summaryrefslogtreecommitdiffstats
path: root/sys/modules/ndis
Commit message (Collapse)AuthorAgeFilesLines
* MFtbemd:imp2010-08-231-2/+2
| | | | | | | | | Use MACHINE_CPUARCH in preference to MACHINE_ARCH. The former is the source code location of the machine, the latter the binary output. In general, we want to use MACHINE_CPUARCH instead of MACHINE_ARCH unless we're tesitng for a specific target. The isn't even moot for i386/amd64 where there's momemntum towards a MACHINE_CPUARCH == x86, although a specific cleanup for that likely would be needed...
* o port NDIS USB support from USB1 to the new usb(USB2).weongyo2009-03-071-1/+1
| | | | | | | | | o implement URB_FUNCTION_ABORT_PIPE handling. o remove unused code related with canceling the timer list for USB drivers. o whitespace cleanup and style(9) Obtained from: hps's original patch
* Integrate the NDIS USB support code to CURRENT.weongyo2008-12-271-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | Now the NDISulator supports NDIS USB drivers that it've tested with devices as follows: - Anygate XM-142 (Conexant) - Netgear WG111v2 (Realtek) - U-Khan UW-2054u (Marvell) - Shuttle XPC Accessory PN20 (Realtek) - ipTIME G054U2 (Ralink) - UNiCORN WL-54G (ZyDAS) - ZyXEL G-200v2 (ZyDAS) All of them succeeded to attach and worked though there are still some problems that it's expected to be solved. To use NDIS USB support, you should rebuild and install ndiscvt(8) and if you encounter a problem to attach please set `hw.ndisusb.halt' to 0 then retry. I expect no changes of the NDIS code for PCI, PCMCIA devices. Obtained from: //depot/projects/ndisusb/...
* Remove bridge(4) from the tree. if_bridge(4) is a full functionalmlaier2005-09-271-1/+1
| | | | | | | | replacement and has additional features which make it superior. Discussed on: -arch Reviewed by: thompsa X-MFC-after: never (RELENG_6 as transition period)
* Create new i386 windows/bsd thunking layer, similar to the amd64 thunkingwpaul2005-04-111-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | layer, but with a twist. The twist has to do with the fact that Microsoft supports structured exception handling in kernel mode. On the i386 arch, exception handling is implemented by hanging an exception registration list off the Thread Environment Block (TEB), and the TEB is accessed via the %fs register. The problem is, we use %fs as a pointer to the pcpu stucture, which means any driver that tries to write through %fs:0 will overwrite the curthread pointer and make a serious mess of things. To get around this, Project Evil now creates a special entry in the GDT on each processor. When we call into Windows code, a context switch routine will fix up %fs so it points to our new descriptor, which in turn points to a fake TEB. When the Windows code returns, or calls out to an external routine, we swap %fs back again. Currently, Project Evil makes use of GDT slot 7, which is all 0s by default. I fully expect someone to jump up and say I can't do that, but I couldn't find any code that makes use of this entry anywhere. Sadly, this was the only method I could come up with that worked on both UP and SMP. (Modifying the LDT works on UP, but becomes incredibly complicated on SMP.) If necessary, the context switching stuff can be yanked out while preserving the convention calling wrappers. (Fortunately, it looks like Microsoft uses some special epilog/prolog code on amd64 to implement exception handling, so the same nastiness won't be necessary on that arch.) The advantages are: - Any driver that uses %fs as though it were a TEB pointer won't clobber pcpu. - All the __stdcall/__fastcall/__regparm stuff that's specific to gcc goes away. Also, while I'm here, switch NdisGetSystemUpTime() back to using nanouptime() again. It turns out nanouptime() is way more accurate than just using ticks(). On slower machines, the Atheros drivers I tested seem to take a long time to associate due to the loss in accuracy.
* - Correct one aspect of the driver_object/device_object/IRP framework:wpaul2005-02-241-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | when we create a PDO, the driver_object associated with it is that of the parent driver, not the driver we're trying to attach. For example, if we attach a PCI device, the PDO we pass to the NdisAddDevice() function should contain a pointer to fake_pci_driver, not to the NDIS driver itself. For PCI or PCMCIA devices this doesn't matter because the child never needs to talk to the parent bus driver, but for USB, the child needs to be able to send IRPs to the parent USB bus driver, and for that to work the parent USB bus driver has to be hung off the PDO. This involves modifying windrv_lookup() so that we can search for bus drivers by name, if necessary. Our fake bus drivers attach themselves as "PCI Bus," "PCCARD Bus" and "USB Bus," so we can search for them using those names. The individual attachment stubs now create and attach PDOs to the parent bus drivers instead of hanging them off the NDIS driver's object, and in if_ndis.c, we now search for the correct driver object depending on the bus type, and use that to find the correct PDO. With this fix, I can get my sample USB ethernet driver to deliver an IRP to my fake parent USB bus driver's dispatch routines. - Add stub modules for USB support: subr_usbd.c, usbd_var.h and if_ndis_usb.c. The subr_usbd.c module is hooked up the build but currently doesn't do very much. It provides the stub USB parent driver object and a dispatch routine for IRM_MJ_INTERNAL_DEVICE_CONTROL. The only exported function at the moment is USBD_GetUSBDIVersion(). The if_ndis_usb.c stub compiles, but is not hooked up to the build yet. I'm putting these here so I can keep them under source code control as I flesh them out.
