16_t cpu_mstate_gen; /* generation counter */ - volatile hrtime_t cpu_mstate_start; /* cpu microstate start time */ - volatile hrtime_t cpu_acct[NCMSTATES]; /* cpu microstate data */ - hrtime_t cpu_intracct[NCMSTATES]; /* interrupt mstate data */ - hrtime_t cpu_waitrq; /* cpu run-queue wait time */ - struct loadavg_s cpu_loadavg; /* loadavg info for this cpu */ - - char *cpu_idstr; /* for printing and debugging */ - char *cpu_brandstr; /* for printing */ - - /* - * Sum of all device interrupt weights that are currently directed at - * this cpu. Cleared at start of interrupt redistribution. - */ - int32_t cpu_intr_weight; - void *cpu_vm_data; - - struct cpu_physid *cpu_physid; /* physical associations */ - - uint64_t cpu_curr_clock; /* current clock freq in Hz */ - char *cpu_supp_freqs; /* supported freqs in Hz */ - - /* - * Interrupt load factor used by dispatcher & softcall - */ - hrtime_t cpu_intrlast; /* total interrupt time (nsec) */ - int cpu_intrload; /* interrupt load factor (0-99%) */ - - /* - * New members must be added /before/ this member, as the CTF tools - * rely on this being the last field before cpu_m, so they can - * correctly calculate the offset when synthetically adding the cpu_m - * member in objects that do not have it. This fixup is required for - * uniquification to work correctly. - */ - uintptr_t cpu_m_pad; - -#if (defined(_KERNEL) || defined(_KMEMUSER)) && defined(_MACHDEP) - struct machcpu cpu_m; /* per architecture info */ -#endif -} cpu_t; - -/* - * The cpu_core structure consists of per-CPU state available in any context. - * On some architectures, this may mean that the page(s) containing the - * NCPU-sized array of cpu_core structures must be locked in the TLB -- it - * is up to the platform to assure that this is performed properly. Note that - * the structure is sized to avoid false sharing. - */ -#define CPUC_SIZE (sizeof (uint16_t) + sizeof (uintptr_t) + \ - sizeof (kmutex_t)) -#define CPUC_PADSIZE CPU_CACHE_COHERENCE_SIZE - CPUC_SIZE - -typedef struct cpu_core { - uint16_t cpuc_dtrace_flags; /* DTrace flags */ - uint8_t cpuc_pad[CPUC_PADSIZE]; /* padding */ - uintptr_t cpuc_dtrace_illval; /* DTrace illegal value */ - kmutex_t cpuc_pid_lock; /* DTrace pid provider lock */ -} cpu_core_t; - -#ifdef _KERNEL -extern cpu_core_t cpu_core[]; -#endif /* _KERNEL */ - -/* - * CPU_ON_INTR() macro. Returns non-zero if currently on interrupt stack. - * Note that this isn't a test for a high PIL. For example, cpu_intr_actv - * does not get updated when we go through sys_trap from TL>0 at high PIL. - * getpil() should be used instead to check for PIL levels. - */ -#define CPU_ON_INTR(cpup) ((cpup)->cpu_intr_actv >> (LOCK_LEVEL + 1)) - -#if defined(_KERNEL) || defined(_KMEMUSER) - -#define INTR_STACK_SIZE MAX(DEFAULTSTKSZ, PAGESIZE) - -/* MEMBERS PROTECTED BY "atomicity": cpu_flags */ - -/* - * Flags in the CPU structure. - * - * These are protected by cpu_lock (except during creation). - * - * Offlined-CPUs have three stages of being offline: - * - * CPU_ENABLE indicates that the CPU is participating in I/O interrupts - * that can be directed at a number of different CPUs. If CPU_ENABLE - * is off, the CPU will not be given interrupts that can be sent elsewhere, - * but will still get interrupts from devices associated with that CPU only, - * and from other CPUs. - * - * CPU_OFFLINE indicates that the dispatcher should not allow any threads - * other than interrupt threads to run on that CPU. A CPU will not have - * CPU_OFFLINE set if there are any bound threads (besides interrupts). - * - * CPU_QUIESCED is set if p_offline was able to completely turn idle the - * CPU and it will not have to run interrupt threads. In this case it'll - * stay in the idle loop until CPU_QUIESCED is turned off. - * - * CPU_FROZEN is used only by CPR to mark CPUs that have been successfully - * suspended (in the suspend path), or have yet to be resumed (in the resume - * case). - * - * On some platforms CPUs can be individually powered off. - * The following flags are set for powered off CPUs: CPU_QUIESCED, - * CPU_OFFLINE, and CPU_POWEROFF. The following flags are cleared: - * CPU_RUNNING, CPU_READY, CPU_EXISTS, and CPU_ENABLE. - */ -#define CPU_RUNNING 0x001 /* CPU running */ -#define CPU_READY 0x002 /* CPU ready for cross-calls */ -#define CPU_QUIESCED 0x004 /* CPU will stay in idle */ -#define CPU_EXISTS 0x008 /* CPU is configured */ -#define CPU_ENABLE 0x010 /* CPU enabled for interrupts */ -#define CPU_OFFLINE 0x020 /* CPU offline via p_online */ -#define CPU_POWEROFF 0x040 /* CPU is powered off */ -#define CPU_FROZEN 0x080 /* CPU is frozen via CPR suspend */ -#define CPU_SPARE 0x100 /* CPU offline available for use */ -#define CPU_FAULTED 0x200 /* CPU offline diagnosed faulty */ - -#define FMT_CPU_FLAGS \ - "\20\12fault\11spare\10frozen" \ - "\7poweroff\6offline\5enable\4exist\3quiesced\2ready\1run" - -#define CPU_ACTIVE(cpu) (((cpu)->cpu_flags & CPU_OFFLINE) == 0) - -/* - * Flags for cpu_offline(), cpu_faulted(), and cpu_spare(). - */ -#define CPU_FORCED 0x0001 /* Force CPU offline */ - -/* - * DTrace flags. - */ -#define CPU_DTRACE_NOFAULT 0x0001 /* Don't fault */ -#define CPU_DTRACE_DROP 0x0002 /* Drop this ECB */ -#define CPU_DTRACE_BADADDR 0x0004 /* DTrace fault: bad address */ -#define CPU_DTRACE_BADALIGN 0x0008 /* DTrace fault: bad alignment */ -#define CPU_DTRACE_DIVZERO 0x0010 /* DTrace fault: divide by zero */ -#define CPU_DTRACE_ILLOP 0x0020 /* DTrace fault: illegal operation */ -#define CPU_DTRACE_NOSCRATCH 0x0040 /* DTrace fault: out of scratch */ -#define CPU_DTRACE_KPRIV 0x0080 /* DTrace fault: bad kernel access */ -#define CPU_DTRACE_UPRIV 0x0100 /* DTrace fault: bad user access */ -#define CPU_DTRACE_TUPOFLOW 0x0200 /* DTrace fault: tuple stack overflow */ -#if defined(__sparc) -#define CPU_DTRACE_FAKERESTORE 0x0400 /* pid provider hint to getreg */ -#endif -#define CPU_DTRACE_ENTRY 0x0800 /* pid provider hint to ustack() */ -#define CPU_DTRACE_BADSTACK 0x1000 /* DTrace fault: bad stack */ - -#define CPU_DTRACE_FAULT (CPU_DTRACE_BADADDR | CPU_DTRACE_BADALIGN | \ - CPU_DTRACE_DIVZERO | CPU_DTRACE_ILLOP | \ - CPU_DTRACE_NOSCRATCH | CPU_DTRACE_KPRIV | \ - CPU_DTRACE_UPRIV | CPU_DTRACE_TUPOFLOW | \ - CPU_DTRACE_BADSTACK) -#define CPU_DTRACE_ERROR (CPU_DTRACE_FAULT | CPU_DTRACE_DROP) - -/* - * Dispatcher flags - * These flags must be changed only by the current CPU. - */ -#define CPU_DISP_DONTSTEAL 0x01 /* CPU undergoing context swtch */ -#define CPU_DISP_HALTED 0x02 /* CPU halted waiting for interrupt */ - - -#endif /* _KERNEL || _KMEMUSER */ - -#if (defined(_KERNEL) || defined(_KMEMUSER)) && defined(_MACHDEP) - -/* - * Macros for manipulating sets of CPUs as a bitmap. Note that this - * bitmap may vary in size depending on the maximum CPU id a specific - * platform supports. This may be different than the number of CPUs - * the platform supports, since CPU ids can be sparse. We define two - * sets of macros; one for platforms where the maximum CPU id is less - * than the number of bits in a single word (32 in a 32-bit kernel, - * 64 in a 64-bit kernel), and one for platforms that require bitmaps - * of more than one word. - */ - -#define CPUSET_WORDS BT_BITOUL(NCPU) -#define CPUSET_NOTINSET ((uint_t)-1) - -#if CPUSET_WORDS > 1 - -typedef struct cpuset { - ulong_t cpub[CPUSET_WORDS]; -} cpuset_t; - -/* - * Private functions for manipulating cpusets that do not fit in a - * single word. These should not be used directly; instead the - * CPUSET_* macros should be used so the code will be portable - * across different definitions of NCPU. - */ -extern void cpuset_all(cpuset_t *); -extern void cpuset_all_but(cpuset_t *, uint_t); -extern int cpuset_isnull(cpuset_t *); -extern int cpuset_cmp(cpuset_t *, cpuset_t *); -extern void cpuset_only(cpuset_t *, uint_t); -extern uint_t cpuset_find(cpuset_t *); -extern void cpuset_bounds(cpuset_t *, uint_t *, uint_t *); - -#define CPUSET_ALL(set) cpuset_all(&(set)) -#define CPUSET_ALL_BUT(set, cpu) cpuset_all_but(&(set), cpu) -#define CPUSET_ONLY(set, cpu) cpuset_only(&(set), cpu) -#define CPU_IN_SET(set, cpu) BT_TEST((set).cpub, cpu) -#define CPUSET_ADD(set, cpu) BT_SET((set).cpub, cpu) -#define CPUSET_DEL(set, cpu) BT_CLEAR((set).cpub, cpu) -#define CPUSET_ISNULL(set) cpuset_isnull(&(set)) -#define CPUSET_ISEQUAL(set1, set2) cpuset_cmp(&(set1), &(set2)) - -/* - * Find one CPU in the cpuset. - * Sets "cpu" to the id of the found CPU, or CPUSET_NOTINSET if no cpu - * could be found. (i.e. empty set) - */ -#define CPUSET_FIND(set, cpu) { \ - cpu = cpuset_find(&(set)); \ -} - -/* - * Determine the smallest and largest CPU id in the set. Returns - * CPUSET_NOTINSET in smallest and largest when set is empty. - */ -#define CPUSET_BOUNDS(set, smallest, largest) { \ - cpuset_bounds(&(set), &(smallest), &(largest)); \ -} - -/* - * Atomic cpuset operations - * These are safe to use for concurrent cpuset manipulations. - * "xdel" and "xadd" are exclusive operations, that set "result" to "0" - * if the add or del was successful, or "-1" if not successful. - * (e.g. attempting to add a cpu to a cpuset that's already there, or - * deleting a cpu that's not in the cpuset) - */ - -#define CPUSET_ATOMIC_DEL(set, cpu) BT_ATOMIC_CLEAR((set).cpub, (cpu)) -#define CPUSET_ATOMIC_ADD(set, cpu) BT_ATOMIC_SET((set).cpub, (cpu)) - -#define CPUSET_ATOMIC_XADD(set, cpu, result) \ - BT_ATOMIC_SET_EXCL((set).cpub, cpu, result) - -#define CPUSET_ATOMIC_XDEL(set, cpu, result) \ - BT_ATOMIC_CLEAR_EXCL((set).cpub, cpu, result) - - -#define CPUSET_OR(set1, set2) { \ - int _i; \ - for (_i = 0; _i < CPUSET_WORDS; _i++) \ - (set1).cpub[_i] |= (set2).cpub[_i]; \ -} - -#define CPUSET_XOR(set1, set2) { \ - int _i; \ - for (_i = 0; _i < CPUSET_WORDS; _i++) \ - (set1).cpub[_i] ^= (set2).cpub[_i]; \ -} - -#define CPUSET_AND(set1, set2) { \ - int _i; \ - for (_i = 0; _i < CPUSET_WORDS; _i++) \ - (set1).cpub[_i] &= (set2).cpub[_i]; \ -} - -#define CPUSET_ZERO(set) { \ - int _i; \ - for (_i = 0; _i < CPUSET_WORDS; _i++) \ - (set).cpub[_i] = 0; \ -} - -#elif CPUSET_WORDS == 1 - -typedef ulong_t cpuset_t; /* a set of CPUs */ - -#define CPUSET(cpu) (1UL << (cpu)) - -#define CPUSET_ALL(set) ((void)((set) = ~0UL)) -#define CPUSET_ALL_BUT(set, cpu) ((void)((set) = ~CPUSET(cpu))) -#define CPUSET_ONLY(set, cpu) ((void)((set) = CPUSET(cpu))) -#define CPU_IN_SET(set, cpu) ((set) & CPUSET(cpu)) -#define CPUSET_ADD(set, cpu) ((void)((set) |= CPUSET(cpu))) -#define CPUSET_DEL(set, cpu) ((void)((set) &= ~CPUSET(cpu))) -#define CPUSET_ISNULL(set) ((set) == 0) -#define CPUSET_ISEQUAL(set1, set2) ((set1) == (set2)) -#define CPUSET_OR(set1, set2) ((void)((set1) |= (set2))) -#define CPUSET_XOR(set1, set2) ((void)((set1) ^= (set2))) -#define CPUSET_AND(set1, set2) ((void)((set1) &= (set2))) -#define CPUSET_ZERO(set) ((void)((set) = 0)) - -#define CPUSET_FIND(set, cpu) { \ - cpu = (uint_t)(lowbit(set) - 1); \ -} - -#define CPUSET_BOUNDS(set, smallest, largest) { \ - smallest = (uint_t)(lowbit(set) - 1); \ - largest = (uint_t)(highbit(set) - 1); \ -} - -#define CPUSET_ATOMIC_DEL(set, cpu) atomic_and_long(&(set), ~CPUSET(cpu)) -#define CPUSET_ATOMIC_ADD(set, cpu) atomic_or_long(&(set), CPUSET(cpu)) - -#define CPUSET_ATOMIC_XADD(set, cpu, result) \ - { result = atomic_set_long_excl(&(set), (cpu)); } - -#define CPUSET_ATOMIC_XDEL(set, cpu, result) \ - { result = atomic_clear_long_excl(&(set), (cpu)); } - -#else /* CPUSET_WORDS <= 0 */ - -#error NCPU is undefined or invalid - -#endif /* CPUSET_WORDS */ - -extern cpuset_t cpu_seqid_inuse; - -#endif /* (_KERNEL || _KMEMUSER) && _MACHDEP */ - -#define CPU_CPR_OFFLINE 0x0 -#define CPU_CPR_ONLINE 0x1 -#define CPU_CPR_IS_OFFLINE(cpu) (((cpu)->cpu_cpr_flags & CPU_CPR_ONLINE) == 0) -#define CPU_CPR_IS_ONLINE(cpu) ((cpu)->cpu_cpr_flags & CPU_CPR_ONLINE) -#define CPU_SET_CPR_FLAGS(cpu, flag) ((cpu)->cpu_cpr_flags |= flag) - -#if defined(_KERNEL) || defined(_KMEMUSER) - -extern struct cpu *cpu[]; /* indexed by CPU number */ -extern cpu_t *cpu_list; /* list of CPUs */ -extern cpu_t *cpu_active; /* list of active CPUs */ -extern int ncpus; /* number of CPUs present */ -extern int ncpus_online; /* number of CPUs not quiesced */ -extern int max_ncpus; /* max present before ncpus is known */ -extern int boot_max_ncpus; /* like max_ncpus but for real */ -extern processorid_t max_cpuid; /* maximum CPU number */ -extern struct cpu *cpu_inmotion; /* offline or partition move target */ -extern cpu_t *clock_cpu_list; - -#if defined(__i386) || defined(__amd64) -extern struct cpu *curcpup(void); -#define CPU (curcpup()) /* Pointer to current CPU */ -#else -#define CPU (curthread->t_cpu) /* Pointer to current CPU */ -#endif - -/* - * CPU_CURRENT indicates to thread_affinity_set to use CPU->cpu_id - * as the target and to grab cpu_lock instead of requiring the caller - * to grab it. - */ -#define CPU_CURRENT -3 - -/* - * Per-CPU statistics - * - * cpu_stats_t contains numerous system and VM-related statistics, in the form - * of gauges or monotonically-increasing event occurrence counts. - */ - -#define CPU_STATS_ENTER_K() kpreempt_disable() -#define CPU_STATS_EXIT_K() kpreempt_enable() - -#define CPU_STATS_ADD_K(class, stat, amount) \ - { kpreempt_disable(); /* keep from switching CPUs */\ - CPU_STATS_ADDQ(CPU, class, stat, amount); \ - kpreempt_enable(); \ - } - -#define CPU_STATS_ADDQ(cp, class, stat, amount) { \ - extern void __dtrace_probe___cpu_##class##info_##stat(uint_t, \ - uint64_t *, cpu_t *); \ - uint64_t *stataddr = &((cp)->cpu_stats.class.stat); \ - __dtrace_probe___cpu_##class##info_##stat((amount), \ - stataddr, cp); \ - *(stataddr) += (amount); \ -} - -#define CPU_STATS(cp, stat) \ - ((cp)->cpu_stats.stat) - -#endif /* _KERNEL || _KMEMUSER */ - -/* - * CPU support routines. - */ -#if defined(_KERNEL) && defined(__STDC__) /* not for genassym.c */ - -struct zone; - -void cpu_list_init(cpu_t *); -void cpu_add_unit(cpu_t *); -void cpu_del_unit(int cpuid); -void cpu_add_active(cpu_t *); -void cpu_kstat_init(cpu_t *); -void cpu_visibility_add(cpu_t *, struct zone *); -void cpu_visibility_remove(cpu_t *, struct zone *); -void cpu_visibility_configure(cpu_t *, struct zone *); -void cpu_visibility_unconfigure(cpu_t *, struct zone *); -void cpu_visibility_online(cpu_t *, struct zone *); -void cpu_visibility_offline(cpu_t *, struct zone *); -void cpu_create_intrstat(cpu_t *); -void cpu_delete_intrstat(cpu_t *); -int cpu_kstat_intrstat_update(kstat_t *, int); -void cpu_intr_swtch_enter(kthread_t *); -void cpu_intr_swtch_exit(kthread_t *); - -void mbox_lock_init(void); /* initialize cross-call locks */ -void mbox_init(int cpun); /* initialize cross-calls */ -void poke_cpu(int cpun); /* interrupt another CPU (to preempt) */ - -/* - * values for safe_list. Pause state that CPUs are in. - */ -#define PAUSE_IDLE 0 /* normal state */ -#define PAUSE_READY 1 /* paused thread ready to spl */ -#define PAUSE_WAIT 2 /* paused thread is spl-ed high */ -#define PAUSE_DIE 3 /* tell pause thread to leave */ -#define PAUSE_DEAD 4 /* pause thread has left */ - -void mach_cpu_pause(volatile char *); - -void pause_cpus(cpu_t *off_cp); -void start_cpus(void); -int cpus_paused(void); - -void cpu_pause_init(void); -cpu_t *cpu_get(processorid_t cpun); /* get the CPU struct associated */ - -int cpu_online(cpu_t *cp); /* take cpu online */ -int cpu_offline(cpu_t *cp, int flags); /* take cpu offline */ -int cpu_spare(cpu_t *cp, int flags); /* take cpu to spare */ -int cpu_faulted(cpu_t *cp, int flags); /* take cpu to faulted */ -int cpu_poweron(cpu_t *cp); /* take powered-off cpu to offline */ -int cpu_poweroff(cpu_t *cp); /* take offline cpu to powered-off */ - -cpu_t *cpu_intr_next(cpu_t *cp); /* get next online CPU taking intrs */ -int cpu_intr_count(cpu_t *cp); /* count # of CPUs handling intrs */ -int cpu_intr_on(cpu_t *cp); /* CPU taking I/O interrupts? */ -void cpu_intr_enable(cpu_t *cp); /* enable I/O interrupts */ -int cpu_intr_disable(cpu_t *cp); /* disable I/O interrupts */ -void cpu_intr_alloc(cpu_t *cp, int n); /* allocate interrupt threads */ - -/* - * Routines for checking CPU states. - */ -int cpu_is_online(cpu_t *); /* check if CPU is online */ -int cpu_is_nointr(cpu_t *); /* check if CPU can service intrs */ -int cpu_is_active(cpu_t *); /* check if CPU can run threads */ -int cpu_is_offline(cpu_t *); /* check if CPU is offline */ -int cpu_is_poweredoff(cpu_t *); /* check if CPU is powered off */ - -int cpu_flagged_online(cpu_flag_t); /* flags show CPU is online */ -int cpu_flagged_nointr(cpu_flag_t); /* flags show CPU not handling intrs */ -int cpu_flagged_active(cpu_flag_t); /* flags show CPU scheduling threads */ -int cpu_flagged_offline(cpu_flag_t); /* flags show CPU is offline */ -int cpu_flagged_poweredoff(cpu_flag_t); /* flags show CPU is powered off */ - -/* - * The processor_info(2) state of a CPU is a simplified representation suitable - * for use by an application program. Kernel subsystems should utilize the - * internal per-CPU state as given by the cpu_flags member of the cpu structure, - * as this information may include platform- or architecture-specific state - * critical to a subsystem's disposition of a particular CPU. - */ -void cpu_set_state(cpu_t *); /* record/timestamp current state */ -int cpu_get_state(cpu_t *); /* get current cpu state */ -const char *cpu_get_state_str(cpu_t *); /* get current cpu state as string */ - - -void cpu_set_supp_freqs(cpu_t *, const char *); /* set the CPU supported */ - /* frequencies */ - -int cpu_configure(int); -int cpu_unconfigure(int); -void cpu_destroy_bound_threads(cpu_t *cp); - -extern int cpu_bind_thread(kthread_t *tp, processorid_t bind, - processorid_t *obind, int *error); -extern int cpu_unbind(processorid_t cpu_id); -extern void thread_affinity_set(kthread_t *t, int cpu_id); -extern void thread_affinity_clear(kthread_t *t); -extern void affinity_set(int cpu_id); -extern void affinity_clear(void); -extern void init_cpu_mstate(struct cpu *, int); -extern void term_cpu_mstate(struct cpu *); -extern void new_cpu_mstate(int, hrtime_t); -extern void get_cpu_mstate(struct cpu *, hrtime_t *); -extern void thread_nomigrate(void); -extern void thread_allowmigrate(void); -extern void weakbinding_stop(void); -extern void weakbinding_start(void); - -/* - * The following routines affect the CPUs participation in interrupt processing, - * if that is applicable on the architecture. This only affects interrupts - * which aren't directed at the processor (not cross calls). - * - * cpu_disable_intr returns non-zero if interrupts were previously enabled. - */ -int cpu_disable_intr(struct cpu *cp); /* stop issuing interrupts to cpu */ -void cpu_enable_intr(struct cpu *cp); /* start issuing interrupts to cpu */ - -/* - * The mutex cpu_lock protects cpu_flags for all CPUs, as well as the ncpus - * and ncpus_online counts. - */ -extern kmutex_t cpu_lock; /* lock protecting CPU data */ - -typedef enum { - CPU_INIT, - CPU_CONFIG, - CPU_UNCONFIG, - CPU_ON, - CPU_OFF, - CPU_CPUPART_IN, - CPU_CPUPART_OUT -} cpu_setup_t; - -typedef int cpu_setup_func_t(cpu_setup_t, int, void *); - -/* - * Routines used to register interest in cpu's being added to or removed - * from the system. - */ -extern void register_cpu_setup_func(cpu_setup_func_t *, void *); -extern void unregister_cpu_setup_func(cpu_setup_func_t *, void *); -extern void cpu_state_change_notify(int, cpu_setup_t); - -/* - * Create various strings that describe the given CPU for the - * processor_info system call and configuration-related kstats. - */ -#define CPU_IDSTRLEN 100 - -extern void init_cpu_info(struct cpu *); -extern void cpu_vm_data_init(struct cpu *); -extern void cpu_vm_data_destroy(struct cpu *); - -#endif /* _KERNEL */ - -#ifdef __cplusplus -} -#endif - -#endif /* _SYS_CPUVAR_H */ diff --git a/cddl/contrib/opensolaris/uts/common/sys/ctf.h b/cddl/contrib/opensolaris/uts/common/sys/ctf.h deleted file mode 100644 index 065e985..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/ctf.h +++ /dev/null @@ -1,358 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2004 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _CTF_H -#define _CTF_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * CTF - Compact ANSI-C Type Format - * - * This file format can be used to compactly represent the information needed - * by a debugger to interpret the ANSI-C types used by a given program. - * Traditionally, this kind of information is generated by the compiler when - * invoked with the -g flag and is stored in "stabs" strings or in the more - * modern DWARF format. CTF provides a representation of only the information - * that is relevant to debugging a complex, optimized C program such as the - * operating system kernel in a form that is significantly more compact than - * the equivalent stabs or DWARF representation. The format is data-model - * independent, so consumers do not need different code depending on whether - * they are 32-bit or 64-bit programs. CTF assumes that a standard ELF symbol - * table is available for use in the debugger, and uses the structure and data - * of the symbol table to avoid storing redundant information. The CTF data - * may be compressed on disk or in memory, indicated by a bit in the header. - * CTF may be interpreted in a raw disk file, or it may be stored in an ELF - * section, typically named .SUNW_ctf. Data structures are aligned so that - * a raw CTF file or CTF ELF section may be manipulated using mmap(2). - * - * The CTF file or section itself has the following structure: - * - * +--------+--------+---------+----------+-------+--------+ - * | file | type | data | function | data | string | - * | header | labels | objects | info | types | table | - * +--------+--------+---------+----------+-------+--------+ - * - * The file header stores a magic number and version information, encoding - * flags, and the byte offset of each of the sections relative to the end of the - * header itself. If the CTF data has been uniquified against another set of - * CTF data, a reference to that data also appears in the the header. This - * reference is the name of the label corresponding to the types uniquified - * against. - * - * Following the header is a list of labels, used to group the types included in - * the data types section. Each label is accompanied by a type ID i. A given - * label refers to the group of types whose IDs are in the range [0, i]. - * - * Data object and function records are stored in the same order as they appear - * in the corresponding symbol table, except that symbols marked SHN_UNDEF are - * not stored and symbols that have no type data are padded out with zeroes. - * For each data object, the type ID (a small integer) is recorded. For each - * function, the type ID of the return type and argument types is recorded. - * - * The data types section is a list of variable size records that represent each - * type, in order by their ID. The types themselves form a directed graph, - * where each node may contain one or more outgoing edges to other type nodes, - * denoted by their ID. - * - * Strings are recorded as a string table ID (0 or 1) and a byte offset into the - * string table. String table 0 is the internal CTF string table. String table - * 1 is the external string table, which is the string table associated with the - * ELF symbol table for this object. CTF does not record any strings that are - * already in the symbol table, and the CTF string table does not contain any - * duplicated strings. - * - * If the CTF data has been merged with another parent CTF object, some outgoing - * edges may refer to type nodes that exist in another CTF object. The debugger - * and libctf library are responsible for connecting the appropriate objects - * together so that the full set of types can be explored and manipulated. - */ - -#define CTF_MAX_TYPE 0xffff /* max type identifier value */ -#define CTF_MAX_NAME 0x7fffffff /* max offset into a string table */ -#define CTF_MAX_VLEN 0x3ff /* max struct, union, enum members or args */ -#define CTF_MAX_INTOFF 0xff /* max offset of intrinsic value in bits */ -#define CTF_MAX_INTBITS 0xffff /* max size of an intrinsic in bits */ - -/* See ctf_type_t */ -#define CTF_MAX_SIZE 0xfffe /* max size of a type in bytes */ -#define CTF_LSIZE_SENT 0xffff /* sentinel for ctt_size */ -#define CTF_MAX_LSIZE UINT64_MAX - -typedef struct ctf_preamble { - ushort_t ctp_magic; /* magic number (CTF_MAGIC) */ - uchar_t ctp_version; /* data format version number (CTF_VERSION) */ - uchar_t ctp_flags; /* flags (see below) */ -} ctf_preamble_t; - -typedef struct ctf_header { - ctf_preamble_t cth_preamble; - uint_t cth_parlabel; /* ref to name of parent lbl uniq'd against */ - uint_t cth_parname; /* ref to basename of parent */ - uint_t cth_lbloff; /* offset of label section */ - uint_t cth_objtoff; /* offset of object section */ - uint_t cth_funcoff; /* offset of function section */ - uint_t cth_typeoff; /* offset of type section */ - uint_t cth_stroff; /* offset of string section */ - uint_t cth_strlen; /* length of string section in bytes */ -} ctf_header_t; - -#define cth_magic cth_preamble.ctp_magic -#define cth_version cth_preamble.ctp_version -#define cth_flags cth_preamble.ctp_flags - -#ifdef CTF_OLD_VERSIONS - -typedef struct ctf_header_v1 { - ctf_preamble_t cth_preamble; - uint_t cth_objtoff; - uint_t cth_funcoff; - uint_t cth_typeoff; - uint_t cth_stroff; - uint_t cth_strlen; -} ctf_header_v1_t; - -#endif /* CTF_OLD_VERSIONS */ - -#define CTF_MAGIC 0xcff1 /* magic number identifying header */ - -/* data format version number */ -#define CTF_VERSION_1 1 -#define CTF_VERSION_2 2 -#define CTF_VERSION CTF_VERSION_2 /* current version */ - -#define CTF_F_COMPRESS 0x1 /* data buffer is compressed */ - -typedef struct ctf_lblent { - uint_t ctl_label; /* ref to name of label */ - uint_t ctl_typeidx; /* last type associated with this label */ -} ctf_lblent_t; - -typedef struct ctf_stype { - uint_t ctt_name; /* reference to name in string table */ - ushort_t ctt_info; /* encoded kind, variant length (see below) */ - union { - ushort_t _size; /* size of entire type in bytes */ - ushort_t _type; /* reference to another type */ - } _u; -} ctf_stype_t; - -/* - * type sizes, measured in bytes, come in two flavors. 