* Add support for Windows/x86-64 binaries to Project Evil.wpaul2005-02-161-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ville-Pertti Keinonen (will at exomi dot comohmygodnospampleasekthx) deserves a big thanks for submitting initial patches to make it work. I have mangled his contributions appropriately. The main gotcha with Windows/x86-64 is that Microsoft uses a different calling convention than everyone else. The standard ABI requires using 6 registers for argument passing, with other arguments on the stack. Microsoft uses only 4 registers, and requires the caller to leave room on the stack for the register arguments incase the callee needs to spill them. Unlike x86, where Microsoft uses a mix of _cdecl, _stdcall and _fastcall, all routines on Windows/x86-64 uses the same convention. This unfortunately means that all the functions we export to the driver require an intermediate translation wrapper. Similarly, we have to wrap all calls back into the driver binary itself. The original patches provided macros to wrap every single routine at compile time, providing a secondary jump table with a customized wrapper for each exported routine. I decided to use a different approach: the call wrapper for each function is created from a template at runtime, and the routine to jump to is patched into the wrapper as it is created. The subr_pe module has been modified to patch in the wrapped function instead of the original. (On x86, the wrapping routine is a no-op.) There are some minor API differences that had to be accounted for: - KeAcquireSpinLock() is a real function on amd64, not a macro wrapper around KfAcquireSpinLock() - NdisFreeBuffer() is actually IoFreeMdl(). I had to change the whole NDIS_BUFFER API a bit to accomodate this. Bugs fixed along the way: - IoAllocateMdl() always returned NULL - kern_windrv.c:windrv_unload() wasn't releasing private driver object extensions correctly (found thanks to memguard) This has only been tested with the driver for the Broadcom 802.11g chipset, which was the only Windows/x86-64 driver I could find.
* Next step on the road to IRPs: create and use an imitation of thewpaul2005-02-081-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Windows DRIVER_OBJECT and DEVICE_OBJECT mechanism so that we can simulate driver stacking. In Windows, each loaded driver image is attached to a DRIVER_OBJECT structure. Windows uses the registry to match up a given vendor/device ID combination with a corresponding DRIVER_OBJECT. When a driver image is first loaded, its DriverEntry() routine is invoked, which sets up the AddDevice() function pointer in the DRIVER_OBJECT and creates a dispatch table (based on IRP major codes). When a Windows bus driver detects a new device, it creates a Physical Device Object (PDO) for it. This is a DEVICE_OBJECT structure, with semantics analagous to that of a device_t in FreeBSD. The Windows PNP manager will invoke the driver's AddDevice() function and pass it pointers to the DRIVER_OBJECT and the PDO. The AddDevice() function then creates a new DRIVER_OBJECT structure of its own. This is known as the Functional Device Object (FDO) and corresponds roughly to a private softc instance. The driver uses IoAttachDeviceToDeviceStack() to add this device object to the driver stack for this PDO. Subsequent drivers (called filter drivers in Windows-speak) can be loaded which add themselves to the stack. When someone issues an IRP to a device, it travel along the stack passing through several possible filter drivers until it reaches the functional driver (which actually knows how to talk to the hardware) at which point it will be completed. This is how Windows achieves driver layering. Project Evil now simulates most of this. if_ndis now has a modevent handler which will use MOD_LOAD and MOD_UNLOAD events to drive the creation and destruction of DRIVER_OBJECTs. (The load event also does the relocation/dynalinking of the image.) We don't have a registry, so the DRIVER_OBJECTS are stored in a linked list for now. Eventually, the list entry will contain the vendor/device ID list extracted from the .INF file. When ndis_probe() is called and detectes a supported device, it will create a PDO for the device instance and attach it to the DRIVER_OBJECT just as in Windows. ndis_attach() will then call our NdisAddDevice() handler to create the FDO. The NDIS miniport block is now a device extension hung off the FDO, just as it is in Windows. The miniport characteristics table is now an extension hung off the DRIVER_OBJECT as well (the characteristics are the same for all devices handled by a given driver, so they don't need to be per-instance.) We also do an IoAttachDeviceToDeviceStack() to put the FDO on the stack for the PDO. There are a couple of fake bus drivers created for the PCI and pccard buses. Eventually, there will be one for USB, which will actually accept USB IRP.s Things should still work just as before, only now we do