99% of them fit within - * (USHRT_MAX - 1), and thus can be stored in the ctt_size member of a - * ctf_stype_t. The maximum value for these sizes is CTF_MAX_SIZE. The sizes - * larger than CTF_MAX_SIZE must be stored in the ctt_lsize member of a - * ctf_type_t. Use of this member is indicated by the presence of - * CTF_LSIZE_SENT in ctt_size. - */ -typedef struct ctf_type { - uint_t ctt_name; /* reference to name in string table */ - ushort_t ctt_info; /* encoded kind, variant length (see below) */ - union { - ushort_t _size; /* always CTF_LSIZE_SENT */ - ushort_t _type; /* do not use */ - } _u; - uint_t ctt_lsizehi; /* high 32 bits of type size in bytes */ - uint_t ctt_lsizelo; /* low 32 bits of type size in bytes */ -} ctf_type_t; - -#define ctt_size _u._size /* for fundamental types that have a size */ -#define ctt_type _u._type /* for types that reference another type */ - -/* - * The following macros compose and decompose values for ctt_info and - * ctt_name, as well as other structures that contain name references. - * - * ------------------------ - * ctt_info: | kind | isroot | vlen | - * ------------------------ - * 15 11 10 9 0 - * - * kind = CTF_INFO_KIND(c.ctt_info); <-- CTF_K_* value (see below) - * vlen = CTF_INFO_VLEN(c.ctt_info); <-- length of variable data list - * - * stid = CTF_NAME_STID(c.ctt_name); <-- string table id number (0 or 1) - * offset = CTF_NAME_OFFSET(c.ctt_name); <-- string table byte offset - * - * c.ctt_info = CTF_TYPE_INFO(kind, vlen); - * c.ctt_name = CTF_TYPE_NAME(stid, offset); - */ - -#define CTF_INFO_KIND(info) (((info) & 0xf800) >> 11) -#define CTF_INFO_ISROOT(info) (((info) & 0x0400) >> 10) -#define CTF_INFO_VLEN(info) (((info) & CTF_MAX_VLEN)) - -#define CTF_NAME_STID(name) ((name) >> 31) -#define CTF_NAME_OFFSET(name) ((name) & 0x7fffffff) - -#define CTF_TYPE_INFO(kind, isroot, vlen) \ - (((kind) << 11) | (((isroot) ? 1 : 0) << 10) | ((vlen) & CTF_MAX_VLEN)) - -#define CTF_TYPE_NAME(stid, offset) \ - (((stid) << 31) | ((offset) & 0x7fffffff)) - -#define CTF_TYPE_ISPARENT(id) ((id) < 0x8000) -#define CTF_TYPE_ISCHILD(id) ((id) > 0x7fff) - -#define CTF_TYPE_TO_INDEX(id) ((id) & 0x7fff) -#define CTF_INDEX_TO_TYPE(id, child) ((child) ? ((id) | 0x8000) : (id)) -#define CTF_PARENT_SHIFT 15 - -#define CTF_STRTAB_0 0 /* symbolic define for string table id 0 */ -#define CTF_STRTAB_1 1 /* symbolic define for string table id 1 */ - -#define CTF_TYPE_LSIZE(cttp) \ - (((uint64_t)(cttp)->ctt_lsizehi) << 32 | (cttp)->ctt_lsizelo) -#define CTF_SIZE_TO_LSIZE_HI(size) ((uint32_t)((uint64_t)(size) >> 32)) -#define CTF_SIZE_TO_LSIZE_LO(size) ((uint32_t)(size)) - -#ifdef CTF_OLD_VERSIONS - -#define CTF_INFO_KIND_V1(info) (((info) & 0xf000) >> 12) -#define CTF_INFO_ISROOT_V1(info) (((info) & 0x0800) >> 11) -#define CTF_INFO_VLEN_V1(info) (((info) & 0x07ff)) - -#define CTF_TYPE_INFO_V1(kind, isroot, vlen) \ - (((kind) << 12) | (((isroot) ? 1 : 0) << 11) | ((vlen) & 0x07ff)) - -#endif /* CTF_OLD_VERSIONS */ - -/* - * Values for CTF_TYPE_KIND(). If the kind has an associated data list, - * CTF_INFO_VLEN() will extract the number of elements in the list, and - * the type of each element is shown in the comments below. - */ -#define CTF_K_UNKNOWN 0 /* unknown type (used for padding) */ -#define CTF_K_INTEGER 1 /* variant data is CTF_INT_DATA() (see below) */ -#define CTF_K_FLOAT 2 /* variant data is CTF_FP_DATA() (see below) */ -#define CTF_K_POINTER 3 /* ctt_type is referenced type */ -#define CTF_K_ARRAY 4 /* variant data is single ctf_array_t */ -#define CTF_K_FUNCTION 5 /* ctt_type is return type, variant data is */ - /* list of argument types (ushort_t's) */ -#define CTF_K_STRUCT 6 /* variant data is list of ctf_member_t's */ -#define CTF_K_UNION 7 /* variant data is list of ctf_member_t's */ -#define CTF_K_ENUM 8 /* variant data is list of ctf_enum_t's */ -#define CTF_K_FORWARD 9 /* no additional data; ctt_name is tag */ -#define CTF_K_TYPEDEF 10 /* ctt_type is referenced type */ -#define CTF_K_VOLATILE 11 /* ctt_type is base type */ -#define CTF_K_CONST 12 /* ctt_type is base type */ -#define CTF_K_RESTRICT 13 /* ctt_type is base type */ - -#define CTF_K_MAX 31 /* Maximum possible CTF_K_* value */ - -/* - * Values for ctt_type when kind is CTF_K_INTEGER. The flags, offset in bits, - * and size in bits are encoded as a single word using the following macros. - */ -#define CTF_INT_ENCODING(data) (((data) & 0xff000000) >> 24) -#define CTF_INT_OFFSET(data) (((data) & 0x00ff0000) >> 16) -#define CTF_INT_BITS(data) (((data) & 0x0000ffff)) - -#define CTF_INT_DATA(encoding, offset, bits) \ - (((encoding) << 24) | ((offset) << 16) | (bits)) - -#define CTF_INT_SIGNED 0x01 /* integer is signed (otherwise unsigned) */ -#define CTF_INT_CHAR 0x02 /* character display format */ -#define CTF_INT_BOOL 0x04 /* boolean display format */ -#define CTF_INT_VARARGS 0x08 /* varargs display format */ - -/* - * Values for ctt_type when kind is CTF_K_FLOAT. The encoding, offset in bits, - * and size in bits are encoded as a single word using the following macros. - */ -#define CTF_FP_ENCODING(data) (((data) & 0xff000000) >> 24) -#define CTF_FP_OFFSET(data) (((data) & 0x00ff0000) >> 16) -#define CTF_FP_BITS(data) (((data) & 0x0000ffff)) - -#define CTF_FP_DATA(encoding, offset, bits) \ - (((encoding) << 24) | ((offset) << 16) | (bits)) - -#define CTF_FP_SINGLE 1 /* IEEE 32-bit float encoding */ -#define CTF_FP_DOUBLE 2 /* IEEE 64-bit float encoding */ -#define CTF_FP_CPLX 3 /* Complex encoding */ -#define CTF_FP_DCPLX 4 /* Double complex encoding */ -#define CTF_FP_LDCPLX 5 /* Long double complex encoding */ -#define CTF_FP_LDOUBLE 6 /* Long double encoding */ -#define CTF_FP_INTRVL 7 /* Interval (2x32-bit) encoding */ -#define CTF_FP_DINTRVL 8 /* Double interval (2x64-bit) encoding */ -#define CTF_FP_LDINTRVL 9 /* Long double interval (2x128-bit) encoding */ -#define CTF_FP_IMAGRY 10 /* Imaginary (32-bit) encoding */ -#define CTF_FP_DIMAGRY 11 /* Long imaginary (64-bit) encoding */ -#define CTF_FP_LDIMAGRY 12 /* Long double imaginary (128-bit) encoding */ - -#define CTF_FP_MAX 12 /* Maximum possible CTF_FP_* value */ - -typedef struct ctf_array { - ushort_t cta_contents; /* reference to type of array contents */ - ushort_t cta_index; /* reference to type of array index */ - uint_t cta_nelems; /* number of elements */ -} ctf_array_t; - -/* - * Most structure members have bit offsets that can be expressed using a - * short. Some don't. ctf_member_t is used for structs which cannot - * contain any of these large offsets, whereas ctf_lmember_t is used in the - * latter case. If ctt_size for a given struct is >= 8192 bytes, all members - * will be stored as type ctf_lmember_t. - */ - -#define CTF_LSTRUCT_THRESH 8192 - -typedef struct ctf_member { - uint_t ctm_name; /* reference to name in string table */ - ushort_t ctm_type; /* reference to type of member */ - ushort_t ctm_offset; /* offset of this member in bits */ -} ctf_member_t; - -typedef struct ctf_lmember { - uint_t ctlm_name; /* reference to name in string table */ - ushort_t ctlm_type; /* reference to type of member */ - ushort_t ctlm_pad; /* padding */ - uint_t ctlm_offsethi; /* high 32 bits of member offset in bits */ - uint_t ctlm_offsetlo; /* low 32 bits of member offset in bits */ -} ctf_lmember_t; - -#define CTF_LMEM_OFFSET(ctlmp) \ - (((uint64_t)(ctlmp)->ctlm_offsethi) << 32 | (ctlmp)->ctlm_offsetlo) -#define CTF_OFFSET_TO_LMEMHI(offset) ((uint32_t)((uint64_t)(offset) >> 32)) -#define CTF_OFFSET_TO_LMEMLO(offset) ((uint32_t)(offset)) - -typedef struct ctf_enum { - uint_t cte_name; /* reference to name in string table */ - int cte_value; /* value associated with this name */ -} ctf_enum_t; - -#ifdef __cplusplus -} -#endif - -#endif /* _CTF_H */ diff --git a/cddl/contrib/opensolaris/uts/common/sys/ctf_api.h b/cddl/contrib/opensolaris/uts/common/sys/ctf_api.h deleted file mode 100644 index 17b0b72..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/ctf_api.h +++ /dev/null @@ -1,241 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2005 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -/* - * This header file defines the interfaces available from the CTF debugger - * library, libctf, and an equivalent kernel module. This API can be used by - * a debugger to operate on data in the Compact ANSI-C Type Format (CTF). - * This is NOT a public interface, although it may eventually become one in - * the fullness of time after we gain more experience with the interfaces. - * - * In the meantime, be aware that any program linked with this API in this - * release of Solaris is almost guaranteed to break in the next release. - * - * In short, do not user this header file or the CTF routines for any purpose. - */ - -#ifndef _CTF_API_H -#define _CTF_API_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include -#include - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * Clients can open one or more CTF containers and obtain a pointer to an - * opaque ctf_file_t. Types are identified by an opaque ctf_id_t token. - * These opaque definitions allow libctf to evolve without breaking clients. - */ -typedef struct ctf_file ctf_file_t; -typedef long ctf_id_t; - -/* - * If the debugger needs to provide the CTF library with a set of raw buffers - * for use as the CTF data, symbol table, and string table, it can do so by - * filling in ctf_sect_t structures and passing them to ctf_bufopen(): - */ -typedef struct ctf_sect { - const char *cts_name; /* section name (if any) */ - ulong_t cts_type; /* section type (ELF SHT_... value) */ - ulong_t cts_flags; /* section flags (ELF SHF_... value) */ - const void *cts_data; /* pointer to section data */ - size_t cts_size; /* size of data in bytes */ - size_t cts_entsize; /* size of each section entry (symtab only) */ - off64_t cts_offset; /* file offset of this section (if any) */ -} ctf_sect_t; - -/* - * Encoding information for integers, floating-point values, and certain other - * intrinsics can be obtained by calling ctf_type_encoding(), below. The flags - * field will contain values appropriate for the type defined in . - */ -typedef struct ctf_encoding { - uint_t cte_format; /* data format (CTF_INT_* or CTF_FP_* flags) */ - uint_t cte_offset; /* offset of value in bits */ - uint_t cte_bits; /* size of storage in bits */ -} ctf_encoding_t; - -typedef struct ctf_membinfo { - ctf_id_t ctm_type; /* type of struct or union member */ - ulong_t ctm_offset; /* offset of member in bits */ -} ctf_membinfo_t; - -typedef struct ctf_arinfo { - ctf_id_t ctr_contents; /* type of array contents */ - ctf_id_t ctr_index; /* type of array index */ - uint_t ctr_nelems; /* number of elements */ -} ctf_arinfo_t; - -typedef struct ctf_funcinfo { - ctf_id_t ctc_return; /* function return type */ - uint_t ctc_argc; /* number of typed arguments to function */ - uint_t ctc_flags; /* function attributes (see below) */ -} ctf_funcinfo_t; - -typedef struct ctf_lblinfo { - ctf_id_t ctb_typeidx; /* last type associated with the label */ -} ctf_lblinfo_t; - -#define CTF_FUNC_VARARG 0x1 /* function arguments end with varargs */ - -/* - * Functions that return integer status or a ctf_id_t use the following value - * to indicate failure. ctf_errno() can be used to obtain an error code. - */ -#define CTF_ERR (-1L) - -/* - * The CTF data model is inferred to be the caller's data model or the data - * model of the given object, unless ctf_setmodel() is explicitly called. - */ -#define CTF_MODEL_ILP32 1 /* object data model is ILP32 */ -#define CTF_MODEL_LP64 2 /* object data model is LP64 */ -#ifdef _LP64 -#define CTF_MODEL_NATIVE CTF_MODEL_LP64 -#else -#define CTF_MODEL_NATIVE CTF_MODEL_ILP32 -#endif - -/* - * Dynamic CTF containers can be created using ctf_create(). The ctf_add_* - * routines can be used to add new definitions to the dynamic container. - * New types are labeled as root or non-root to determine whether they are - * visible at the top-level program scope when subsequently doing a lookup. - */ -#define CTF_ADD_NONROOT 0 /* type only visible in nested scope */ -#define CTF_ADD_ROOT 1 /* type visible at top-level scope */ - -/* - * These typedefs are used to define the signature for callback functions - * that can be used with the iteration and visit functions below: - */ -typedef int ctf_visit_f(const char *, ctf_id_t, ulong_t, int, void *); -typedef int ctf_member_f(const char *, ctf_id_t, ulong_t, void *); -typedef int ctf_enum_f(const char *, int, void *); -typedef int ctf_type_f(ctf_id_t, void *); -typedef int ctf_label_f(const char *, const ctf_lblinfo_t *, void *); - -extern ctf_file_t *ctf_bufopen(const ctf_sect_t *, const ctf_sect_t *, - const ctf_sect_t *, int *); -extern ctf_file_t *ctf_fdopen(int, int *); -extern ctf_file_t *ctf_open(const char *, int *); -extern ctf_file_t *ctf_create(int *); -extern void ctf_close(ctf_file_t *); - -extern ctf_file_t *ctf_parent_file(ctf_file_t *); -extern const char *ctf_parent_name(ctf_file_t *); - -extern int ctf_import(ctf_file_t *, ctf_file_t *); -extern int ctf_setmodel(ctf_file_t *, int); -extern int ctf_getmodel(ctf_file_t *); - -extern void ctf_setspecific(ctf_file_t *, void *); -extern void *ctf_getspecific(ctf_file_t *); - -extern int ctf_errno(ctf_file_t *); -extern const char *ctf_errmsg(int); -extern int ctf_version(int); - -extern int ctf_func_info(ctf_file_t *, ulong_t, ctf_funcinfo_t *); -extern int ctf_func_args(ctf_file_t *, ulong_t, uint_t, ctf_id_t *); - -extern ctf_id_t ctf_lookup_by_name(ctf_file_t *, const char *); -extern ctf_id_t ctf_lookup_by_symbol(ctf_file_t *, ulong_t); - -extern ctf_id_t ctf_type_resolve(ctf_file_t *, ctf_id_t); -extern ssize_t ctf_type_lname(ctf_file_t *, ctf_id_t, char *, size_t); -extern char *ctf_type_name(ctf_file_t *, ctf_id_t, char *, size_t); -extern ssize_t ctf_type_size(ctf_file_t *, ctf_id_t); -extern ssize_t ctf_type_align(ctf_file_t *, ctf_id_t); -extern int ctf_type_kind(ctf_file_t *, ctf_id_t); -extern ctf_id_t ctf_type_reference(ctf_file_t *, ctf_id_t); -extern ctf_id_t ctf_type_pointer(ctf_file_t *, ctf_id_t); -extern int ctf_type_encoding(ctf_file_t *, ctf_id_t, ctf_encoding_t *); -extern int ctf_type_visit(ctf_file_t *, ctf_id_t, ctf_visit_f *, void *); -extern int ctf_type_cmp(ctf_file_t *, ctf_id_t, ctf_file_t *, ctf_id_t); -extern int ctf_type_compat(ctf_file_t *, ctf_id_t, ctf_file_t *, ctf_id_t); - -extern int ctf_member_info(ctf_file_t *, ctf_id_t, const char *, - ctf_membinfo_t *); -extern int ctf_array_info(ctf_file_t *, ctf_id_t, ctf_arinfo_t *); - -extern const char *ctf_enum_name(ctf_file_t *, ctf_id_t, int); -extern int ctf_enum_value(ctf_file_t *, ctf_id_t, const char *, int *); - -extern const char *ctf_label_topmost(ctf_file_t *); -extern int ctf_label_info(ctf_file_t *, const char *, ctf_lblinfo_t *); - -extern int ctf_member_iter(ctf_file_t *, ctf_id_t, ctf_member_f *, void *); -extern int ctf_enum_iter(ctf_file_t *, ctf_id_t, ctf_enum_f *, void *); -extern int ctf_type_iter(ctf_file_t *, ctf_type_f *, void *); -extern int ctf_label_iter(ctf_file_t *, ctf_label_f *, void *); - -extern ctf_id_t ctf_add_array(ctf_file_t *, uint_t, const ctf_arinfo_t *); -extern ctf_id_t ctf_add_const(ctf_file_t *, uint_t, ctf_id_t); -extern ctf_id_t ctf_add_enum(ctf_file_t *, uint_t, const char *); -extern ctf_id_t ctf_add_float(ctf_file_t *, uint_t, - const char *, const ctf_encoding_t *); -extern ctf_id_t ctf_add_forward(ctf_file_t *, uint_t, const char *, uint_t); -extern ctf_id_t ctf_add_function(ctf_file_t *, uint_t, - const ctf_funcinfo_t *, const ctf_id_t *); -extern ctf_id_t ctf_add_integer(ctf_file_t *, uint_t, - const char *, const ctf_encoding_t *); -extern ctf_id_t ctf_add_pointer(ctf_file_t *, uint_t, ctf_id_t); -extern ctf_id_t ctf_add_type(ctf_file_t *, ctf_file_t *, ctf_id_t); -extern ctf_id_t ctf_add_typedef(ctf_file_t *, uint_t, const char *, ctf_id_t); -extern ctf_id_t ctf_add_restrict(ctf_file_t *, uint_t, ctf_id_t); -extern ctf_id_t ctf_add_struct(ctf_file_t *, uint_t, const char *); -extern ctf_id_t ctf_add_union(ctf_file_t *, uint_t, const char *); -extern ctf_id_t ctf_add_volatile(ctf_file_t *, uint_t, ctf_id_t); - -extern int ctf_add_enumerator(ctf_file_t *, ctf_id_t, const char *, int); -extern int ctf_add_member(ctf_file_t *, ctf_id_t, const char *, ctf_id_t); - -extern int ctf_set_array(ctf_file_t *, ctf_id_t, const ctf_arinfo_t *); - -extern int ctf_update(ctf_file_t *); -extern int ctf_discard(ctf_file_t *); -extern int ctf_write(ctf_file_t *, int); - -#ifdef _KERNEL - -struct module; -extern ctf_file_t *ctf_modopen(struct module *, int *); - -#endif - -#ifdef __cplusplus -} -#endif - -#endif /* _CTF_API_H */ diff --git a/cddl/contrib/opensolaris/uts/common/sys/dtrace.h b/cddl/contrib/opensolaris/uts/common/sys/dtrace.h deleted file mode 100644 index b6e52ec..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/dtrace.h +++ /dev/null @@ -1,2242 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2007 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _SYS_DTRACE_H -#define _SYS_DTRACE_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * DTrace Dynamic Tracing Software: Kernel Interfaces - * - * Note: The contents of this file are private to the implementation of the - * Solaris system and DTrace subsystem and are subject to change at any time - * without notice. Applications and drivers using these interfaces will fail - * to run on future releases. These interfaces should not be used for any - * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). - * Please refer to the "Solaris Dynamic Tracing Guide" for more information. - */ - -#ifndef _ASM - -#include -#include -#include -#include -#include -#include -#include - -/* - * DTrace Universal Constants and Typedefs - */ -#define DTRACE_CPUALL -1 /* all CPUs */ -#define DTRACE_IDNONE 0 /* invalid probe identifier */ -#define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ -#define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ -#define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ -#define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ -#define DTRACE_PROVNONE 0 /* invalid provider identifier */ -#define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ -#define DTRACE_ARGNONE -1 /* invalid argument index */ - -#define DTRACE_PROVNAMELEN 64 -#define DTRACE_MODNAMELEN 64 -#define DTRACE_FUNCNAMELEN 128 -#define DTRACE_NAMELEN 64 -#define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ - DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) -#define DTRACE_ARGTYPELEN 128 - -typedef uint32_t dtrace_id_t; /* probe identifier */ -typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ -typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ -typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ -typedef uint16_t dtrace_actkind_t; /* action kind */ -typedef int64_t dtrace_optval_t; /* option value */ -typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ - -typedef enum dtrace_probespec { - DTRACE_PROBESPEC_NONE = -1, - DTRACE_PROBESPEC_PROVIDER = 0, - DTRACE_PROBESPEC_MOD, - DTRACE_PROBESPEC_FUNC, - DTRACE_PROBESPEC_NAME -} dtrace_probespec_t; - -/* - * DTrace Intermediate Format (DIF) - * - * The following definitions describe the DTrace Intermediate Format (DIF), a - * a RISC-like instruction set and program encoding used to represent - * predicates and actions that can be bound to DTrace probes. The constants - * below defining the number of available registers are suggested minimums; the - * compiler should use DTRACEIOC_CONF to dynamically obtain the number of - * registers provided by the current DTrace implementation. - */ -#define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ -#define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ -#define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ -#define DIF_DIR_NREGS 8 /* number of DIF integer registers */ -#define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ - -#define DIF_OP_OR 1 /* or r1, r2, rd */ -#define DIF_OP_XOR 2 /* xor r1, r2, rd */ -#define DIF_OP_AND 3 /* and r1, r2, rd */ -#define DIF_OP_SLL 4 /* sll r1, r2, rd */ -#define DIF_OP_SRL 5 /* srl r1, r2, rd */ -#define DIF_OP_SUB 6 /* sub r1, r2, rd */ -#define DIF_OP_ADD 7 /* add r1, r2, rd */ -#define DIF_OP_MUL 8 /* mul r1, r2, rd */ -#define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ -#define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ -#define DIF_OP_SREM 11 /* srem r1, r2, rd */ -#define DIF_OP_UREM 12 /* urem r1, r2, rd */ -#define DIF_OP_NOT 13 /* not r1, rd */ -#define DIF_OP_MOV 14 /* mov r1, rd */ -#define DIF_OP_CMP 15 /* cmp r1, r2 */ -#define DIF_OP_TST 16 /* tst r1 */ -#define DIF_OP_BA 17 /* ba label */ -#define DIF_OP_BE 18 /* be label */ -#define DIF_OP_BNE 19 /* bne label */ -#define DIF_OP_BG 20 /* bg label */ -#define DIF_OP_BGU 21 /* bgu label */ -#define DIF_OP_BGE 22 /* bge label */ -#define DIF_OP_BGEU 23 /* bgeu label */ -#define DIF_OP_BL 24 /* bl label */ -#define DIF_OP_BLU 25 /* blu label */ -#define DIF_OP_BLE 26 /* ble label */ -#define DIF_OP_BLEU 27 /* bleu label */ -#define DIF_OP_LDSB 28 /* ldsb [r1], rd */ -#define DIF_OP_LDSH 29 /* ldsh [r1], rd */ -#define DIF_OP_LDSW 30 /* ldsw [r1], rd */ -#define DIF_OP_LDUB 31 /* ldub [r1], rd */ -#define DIF_OP_LDUH 32 /* lduh [r1], rd */ -#define DIF_OP_LDUW 33 /* lduw [r1], rd */ -#define DIF_OP_LDX 34 /* ldx [r1], rd */ -#define DIF_OP_RET 35 /* ret rd */ -#define DIF_OP_NOP 36 /* nop */ -#define DIF_OP_SETX 37 /* setx intindex, rd */ -#define DIF_OP_SETS 38 /* sets strindex, rd */ -#define DIF_OP_SCMP 39 /* scmp r1, r2 */ -#define DIF_OP_LDGA 40 /* ldga var, ri, rd */ -#define DIF_OP_LDGS 41 /* ldgs var, rd */ -#define DIF_OP_STGS 42 /* stgs var, rs */ -#define DIF_OP_LDTA 43 /* ldta var, ri, rd */ -#define DIF_OP_LDTS 44 /* ldts var, rd */ -#define DIF_OP_STTS 45 /* stts var, rs */ -#define DIF_OP_SRA 46 /* sra r1, r2, rd */ -#define DIF_OP_CALL 47 /* call subr, rd */ -#define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ -#define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ -#define DIF_OP_POPTS 50 /* popts */ -#define DIF_OP_FLUSHTS 51 /* flushts */ -#define DIF_OP_LDGAA 52 /* ldgaa var, rd */ -#define DIF_OP_LDTAA 53 /* ldtaa var, rd */ -#define DIF_OP_STGAA 54 /* stgaa var, rs */ -#define DIF_OP_STTAA 55 /* sttaa var, rs */ -#define DIF_OP_LDLS 56 /* ldls var, rd */ -#define DIF_OP_STLS 57 /* stls var, rs */ -#define DIF_OP_ALLOCS 58 /* allocs r1, rd */ -#define DIF_OP_COPYS 59 /* copys r1, r2, rd */ -#define DIF_OP_STB 60 /* stb r1, [rd] */ -#define DIF_OP_STH 61 /* sth r1, [rd] */ -#define DIF_OP_STW 62 /* stw r1, [rd] */ -#define DIF_OP_STX 63 /* stx r1, [rd] */ -#define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ -#define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ -#define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ -#define DIF_OP_ULDUB 67 /* uldub [r1], rd */ -#define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ -#define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ -#define DIF_OP_ULDX 70 /* uldx [r1], rd */ -#define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ -#define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ -#define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ -#define DIF_OP_RLDUB 74 /* rldub [r1], rd */ -#define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ -#define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ -#define DIF_OP_RLDX 77 /* rldx [r1], rd */ -#define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ -#define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ - -#define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ -#define DIF_STROFF_MAX 0xffff /* highest string table offset */ -#define DIF_REGISTER_MAX 0xff /* highest register number */ -#define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ -#define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ - -#define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ -#define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ -#define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ - -#define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ -#define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ -#define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ - -#define DIF_VAR_ARGS 0x0000 /* arguments array */ -#define DIF_VAR_REGS 0x0001 /* registers array */ -#define DIF_VAR_UREGS 0x0002 /* user registers array */ -#define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ -#define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ -#define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ -#define DIF_VAR_IPL 0x0103 /* interrupt priority level */ -#define DIF_VAR_EPID 0x0104 /* enabled probe ID */ -#define DIF_VAR_ID 0x0105 /* probe ID */ -#define DIF_VAR_ARG0 0x0106 /* first argument */ -#define DIF_VAR_ARG1 0x0107 /* second argument */ -#define DIF_VAR_ARG2 0x0108 /* third argument */ -#define DIF_VAR_ARG3 0x0109 /* fourth argument */ -#define DIF_VAR_ARG4 0x010a /* fifth argument */ -#define DIF_VAR_ARG5 0x010b /* sixth argument */ -#define DIF_VAR_ARG6 0x010c /* seventh argument */ -#define DIF_VAR_ARG7 0x010d /* eighth argument */ -#define DIF_VAR_ARG8 0x010e /* ninth argument */ -#define DIF_VAR_ARG9 0x010f /* tenth argument */ -#define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ -#define DIF_VAR_CALLER 0x0111 /* caller */ -#define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ -#define DIF_VAR_PROBEMOD 0x0113 /* probe module */ -#define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ -#define DIF_VAR_PROBENAME 0x0115 /* probe name */ -#define DIF_VAR_PID 0x0116 /* process ID */ -#define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ -#define DIF_VAR_EXECNAME 0x0118 /* name of executable */ -#define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ -#define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ -#define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ -#define DIF_VAR_UCALLER 0x011c /* user-level caller */ -#define DIF_VAR_PPID 0x011d /* parent process ID */ -#define DIF_VAR_UID 0x011e /* process user ID */ -#define DIF_VAR_GID 0x011f /* process group ID */ -#define DIF_VAR_ERRNO 0x0120 /* thread errno */ - -#define DIF_SUBR_RAND 0 -#define DIF_SUBR_MUTEX_OWNED 1 -#define DIF_SUBR_MUTEX_OWNER 2 -#define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 -#define DIF_SUBR_MUTEX_TYPE_SPIN 4 -#define DIF_SUBR_RW_READ_HELD 5 -#define DIF_SUBR_RW_WRITE_HELD 6 -#define DIF_SUBR_RW_ISWRITER 7 -#define DIF_SUBR_COPYIN 8 -#define DIF_SUBR_COPYINSTR 9 -#define DIF_SUBR_SPECULATION 10 -#define DIF_SUBR_PROGENYOF 11 -#define DIF_SUBR_STRLEN 12 -#define DIF_SUBR_COPYOUT 13 -#define DIF_SUBR_COPYOUTSTR 14 -#define DIF_SUBR_ALLOCA 15 -#define DIF_SUBR_BCOPY 16 -#define DIF_SUBR_COPYINTO 17 -#define DIF_SUBR_MSGDSIZE 18 -#define DIF_SUBR_MSGSIZE 19 -#define DIF_SUBR_GETMAJOR 20 -#define DIF_SUBR_GETMINOR 21 -#define DIF_SUBR_DDI_PATHNAME 22 -#define DIF_SUBR_STRJOIN 23 -#define DIF_SUBR_LLTOSTR 24 -#define DIF_SUBR_BASENAME 25 -#define DIF_SUBR_DIRNAME 26 -#define DIF_SUBR_CLEANPATH 27 -#define DIF_SUBR_STRCHR 28 -#define DIF_SUBR_STRRCHR 29 -#define DIF_SUBR_STRSTR 30 -#define DIF_SUBR_STRTOK 31 -#define DIF_SUBR_SUBSTR 32 -#define DIF_SUBR_INDEX 33 -#define DIF_SUBR_RINDEX 34 -#define DIF_SUBR_HTONS 35 -#define DIF_SUBR_HTONL 36 -#define DIF_SUBR_HTONLL 37 -#define DIF_SUBR_NTOHS 38 -#define DIF_SUBR_NTOHL 39 -#define DIF_SUBR_NTOHLL 40 -#define DIF_SUBR_INET_NTOP 41 -#define DIF_SUBR_INET_NTOA 42 -#define DIF_SUBR_INET_NTOA6 43 - -#define DIF_SUBR_MAX 43 /* max subroutine value */ - -typedef uint32_t dif_instr_t; - -#define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) -#define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) -#define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) -#define DIF_INSTR_RD(i) ((i) & 0xff) -#define DIF_INSTR_RS(i) ((i) & 0xff) -#define DIF_INSTR_LABEL(i) ((i) & 0xffffff) -#define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) -#define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) -#define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) -#define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) -#define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) -#define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) - -#define DIF_INSTR_FMT(op, r1, r2, d) \ - (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) - -#define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) -#define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) -#define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) -#define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) -#define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) -#define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) -#define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) -#define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) -#define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) -#define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) -#define DIF_INSTR_NOP (DIF_OP_NOP << 24) -#define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) -#define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) -#define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) -#define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) -#define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) -#define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) -#define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) -#define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) -#define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) -#define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) - -#define DIF_REG_R0 0 /* %r0 is always set to zero */ - -/* - * A DTrace Intermediate Format Type (DIF Type) is used to represent the types - * of variables, function and associative array arguments, and the return type - * for each DIF object (shown below). It contains a description of the type, - * its size in bytes, and a module identifier. - */ -typedef struct dtrace_diftype { - uint8_t dtdt_kind; /* type kind (see below) */ - uint8_t dtdt_ckind; /* type kind in CTF */ - uint8_t dtdt_flags; /* type flags (see below) */ - uint8_t dtdt_pad; /* reserved for future use */ - uint32_t dtdt_size; /* type size in bytes (unless string) */ -} dtrace_diftype_t; - -#define DIF_TYPE_CTF 0 /* type is a CTF type */ -#define DIF_TYPE_STRING 1 /* type is a D string */ - -#define DIF_TF_BYREF 0x1 /* type is passed by reference */ - -/* - * A DTrace Intermediate Format variable record is used to describe each of the - * variables referenced by a given DIF object. It contains an integer variable - * identifier along with variable scope and properties, as shown below. The - * size of this structure must be sizeof (int) aligned. - */ -typedef struct dtrace_difv { - uint32_t dtdv_name; /* variable name index in dtdo_strtab */ - uint32_t dtdv_id; /* variable reference identifier */ - uint8_t dtdv_kind; /* variable kind (see below) */ - uint8_t dtdv_scope; /* variable scope (see below) */ - uint16_t dtdv_flags; /* variable flags (see below) */ - dtrace_diftype_t dtdv_type; /* variable type (see above) */ -} dtrace_difv_t; - -#define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ -#define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ - -#define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ -#define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ -#define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ - -#define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ -#define DIFV_F_MOD 0x2 /* variable is written by DIFO */ - -/* - * DTrace Actions - * - * The upper byte determines the class of the action; the low bytes determines - * the specific action within that class. The classes of actions are as - * follows: - * - * [ no class ] <= May record process- or kernel-related data - * DTRACEACT_PROC <= Only records process-related data - * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes - * DTRACEACT_KERNEL <= Only records kernel-related data - * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel - * DTRACEACT_SPECULATIVE <= Speculation-related action - * DTRACEACT_AGGREGATION <= Aggregating action - */ -#define DTRACEACT_NONE 0 /* no action */ -#define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ -#define DTRACEACT_EXIT 2 /* exit() action */ -#define DTRACEACT_PRINTF 3 /* printf() action */ -#define DTRACEACT_PRINTA 4 /* printa() action */ -#define DTRACEACT_LIBACT 5 /* library-controlled action */ - -#define DTRACEACT_PROC 0x0100 -#define DTRACEACT_USTACK (DTRACEACT_PROC + 1) -#define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) -#define DTRACEACT_USYM (DTRACEACT_PROC + 3) -#define DTRACEACT_UMOD (DTRACEACT_PROC + 4) -#define DTRACEACT_UADDR (DTRACEACT_PROC + 5) - -#define DTRACEACT_PROC_DESTRUCTIVE 0x0200 -#define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) -#define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) -#define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) -#define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) - -#define DTRACEACT_PROC_CONTROL 0x0300 - -#define DTRACEACT_KERNEL 0x0400 -#define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) -#define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) -#define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) - -#define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 -#define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) -#define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) -#define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) - -#define DTRACEACT_SPECULATIVE 0x0600 -#define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) -#define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) -#define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) - -#define DTRACEACT_CLASS(x) ((x) & 0xff00) - -#define DTRACEACT_ISDESTRUCTIVE(x) \ - (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ - DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) - -#define DTRACEACT_ISSPECULATIVE(x) \ - (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) - -#define DTRACEACT_ISPRINTFLIKE(x) \ - ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ - (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) - -/* - * DTrace Aggregating Actions - * - * These are functions f(x) for which the following is true: - * - * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) - * - * where x_n is a set of arbitrary data. Aggregating actions are in their own - * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow - * for easier processing of the aggregation argument and data payload for a few - * aggregating actions (notably: quantize(), lquantize(), and ustack()). - */ -#define DTRACEACT_AGGREGATION 0x0700 -#define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) -#define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) -#define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) -#define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) -#define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) -#define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) -#define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) -#define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) - -#define DTRACEACT_ISAGG(x) \ - (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) - -#define DTRACE_QUANTIZE_NBUCKETS \ - (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) - -#define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) - -#define DTRACE_QUANTIZE_BUCKETVAL(buck) \ - (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ - -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ - (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ - 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) - -#define DTRACE_LQUANTIZE_STEPSHIFT 48 -#define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) -#define DTRACE_LQUANTIZE_LEVELSHIFT 32 -#define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) -#define DTRACE_LQUANTIZE_BASESHIFT 0 -#define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX - -#define DTRACE_LQUANTIZE_STEP(x) \ - (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ - DTRACE_LQUANTIZE_STEPSHIFT) - -#define DTRACE_LQUANTIZE_LEVELS(x) \ - (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ - DTRACE_LQUANTIZE_LEVELSHIFT) - -#define DTRACE_LQUANTIZE_BASE(x) \ - (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ - DTRACE_LQUANTIZE_BASESHIFT) - -#define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) -#define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) -#define DTRACE_USTACK_ARG(x, y) \ - ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) - -#ifndef _LP64 -#ifndef _LITTLE_ENDIAN -#define DTRACE_PTR(type, name) uint32_t name##pad; type *name -#else -#define DTRACE_PTR(type, name) type *name; uint32_t name##pad -#endif -#else -#define DTRACE_PTR(type, name) type *name -#endif - -/* - * DTrace Object Format (DOF) - * - * DTrace programs can be persistently encoded in the DOF format so that they - * may be embedded in other programs (for example, in an ELF file) or in the - * dtrace driver configuration file for use in anonymous tracing. The DOF - * format is versioned and extensible so that it can be revised and so that - * internal data structures can be modified or extended compatibly. All DOF - * structures use fixed-size types, so the 32-bit and 64-bit representations - * are identical and consumers can use either data model transparently. - * - * The file layout is structured as follows: - * - * +---------------+-------------------+----- ... ----+---- ... ------+ - * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | - * | (file header) | (section headers) | section data | section data | - * +---------------+-------------------+----- ... ----+---- ... ------+ - * |<------------ dof_hdr.dofh_loadsz --------------->| | - * |<------------ dof_hdr.dofh_filesz ------------------------------->| - * - * The file header stores meta-data including a magic number, data model for - * the instrumentation, data encoding, and properties of the DIF code within. - * The header describes its own size and the size of the section headers. By - * convention, an array of section headers follows the file header, and then - * the data for all loadable sections and unloadable sections. This permits - * consumer code to easily download the headers and all loadable data into the - * DTrace driver in one contiguous chunk, omitting other extraneous sections. - * - * The section headers describe the size, offset, alignment, and section type - * for each section. Sections are described using a set of #defines that tell - * the consumer what kind of data is expected. Sections can contain links to - * other sections by storing a dof_secidx_t, an index into the section header - * array, inside of the section data structures. The section header includes - * an entry size so that sections with data arrays can grow their structures. - * - * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which - * are represented themselves as a collection of related DOF sections. This - * permits us to change the set of sections associated with a DIFO over time, - * and also permits us to encode DIFOs that contain different sets of sections. - * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a - * section of type DOF_SECT_DIFOHDR. This section's data is then an array of - * dof_secidx_t's which in turn denote the sections associated with this DIFO. - * - * This loose coupling of the file structure (header and sections) to the - * structure of the DTrace program itself (ECB descriptions, action - * descriptions, and DIFOs) permits activities such as relocation processing - * to occur in a single pass without having to understand D program structure. - * - * Finally, strings are always stored in ELF-style string tables along with a - * string table section index and string table offset. Therefore strings in - * DOF are always arbitrary-length and not bound to the current implementation. - */ - -#define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ - -typedef struct dof_hdr { - uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ - uint32_t dofh_flags; /* file attribute flags (if any) */ - uint32_t dofh_hdrsize; /* size of file header in bytes */ - uint32_t dofh_secsize; /* size of section header in bytes */ - uint32_t dofh_secnum; /* number of section headers */ - uint64_t dofh_secoff; /* file offset of section headers */ - uint64_t dofh_loadsz; /* file size of loadable portion */ - uint64_t dofh_filesz; /* file size of entire DOF file */ - uint64_t dofh_pad; /* reserved for future use */ -} dof_hdr_t; - -#define DOF_ID_MAG0 0 /* first byte of magic number */ -#define DOF_ID_MAG1 1 /* second byte of magic number */ -#define DOF_ID_MAG2 2 /* third byte of magic number */ -#define DOF_ID_MAG3 3 /* fourth byte of magic number */ -#define DOF_ID_MODEL 4 /* DOF data model (see below) */ -#define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ -#define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ -#define DOF_ID_DIFVERS 7 /* DIF instruction set version */ -#define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ -#define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ -#define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ - -#define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ -#define DOF_MAG_MAG1 'D' -#define DOF_MAG_MAG2 'O' -#define DOF_MAG_MAG3 'F' - -#define DOF_MAG_STRING "\177DOF" -#define DOF_MAG_STRLEN 4 - -#define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ -#define DOF_MODEL_ILP32 1 -#define DOF_MODEL_LP64 2 - -#ifdef _LP64 -#define DOF_MODEL_NATIVE DOF_MODEL_LP64 -#else -#define DOF_MODEL_NATIVE DOF_MODEL_ILP32 -#endif - -#define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ -#define DOF_ENCODE_LSB 1 -#define DOF_ENCODE_MSB 2 - -#ifdef _BIG_ENDIAN -#define DOF_ENCODE_NATIVE DOF_ENCODE_MSB -#else -#define DOF_ENCODE_NATIVE DOF_ENCODE_LSB -#endif - -#define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */ -#define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */ -#define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */ - -#define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ - -typedef uint32_t dof_secidx_t; /* section header table index type */ -typedef uint32_t dof_stridx_t; /* string table index type */ - -#define DOF_SECIDX_NONE (-1U) /* null value for section indices */ -#define DOF_STRIDX_NONE (-1U) /* null value for string indices */ - -typedef struct dof_sec { - uint32_t dofs_type; /* section type (see below) */ - uint32_t dofs_align; /* section data memory alignment */ - uint32_t dofs_flags; /* section flags (if any) */ - uint32_t dofs_entsize; /* size of section entry (if table) */ - uint64_t dofs_offset; /* offset of section data within file */ - uint64_t dofs_size; /* size of section data in bytes */ -} dof_sec_t; - -#define DOF_SECT_NONE 0 /* null section */ -#define DOF_SECT_COMMENTS 1 /* compiler comments */ -#define DOF_SECT_SOURCE 2 /* D program source code */ -#define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ -#define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ -#define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ -#define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ -#define DOF_SECT_DIF 7 /* uint32_t array of byte code */ -#define DOF_SECT_STRTAB 8 /* string table */ -#define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ -#define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ -#define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ -#define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ -#define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ -#define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ -#define DOF_SECT_PROVIDER 15 /* dof_provider_t */ -#define DOF_SECT_PROBES 16 /* dof_probe_t array */ -#define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ -#define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ -#define DOF_SECT_INTTAB 19 /* uint64_t array */ -#define DOF_SECT_UTSNAME 20 /* struct utsname */ -#define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ -#define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ -#define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ -#define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ -#define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ -#define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */ - -#define DOF_SECF_LOAD 1 /* section should be loaded */ - -typedef struct dof_ecbdesc { - dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ - dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ - dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ - uint32_t dofe_pad; /* reserved for future use */ - uint64_t dofe_uarg; /* user-supplied library argument */ -} dof_ecbdesc_t; - -typedef struct dof_probedesc { - dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ - dof_stridx_t dofp_provider; /* provider string */ - dof_stridx_t dofp_mod; /* module string */ - dof_stridx_t dofp_func; /* function string */ - dof_stridx_t dofp_name; /* name string */ - uint32_t dofp_id; /* probe identifier (or zero) */ -} dof_probedesc_t; - -typedef struct dof_actdesc { - dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ - dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ - uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ - uint32_t dofa_ntuple; /* number of subsequent tuple actions */ - uint64_t dofa_arg; /* kind-specific argument */ - uint64_t dofa_uarg; /* user-supplied argument */ -} dof_actdesc_t; - -typedef struct dof_difohdr { - dtrace_diftype_t dofd_rtype; /* return type for this fragment */ - dof_secidx_t dofd_links[1]; /* variable length array of indices */ -} dof_difohdr_t; - -typedef struct dof_relohdr { - dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ - dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ - dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ -} dof_relohdr_t; - -typedef struct dof_relodesc { - dof_stridx_t dofr_name; /* string name of relocation symbol */ - uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ - uint64_t dofr_offset; /* byte offset for relocation */ - uint64_t dofr_data; /* additional type-specific data */ -} dof_relodesc_t; - -#define DOF_RELO_NONE 0 /* empty relocation entry */ -#define DOF_RELO_SETX 1 /* relocate setx value */ - -typedef struct dof_optdesc { - uint32_t dofo_option; /* option identifier */ - dof_secidx_t dofo_strtab; /* string table, if string option */ - uint64_t dofo_value; /* option value or string index */ -} dof_optdesc_t; - -typedef uint32_t dof_attr_t; /* encoded stability attributes */ - -#define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) -#define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) -#define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) -#define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) - -typedef struct dof_provider { - dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ - dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ - dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ - dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ - dof_stridx_t dofpv_name; /* provider name string */ - dof_attr_t dofpv_provattr; /* provider attributes */ - dof_attr_t dofpv_modattr; /* module attributes */ - dof_attr_t dofpv_funcattr; /* function attributes */ - dof_attr_t dofpv_nameattr; /* name attributes */ - dof_attr_t dofpv_argsattr; /* args attributes */ - dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */ -} dof_provider_t; - -typedef struct dof_probe { - uint64_t dofpr_addr; /* probe base address or offset */ - dof_stridx_t dofpr_func; /* probe function string */ - dof_stridx_t dofpr_name; /* probe name string */ - dof_stridx_t dofpr_nargv; /* native argument type strings */ - dof_stridx_t dofpr_xargv; /* translated argument type strings */ - uint32_t dofpr_argidx; /* index of first argument mapping */ - uint32_t dofpr_offidx; /* index of first offset entry */ - uint8_t dofpr_nargc; /* native argument count */ - uint8_t dofpr_xargc; /* translated argument count */ - uint16_t dofpr_noffs; /* number of offset entries for probe */ - uint32_t dofpr_enoffidx; /* index of first is-enabled offset */ - uint16_t dofpr_nenoffs; /* number of is-enabled offsets */ - uint16_t dofpr_pad1; /* reserved for future use */ - uint32_t dofpr_pad2; /* reserved for future use */ -} dof_probe_t; - -typedef struct dof_xlator { - dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ - dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ - dof_stridx_t dofxl_argv; /* input parameter type strings */ - uint32_t dofxl_argc; /* input parameter list length */ - dof_stridx_t dofxl_type; /* output type string name */ - dof_attr_t dofxl_attr; /* output stability attributes */ -} dof_xlator_t; - -typedef struct dof_xlmember { - dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ - dof_stridx_t dofxm_name; /* member name */ - dtrace_diftype_t dofxm_type; /* member type */ -} dof_xlmember_t; - -typedef struct dof_xlref { - dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ - uint32_t dofxr_member; /* index of referenced dof_xlmember */ - uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ -} dof_xlref_t; - -/* - * DTrace Intermediate Format Object (DIFO) - * - * A DIFO is used to store the compiled DIF for a D expression, its return - * type, and its string and variable tables. The string table is a single - * buffer of character data into which sets instructions and variable - * references can reference strings using a byte offset. The variable table - * is an array of dtrace_difv_t structures that describe the name and type of - * each variable and the id used in the DIF code. This structure is described - * above in the DIF section of this header file. The DIFO is used at both - * user-level (in the library) and in the kernel, but the structure is never - * passed between the two: the DOF structures form the only interface. As a - * result, the definition can change depending on the presence of _KERNEL. - */ -typedef struct dtrace_difo { - dif_instr_t *dtdo_buf; /* instruction buffer */ - uint64_t *dtdo_inttab; /* integer table (optional) */ - char *dtdo_strtab; /* string table (optional) */ - dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ - uint_t dtdo_len; /* length of instruction buffer */ - uint_t dtdo_intlen; /* length of integer table */ - uint_t dtdo_strlen; /* length of string table */ - uint_t dtdo_varlen; /* length of variable table */ - dtrace_diftype_t dtdo_rtype; /* return type */ - uint_t dtdo_refcnt; /* owner reference count */ - uint_t dtdo_destructive; /* invokes destructive subroutines */ -#ifndef _KERNEL - dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ - dof_relodesc_t *dtdo_ureltab; /* user relocations */ - struct dt_node **dtdo_xlmtab; /* translator references */ - uint_t dtdo_krelen; /* length of krelo table */ - uint_t dtdo_urelen; /* length of urelo table */ - uint_t dtdo_xlmlen; /* length of translator table */ -#endif -} dtrace_difo_t; - -/* - * DTrace Enabling Description Structures - * - * When DTrace is tracking the description of a DTrace enabling entity (probe, - * predicate, action, ECB, record, etc.), it does so in a description - * structure. These structures all end in "desc", and are used at both - * user-level and in the kernel -- but (with the exception of - * dtrace_probedesc_t) they are never passed between them. Typically, - * user-level will use the description structures when assembling an enabling. - * It will then distill those description structures into a DOF object (see - * above), and send it into the kernel. The kernel will again use the - * description structures to create a description of the enabling as it reads - * the DOF. When the description is complete, the enabling will be actually - * created -- turning it into the structures that represent the enabling - * instead of merely describing it. Not surprisingly, the description - * structures bear a strong resemblance to the DOF structures that act as their - * conduit. - */ -struct dtrace_predicate; - -typedef struct dtrace_probedesc { - dtrace_id_t dtpd_id; /* probe identifier */ - char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ - char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ - char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ - char dtpd_name[DTRACE_NAMELEN]; /* probe name */ -} dtrace_probedesc_t; - -typedef struct dtrace_repldesc { - dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ - dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ -} dtrace_repldesc_t; - -typedef struct dtrace_preddesc { - dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ - struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ -} dtrace_preddesc_t; - -typedef struct dtrace_actdesc { - dtrace_difo_t *dtad_difo; /* pointer to DIF object */ - struct dtrace_actdesc *dtad_next; /* next action */ - dtrace_actkind_t dtad_kind; /* kind of action */ - uint32_t dtad_ntuple; /* number in tuple */ - uint64_t dtad_arg; /* action argument */ - uint64_t dtad_uarg; /* user argument */ - int dtad_refcnt; /* reference count */ -} dtrace_actdesc_t; - -typedef struct dtrace_ecbdesc { - dtrace_actdesc_t *dted_action; /* action description(s) */ - dtrace_preddesc_t dted_pred; /* predicate description */ - dtrace_probedesc_t dted_probe; /* probe description */ - uint64_t dted_uarg; /* library argument */ - int dted_refcnt; /* reference count */ -} dtrace_ecbdesc_t; - -/* - * DTrace Metadata Description Structures - * - * DTrace separates the trace data stream from the metadata stream. The only - * metadata tokens placed in the data stream are enabled probe identifiers - * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order - * to determine the structure of the data, DTrace consumers pass the token to - * the kernel, and receive in return a corresponding description of the enabled - * probe (via the dtrace_eprobedesc structure) or the aggregation (via the - * dtrace_aggdesc structure). Both of these structures are expressed in terms - * of record descriptions (via the dtrace_recdesc structure) that describe the - * exact structure of the data. Some record descriptions may also contain a - * format identifier; this additional bit of metadata can be retrieved from the - * kernel, for which a format description is returned via the dtrace_fmtdesc - * structure. Note that all four of these structures must be bitness-neutral - * to allow for a 32-bit DTrace consumer on a 64-bit kernel. - */ -typedef struct dtrace_recdesc { - dtrace_actkind_t dtrd_action; /* kind of action */ - uint32_t dtrd_size; /* size of record */ - uint32_t dtrd_offset; /* offset in ECB's data */ - uint16_t dtrd_alignment; /* required alignment */ - uint16_t dtrd_format; /* format, if any */ - uint64_t dtrd_arg; /* action argument */ - uint64_t dtrd_uarg; /* user argument */ -} dtrace_recdesc_t; - -typedef struct dtrace_eprobedesc { - dtrace_epid_t dtepd_epid; /* enabled probe ID */ - dtrace_id_t dtepd_probeid; /* probe ID */ - uint64_t dtepd_uarg; /* library argument */ - uint32_t dtepd_size; /* total size */ - int dtepd_nrecs; /* number of records */ - dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ -} dtrace_eprobedesc_t; - -typedef struct dtrace_aggdesc { - DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ - dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ - int dtagd_flags; /* not filled in by kernel */ - dtrace_aggid_t dtagd_id; /* aggregation ID */ - dtrace_epid_t dtagd_epid; /* enabled probe ID */ - uint32_t dtagd_size; /* size in bytes */ - int dtagd_nrecs; /* number of records */ - uint32_t dtagd_pad; /* explicit padding */ - dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ -} dtrace_aggdesc_t; - -typedef struct dtrace_fmtdesc { - DTRACE_PTR(char, dtfd_string); /* format string */ - int dtfd_length; /* length of format string */ - uint16_t dtfd_format; /* format identifier */ -} dtrace_fmtdesc_t; - -#define DTRACE_SIZEOF_EPROBEDESC(desc) \ - (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ - (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) - -#define DTRACE_SIZEOF_AGGDESC(desc) \ - (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ - (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) - -/* - * DTrace Option Interface - * - * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections - * in a DOF image. The dof_optdesc structure contains an option identifier and - * an option value. The valid option identifiers are found below; the mapping - * between option identifiers and option identifying strings is maintained at - * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the - * following are potentially valid option values: all positive integers, zero - * and negative one. Some options (notably "bufpolicy" and "bufresize") take - * predefined tokens as their values; these are defined with - * DTRACEOPT_{option}_{token}. - */ -#define DTRACEOPT_BUFSIZE 0 /* buffer size */ -#define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ -#define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ -#define DTRACEOPT_AGGSIZE 3 /* aggregation size */ -#define DTRACEOPT_SPECSIZE 4 /* speculation size */ -#define DTRACEOPT_NSPEC 5 /* number of speculations */ -#define DTRACEOPT_STRSIZE 6 /* string size */ -#define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ -#define DTRACEOPT_CPU 8 /* CPU to trace */ -#define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ -#define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ -#define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ -#define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ -#define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ -#define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ -#define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ -#define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ -#define DTRACEOPT_STATUSRATE 17 /* status rate */ -#define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ -#define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ -#define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ -#define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ -#define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ -#define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ -#define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ -#define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ -#define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ -#define DTRACEOPT_MAX 27 /* number of options */ - -#define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ - -#define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ -#define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ -#define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ - -#define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ -#define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ - -/* - * DTrace Buffer Interface - * - * In order to get a snapshot of the principal or aggregation buffer, - * user-level passes a buffer description to the kernel with the dtrace_bufdesc - * structure. This describes which CPU user-level is interested in, and - * where user-level wishes the kernel to snapshot the buffer to (the - * dtbd_data field). The kernel uses the same structure to pass back some - * information regarding the buffer: the size of data actually copied out, the - * number of drops, the number of errors, and the offset of the oldest record. - * If the buffer policy is a "switch" policy, taking a snapshot of the - * principal buffer has the additional effect of switching the active and - * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has - * the additional effect of switching the active and inactive buffers. - */ -typedef struct dtrace_bufdesc { - uint64_t dtbd_size; /* size of buffer */ - uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ - uint32_t dtbd_errors; /* number of errors */ - uint64_t dtbd_drops; /* number of drops */ - DTRACE_PTR(char, dtbd_data); /* data */ - uint64_t dtbd_oldest; /* offset of oldest record */ -} dtrace_bufdesc_t; - -/* - * DTrace Status - * - * The status of DTrace is relayed via the dtrace_status structure. This - * structure contains members to count drops other than the capacity drops - * available via the buffer interface (see above). This consists of dynamic - * drops (including capacity dynamic drops, rinsing drops and dirty drops), and - * speculative drops (including capacity speculative drops, drops due to busy - * speculative buffers and drops due to unavailable speculative buffers). - * Additionally, the status structure contains a field to indicate the number - * of "fill"-policy buffers have been filled and a boolean field to indicate - * that exit() has been called. If the dtst_exiting field is non-zero, no - * further data will be generated until tracing is stopped (at which time any - * enablings of the END action will be processed); if user-level sees that - * this field is non-zero, tracing should be stopped as soon as possible. - */ -typedef struct dtrace_status { - uint64_t dtst_dyndrops; /* dynamic drops */ - uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ - uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ - uint64_t dtst_specdrops; /* speculative drops */ - uint64_t dtst_specdrops_busy; /* spec drops due to busy */ - uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ - uint64_t dtst_errors; /* total errors */ - uint64_t dtst_filled; /* number of filled bufs */ - uint64_t dtst_stkstroverflows; /* stack string tab overflows */ - uint64_t dtst_dblerrors; /* errors in ERROR probes */ - char dtst_killed; /* non-zero if killed */ - char dtst_exiting; /* non-zero if exit() called */ - char dtst_pad[6]; /* pad out to 64-bit align */ -} dtrace_status_t; - -/* - * DTrace Configuration - * - * User-level may need to understand some elements of the kernel DTrace - * configuration in order to generate correct DIF. This information is - * conveyed via the dtrace_conf structure. - */ -typedef struct dtrace_conf { - uint_t dtc_difversion; /* supported DIF version */ - uint_t dtc_difintregs; /* # of DIF integer registers */ - uint_t dtc_diftupregs; /* # of DIF tuple registers */ - uint_t dtc_ctfmodel; /* CTF data model */ - uint_t dtc_pad[8]; /* reserved for future use */ -} dtrace_conf_t; - -/* - * DTrace Faults - * - * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; - * constants at or above DTRACEFLT_LIBRARY indicate faults in probe - * postprocessing at user-level. Probe processing faults induce an ERROR - * probe and are replicated in unistd.d to allow users' ERROR probes to decode - * the error condition using thse symbolic labels. - */ -#define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ -#define DTRACEFLT_BADADDR 1 /* Bad address */ -#define DTRACEFLT_BADALIGN 2 /* Bad alignment */ -#define DTRACEFLT_ILLOP 3 /* Illegal operation */ -#define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ -#define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ -#define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ -#define DTRACEFLT_UPRIV 7 /* Illegal user access */ -#define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ -#define DTRACEFLT_BADSTACK 9 /* Bad stack */ - -#define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ - -/* - * DTrace Argument Types - * - * Because it would waste both space and time, argument types do not reside - * with the probe. In order to determine argument types for args[X] - * variables, the D compiler queries for argument types on a probe-by-probe - * basis. (This optimizes for the common case that arguments are either not - * used or used in an untyped fashion.) Typed arguments are specified with a - * string of the type name in the dtragd_native member of the argument - * description structure. Typed arguments may be further translated to types - * of greater stability; the provider indicates such a translated argument by - * filling in the dtargd_xlate member with the string of the translated type. - * Finally, the provider may indicate which argument value a given argument - * maps to by setting the dtargd_mapping member -- allowing a single argument - * to map to multiple args[X] variables. - */ -typedef struct dtrace_argdesc { - dtrace_id_t dtargd_id; /* probe identifier */ - int dtargd_ndx; /* arg number (-1 iff none) */ - int dtargd_mapping; /* value mapping */ - char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ - char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ -} dtrace_argdesc_t; - -/* - * DTrace Stability Attributes - * - * Each DTrace provider advertises the name and data stability of each of its - * probe description components, as well as its architectural dependencies. - * The D compiler can query the provider attributes (dtrace_pattr_t below) in - * order to compute the properties of an input program and report them. - */ -typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ -typedef uint8_t dtrace_class_t; /* architectural dependency class */ - -#define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ -#define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ -#define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ -#define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ -#define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ -#define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ -#define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ -#define DTRACE_STABILITY_STANDARD 7 /* industry standard */ -#define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ - -#define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ -#define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ -#define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ -#define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ -#define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ -#define DTRACE_CLASS_COMMON 5 /* common to all systems */ -#define DTRACE_CLASS_MAX 5 /* maximum valid class */ - -#define DTRACE_PRIV_NONE 0x0000 -#define DTRACE_PRIV_KERNEL 0x0001 -#define DTRACE_PRIV_USER 0x0002 -#define DTRACE_PRIV_PROC 0x0004 -#define DTRACE_PRIV_OWNER 0x0008 -#define DTRACE_PRIV_ZONEOWNER 0x0010 - -#define DTRACE_PRIV_ALL \ - (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ - DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) - -typedef struct dtrace_ppriv { - uint32_t dtpp_flags; /* privilege flags */ - uid_t dtpp_uid; /* user ID */ - zoneid_t dtpp_zoneid; /* zone ID */ -} dtrace_ppriv_t; - -typedef struct dtrace_attribute { - dtrace_stability_t dtat_name; /* entity name stability */ - dtrace_stability_t dtat_data; /* entity data stability */ - dtrace_class_t dtat_class; /* entity data dependency */ -} dtrace_attribute_t; - -typedef struct dtrace_pattr { - dtrace_attribute_t dtpa_provider; /* provider attributes */ - dtrace_attribute_t dtpa_mod; /* module attributes */ - dtrace_attribute_t dtpa_func; /* function attributes */ - dtrace_attribute_t dtpa_name; /* name attributes */ - dtrace_attribute_t dtpa_args; /* args[] attributes */ -} dtrace_pattr_t; - -typedef struct dtrace_providerdesc { - char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ - dtrace_pattr_t dtvd_attr; /* stability attributes */ - dtrace_ppriv_t dtvd_priv; /* privileges required */ -} dtrace_providerdesc_t; - -/* - * DTrace Pseudodevice Interface - * - * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace - * pseudodevice driver. These ioctls comprise the user-kernel interface to - * DTrace. - */ -#define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) -#define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ -#define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ -#define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ -#define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ -#define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ -#define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ -#define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ -#define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ -#define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ -#define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ -#define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ -#define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ -#define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ -#define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ -#define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ -#define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ - -/* - * DTrace Helpers - * - * In general, DTrace establishes probes in processes and takes actions on - * processes without knowing their specific user-level structures. Instead of - * existing in the framework, process-specific knowledge is contained by the - * enabling D program -- which can apply process-specific knowledge by making - * appropriate use of DTrace primitives like copyin() and copyinstr() to - * operate on user-level data. However, there may exist some specific probes - * of particular semantic relevance that the application developer may wish to - * explicitly export. For example, an application may wish to export a probe - * at the point that it begins and ends certain well-defined transactions. In - * addition to providing probes, programs may wish to offer assistance for - * certain actions. For example, in highly dynamic environments (e.g., Java), - * it may be difficult to obtain a stack trace in terms of meaningful symbol - * names (the translation from instruction addresses to corresponding symbol - * names may only be possible in situ); these environments may wish to define - * a series of actions to be applied in situ to obtain a meaningful stack - * trace. - * - * These two mechanisms -- user-level statically defined tracing and assisting - * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified - * via DOF, but unlike enabling DOF, helper DOF may contain definitions of - * providers, probes and their arguments. If a helper wishes to provide - * action assistance, probe descriptions and corresponding DIF actions may be - * specified in the helper DOF. For such helper actions, however, the probe - * description describes the specific helper: all DTrace helpers have the - * provider name "dtrace" and the module name "helper", and the name of the - * helper is contained in the function name (for example, the ustack() helper - * is named "ustack"). Any helper-specific name may be contained in the name - * (for example, if a helper were to have a constructor, it might be named - * "dtrace:helper::init"). Helper actions are only called when the - * action that they are helping is taken. Helper actions may only return DIF - * expressions, and may only call the following subroutines: - * - * alloca() <= Allocates memory out of the consumer's scratch space - * bcopy() <= Copies memory to scratch space - * copyin() <= Copies memory from user-level into consumer's scratch - * copyinto() <= Copies memory into a specific location in scratch - * copyinstr() <= Copies a string into a specific location in scratch - * - * Helper actions may only access the following built-in variables: - * - * curthread <= Current kthread_t pointer - * tid <= Current thread identifier - * pid <= Current process identifier - * ppid <= Parent process identifier - * uid <= Current user ID - * gid <= Current group ID - * execname <= Current executable name - * zonename <= Current zone name - * - * Helper actions may not manipulate or allocate dynamic variables, but they - * may have clause-local and statically-allocated global variables. The - * helper action variable state is specific to the helper action -- variables - * used by the helper action may not be accessed outside of the helper - * action, and the helper action may not access variables that like outside - * of it. Helper actions may not load from kernel memory at-large; they are - * restricting to loading current user state (via copyin() and variants) and - * scratch space. As with probe enablings, helper actions are executed in - * program order. The result of the helper action is the result of the last - * executing helper expression. - * - * Helpers -- composed of either providers/probes or probes/actions (or both) - * -- are added by opening the "helper" minor node, and issuing an ioctl(2) - * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This - * encapsulates the name and base address of the user-level library or - * executable publishing the helpers and probes as well as the DOF that - * contains the definitions of those helpers and probes. - * - * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy - * helpers and should no longer be used. No other ioctls are valid on the - * helper minor node. - */ -#define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) -#define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ -#define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ -#define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ - -typedef struct dof_helper { - char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ - uint64_t dofhp_addr; /* base address of object */ - uint64_t dofhp_dof; /* address of helper DOF */ -} dof_helper_t; - -#define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ -#define DTRACEMNR_HELPER "helper" /* node for helpers */ -#define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ -#define DTRACEMNRN_HELPER 1 /* minor for helpers */ -#define DTRACEMNRN_CLONE 2 /* first clone minor */ - -#ifdef _KERNEL - -/* - * DTrace Provider API - * - * The following functions are implemented by the DTrace framework and are - * used to implement separate in-kernel DTrace providers. Common functions - * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are - * defined in uts//dtrace/dtrace_asm.s or uts//dtrace/dtrace_isa.c. - * - * The provider API has two halves: the API that the providers consume from - * DTrace, and the API that providers make available to DTrace. - * - * 1 Framework-to-Provider API - * - * 1.1 Overview - * - * The Framework-to-Provider API is represented by the dtrace_pops structure - * that the provider passes to the framework when registering itself. This - * structure consists of the following members: - * - * dtps_provide() <-- Provide all probes, all modules - * dtps_provide_module() <-- Provide all probes in specified module - * dtps_enable() <-- Enable specified probe - * dtps_disable() <-- Disable specified probe - * dtps_suspend() <-- Suspend specified probe - * dtps_resume() <-- Resume specified probe - * dtps_getargdesc() <-- Get the argument description for args[X] - * dtps_getargval() <-- Get the value for an argX or args[X] variable - * dtps_usermode() <-- Find out if the probe was fired in user mode - * dtps_destroy() <-- Destroy all state associated with this probe - * - * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) - * - * 1.2.1 Overview - * - * Called to indicate that the provider should provide all probes. If the - * specified description is non-NULL, dtps_provide() is being called because - * no probe matched a specified probe -- if the provider has the ability to - * create custom probes, it may wish to create a probe that matches the - * specified description. - * - * 1.2.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is a pointer to a probe description that the provider may - * wish to consider when creating custom probes. The provider is expected to - * call back into the DTrace framework via dtrace_probe_create() to create - * any necessary probes. dtps_provide() may be called even if the provider - * has made available all probes; the provider should check the return value - * of dtrace_probe_create() to handle this case. Note that the provider need - * not implement both dtps_provide() and dtps_provide_module(); see - * "Arguments and Notes" for dtrace_register(), below. - * - * 1.2.3 Return value - * - * None. - * - * 1.2.4 Caller's context - * - * dtps_provide() is typically called from open() or ioctl() context, but may - * be called from other contexts as well. The DTrace framework is locked in - * such a way that providers may not register or unregister. This means that - * the provider may not call any DTrace API that affects its registration with - * the framework, including dtrace_register(), dtrace_unregister(), - * dtrace_invalidate(), and dtrace_condense(). However, the context is such - * that the provider may (and indeed, is expected to) call probe-related - * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), - * and dtrace_probe_arg(). - * - * 1.3 void dtps_provide_module(void *arg, struct modctl *mp) - * - * 1.3.1 Overview - * - * Called to indicate that the provider should provide all probes in the - * specified module. - * - * 1.3.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is a pointer to a modctl structure that indicates the - * module for which probes should be created. - * - * 1.3.3 Return value - * - * None. - * - * 1.3.4 Caller's context - * - * dtps_provide_module() may be called from open() or ioctl() context, but - * may also be called from a module loading context. mod_lock is held, and - * the DTrace framework is locked in such a way that providers may not - * register or unregister. This means that the provider may not call any - * DTrace API that affects its registration with the framework, including - * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and - * dtrace_condense(). However, the context is such that the provider may (and - * indeed, is expected to) call probe-related DTrace routines, including - * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note - * that the provider need not implement both dtps_provide() and - * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), - * below. - * - * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg) - * - * 1.4.1 Overview - * - * Called to enable the specified probe. - * - * 1.4.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the probe to be enabled. The third - * argument is the probe argument as passed to dtrace_probe_create(). - * dtps_enable() will be called when a probe transitions from not being - * enabled at all to having one or more ECB. The number of ECBs associated - * with the probe may change without subsequent calls into the provider. - * When the number of ECBs drops to zero, the provider will be explicitly - * told to disable the probe via dtps_disable(). dtrace_probe() should never - * be called for a probe identifier that hasn't been explicitly enabled via - * dtps_enable(). - * - * 1.4.3 Return value - * - * None. - * - * 1.4.4 Caller's context - * - * The DTrace framework is locked in such a way that it may not be called - * back into at all. cpu_lock is held. mod_lock is not held and may not - * be acquired. - * - * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) - * - * 1.5.1 Overview - * - * Called to disable the specified probe. - * - * 1.5.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the probe to be disabled. The third - * argument is the probe argument as passed to dtrace_probe_create(). - * dtps_disable() will be called when a probe transitions from being enabled - * to having zero ECBs. dtrace_probe() should never be called for a probe - * identifier that has been explicitly enabled via dtps_disable(). - * - * 1.5.3 Return value - * - * None. - * - * 1.5.4 Caller's context - * - * The DTrace framework is locked in such a way that it may not be called - * back into at all. cpu_lock is held. mod_lock is not held and may not - * be acquired. - * - * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) - * - * 1.6.1 Overview - * - * Called to suspend the specified enabled probe. This entry point is for - * providers that may need to suspend some or all of their probes when CPUs - * are being powered on or when the boot monitor is being entered for a - * prolonged period of time. - * - * 1.6.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the probe to be suspended. The - * third argument is the probe argument as passed to dtrace_probe_create(). - * dtps_suspend will only be called on an enabled probe. Providers that - * provide a dtps_suspend entry point will want to take roughly the action - * that it takes for dtps_disable. - * - * 1.6.3 Return value - * - * None. - * - * 1.6.4 Caller's context - * - * Interrupts are disabled. The DTrace framework is in a state such that the - * specified probe cannot be disabled or destroyed for the duration of - * dtps_suspend(). As interrupts are disabled, the provider is afforded - * little latitude; the provider is expected to do no more than a store to - * memory. - * - * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) - * - * 1.7.1 Overview - * - * Called to resume the specified enabled probe. This entry point is for - * providers that may need to resume some or all of their probes after the - * completion of an event that induced a call to dtps_suspend(). - * - * 1.7.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the probe to be resumed. The - * third argument is the probe argument as passed to dtrace_probe_create(). - * dtps_resume will only be called on an enabled probe. Providers that - * provide a dtps_resume entry point will want to take roughly the action - * that it takes for dtps_enable. - * - * 1.7.3 Return value - * - * None. - * - * 1.7.4 Caller's context - * - * Interrupts are disabled. The DTrace framework is in a state such that the - * specified probe cannot be disabled or destroyed for the duration of - * dtps_resume(). As interrupts are disabled, the provider is afforded - * little latitude; the provider is expected to do no more than a store to - * memory. - * - * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, - * dtrace_argdesc_t *desc) - * - * 1.8.1 Overview - * - * Called to retrieve the argument description for an args[X] variable. - * - * 1.8.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the current probe. The third - * argument is the probe argument as passed to dtrace_probe_create(). The - * fourth argument is a pointer to the argument description. This - * description is both an input and output parameter: it contains the - * index of the desired argument in the dtargd_ndx field, and expects - * the other fields to be filled in upon return. If there is no argument - * corresponding to the specified index, the dtargd_ndx field should be set - * to DTRACE_ARGNONE. - * - * 1.8.3 Return value - * - * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping - * members of the dtrace_argdesc_t structure are all output values. - * - * 1.8.4 Caller's context - * - * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and - * the DTrace framework is locked in such a way that providers may not - * register or unregister. This means that the provider may not call any - * DTrace API that affects its registration with the framework, including - * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and - * dtrace_condense(). - * - * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, - * int argno, int aframes) - * - * 1.9.1 Overview - * - * Called to retrieve a value for an argX or args[X] variable. - * - * 1.9.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the current probe. The third - * argument is the probe argument as passed to dtrace_probe_create(). The - * fourth argument is the number of the argument (the X in the example in - * 1.9.1). The fifth argument is the number of stack frames that were used - * to get from the actual place in the code that fired the probe to - * dtrace_probe() itself, the so-called artificial frames. This argument may - * be used to descend an appropriate number of frames to find the correct - * values. If this entry point is left NULL, the dtrace_getarg() built-in - * function is used. - * - * 1.9.3 Return value - * - * The value of the argument. - * - * 1.9.4 Caller's context - * - * This is called from within dtrace_probe() meaning that interrupts - * are disabled. No locks should be taken within this entry point. - * - * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg) - * - * 1.10.1 Overview - * - * Called to determine if the probe was fired in a user context. - * - * 1.10.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the current probe. The third - * argument is the probe argument as passed to dtrace_probe_create(). This - * entry point must not be left NULL for providers whose probes allow for - * mixed mode tracing, that is to say those probes that can fire during - * kernel- _or_ user-mode execution - * - * 1.10.3 Return value - * - * A boolean value. - * - * 1.10.4 Caller's context - * - * This is called from within dtrace_probe() meaning that interrupts - * are disabled. No locks should be taken within this entry point. - * - * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) - * - * 1.11.1 Overview - * - * Called to destroy the specified probe. - * - * 1.11.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the probe to be destroyed. The third - * argument is the probe argument as passed to dtrace_probe_create(). The - * provider should free all state associated with the probe. The framework - * guarantees that dtps_destroy() is only called for probes that have either - * been disabled via dtps_disable() or were never enabled via dtps_enable(). - * Once dtps_disable() has been called for a probe, no further call will be - * made specifying the probe. - * - * 1.11.3 Return value - * - * None. - * - * 1.11.4 Caller's context - * - * The DTrace framework is locked in such a way that it may not be called - * back into at all. mod_lock is held. cpu_lock is not held, and may not be - * acquired. - * - * - * 2 Provider-to-Framework API - * - * 2.1 Overview - * - * The Provider-to-Framework API provides the mechanism for the provider to - * register itself with the DTrace framework, to create probes, to lookup - * probes and (most importantly) to fire probes. The Provider-to-Framework - * consists of: - * - * dtrace_register() <-- Register a provider with the DTrace framework - * dtrace_unregister() <-- Remove a provider's DTrace registration - * dtrace_invalidate() <-- Invalidate the specified provider - * dtrace_condense() <-- Remove a provider's unenabled probes - * dtrace_attached() <-- Indicates whether or not DTrace has attached - * dtrace_probe_create() <-- Create a DTrace probe - * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name - * dtrace_probe_arg() <-- Return the probe argument for a specific probe - * dtrace_probe() <-- Fire the specified probe - * - * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, - * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, - * dtrace_provider_id_t *idp) - * - * 2.2.1 Overview - * - * dtrace_register() registers the calling provider with the DTrace - * framework. It should generally be called by DTrace providers in their - * attach(9E) entry point. - * - * 2.2.2 Arguments and Notes - * - * The first argument is the name of the provider. The second argument is a - * pointer to the stability attributes for the provider. The third argument - * is the privilege flags for the provider, and must be some combination of: - * - * DTRACE_PRIV_NONE <= All users may enable probes from this provider - * - * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may - * enable probes from this provider - * - * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may - * enable probes from this provider - * - * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL - * may enable probes from this provider - * - * DTRACE_PRIV_OWNER <= This flag places an additional constraint on - * the privilege requirements above. These probes - * require either (a) a user ID matching the user - * ID of the cred passed in the fourth argument - * or (b) the PRIV_PROC_OWNER privilege. - * - * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on - * the privilege requirements above. These probes - * require either (a) a zone ID matching the zone - * ID of the cred passed in the fourth argument - * or (b) the PRIV_PROC_ZONE privilege. - * - * Note that these flags designate the _visibility_ of the probes, not - * the conditions under which they may or may not fire. - * - * The fourth argument is the credential that is associated with the - * provider. This argument should be NULL if the privilege flags don't - * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the - * framework stashes the uid and zoneid represented by this credential - * for use at probe-time, in implicit predicates. These limit visibility - * of the probes to users and/or zones which have sufficient privilege to - * access them. - * - * The fifth argument is a DTrace provider operations vector, which provides - * the implementation for the Framework-to-Provider API. (See Section 1, - * above.) This must be non-NULL, and each member must be non-NULL. The - * exceptions to this are (1) the dtps_provide() and dtps_provide_module() - * members (if the provider so desires, _one_ of these members may be left - * NULL -- denoting that the provider only implements the other) and (2) - * the dtps_suspend() and dtps_resume() members, which must either both be - * NULL or both be non-NULL. - * - * The sixth argument is a cookie to be specified as the first argument for - * each function in the Framework-to-Provider API. This argument may have - * any value. - * - * The final argument is a pointer to dtrace_provider_id_t. If - * dtrace_register() successfully completes, the provider identifier will be - * stored in the memory pointed to be this argument. This argument must be - * non-NULL. - * - * 2.2.3 Return value - * - * On success, dtrace_register() returns 0 and stores the new provider's - * identifier into the memory pointed to by the idp argument. On failure, - * dtrace_register() returns an errno: - * - * EINVAL The arguments passed to dtrace_register() were somehow invalid. - * This may because a parameter that must be non-NULL was NULL, - * because the name was invalid (either empty or an illegal - * provider name) or because the attributes were invalid. - * - * No other failure code is returned. - * - * 2.2.4 Caller's context - * - * dtrace_register() may induce calls to dtrace_provide(); the provider must - * hold no locks across dtrace_register() that may also be acquired by - * dtrace_provide(). cpu_lock and mod_lock must not be held. - * - * 2.3 int dtrace_unregister(dtrace_provider_t id) - * - * 2.3.1 Overview - * - * Unregisters the specified provider from the DTrace framework. It should - * generally be called by DTrace providers in their detach(9E) entry point. - * - * 2.3.2 Arguments and Notes - * - * The only argument is the provider identifier, as returned from a - * successful call to dtrace_register(). As a result of calling - * dtrace_unregister(), the DTrace framework will call back into the provider - * via the dtps_destroy() entry point. Once dtrace_unregister() successfully - * completes, however, the DTrace framework will no longer make calls through - * the Framework-to-Provider API. - * - * 2.3.3 Return value - * - * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() - * returns an errno: - * - * EBUSY There are currently processes that have the DTrace pseudodevice - * open, or there exists an anonymous enabling that hasn't yet - * been claimed. - * - * No other failure code is returned. - * - * 2.3.4 Caller's context - * - * Because a call to dtrace_unregister() may induce calls through the - * Framework-to-Provider API, the caller may not hold any lock across - * dtrace_register() that is also acquired in any of the Framework-to- - * Provider API functions. Additionally, mod_lock may not be held. - * - * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) - * - * 2.4.1 Overview - * - * Invalidates the specified provider. All subsequent probe lookups for the - * specified provider will fail, but its probes will not be removed. - * - * 2.4.2 Arguments and note - * - * The only argument is the provider identifier, as returned from a - * successful call to dtrace_register(). In general, a provider's probes - * always remain valid; dtrace_invalidate() is a mechanism for invalidating - * an entire provider, regardless of whether or not probes are enabled or - * not. Note that dtrace_invalidate() will _not_ prevent already enabled - * probes from firing -- it will merely prevent any new enablings of the - * provider's probes. - * - * 2.5 int dtrace_condense(dtrace_provider_id_t id) - * - * 2.5.1 Overview - * - * Removes all the unenabled probes for the given provider. This function is - * not unlike dtrace_unregister(), except that it doesn't remove the - * provider just as many of its associated probes as it can. - * - * 2.5.2 Arguments and Notes - * - * As with dtrace_unregister(), the sole argument is the provider identifier - * as returned from a successful call to dtrace_register(). As a result of - * calling dtrace_condense(), the DTrace framework will call back into the - * given provider's dtps_destroy() entry point for each of the provider's - * unenabled probes. - * - * 2.5.3 Return value - * - * Currently, dtrace_condense() always returns 0. However, consumers of this - * function should check the return value as appropriate; its behavior may - * change in the future. - * - * 2.5.4 Caller's context - * - * As with dtrace_unregister(), the caller may not hold any lock across - * dtrace_condense() that is also acquired in the provider's entry points. - * Also, mod_lock may not be held. - * - * 2.6 int dtrace_attached() - * - * 2.6.1 Overview - * - * Indicates whether or not DTrace has attached. - * - * 2.6.2 Arguments and Notes - * - * For most providers, DTrace makes initial contact beyond registration. - * That is, once a provider has registered with DTrace, it waits to hear - * from DTrace to create probes. However, some providers may wish to - * proactively create probes without first being told by DTrace to do so. - * If providers wish to do this, they must first call dtrace_attached() to - * determine if DTrace itself has attached. If dtrace_attached() returns 0, - * the provider must not make any other Provider-to-Framework API call. - * - * 2.6.3 Return value - * - * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. - * - * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, - * const char *func, const char *name, int aframes, void *arg) - * - * 2.7.1 Overview - * - * Creates a probe with specified module name, function name, and name. - * - * 2.7.2 Arguments and Notes - * - * The first argument is the provider identifier, as returned from a - * successful call to dtrace_register(). The second, third, and fourth - * arguments are the module name, function name, and probe name, - * respectively. Of these, module name and function name may both be NULL - * (in which case the probe is considered to be unanchored), or they may both - * be non-NULL. The name must be non-NULL, and must point to a non-empty - * string. - * - * The fifth argument is the number of artificial stack frames that will be - * found on the stack when dtrace_probe() is called for the new probe. These - * artificial frames will be automatically be pruned should the stack() or - * stackdepth() functions be called as part of one of the probe's ECBs. If - * the parameter doesn't add an artificial frame, this parameter should be - * zero. - * - * The final argument is a probe argument that will be passed back to the - * provider when a probe-specific operation is called. (e.g., via - * dtps_enable(), dtps_disable(), etc.) - * - * Note that it is up to the provider to be sure that the probe that it - * creates does not already exist -- if the provider is unsure of the probe's - * existence, it should assure its absence with dtrace_probe_lookup() before - * calling dtrace_probe_create(). - * - * 2.7.3 Return value - * - * dtrace_probe_create() always succeeds, and always returns the identifier - * of the newly-created probe. - * - * 2.7.4 Caller's context - * - * While dtrace_probe_create() is generally expected to be called from - * dtps_provide() and/or dtps_provide_module(), it may be called from other - * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. - * - * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, - * const char *func, const char *name) - * - * 2.8.1 Overview - * - * Looks up a probe based on provdider and one or more of module name, - * function name and probe name. - * - * 2.8.2 Arguments and Notes - * - * The first argument is the provider identifier, as returned from a - * successful call to dtrace_register(). The second, third, and fourth - * arguments are the module name, function name, and probe name, - * respectively. Any of these may be NULL; dtrace_probe_lookup() will return - * the identifier of the first probe that is provided by the specified - * provider and matches all of the non-NULL matching criteria. - * dtrace_probe_lookup() is generally used by a provider to be check the - * existence of a probe before creating it with dtrace_probe_create(). - * - * 2.8.3 Return value - * - * If the probe exists, returns its identifier. If the probe does not exist, - * return DTRACE_IDNONE. - * - * 2.8.4 Caller's context - * - * While dtrace_probe_lookup() is generally expected to be called from - * dtps_provide() and/or dtps_provide_module(), it may also be called from - * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. - * - * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) - * - * 2.9.1 Overview - * - * Returns the probe argument associated with the specified probe. - * - * 2.9.2 Arguments and Notes - * - * The first argument is the provider identifier, as returned from a - * successful call to dtrace_register(). The second argument is a probe - * identifier, as returned from dtrace_probe_lookup() or - * dtrace_probe_create(). This is useful if a probe has multiple - * provider-specific components to it: the provider can create the probe - * once with provider-specific state, and then add to the state by looking - * up the probe based on probe identifier. - * - * 2.9.3 Return value - * - * Returns the argument associated with the specified probe. If the - * specified probe does not exist, or if the specified probe is not provided - * by the specified provider, NULL is returned. - * - * 2.9.4 Caller's context - * - * While dtrace_probe_arg() is generally expected to be called from - * dtps_provide() and/or dtps_provide_module(), it may also be called from - * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. - * - * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, - * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) - * - * 2.10.1 Overview - * - * The epicenter of DTrace: fires the specified probes with the specified - * arguments. - * - * 2.10.2 Arguments and Notes - * - * The first argument is a probe identifier as returned by - * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth - * arguments are the values to which the D variables "arg0" through "arg4" - * will be mapped. - * - * dtrace_probe() should be called whenever the specified probe has fired -- - * however the provider defines it. - * - * 2.10.3 Return value - * - * None. - * - * 2.10.4 Caller's context - * - * dtrace_probe() may be called in virtually any context: kernel, user, - * interrupt, high-level interrupt, with arbitrary adaptive locks held, with - * dispatcher locks held, with interrupts disabled, etc. The only latitude - * that must be afforded to DTrace is the ability to make calls within - * itself (and to its in-kernel subroutines) and the ability to access - * arbitrary (but mapped) memory. On some platforms, this constrains - * context. For example, on UltraSPARC, dtrace_probe() cannot be called - * from any context in which TL is greater than zero. dtrace_probe() may - * also not be called from any routine which may be called by dtrace_probe() - * -- which includes functions in the DTrace framework and some in-kernel - * DTrace subroutines. All such functions "dtrace_"; providers that - * instrument the kernel arbitrarily should be sure to not instrument these - * routines. - */ -typedef struct dtrace_pops { - void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec); - void (*dtps_provide_module)(void *arg, struct modctl *mp); - void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); - void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); - void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); - void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); - void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, - dtrace_argdesc_t *desc); - uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, - int argno, int aframes); - int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg); - void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); -} dtrace_pops_t; - -typedef uintptr_t dtrace_provider_id_t; - -extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, - cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); -extern int dtrace_unregister(dtrace_provider_id_t); -extern int dtrace_condense(dtrace_provider_id_t); -extern void dtrace_invalidate(dtrace_provider_id_t); -extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *, - const char *, const char *); -extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, - const char *, const char *, int, void *); -extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); -extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, - uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); - -/* - * DTrace Meta Provider API - * - * The following functions are implemented by the DTrace framework and are - * used to implement meta providers. Meta providers plug into the DTrace - * framework and are used to instantiate new providers on the fly. At - * present, there is only one type of meta provider and only one meta - * provider may be registered with the DTrace framework at a time. The - * sole meta provider type provides user-land static tracing facilities - * by taking meta probe descriptions and adding a corresponding provider - * into the DTrace framework. - * - * 1 Framework-to-Provider - * - * 1.1 Overview - * - * The Framework-to-Provider API is represented by the dtrace_mops structure - * that the meta provider passes to the framework when registering itself as - * a meta provider. This structure consists of the following members: - * - * dtms_create_probe() <-- Add a new probe to a created provider - * dtms_provide_pid() <-- Create a new provider for a given process - * dtms_remove_pid() <-- Remove a previously created provider - * - * 1.2 void dtms_create_probe(void *arg, void *parg, - * dtrace_helper_probedesc_t *probedesc); - * - * 1.2.1 Overview - * - * Called by the DTrace framework to create a new probe in a provider - * created by this meta provider. - * - * 1.2.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_meta_register(). - * The second argument is the provider cookie for the associated provider; - * this is obtained from the return value of dtms_provide_pid(). The third - * argument is the helper probe description. - * - * 1.2.3 Return value - * - * None - * - * 1.2.4 Caller's context - * - * dtms_create_probe() is called from either ioctl() or module load context. - * The DTrace framework is locked in such a way that meta providers may not - * register or unregister. This means that the meta provider cannot call - * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is - * such that the provider may (and is expected to) call provider-related - * DTrace provider APIs including dtrace_probe_create(). - * - * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, - * pid_t pid) - * - * 1.3.1 Overview - * - * Called by the DTrace framework to instantiate a new provider given the - * description of the provider and probes in the mprov argument. The - * meta provider should call dtrace_register() to insert the new provider - * into the DTrace framework. - * - * 1.3.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_meta_register(). - * The second argument is a pointer to a structure describing the new - * helper provider. The third argument is the process identifier for - * process associated with this new provider. Note that the name of the - * provider as passed to dtrace_register() should be the contatenation of - * the dtmpb_provname member of the mprov argument and the processs - * identifier as a string. - * - * 1.3.3 Return value - * - * The cookie for the provider that the meta provider creates. This is - * the same value that it passed to dtrace_register(). - * - * 1.3.4 Caller's context - * - * dtms_provide_pid() is called from either ioctl() or module load context. - * The DTrace framework is locked in such a way that meta providers may not - * register or unregister. This means that the meta provider cannot call - * dtrace_meta_register() or dtrace_meta_unregister(). However, the context - * is such that the provider may -- and is expected to -- call - * provider-related DTrace provider APIs including dtrace_register(). - * - * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, - * pid_t pid) - * - * 1.4.1 Overview - * - * Called by the DTrace framework to remove a provider that had previously - * been instantiated via the dtms_provide_pid() entry point. The meta - * provider need not remove the provider immediately, but this entry - * point indicates that the provider should be removed as soon as possible - * using the dtrace_unregister() API. - * - * 1.4.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_meta_register(). - * The second argument is a pointer to a structure describing the helper - * provider. The third argument is the process identifier for process - * associated with this new provider. - * - * 1.4.3 Return value - * - * None - * - * 1.4.4 Caller's context - * - * dtms_remove_pid() is called from either ioctl() or exit() context. - * The DTrace framework is locked in such a way that meta providers may not - * register or unregister. This means that the meta provider cannot call - * dtrace_meta_register() or dtrace_meta_unregister(). However, the context - * is such that the provider may -- and is expected to -- call - * provider-related DTrace provider APIs including dtrace_unregister(). - */ -typedef struct dtrace_helper_probedesc { - char *dthpb_mod; /* probe module */ - char *dthpb_func; /* probe function */ - char *dthpb_name; /* probe name */ - uint64_t dthpb_base; /* base address */ - uint32_t *dthpb_offs; /* offsets array */ - uint32_t *dthpb_enoffs; /* is-enabled offsets array */ - uint32_t dthpb_noffs; /* offsets count */ - uint32_t dthpb_nenoffs; /* is-enabled offsets count */ - uint8_t *dthpb_args; /* argument mapping array */ - uint8_t dthpb_xargc; /* translated argument count */ - uint8_t dthpb_nargc; /* native argument count */ - char *dthpb_xtypes; /* translated types strings */ - char *dthpb_ntypes; /* native types strings */ -} dtrace_helper_probedesc_t; - -typedef struct dtrace_helper_provdesc { - char *dthpv_provname; /* provider name */ - dtrace_pattr_t dthpv_pattr; /* stability attributes */ -} dtrace_helper_provdesc_t; - -typedef struct dtrace_mops { - void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); - void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); - void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); -} dtrace_mops_t; - -typedef uintptr_t dtrace_meta_provider_id_t; - -extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, - dtrace_meta_provider_id_t *); -extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); - -/* - * DTrace Kernel Hooks - * - * The following functions are implemented by the base kernel and form a set of - * hooks used by the DTrace framework. DTrace hooks are implemented in either - * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a - * uts//os/dtrace_subr.c corresponding to each hardware platform. - */ - -typedef enum dtrace_vtime_state { - DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ - DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ - DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ - DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ -} dtrace_vtime_state_t; - -extern dtrace_vtime_state_t dtrace_vtime_active; -extern void dtrace_vtime_switch(kthread_t *next); -extern void dtrace_vtime_enable_tnf(void); -extern void dtrace_vtime_disable_tnf(void); -extern void dtrace_vtime_enable(void); -extern void dtrace_vtime_disable(void); - -struct regs; - -extern int (*dtrace_pid_probe_ptr)(struct regs *); -extern int (*dtrace_return_probe_ptr)(struct regs *); -extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); -extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); -extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); -extern void dtrace_fasttrap_fork(proc_t *, proc_t *); - -typedef uintptr_t dtrace_icookie_t; -typedef void (*dtrace_xcall_t)(void *); - -extern dtrace_icookie_t dtrace_interrupt_disable(void); -extern void dtrace_interrupt_enable(dtrace_icookie_t); - -extern void dtrace_membar_producer(void); -extern void dtrace_membar_consumer(void); - -extern void (*dtrace_cpu_init)(processorid_t); -extern void (*dtrace_modload)(struct modctl *); -extern void (*dtrace_modunload)(struct modctl *); -extern void (*dtrace_helpers_cleanup)(); -extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); -extern void (*dtrace_cpustart_init)(); -extern void (*dtrace_cpustart_fini)(); - -extern void (*dtrace_debugger_init)(); -extern void (*dtrace_debugger_fini)(); -extern dtrace_cacheid_t dtrace_predcache_id; - -extern hrtime_t dtrace_gethrtime(void); -extern void dtrace_sync(void); -extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); -extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); -extern void dtrace_vpanic(const char *, __va_list); -extern void dtrace_panic(const char *, ...); - -extern int dtrace_safe_defer_signal(void); -extern void dtrace_safe_synchronous_signal(void); - -extern int dtrace_mach_aframes(void); - -#if defined(__i386) || defined(__amd64) -extern int dtrace_instr_size(uchar_t *instr); -extern int dtrace_instr_size_isa(uchar_t *, model_t, int *); -extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t)); -extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t)); -extern void dtrace_invop_callsite(void); -#endif - -#ifdef __sparc -extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); -extern void dtrace_getfsr(uint64_t *); -#endif - -#define DTRACE_CPUFLAG_ISSET(flag) \ - (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag)) - -#define DTRACE_CPUFLAG_SET(flag) \ - (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag)) - -#define DTRACE_CPUFLAG_CLEAR(flag) \ - (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag)) - -#endif /* _KERNEL */ - -#endif /* _ASM */ - -#if defined(__i386) || defined(__amd64) - -#define DTRACE_INVOP_PUSHL_EBP 1 -#define DTRACE_INVOP_POPL_EBP 2 -#define DTRACE_INVOP_LEAVE 3 -#define DTRACE_INVOP_NOP 4 -#define DTRACE_INVOP_RET 5 - -#endif - -#ifdef __cplusplus -} -#endif - -#endif /* _SYS_DTRACE_H */ diff --git a/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h b/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h deleted file mode 100644 index fed537e..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h +++ /dev/null @@ -1,1298 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2007 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _SYS_DTRACE_IMPL_H -#define _SYS_DTRACE_IMPL_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces - * - * Note: The contents of this file are private to the implementation of the - * Solaris system and DTrace subsystem and are subject to change at any time - * without notice. Applications and drivers using these interfaces will fail - * to run on future releases. These interfaces should not be used for any - * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). - * Please refer to the "Solaris Dynamic Tracing Guide" for more information. - */ - -#include - -/* - * DTrace Implementation Constants and Typedefs - */ -#define DTRACE_MAXPROPLEN 128 -#define DTRACE_DYNVAR_CHUNKSIZE 256 - -struct dtrace_probe; -struct dtrace_ecb; -struct dtrace_predicate; -struct dtrace_action; -struct dtrace_provider; -struct dtrace_state; - -typedef struct dtrace_probe dtrace_probe_t; -typedef struct dtrace_ecb dtrace_ecb_t; -typedef struct dtrace_predicate dtrace_predicate_t; -typedef struct dtrace_action dtrace_action_t; -typedef struct dtrace_provider dtrace_provider_t; -typedef struct dtrace_meta dtrace_meta_t; -typedef struct dtrace_state dtrace_state_t; -typedef uint32_t dtrace_optid_t; -typedef uint32_t dtrace_specid_t; -typedef uint64_t dtrace_genid_t; - -/* - * DTrace Probes - * - * The probe is the fundamental unit of the DTrace architecture. Probes are - * created by DTrace providers, and managed by the DTrace framework. A probe - * is identified by a unique tuple, and has - * a unique probe identifier assigned to it. (Some probes are not associated - * with a specific point in text; these are called _unanchored probes_ and have - * no module or function associated with them.) Probes are represented as a - * dtrace_probe structure. To allow quick lookups based on each element of the - * probe tuple, probes are hashed by each of provider, module, function and - * name. (If a lookup is performed based on a regular expression, a - * dtrace_probekey is prepared, and a linear search is performed.) Each probe - * is additionally pointed to by a linear array indexed by its identifier. The - * identifier is the provider's mechanism for indicating to the DTrace - * framework that a probe has fired: the identifier is passed as the first - * argument to dtrace_probe(), where it is then mapped into the corresponding - * dtrace_probe structure. From the dtrace_probe structure, dtrace_probe() can - * iterate over the probe's list of enabling control blocks; see "DTrace - * Enabling Control Blocks", below.) - */ -struct dtrace_probe { - dtrace_id_t dtpr_id; /* probe identifier */ - dtrace_ecb_t *dtpr_ecb; /* ECB list; see below */ - dtrace_ecb_t *dtpr_ecb_last; /* last ECB in list */ - void *dtpr_arg; /* provider argument */ - dtrace_cacheid_t dtpr_predcache; /* predicate cache ID */ - int dtpr_aframes; /* artificial frames */ - dtrace_provider_t *dtpr_provider; /* pointer to provider */ - char *dtpr_mod; /* probe's module name */ - char *dtpr_func; /* probe's function name */ - char *dtpr_name; /* probe's name */ - dtrace_probe_t *dtpr_nextmod; /* next in module hash */ - dtrace_probe_t *dtpr_prevmod; /* previous in module hash */ - dtrace_probe_t *dtpr_nextfunc; /* next in function hash */ - dtrace_probe_t *dtpr_prevfunc; /* previous in function hash */ - dtrace_probe_t *dtpr_nextname; /* next in name hash */ - dtrace_probe_t *dtpr_prevname; /* previous in name hash */ - dtrace_genid_t dtpr_gen; /* probe generation ID */ -}; - -typedef int dtrace_probekey_f(const char *, const char *, int); - -typedef struct dtrace_probekey { - const char *dtpk_prov; /* provider name to match */ - dtrace_probekey_f *dtpk_pmatch; /* provider matching function */ - const char *dtpk_mod; /* module name to match */ - dtrace_probekey_f *dtpk_mmatch; /* module matching function */ - const char *dtpk_func; /* func name to match */ - dtrace_probekey_f *dtpk_fmatch; /* func matching function */ - const char *dtpk_name; /* name to match */ - dtrace_probekey_f *dtpk_nmatch; /* name matching function */ - dtrace_id_t dtpk_id; /* identifier to match */ -} dtrace_probekey_t; - -typedef struct dtrace_hashbucket { - struct dtrace_hashbucket *dthb_next; /* next on hash chain */ - dtrace_probe_t *dthb_chain; /* chain of probes */ - int dthb_len; /* number of probes here */ -} dtrace_hashbucket_t; - -typedef struct dtrace_hash { - dtrace_hashbucket_t **dth_tab; /* hash table */ - int dth_size; /* size of hash table */ - int dth_mask; /* mask to index into table */ - int dth_nbuckets; /* total number of buckets */ - uintptr_t dth_nextoffs; /* offset of next in probe */ - uintptr_t dth_prevoffs; /* offset of prev in probe */ - uintptr_t dth_stroffs; /* offset of str in probe */ -} dtrace_hash_t; - -/* - * DTrace Enabling Control Blocks - * - * When a provider wishes to fire a probe, it calls into dtrace_probe(), - * passing the probe identifier as the first argument. As described above, - * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t - * structure. This structure contains information about the probe, and a - * pointer to the list of Enabling Control Blocks (ECBs). Each ECB points to - * DTrace consumer state, and contains an optional predicate, and a list of - * actions. (Shown schematically below.) The ECB abstraction allows a single - * probe to be multiplexed across disjoint consumers, or across disjoint - * enablings of a single probe within one consumer. - * - * Enabling Control Block - * dtrace_ecb_t - * +------------------------+ - * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID) - * | dtrace_state_t * ------+--------------> State associated with this ECB - * | dtrace_predicate_t * --+---------+ - * | dtrace_action_t * -----+----+ | - * | dtrace_ecb_t * ---+ | | | Predicate (if any) - * +-------------------+----+ | | dtrace_predicate_t - * | | +---> +--------------------+ - * | | | dtrace_difo_t * ---+----> DIFO - * | | +--------------------+ - * | | - * Next ECB | | Action - * (if any) | | dtrace_action_t - * : +--> +-------------------+ - * : | dtrace_actkind_t -+------> kind - * v | dtrace_difo_t * --+------> DIFO (if any) - * | dtrace_recdesc_t -+------> record descr. - * | dtrace_action_t * +------+ - * +-------------------+ | - * | Next action - * +-------------------------------+ (if any) - * | - * | Action - * | dtrace_action_t - * +--> +-------------------+ - * | dtrace_actkind_t -+------> kind - * | dtrace_difo_t * --+------> DIFO (if any) - * | dtrace_action_t * +------+ - * +-------------------+ | - * | Next action - * +-------------------------------+ (if any) - * | - * : - * v - * - * - * dtrace_probe() iterates over the ECB list. If the ECB needs less space - * than is available in the principal buffer, the ECB is processed: if the - * predicate is non-NULL, the DIF object is executed. If the result is - * non-zero, the action list is processed, with each action being executed - * accordingly. When the action list has been completely executed, processing - * advances to the next ECB. processing advances to the next ECB. If the - * result is non-zero; For each ECB, it first determines the The ECB - * abstraction allows disjoint consumers to multiplex on single probes. - */ -struct dtrace_ecb { - dtrace_epid_t dte_epid; /* enabled probe ID */ - uint32_t dte_alignment; /* required alignment */ - size_t dte_needed; /* bytes needed */ - size_t dte_size; /* total size of payload */ - dtrace_predicate_t *dte_predicate; /* predicate, if any */ - dtrace_action_t *dte_action; /* actions, if any */ - dtrace_ecb_t *dte_next; /* next ECB on probe */ - dtrace_state_t *dte_state; /* pointer to state */ - uint32_t dte_cond; /* security condition */ - dtrace_probe_t *dte_probe; /* pointer to probe */ - dtrace_action_t *dte_action_last; /* last action on ECB */ - uint64_t dte_uarg; /* library argument */ -}; - -struct dtrace_predicate { - dtrace_difo_t *dtp_difo; /* DIF object */ - dtrace_cacheid_t dtp_cacheid; /* cache identifier */ - int dtp_refcnt; /* reference count */ -}; - -struct dtrace_action { - dtrace_actkind_t dta_kind; /* kind of action */ - uint16_t dta_intuple; /* boolean: in aggregation */ - uint32_t dta_refcnt; /* reference count */ - dtrace_difo_t *dta_difo; /* pointer to DIFO */ - dtrace_recdesc_t dta_rec; /* record description */ - dtrace_action_t *dta_prev; /* previous action */ - dtrace_action_t *dta_next; /* next action */ -}; - -typedef struct dtrace_aggregation { - dtrace_action_t dtag_action; /* action; must be first */ - dtrace_aggid_t dtag_id; /* identifier */ - dtrace_ecb_t *dtag_ecb; /* corresponding ECB */ - dtrace_action_t *dtag_first; /* first action in tuple */ - uint32_t dtag_base; /* base of aggregation */ - uint8_t dtag_hasarg; /* boolean: has argument */ - uint64_t dtag_initial; /* initial value */ - void (*dtag_aggregate)(uint64_t *, uint64_t, uint64_t); -} dtrace_aggregation_t; - -/* - * DTrace Buffers - * - * Principal buffers, aggregation buffers, and speculative buffers are all - * managed with the dtrace_buffer structure. By default, this structure - * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the - * active and passive buffers, respectively. For speculative buffers, - * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point - * to a scratch buffer. For all buffer types, the dtrace_buffer structure is - * always allocated on a per-CPU basis; a single dtrace_buffer structure is - * never shared among CPUs. (That is, there is never true sharing of the - * dtrace_buffer structure; to prevent false sharing of the structure, it must - * always be aligned to the coherence granularity -- generally 64 bytes.) - * - * One of the critical design decisions of DTrace is that a given ECB always - * stores the same quantity and type of data. This is done to assure that the - * only metadata required for an ECB's traced data is the EPID. That is, from - * the EPID, the consumer can determine the data layout. (The data buffer - * layout is shown schematically below.) By assuring that one can determine - * data layout from the EPID, the metadata stream can be separated from the - * data stream -- simplifying the data stream enormously. - * - * base of data buffer ---> +------+--------------------+------+ - * | EPID | data | EPID | - * +------+--------+------+----+------+ - * | data | EPID | data | - * +---------------+------+-----------+ - * | data, cont. | - * +------+--------------------+------+ - * | EPID | data | | - * +------+--------------------+ | - * | || | - * | || | - * | \/ | - * : : - * . . - * . . - * . . - * : : - * | | - * limit of data buffer ---> +----------------------------------+ - * - * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the - * principal buffer (both scratch and payload) exceed the available space. If - * the ECB's needs exceed available space (and if the principal buffer policy - * is the default "switch" policy), the ECB is dropped, the buffer's drop count - * is incremented, and processing advances to the next ECB. If the ECB's needs - * can be met with the available space, the ECB is processed, but the offset in - * the principal buffer is only advanced if the ECB completes processing - * without error. - * - * When a buffer is to be switched (either because the buffer is the principal - * buffer with a "switch" policy or because it is an aggregation buffer), a - * cross call is issued to the CPU associated with the buffer. In the cross - * call context, interrupts are disabled, and the active and the inactive - * buffers are atomically switched. This involves switching the data pointers, - * copying the various state fields (offset, drops, errors, etc.) into their - * inactive equivalents, and clearing the state fields. Because interrupts are - * disabled during this procedure, the switch is guaranteed to appear atomic to - * dtrace_probe(). - * - * DTrace Ring Buffering - * - * To process a ring buffer correctly, one must know the oldest valid record. - * Processing starts at the oldest record in the buffer and continues until - * the end of the buffer is reached. Processing then resumes starting with - * the record stored at offset 0 in the buffer, and continues until the - * youngest record is processed. If trace records are of a fixed-length, - * determining the oldest record is trivial: - * - * - If the ring buffer has not wrapped, the oldest record is the record - * stored at offset 0. - * - * - If the ring buffer has wrapped, the oldest record is the record stored - * at the current offset. - * - * With variable length records, however, just knowing the current offset - * doesn't suffice for determining the oldest valid record: assuming that one - * allows for arbitrary data, one has no way of searching forward from the - * current offset to find the oldest valid record. (That is, one has no way - * of separating data from metadata.) It would be possible to simply refuse to - * process any data in the ring buffer between the current offset and the - * limit, but this leaves (potentially) an enormous amount of otherwise valid - * data unprocessed. - * - * To effect ring buffering, we track two offsets in the buffer: the current - * offset and the _wrapped_ offset. If a request is made to reserve some - * amount of data, and the buffer has wrapped, the wrapped offset is - * incremented until the wrapped offset minus the current offset is greater - * than or equal to the reserve request. This is done by repeatedly looking - * up the ECB corresponding to the EPID at the current wrapped offset, and - * incrementing the wrapped offset by the size of the data payload - * corresponding to that ECB. If this offset is greater than or equal to the - * limit of the data buffer, the wrapped offset is set to 0. Thus, the - * current offset effectively "chases" the wrapped offset around the buffer. - * Schematically: - * - * base of data buffer ---> +------+--------------------+------+ - * | EPID | data | EPID | - * +------+--------+------+----+------+ - * | data | EPID | data | - * +---------------+------+-----------+ - * | data, cont. | - * +------+---------------------------+ - * | EPID | data | - * current offset ---> +------+---------------------------+ - * | invalid data | - * wrapped offset ---> +------+--------------------+------+ - * | EPID | data | EPID | - * +------+--------+------+----+------+ - * | data | EPID | data | - * +---------------+------+-----------+ - * : : - * . . - * . ... valid data ... . - * . . - * : : - * +------+-------------+------+------+ - * | EPID | data | EPID | data | - * +------+------------++------+------+ - * | data, cont. | leftover | - * limit of data buffer ---> +-------------------+--------------+ - * - * If the amount of requested buffer space exceeds the amount of space - * available between the current offset and the end of the buffer: - * - * (1) all words in the data buffer between the current offset and the limit - * of the data buffer (marked "leftover", above) are set to - * DTRACE_EPIDNONE - * - * (2) the wrapped offset is set to zero - * - * (3) the iteration process described above occurs until the wrapped offset - * is greater than the amount of desired space. - * - * The wrapped offset is implemented by (re-)using the inactive offset. - * In a "switch" buffer policy, the inactive offset stores the offset in - * the inactive buffer; in a "ring" buffer policy, it stores the wrapped - * offset. - * - * DTrace Scratch Buffering - * - * Some ECBs may wish to allocate dynamically-sized temporary scratch memory. - * To accommodate such requests easily, scratch memory may be allocated in - * the buffer beyond the current offset plus the needed memory of the current - * ECB. If there isn't sufficient room in the buffer for the requested amount - * of scratch space, the allocation fails and an error is generated. Scratch - * memory is tracked in the dtrace_mstate_t and is automatically freed when - * the ECB ceases processing. Note that ring buffers cannot allocate their - * scratch from the principal buffer -- lest they needlessly overwrite older, - * valid data. Ring buffers therefore have their own dedicated scratch buffer - * from which scratch is allocated. - */ -#define DTRACEBUF_RING 0x0001 /* bufpolicy set to "ring" */ -#define DTRACEBUF_FILL 0x0002 /* bufpolicy set to "fill" */ -#define DTRACEBUF_NOSWITCH 0x0004 /* do not switch buffer */ -#define DTRACEBUF_WRAPPED 0x0008 /* ring buffer has wrapped */ -#define DTRACEBUF_DROPPED 0x0010 /* drops occurred */ -#define DTRACEBUF_ERROR 0x0020 /* errors occurred */ -#define DTRACEBUF_FULL 0x0040 /* "fill" buffer is full */ -#define DTRACEBUF_CONSUMED 0x0080 /* buffer has been consumed */ -#define DTRACEBUF_INACTIVE 0x0100 /* buffer is not yet active */ - -typedef struct dtrace_buffer { - uint64_t dtb_offset; /* current offset in buffer */ - uint64_t dtb_size; /* size of buffer */ - uint32_t dtb_flags; /* flags */ - uint32_t dtb_drops; /* number of drops */ - caddr_t dtb_tomax; /* active buffer */ - caddr_t dtb_xamot; /* inactive buffer */ - uint32_t dtb_xamot_flags; /* inactive flags */ - uint32_t dtb_xamot_drops; /* drops in inactive buffer */ - uint64_t dtb_xamot_offset; /* offset in inactive buffer */ - uint32_t dtb_errors; /* number of errors */ - uint32_t dtb_xamot_errors; /* errors in inactive buffer */ -#ifndef _LP64 - uint64_t dtb_pad1; -#endif -} dtrace_buffer_t; - -/* - * DTrace Aggregation Buffers - * - * Aggregation buffers use much of the same mechanism as described above - * ("DTrace Buffers"). However, because an aggregation is fundamentally a - * hash, there exists dynamic metadata associated with an aggregation buffer - * that is not associated with other kinds of buffers. This aggregation - * metadata is _only_ relevant for the in-kernel implementation of - * aggregations; it is not actually relevant to user-level consumers. To do - * this, we allocate dynamic aggregation data (hash keys and hash buckets) - * starting below the _limit_ of the buffer, and we allocate data from the - * _base_ of the buffer. When the aggregation buffer is copied out, _only_ the - * data is copied out; the metadata is simply discarded. Schematically, - * aggregation buffers look like: - * - * base of data buffer ---> +-------+------+-----------+-------+ - * | aggid | key | value | aggid | - * +-------+------+-----------+-------+ - * | key | - * +-------+-------+-----+------------+ - * | value | aggid | key | value | - * +-------+------++-----+------+-----+ - * | aggid | key | value | | - * +-------+------+-------------+ | - * | || | - * | || | - * | \/ | - * : : - * . . - * . . - * . . - * : : - * | /\ | - * | || +------------+ - * | || | | - * +---------------------+ | - * | hash keys | - * | (dtrace_aggkey structures) | - * | | - * +----------------------------------+ - * | hash buckets | - * | (dtrace_aggbuffer structure) | - * | | - * limit of data buffer ---> +----------------------------------+ - * - * - * As implied above, just as we assure that ECBs always store a constant - * amount of data, we assure that a given aggregation -- identified by its - * aggregation ID -- always stores data of a constant quantity and type. - * As with EPIDs, this allows the aggregation ID to serve as the metadata for a - * given record. - * - * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t) - * aligned. (If this the structure changes such that this becomes false, an - * assertion will fail in dtrace_aggregate().) - */ -typedef struct dtrace_aggkey { - uint32_t dtak_hashval; /* hash value */ - uint32_t dtak_action:4; /* action -- 4 bits */ - uint32_t dtak_size:28; /* size -- 28 bits */ - caddr_t dtak_data; /* data pointer */ - struct dtrace_aggkey *dtak_next; /* next in hash chain */ -} dtrace_aggkey_t; - -typedef struct dtrace_aggbuffer { - uintptr_t dtagb_hashsize; /* number of buckets */ - uintptr_t dtagb_free; /* free list of keys */ - dtrace_aggkey_t **dtagb_hash; /* hash table */ -} dtrace_aggbuffer_t; - -/* - * DTrace Speculations - * - * Speculations have a per-CPU buffer and a global state. Once a speculation - * buffer has been comitted or discarded, it cannot be reused until all CPUs - * have taken the same action (commit or discard) on their respective - * speculative buffer. However, because DTrace probes may execute in arbitrary - * context, other CPUs cannot simply be cross-called at probe firing time to - * perform the necessary commit or discard. The speculation states thus - * optimize for the case that a speculative buffer is only active on one CPU at - * the time of a commit() or discard() -- for if this is the case, other CPUs - * need not take action, and the speculation is immediately available for - * reuse. If the speculation is active on multiple CPUs, it must be - * asynchronously cleaned -- potentially leading to a higher rate of dirty - * speculative drops. The speculation states are as follows: - * - * DTRACESPEC_INACTIVE <= Initial state; inactive speculation - * DTRACESPEC_ACTIVE <= Allocated, but not yet speculatively traced to - * DTRACESPEC_ACTIVEONE <= Speculatively traced to on one CPU - * DTRACESPEC_ACTIVEMANY <= Speculatively traced to on more than one CPU - * DTRACESPEC_COMMITTING <= Currently being commited on one CPU - * DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs - * DTRACESPEC_DISCARDING <= Currently being discarded on many CPUs - * - * The state transition diagram is as follows: - * - * +----------------------------------------------------------+ - * | | - * | +------------+ | - * | +-------------------| COMMITTING |<-----------------+ | - * | | +------------+ | | - * | | copied spec. ^ commit() on | | discard() on - * | | into principal | active CPU | | active CPU - * | | | commit() | | - * V V | | | - * +----------+ +--------+ +-----------+ - * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE | - * +----------+ speculation() +--------+ speculate() +-----------+ - * ^ ^ | | | - * | | | discard() | | - * | | asynchronously | discard() on | | speculate() - * | | cleaned V inactive CPU | | on inactive - * | | +------------+ | | CPU - * | +-------------------| DISCARDING |<-----------------+ | - * | +------------+ | - * | asynchronously ^ | - * | copied spec. | discard() | - * | into principal +------------------------+ | - * | | V - * +----------------+ commit() +------------+ - * | COMMITTINGMANY |<----------------------------------| ACTIVEMANY | - * +----------------+ +------------+ - */ -typedef enum dtrace_speculation_state { - DTRACESPEC_INACTIVE = 0, - DTRACESPEC_ACTIVE, - DTRACESPEC_ACTIVEONE, - DTRACESPEC_ACTIVEMANY, - DTRACESPEC_COMMITTING, - DTRACESPEC_COMMITTINGMANY, - DTRACESPEC_DISCARDING -} dtrace_speculation_state_t; - -typedef struct dtrace_speculation { - dtrace_speculation_state_t dtsp_state; /* current speculation state */ - int dtsp_cleaning; /* non-zero if being cleaned */ - dtrace_buffer_t *dtsp_buffer; /* speculative buffer */ -} dtrace_speculation_t; - -/* - * DTrace Dynamic Variables - * - * The dynamic variable problem is obviously decomposed into two subproblems: - * allocating new dynamic storage, and freeing old dynamic storage. The - * presence of the second problem makes the first much more complicated -- or - * rather, the absence of the second renders the first trivial. This is the - * case with aggregations, for which there is effectively no deallocation of - * dynamic storage. (Or more accurately, all dynamic storage is deallocated - * when a snapshot is taken of the aggregation.) As DTrace dynamic variables - * allow for both dynamic allocation and dynamic deallocation, the - * implementation of dynamic variables is quite a bit more complicated than - * that of their aggregation kin. - * - * We observe that allocating new dynamic storage is tricky only because the - * size can vary -- the allocation problem is much easier if allocation sizes - * are uniform. We further observe that in D, the size of dynamic variables is - * actually _not_ dynamic -- dynamic variable sizes may be determined by static - * analysis of DIF text. (This is true even of putatively dynamically-sized - * objects like strings and stacks, the sizes of which are dictated by the - * "stringsize" and "stackframes" variables, respectively.) We exploit this by - * performing this analysis on all DIF before enabling any probes. For each - * dynamic load or store, we calculate the dynamically-allocated size plus the - * size of the dtrace_dynvar structure plus the storage required to key the - * data. For all DIF, we take the largest value and dub it the _chunksize_. - * We then divide dynamic memory into two parts: a hash table that is wide - * enough to have every chunk in its own bucket, and a larger region of equal - * chunksize units. Whenever we wish to dynamically allocate a variable, we - * always allocate a single chunk of memory. Depending on the uniformity of - * allocation, this will waste some amount of memory -- but it eliminates the - * non-determinism inherent in traditional heap fragmentation. - * - * Dynamic objects are allocated by storing a non-zero value to them; they are - * deallocated by storing a zero value to them. Dynamic variables are - * complicated enormously by being shared between CPUs. In particular, - * consider the following scenario: - * - * CPU A CPU B - * +---------------------------------+ +---------------------------------+ - * | | | | - * | allocates dynamic object a[123] | | | - * | by storing the value 345 to it | | | - * | ---------> | - * | | | wishing to load from object | - * | | | a[123], performs lookup in | - * | | | dynamic variable space | - * | <--------- | - * | deallocates object a[123] by | | | - * | storing 0 to it | | | - * | | | | - * | allocates dynamic object b[567] | | performs load from a[123] | - * | by storing the value 789 to it | | | - * : : : : - * . . . . - * - * This is obviously a race in the D program, but there are nonetheless only - * two valid values for CPU B's load from a[123]: 345 or 0. Most importantly, - * CPU B may _not_ see the value 789 for a[123]. - * - * There are essentially two ways to deal with this: - * - * (1) Explicitly spin-lock variables. That is, if CPU B wishes to load - * from a[123], it needs to lock a[123] and hold the lock for the - * duration that it wishes to manipulate it. - * - * (2) Avoid reusing freed chunks until it is known that no CPU is referring - * to them. - * - * The implementation of (1) is rife with complexity, because it requires the - * user of a dynamic variable to explicitly decree when they are done using it. - * Were all variables by value, this perhaps wouldn't be debilitating -- but - * dynamic variables of non-scalar types are tracked by reference. That is, if - * a dynamic variable is, say, a string, and that variable is to be traced to, - * say, the principal buffer, the DIF emulation code returns to the main - * dtrace_probe() loop a pointer to the underlying storage, not the contents of - * the storage. Further, code calling on DIF emulation would have to be aware - * that the DIF emulation has returned a reference to a dynamic variable that - * has been potentially locked. The variable would have to be unlocked after - * the main dtrace_probe() loop is finished with the variable, and the main - * dtrace_probe() loop would have to be careful to not call any further DIF - * emulation while the variable is locked to avoid deadlock. More generally, - * if one were to implement (1), DIF emulation code dealing with dynamic - * variables could only deal with one dynamic variable at a time (lest deadlock - * result). To sum, (1) exports too much subtlety to the users of dynamic - * variables -- increasing maintenance burden and imposing serious constraints - * on future DTrace development. - * - * The implementation of (2) is also complex, but the complexity is more - * manageable. We need to be sure that when a variable is deallocated, it is - * not placed on a traditional free list, but rather on a _dirty_ list. Once a - * variable is on a dirty list, it cannot be found by CPUs performing a - * subsequent lookup of the variable -- but it may still be in use by other - * CPUs. To assure that all CPUs that may be seeing the old variable have - * cleared out of probe context, a dtrace_sync() can be issued. Once the - * dtrace_sync() has completed, it can be known that all CPUs are done - * manipulating the dynamic variable -- the dirty list can be atomically - * appended to the free list. Unfortunately, there's a slight hiccup in this - * mechanism: dtrace_sync() may not be issued from probe context. The - * dtrace_sync() must be therefore issued asynchronously from non-probe - * context. For this we rely on the DTrace cleaner, a cyclic that runs at the - * "cleanrate" frequency. To ease this implementation, we define several chunk - * lists: - * - * - Dirty. Deallocated chunks, not yet cleaned. Not available. - * - * - Rinsing. Formerly dirty chunks that are currently being asynchronously - * cleaned. Not available, but will be shortly. Dynamic variable - * allocation may not spin or block for availability, however. - * - * - Clean. Clean chunks, ready for allocation -- but not on the free list. - * - * - Free. Available for allocation. - * - * Moreover, to avoid absurd contention, _each_ of these lists is implemented - * on a per-CPU basis. This is only for performance, not correctness; chunks - * may be allocated from another CPU's free list. The algorithm for allocation - * then is this: - * - * (1) Attempt to atomically allocate from current CPU's free list. If list - * is non-empty and allocation is successful, allocation is complete. - * - * (2) If the clean list is non-empty, atomically move it to the free list, - * and reattempt (1). - * - * (3) If the dynamic variable space is in the CLEAN state, look for free - * and clean lists on other CPUs by setting the current CPU to the next - * CPU, and reattempting (1). If the next CPU is the current CPU (that - * is, if all CPUs have been checked), atomically switch the state of - * the dynamic variable space based on the following: - * - * - If no free chunks were found and no dirty chunks were found, - * atomically set the state to EMPTY. - * - * - If dirty chunks were found, atomically set the state to DIRTY. - * - * - If rinsing chunks were found, atomically set the state to RINSING. - * - * (4) Based on state of dynamic variable space state, increment appropriate - * counter to indicate dynamic drops (if in EMPTY state) vs. dynamic - * dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in - * RINSING state). Fail the allocation. - * - * The cleaning cyclic operates with the following algorithm: for all CPUs - * with a non-empty dirty list, atomically move the dirty list to the rinsing - * list. Perform a dtrace_sync(). For all CPUs with a non-empty rinsing list, - * atomically move the rinsing list to the clean list. Perform another - * dtrace_sync(). By this point, all CPUs have seen the new clean list; the - * state of the dynamic variable space can be restored to CLEAN. - * - * There exist two final races that merit explanation. The first is a simple - * allocation race: - * - * CPU A CPU B - * +---------------------------------+ +---------------------------------+ - * | | | | - * | allocates dynamic object a[123] | | allocates dynamic object a[123] | - * | by storing the value 345 to it | | by storing the value 567 to it | - * | | | | - * : : : : - * . . . . - * - * Again, this is a race in the D program. It can be resolved by having a[123] - * hold the value 345 or a[123] hold the value 567 -- but it must be true that - * a[123] have only _one_ of these values. (That is, the racing CPUs may not - * put the same element twice on the same hash chain.) This is resolved - * simply: before the allocation is undertaken, the start of the new chunk's - * hash chain is noted. Later, after the allocation is complete, the hash - * chain is atomically switched to point to the new element. If this fails - * (because of either concurrent allocations or an allocation concurrent with a - * deletion), the newly allocated chunk is deallocated to the dirty list, and - * the whole process of looking up (and potentially allocating) the dynamic - * variable is reattempted. - * - * The final race is a simple deallocation race: - * - * CPU A CPU B - * +---------------------------------+ +---------------------------------+ - * | | | | - * | deallocates dynamic object | | deallocates dynamic object | - * | a[123] by storing the value 0 | | a[123] by storing the value 0 | - * | to it | | to it | - * | | | | - * : : : : - * . . . . - * - * Once again, this is a race in the D program, but it is one that we must - * handle without corrupting the underlying data structures. Because - * deallocations require the deletion of a chunk from the middle of a hash - * chain, we cannot use a single-word atomic operation to remove it. For this, - * we add a spin lock to the hash buckets that is _only_ used for deallocations - * (allocation races are handled as above). Further, this spin lock is _only_ - * held for the duration of the delete; before control is returned to the DIF - * emulation code, the hash bucket is unlocked. - */ -typedef struct dtrace_key { - uint64_t dttk_value; /* data value or data pointer */ - uint64_t dttk_size; /* 0 if by-val, >0 if by-ref */ -} dtrace_key_t; - -typedef struct dtrace_tuple { - uint32_t dtt_nkeys; /* number of keys in tuple */ - uint32_t dtt_pad; /* padding */ - dtrace_key_t dtt_key[1]; /* array of tuple keys */ -} dtrace_tuple_t; - -typedef struct dtrace_dynvar { - uint64_t dtdv_hashval; /* hash value -- 0 if free */ - struct dtrace_dynvar *dtdv_next; /* next on list or hash chain */ - void *dtdv_data; /* pointer to data */ - dtrace_tuple_t dtdv_tuple; /* tuple key */ -} dtrace_dynvar_t; - -typedef enum dtrace_dynvar_op { - DTRACE_DYNVAR_ALLOC, - DTRACE_DYNVAR_NOALLOC, - DTRACE_DYNVAR_DEALLOC -} dtrace_dynvar_op_t; - -typedef struct dtrace_dynhash { - dtrace_dynvar_t *dtdh_chain; /* hash chain for this bucket */ - uintptr_t dtdh_lock; /* deallocation lock */ -#ifdef _LP64 - uintptr_t dtdh_pad[6]; /* pad to avoid false sharing */ -#else - uintptr_t dtdh_pad[14]; /* pad to avoid false sharing */ -#endif -} dtrace_dynhash_t; - -typedef struct dtrace_dstate_percpu { - dtrace_dynvar_t *dtdsc_free; /* free list for this CPU */ - dtrace_dynvar_t *dtdsc_dirty; /* dirty list for this CPU */ - dtrace_dynvar_t *dtdsc_rinsing; /* rinsing list for this CPU */ - dtrace_dynvar_t *dtdsc_clean; /* clean list for this CPU */ - uint64_t dtdsc_drops; /* number of capacity drops */ - uint64_t dtdsc_dirty_drops; /* number of dirty drops */ - uint64_t dtdsc_rinsing_drops; /* number of rinsing drops */ -#ifdef _LP64 - uint64_t dtdsc_pad; /* pad to avoid false sharing */ -#else - uint64_t dtdsc_pad[2]; /* pad to avoid false sharing */ -#endif -} dtrace_dstate_percpu_t; - -typedef enum dtrace_dstate_state { - DTRACE_DSTATE_CLEAN = 0, - DTRACE_DSTATE_EMPTY, - DTRACE_DSTATE_DIRTY, - DTRACE_DSTATE_RINSING -} dtrace_dstate_state_t; - -typedef struct dtrace_dstate { - void *dtds_base; /* base of dynamic var. space */ - size_t dtds_size; /* size of dynamic var. space */ - size_t dtds_hashsize; /* number of buckets in hash */ - size_t dtds_chunksize; /* size of each chunk */ - dtrace_dynhash_t *dtds_hash; /* pointer to hash table */ - dtrace_dstate_state_t dtds_state; /* current dynamic var. state */ - dtrace_dstate_percpu_t *dtds_percpu; /* per-CPU dyn. var. state */ -} dtrace_dstate_t; - -/* - * DTrace Variable State - * - * The DTrace variable state tracks user-defined variables in its dtrace_vstate - * structure. Each DTrace consumer has exactly one dtrace_vstate structure, - * but some dtrace_vstate structures may exist without a corresponding DTrace - * consumer (see "DTrace Helpers", below). As described in , - * user-defined variables can have one of three scopes: - * - * DIFV_SCOPE_GLOBAL => global scope - * DIFV_SCOPE_THREAD => thread-local scope (i.e. "self->" variables) - * DIFV_SCOPE_LOCAL => clause-local scope (i.e. "this->" variables) - * - * The variable state tracks variables by both their scope and their allocation - * type: - * - * - The dtvs_globals and dtvs_locals members each point to an array of - * dtrace_statvar structures. These structures contain both the variable - * metadata (dtrace_difv structures) and the underlying storage for all - * statically allocated variables, including statically allocated - * DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables. - * - * - The dtvs_tlocals member points to an array of dtrace_difv structures for - * DIFV_SCOPE_THREAD variables. As such, this array tracks _only_ the - * variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage - * is allocated out of the dynamic variable space. - * - * - The dtvs_dynvars member is the dynamic variable state associated with the - * variable state. The dynamic variable state (described in "DTrace Dynamic - * Variables", above) tracks all DIFV_SCOPE_THREAD variables and all - * dynamically-allocated DIFV_SCOPE_GLOBAL variables. - */ -typedef struct dtrace_statvar { - uint64_t dtsv_data; /* data or pointer to it */ - size_t dtsv_size; /* size of pointed-to data */ - int dtsv_refcnt; /* reference count */ - dtrace_difv_t dtsv_var; /* variable metadata */ -} dtrace_statvar_t; - -typedef struct dtrace_vstate { - dtrace_state_t *dtvs_state; /* back pointer to state */ - dtrace_statvar_t **dtvs_globals; /* statically-allocated glbls */ - int dtvs_nglobals; /* number of globals */ - dtrace_difv_t *dtvs_tlocals; /* thread-local metadata */ - int dtvs_ntlocals; /* number of thread-locals */ - dtrace_statvar_t **dtvs_locals; /* clause-local data */ - int dtvs_nlocals; /* number of clause-locals */ - dtrace_dstate_t dtvs_dynvars; /* dynamic variable state */ -} dtrace_vstate_t; - -/* - * DTrace Machine State - * - * In the process of processing a fired probe, DTrace needs to track and/or - * cache some per-CPU state associated with that particular firing. This is - * state that is always discarded after the probe firing has completed, and - * much of it is not specific to any DTrace consumer, remaining valid across - * all ECBs. This state is tracked in the dtrace_mstate structure. - */ -#define DTRACE_MSTATE_ARGS 0x00000001 -#define DTRACE_MSTATE_PROBE 0x00000002 -#define DTRACE_MSTATE_EPID 0x00000004 -#define DTRACE_MSTATE_TIMESTAMP 0x00000008 -#define DTRACE_MSTATE_STACKDEPTH 0x00000010 -#define DTRACE_MSTATE_CALLER 0x00000020 -#define DTRACE_MSTATE_IPL 0x00000040 -#define DTRACE_MSTATE_FLTOFFS 0x00000080 -#define DTRACE_MSTATE_WALLTIMESTAMP 0x00000100 -#define DTRACE_MSTATE_USTACKDEPTH 0x00000200 -#define DTRACE_MSTATE_UCALLER 0x00000400 - -typedef struct dtrace_mstate { - uintptr_t dtms_scratch_base; /* base of scratch space */ - uintptr_t dtms_scratch_ptr; /* current scratch pointer */ - size_t dtms_scratch_size; /* scratch size */ - uint32_t dtms_present; /* variables that are present */ - uint64_t dtms_arg[5]; /* cached arguments */ - dtrace_epid_t dtms_epid; /* current EPID */ - uint64_t dtms_timestamp; /* cached timestamp */ - hrtime_t dtms_walltimestamp; /* cached wall timestamp */ - int dtms_stackdepth; /* cached stackdepth */ - int dtms_ustackdepth; /* cached ustackdepth */ - struct dtrace_probe *dtms_probe; /* current probe */ - uintptr_t dtms_caller; /* cached caller */ - uint64_t dtms_ucaller; /* cached user-level caller */ - int dtms_ipl; /* cached interrupt pri lev */ - int dtms_fltoffs; /* faulting DIFO offset */ - uintptr_t dtms_strtok; /* saved strtok() pointer */ - uint32_t dtms_access; /* memory access rights */ - dtrace_difo_t *dtms_difo; /* current dif object */ -} dtrace_mstate_t; - -#define DTRACE_COND_OWNER 0x1 -#define DTRACE_COND_USERMODE 0x2 -#define DTRACE_COND_ZONEOWNER 0x4 - -#define DTRACE_PROBEKEY_MAXDEPTH 8 /* max glob recursion depth */ - -/* - * Access flag used by dtrace_mstate.dtms_access. - */ -#define DTRACE_ACCESS_KERNEL 0x1 /* the priv to read kmem */ - - -/* - * DTrace Activity - * - * Each DTrace consumer is in one of several states, which (for purposes of - * avoiding yet-another overloading of the noun "state") we call the current - * _activity_. The activity transitions on dtrace_go() (from DTRACIOCGO), on - * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action. Activities may - * only transition in one direction; the activity transition diagram is a - * directed acyclic graph. The activity transition diagram is as follows: - * - * - * +----------+ +--------+ +--------+ - * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE | - * +----------+ dtrace_go(), +--------+ dtrace_go(), +--------+ - * before BEGIN | after BEGIN | | | - * | | | | - * exit() action | | | | - * from BEGIN ECB | | | | - * | | | | - * v | | | - * +----------+ exit() action | | | - * +-----------------------------| DRAINING |<-------------------+ | | - * | +----------+ | | - * | | | | - * | dtrace_stop(), | | | - * | before END | | | - * | | | | - * | v | | - * | +---------+ +----------+ | | - * | | STOPPED |<----------------| COOLDOWN |<----------------------+ | - * | +---------+ dtrace_stop(), +----------+ dtrace_stop(), | - * | after END before END | - * | | - * | +--------+ | - * +----------------------------->| KILLED |<--------------------------+ - * deadman timeout or +--------+ deadman timeout or - * killed consumer killed consumer - * - * Note that once a DTrace consumer has stopped tracing, there is no way to - * restart it; if a DTrace consumer wishes to restart tracing, it must reopen - * the DTrace pseudodevice. - */ -typedef enum dtrace_activity { - DTRACE_ACTIVITY_INACTIVE = 0, /* not yet running */ - DTRACE_ACTIVITY_WARMUP, /* while starting */ - DTRACE_ACTIVITY_ACTIVE, /* running */ - DTRACE_ACTIVITY_DRAINING, /* before stopping */ - DTRACE_ACTIVITY_COOLDOWN, /* while stopping */ - DTRACE_ACTIVITY_STOPPED, /* after stopping */ - DTRACE_ACTIVITY_KILLED /* killed */ -} dtrace_activity_t; - -/* - * DTrace Helper Implementation - * - * A description of the helper architecture may be found in . - * Each process contains a pointer to its helpers in its p_dtrace_helpers - * member. This is a pointer to a dtrace_helpers structure, which contains an - * array of pointers to dtrace_helper structures, helper variable state (shared - * among a process's helpers) and a generation count. (The generation count is - * used to provide an identifier when a helper is added so that it may be - * subsequently removed.) The dtrace_helper structure is self-explanatory, - * containing pointers to the objects needed to execute the helper. Note that - * helpers are _duplicated_ across fork(2), and destroyed on exec(2). No more - * than dtrace_helpers_max are allowed per-process. - */ -#define DTRACE_HELPER_ACTION_USTACK 0 -#define DTRACE_NHELPER_ACTIONS 1 - -typedef struct dtrace_helper_action { - int dtha_generation; /* helper action generation */ - int dtha_nactions; /* number of actions */ - dtrace_difo_t *dtha_predicate; /* helper action predicate */ - dtrace_difo_t **dtha_actions; /* array of actions */ - struct dtrace_helper_action *dtha_next; /* next helper action */ -} dtrace_helper_action_t; - -typedef struct dtrace_helper_provider { - int dthp_generation; /* helper provider generation */ - uint32_t dthp_ref; /* reference count */ - dof_helper_t dthp_prov; /* DOF w/ provider and probes */ -} dtrace_helper_provider_t; - -typedef struct dtrace_helpers { - dtrace_helper_action_t **dthps_actions; /* array of helper actions */ - dtrace_vstate_t dthps_vstate; /* helper action var. state */ - dtrace_helper_provider_t **dthps_provs; /* array of providers */ - uint_t dthps_nprovs; /* count of providers */ - uint_t dthps_maxprovs; /* provider array size */ - int dthps_generation; /* current generation */ - pid_t dthps_pid; /* pid of associated proc */ - int dthps_deferred; /* helper in deferred list */ - struct dtrace_helpers *dthps_next; /* next pointer */ - struct dtrace_helpers *dthps_prev; /* prev pointer */ -} dtrace_helpers_t; - -/* - * DTrace Helper Action Tracing - * - * Debugging helper actions can be arduous. To ease the development and - * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing- - * framework: helper tracing. If dtrace_helptrace_enabled is non-zero (which - * it is by default on DEBUG kernels), all helper activity will be traced to a - * global, in-kernel ring buffer. Each entry includes a pointer to the specific - * helper, the location within the helper, and a trace of all local variables. - * The ring buffer may be displayed in a human-readable format with the - * ::dtrace_helptrace mdb(1) dcmd. - */ -#define DTRACE_HELPTRACE_NEXT (-1) -#define DTRACE_HELPTRACE_DONE (-2) -#define DTRACE_HELPTRACE_ERR (-3) - -typedef struct dtrace_helptrace { - dtrace_helper_action_t *dtht_helper; /* helper action */ - int dtht_where; /* where in helper action */ - int dtht_nlocals; /* number of locals */ - int dtht_fault; /* type of fault (if any) */ - int dtht_fltoffs; /* DIF offset */ - uint64_t dtht_illval; /* faulting value */ - uint64_t dtht_locals[1]; /* local variables */ -} dtrace_helptrace_t; - -/* - * DTrace Credentials - * - * In probe context, we have limited flexibility to examine the credentials - * of the DTrace consumer that created a particular enabling. We use - * the Least Privilege interfaces to cache the consumer's cred pointer and - * some facts about that credential in a dtrace_cred_t structure. These - * can limit the consumer's breadth of visibility and what actions the - * consumer may take. - */ -#define DTRACE_CRV_ALLPROC 0x01 -#define DTRACE_CRV_KERNEL 0x02 -#define DTRACE_CRV_ALLZONE 0x04 - -#define DTRACE_CRV_ALL (DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \ - DTRACE_CRV_ALLZONE) - -#define DTRACE_CRA_PROC 0x0001 -#define DTRACE_CRA_PROC_CONTROL 0x0002 -#define DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER 0x0004 -#define DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE 0x0008 -#define DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG 0x0010 -#define DTRACE_CRA_KERNEL 0x0020 -#define DTRACE_CRA_KERNEL_DESTRUCTIVE 0x0040 - -#define DTRACE_CRA_ALL (DTRACE_CRA_PROC | \ - DTRACE_CRA_PROC_CONTROL | \ - DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \ - DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \ - DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \ - DTRACE_CRA_KERNEL | \ - DTRACE_CRA_KERNEL_DESTRUCTIVE) - -typedef struct dtrace_cred { - cred_t *dcr_cred; - uint8_t dcr_destructive; - uint8_t dcr_visible; - uint16_t dcr_action; -} dtrace_cred_t; - -/* - * DTrace Consumer State - * - * Each DTrace consumer has an associated dtrace_state structure that contains - * its in-kernel DTrace state -- including options, credentials, statistics and - * pointers to ECBs, buffers, speculations and formats. A dtrace_state - * structure is also allocated for anonymous enablings. When anonymous state - * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed - * dtrace_state structure. - */ -struct dtrace_state { - dev_t dts_dev; /* device */ - int dts_necbs; /* total number of ECBs */ - dtrace_ecb_t **dts_ecbs; /* array of ECBs */ - dtrace_epid_t dts_epid; /* next EPID to allocate */ - size_t dts_needed; /* greatest needed space */ - struct dtrace_state *dts_anon; /* anon. state, if grabbed */ - dtrace_activity_t dts_activity; /* current activity */ - dtrace_vstate_t dts_vstate; /* variable state */ - dtrace_buffer_t *dts_buffer; /* principal buffer */ - dtrace_buffer_t *dts_aggbuffer; /* aggregation buffer */ - dtrace_speculation_t *dts_speculations; /* speculation array */ - int dts_nspeculations; /* number of speculations */ - int dts_naggregations; /* number of aggregations */ - dtrace_aggregation_t **dts_aggregations; /* aggregation array */ - vmem_t *dts_aggid_arena; /* arena for aggregation IDs */ - uint64_t dts_errors; /* total number of errors */ - uint32_t dts_speculations_busy; /* number of spec. busy */ - uint32_t dts_speculations_unavail; /* number of spec unavail */ - uint32_t dts_stkstroverflows; /* stack string tab overflows */ - uint32_t dts_dblerrors; /* errors in ERROR probes */ - uint32_t dts_reserve; /* space reserved for END */ - hrtime_t dts_laststatus; /* time of last status */ - cyclic_id_t dts_cleaner; /* cleaning cyclic */ - cyclic_id_t dts_deadman; /* deadman cyclic */ - hrtime_t dts_alive; /* time last alive */ - char dts_speculates; /* boolean: has speculations */ - char dts_destructive; /* boolean: has dest. actions */ - int dts_nformats; /* number of formats */ - char **dts_formats; /* format string array */ - dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */ - dtrace_cred_t dts_cred; /* credentials */ - size_t dts_nretained; /* number of retained enabs */ -}; - -struct dtrace_provider { - dtrace_pattr_t dtpv_attr; /* provider attributes */ - dtrace_ppriv_t dtpv_priv; /* provider privileges */ - dtrace_pops_t dtpv_pops; /* provider operations */ - char *dtpv_name; /* provider name */ - void *dtpv_arg; /* provider argument */ - uint_t dtpv_defunct; /* boolean: defunct provider */ - struct dtrace_provider *dtpv_next; /* next provider */ -}; - -struct dtrace_meta { - dtrace_mops_t dtm_mops; /* meta provider operations */ - char *dtm_name; /* meta provider name */ - void *dtm_arg; /* meta provider user arg */ - uint64_t dtm_count; /* no. of associated provs. */ -}; - -/* - * DTrace Enablings - * - * A dtrace_enabling structure is used to track a collection of ECB - * descriptions -- before they have been turned into actual ECBs. This is - * created as a result of DOF processing, and is generally used to generate - * ECBs immediately thereafter. However, enablings are also generally - * retained should the probes they describe be created at a later time; as - * each new module or provider registers with the framework, the retained - * enablings are reevaluated, with any new match resulting in new ECBs. To - * prevent probes from being matched more than once, the enabling tracks the - * last probe generation matched, and only matches probes from subsequent - * generations. - */ -typedef struct dtrace_enabling { - dtrace_ecbdesc_t **dten_desc; /* all ECB descriptions */ - int dten_ndesc; /* number of ECB descriptions */ - int dten_maxdesc; /* size of ECB array */ - dtrace_vstate_t *dten_vstate; /* associated variable state */ - dtrace_genid_t dten_probegen; /* matched probe generation */ - dtrace_ecbdesc_t *dten_current; /* current ECB description */ - int dten_error; /* current error value */ - int dten_primed; /* boolean: set if primed */ - struct dtrace_enabling *dten_prev; /* previous enabling */ - struct dtrace_enabling *dten_next; /* next enabling */ -} dtrace_enabling_t; - -/* - * DTrace Anonymous Enablings - * - * Anonymous enablings are DTrace enablings that are not associated with a - * controlling process, but rather derive their enabling from DOF stored as - * properties in the dtrace.conf file. If there is an anonymous enabling, a - * DTrace consumer state and enabling are created on attach. The state may be - * subsequently grabbed by the first consumer specifying the "grabanon" - * option. As long as an anonymous DTrace enabling exists, dtrace(7D) will - * refuse to unload. - */ -typedef struct dtrace_anon { - dtrace_state_t *dta_state; /* DTrace consumer state */ - dtrace_enabling_t *dta_enabling; /* pointer to enabling */ - processorid_t dta_beganon; /* which CPU BEGIN ran on */ -} dtrace_anon_t; - -/* - * DTrace Error Debugging - */ -#ifdef DEBUG -#define DTRACE_ERRDEBUG -#endif - -#ifdef DTRACE_ERRDEBUG - -typedef struct dtrace_errhash { - const char *dter_msg; /* error message */ - int dter_count; /* number of times seen */ -} dtrace_errhash_t; - -#define DTRACE_ERRHASHSZ 256 /* must be > number of err msgs */ - -#endif /* DTRACE_ERRDEBUG */ - -/* - * DTrace Toxic Ranges - * - * DTrace supports safe loads from probe context; if the address turns out to - * be invalid, a bit will be set by the kernel indicating that DTrace - * encountered a memory error, and DTrace will propagate the error to the user - * accordingly. However, there may exist some regions of memory in which an - * arbitrary load can change system state, and from which it is impossible to - * recover from such a load after it has been attempted. Examples of this may - * include memory in which programmable I/O registers are mapped (for which a - * read may have some implications for the device) or (in the specific case of - * UltraSPARC-I and -II) the virtual address hole. The platform is required - * to make DTrace aware of these toxic ranges; DTrace will then check that - * target addresses are not in a toxic range before attempting to issue a - * safe load. - */ -typedef struct dtrace_toxrange { - uintptr_t dtt_base; /* base of toxic range */ - uintptr_t dtt_limit; /* limit of toxic range */ -} dtrace_toxrange_t; - -extern uint64_t dtrace_getarg(int, int); -extern greg_t dtrace_getfp(void); -extern int dtrace_getipl(void); -extern uintptr_t dtrace_caller(int); -extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t); -extern void *dtrace_casptr(void *, void *, void *); -extern void dtrace_copyin(uintptr_t, uintptr_t, size_t, volatile uint16_t *); -extern void dtrace_copyinstr(uintptr_t, uintptr_t, size_t, volatile uint16_t *); -extern void dtrace_copyout(uintptr_t, uintptr_t, size_t, volatile uint16_t *); -extern void dtrace_copyoutstr(uintptr_t, uintptr_t, size_t, - volatile uint16_t *); -extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *); -extern ulong_t dtrace_getreg(struct regs *, uint_t); -extern int dtrace_getstackdepth(int); -extern void dtrace_getupcstack(uint64_t *, int); -extern void dtrace_getufpstack(uint64_t *, uint64_t *, int); -extern int dtrace_getustackdepth(void); -extern uintptr_t dtrace_fulword(void *); -extern uint8_t dtrace_fuword8(void *); -extern uint16_t dtrace_fuword16(void *); -extern uint32_t dtrace_fuword32(void *); -extern uint64_t dtrace_fuword64(void *); -extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int, - int, uintptr_t); -extern int dtrace_assfail(const char *, const char *, int); -extern int dtrace_attached(void); -extern hrtime_t dtrace_gethrestime(); - -#ifdef __sparc -extern void dtrace_flush_windows(void); -extern void dtrace_flush_user_windows(void); -extern uint_t dtrace_getotherwin(void); -extern uint_t dtrace_getfprs(void); -#else -extern void dtrace_copy(uintptr_t, uintptr_t, size_t); -extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *); -#endif - -/* - * DTrace Assertions - * - * DTrace calls ASSERT from probe context. To assure that a failed ASSERT - * does not induce a markedly more catastrophic failure (e.g., one from which - * a dump cannot be gleaned), DTrace must define its own ASSERT to be one that - * may safely be called from probe context. This header file must thus be - * included by any DTrace component that calls ASSERT from probe context, and - * _only_ by those components. (The only exception to this is kernel - * debugging infrastructure at user-level that doesn't depend on calling - * ASSERT.) - */ -#undef ASSERT -#ifdef DEBUG -#define ASSERT(EX) ((void)((EX) || \ - dtrace_assfail(#EX, __FILE__, __LINE__))) -#else -#define ASSERT(X) ((void)0) -#endif - -#ifdef __cplusplus -} -#endif - -#endif /* _SYS_DTRACE_IMPL_H */ diff --git a/cddl/contrib/opensolaris/uts/common/sys/fasttrap.h b/cddl/contrib/opensolaris/uts/common/sys/fasttrap.h deleted file mode 100644 index 7f80314..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/fasttrap.h +++ /dev/null @@ -1,93 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2006 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _SYS_FASTTRAP_H -#define _SYS_FASTTRAP_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include - -#ifdef __cplusplus -extern "C" { -#endif - -#define FASTTRAPIOC (('m' << 24) | ('r' << 16) | ('f' << 8)) -#define FASTTRAPIOC_MAKEPROBE (FASTTRAPIOC | 1) -#define FASTTRAPIOC_GETINSTR (FASTTRAPIOC | 2) - -typedef enum fasttrap_probe_type { - DTFTP_NONE = 0, - DTFTP_ENTRY, - DTFTP_RETURN, - DTFTP_OFFSETS, - DTFTP_POST_OFFSETS, - DTFTP_IS_ENABLED -} fasttrap_probe_type_t; - -typedef struct fasttrap_probe_spec { - pid_t ftps_pid; - fasttrap_probe_type_t ftps_type; - - char ftps_func[DTRACE_FUNCNAMELEN]; - char ftps_mod[DTRACE_MODNAMELEN]; - - uint64_t ftps_pc; - uint64_t ftps_size; - uint64_t ftps_noffs; - uint64_t ftps_offs[1]; -} fasttrap_probe_spec_t; - -typedef struct fasttrap_instr_query { - uint64_t ftiq_pc; - pid_t ftiq_pid; - fasttrap_instr_t ftiq_instr; -} fasttrap_instr_query_t; - -/* - * To support the fasttrap provider from very early in a process's life, - * the run-time linker, ld.so.1, has a program header of type PT_SUNWDTRACE - * which points to a data object which must be PT_SUNWDTRACE_SIZE bytes. - * This structure mimics the fasttrap provider section of the ulwp_t structure. - * When the fasttrap provider is changed to require new or different - * instructions, the data object in ld.so.1 and the thread initializers in libc - * (libc_init() and _thrp_create()) need to be updated to include the new - * instructions, and PT_SUNWDTRACE needs to be changed to a new unique number - * (while the old value gets assigned something like PT_SUNWDTRACE_1). Since the - * linker must be backward compatible with old Solaris releases, it must have - * program headers for each of the PT_SUNWDTRACE versions. The kernel's - * elfexec() function only has to look for the latest version of the - * PT_SUNWDTRACE program header. - */ -#define PT_SUNWDTRACE_SIZE FASTTRAP_SUNWDTRACE_SIZE - -#ifdef __cplusplus -} -#endif - -#endif /* _SYS_FASTTRAP_H */ diff --git a/cddl/contrib/opensolaris/uts/intel/sys/fasttrap_isa.h b/cddl/contrib/opensolaris/uts/intel/sys/fasttrap_isa.h deleted file mode 100644 index 9fee8cd..0000000 --- a/cddl/contrib/opensolaris/uts/intel/sys/fasttrap_isa.h +++ /dev/null @@ -1,114 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2006 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _FASTTRAP_ISA_H -#define _FASTTRAP_ISA_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include - -#ifdef __cplusplus -extern "C" { -#endif - -#define FASTTRAP_MAX_INSTR_SIZE 15 - -#define FASTTRAP_INSTR 0xcc - -#define FASTTRAP_SUNWDTRACE_SIZE 64 - -typedef uint8_t fasttrap_instr_t; - -typedef struct fasttrap_machtp { - uint8_t ftmt_instr[FASTTRAP_MAX_INSTR_SIZE]; /* orig. instr. */ - uint8_t ftmt_size; /* instruction size */ -#ifdef __amd64 - uint8_t ftmt_ripmode; /* %rip-relative handling mode */ - uint8_t ftmt_modrm; /* saved modrm byte */ -#endif - uint8_t ftmt_type; /* emulation type */ - uint8_t ftmt_code; /* branch condition */ - uint8_t ftmt_base; /* branch base */ - uint8_t ftmt_index; /* branch index */ - uint8_t ftmt_scale; /* branch scale */ - uint8_t ftmt_segment; /* segment for memory accesses */ - uintptr_t ftmt_dest; /* destination of control flow */ -} fasttrap_machtp_t; - -#define ftt_instr ftt_mtp.ftmt_instr -#ifdef __amd64 -#define ftt_ripmode ftt_mtp.ftmt_ripmode -#define ftt_modrm ftt_mtp.ftmt_modrm -#endif -#define ftt_size ftt_mtp.ftmt_size -#define ftt_type ftt_mtp.ftmt_type -#define ftt_code ftt_mtp.ftmt_code -#define ftt_base ftt_mtp.ftmt_base -#define ftt_index ftt_mtp.ftmt_index -#define ftt_scale ftt_mtp.ftmt_scale -#define ftt_segment ftt_mtp.ftmt_segment -#define ftt_dest ftt_mtp.ftmt_dest - -#define FASTTRAP_T_COMMON 0x00 /* common case -- no emulation */ -#define FASTTRAP_T_JCC 0x01 /* near and far conditional jumps */ -#define FASTTRAP_T_LOOP 0x02 /* loop instructions */ -#define FASTTRAP_T_JCXZ 0x03 /* jump if %ecx/%rcx is zero */ -#define FASTTRAP_T_JMP 0x04 /* relative jump */ -#define FASTTRAP_T_CALL 0x05 /* near call (and link) */ -#define FASTTRAP_T_RET 0x06 /* ret */ -#define FASTTRAP_T_RET16 0x07 /* ret */ - -/* - * For performance rather than correctness. - */ -#define FASTTRAP_T_PUSHL_EBP 0x10 /* pushl %ebp (for function entry) */ -#define FASTTRAP_T_NOP 0x11 /* nop */ - -#define FASTTRAP_RIP_1 0x1 -#define FASTTRAP_RIP_2 0x2 -#define FASTTRAP_RIP_X 0x4 - -/* - * Segment values. - */ -#define FASTTRAP_SEG_NONE 0 -#define FASTTRAP_SEG_CS 1 -#define FASTTRAP_SEG_DS 2 -#define FASTTRAP_SEG_ES 3 -#define FASTTRAP_SEG_FS 4 -#define FASTTRAP_SEG_GS 5 -#define FASTTRAP_SEG_SS 6 - -#define FASTTRAP_AFRAMES 3 -#define FASTTRAP_RETURN_AFRAMES 4 -#define FASTTRAP_ENTRY_AFRAMES 3 -#define FASTTRAP_OFFSET_AFRAMES 3 - -#ifdef __cplusplus -} -#endif - -#endif /* _FASTTRAP_ISA_H */ diff --git a/cddl/contrib/opensolaris/uts/sparc/sys/fasttrap_isa.h b/cddl/contrib/opensolaris/uts/sparc/sys/fasttrap_isa.h deleted file mode 100644 index 10361cbe..0000000 --- a/cddl/contrib/opensolaris/uts/sparc/sys/fasttrap_isa.h +++ /dev/null @@ -1,94 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2005 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _FASTTRAP_ISA_H -#define _FASTTRAP_ISA_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * This is our reserved trap instruction: ta 0x38 - */ -#define FASTTRAP_INSTR 0x91d02038 - -#define FASTTRAP_SUNWDTRACE_SIZE 128 - -typedef uint32_t fasttrap_instr_t; - -typedef struct fasttrap_machtp { - fasttrap_instr_t ftmt_instr; /* original instruction */ - uintptr_t ftmt_dest; /* destination of DCTI */ - uint8_t ftmt_type; /* emulation type */ - uint8_t ftmt_flags; /* emulation flags */ - uint8_t ftmt_cc; /* which cc to look at */ - uint8_t ftmt_code; /* branch condition */ -} fasttrap_machtp_t; - -#define ftt_instr ftt_mtp.ftmt_instr -#define ftt_dest ftt_mtp.ftmt_dest -#define ftt_type ftt_mtp.ftmt_type -#define ftt_flags ftt_mtp.ftmt_flags -#define ftt_cc ftt_mtp.ftmt_cc -#define ftt_code ftt_mtp.ftmt_code - -#define FASTTRAP_T_COMMON 0x00 /* common case -- no emulation */ -#define FASTTRAP_T_CCR 0x01 /* integer condition code branch */ -#define FASTTRAP_T_FCC 0x02 /* floating-point branch */ -#define FASTTRAP_T_REG 0x03 /* register predicated branch */ -#define FASTTRAP_T_ALWAYS 0x04 /* branch always */ -#define FASTTRAP_T_CALL 0x05 /* call instruction */ -#define FASTTRAP_T_JMPL 0x06 /* jmpl instruction */ -#define FASTTRAP_T_RDPC 0x07 /* rdpc instruction */ -#define FASTTRAP_T_RETURN 0x08 /* return instruction */ - -/* - * For performance rather than correctness. - */ -#define FASTTRAP_T_SAVE 0x10 /* save instruction (func entry only) */ -#define FASTTRAP_T_RESTORE 0x11 /* restore instruction */ -#define FASTTRAP_T_OR 0x12 /* mov instruction */ -#define FASTTRAP_T_SETHI 0x13 /* sethi instruction (includes nop) */ - -#define FASTTRAP_F_ANNUL 0x01 /* branch is annulled */ -#define FASTTRAP_F_RETMAYBE 0x02 /* not definitely a return site */ - -#define FASTTRAP_AFRAMES 3 -#define FASTTRAP_RETURN_AFRAMES 4 -#define FASTTRAP_ENTRY_AFRAMES 3 -#define FASTTRAP_OFFSET_AFRAMES 3 - - -#ifdef __cplusplus -} -#endif - -#endif /* _FASTTRAP_ISA_H */ -- cgit v1.1