things in the proper order and maintain the correct framework to support passing IRPs between drivers. Various changes: - corrected the comments about IRQL handling in subr_hal.c to more accurately reflect reality - update ndiscvt to make the drv_data symbol in ndis_driver_data.h a global so that if_ndis_pci.o and/or if_ndis_pccard.o can see it. - Obtain the softc pointer from the miniport block by referencing the PDO rather than a private pointer of our own (nmb_ifp is no longer used) - implement IoAttachDeviceToDeviceStack(), IoDetachDevice(), IoGetAttachedDevice(), IoAllocateDriverObjectExtension(), IoGetDriverObjectExtension(), IoCreateDevice(), IoDeleteDevice(), IoAllocateIrp(), IoReuseIrp(), IoMakeAssociatedIrp(), IoFreeIrp(), IoInitializeIrp() - fix a few mistakes in the driver_object and device_object definitions - add a new module, kern_windrv.c, to handle the driver registration and relocation/dynalinkign duties (which don't really belong in kern_ndis.c). - made ndis_block and ndis_chars in the ndis_softc stucture pointers and modified all references to it - fixed NdisMRegisterMiniport() and NdisInitializeWrapper() so they work correctly with the new driver_object mechanism - changed ndis_attach() to call NdisAddDevice() instead of ndis_load_driver() (which is now deprecated) - used ExAllocatePoolWithTag()/ExFreePool() in lookaside list routines instead of kludged up alloc/free routines - added kern_windrv.c to sys/modules/ndis/Makefile and files.i386.
* Add preliminary support for PCMCIA devices in addition to PCI/cardbus.wpaul2004-03-071-1/+1
| | | | | | | | | | | | if_ndis.c has been split into if_ndis_pci.c and if_ndis_pccard.c. The ndiscvt(8) utility should be able to parse device info for PCMCIA devices now. The ndis_alloc_amem() has moved from kern_ndis.c to if_ndis_pccard.c so that kern_ndis.c no longer depends on pccard. NOTE: this stuff is not guaranteed to work 100% correctly yet. So far I have been able to load/init my PCMCIA Cisco Aironet 340 card, but it crashes in the interrupt handler. The existing support for PCI/cardbus devices should still work as before.
* - Some older Atheros drivers want KeInitializeTimer(), so implement it,wpaul2004-03-041-1/+0
| | | | | | | | | | | | | | | | | along with KeInitializeTimerEx(), KeSetTimer(), KeSetTimerEx(), KeCancelTimer(), KeReadStateTimer() and KeInitializeDpc(). I don't know for certain that these will make the Atheros driver happy since I don't have the card/driver combo needed to test it, but these are fairly independent so they shouldn't break anything else. - Debugger() is present even in kernels without options DDB, so no conditional compilation is necessary (pointed out by bde). - Remove the extra km_acquirecnt member that I added to struct kmutant and embed it within an unused portion of the structure instead, so that we don't make the structure larger than it's defined to be in Windows. I don't know what crack I was smoking when I decided it was ok to do this, but it's worn off now.
* Add proper support for DbgPrint(): only print messages if bootverbosewpaul2004-03-031-0/+1
| | | | | | | | is set, since some drivers with debug info can be very chatty. Also implement DbgBreakPoint(), which is the Windows equivalent of Debugger(). Unfortunately, this forces subr_ntoskrnl.c to include opt_ddb.h.
* Implement NdisOpenFile()/NdisCloseFile()/NdisMapFile()/NdisUnmapFile().wpaul2004-01-091-1/+1
| | | | | | | | | By default, we search for files in /compat/ndis. This can be changed with a systcl. These routines are used by some drivers which need to download firmware or microcode into their respective devices during initialization. Also, remove extraneous newlines from the 'built-in' sysctl/registry variables.
* Grrr. Put the right .PATH statements in the right Makefiles.wpaul2003-12-111-1/+1
|
* Commit the first cut of Project Evil, also known as the NDISulator.wpaul2003-12-111-0/+9
Yes, it's what you think it is. Yes, you should run away now. This is a special compatibility module for allowing Windows NDIS miniport network drivers to be used with FreeBSD/x86. This provides _binary_ NDIS compatibility (not source): you can run NDIS driver code, but you can't build it. There are three main parts: sys/compat/ndis: the NDIS compat API, which provides binary compatibility functions for many routines in NDIS.SYS, HAL.dll and ntoskrnl.exe in Windows (these are the three modules that most NDIS miniport drivers use). The compat module also contains a small PE relocator/dynalinker which relocates the Windows .SYS image and then patches in our native routines. sys/dev/if_ndis: the if_ndis driver wrapper. This module makes use of the ndis compat API and can be compiled with a specially prepared binary image file (ndis_driver_data.h) containing the Windows .SYS image and registry key information parsed out of the accompanying .INF file. Once if_ndis.ko is built, it can be loaded and unloaded just like a native FreeBSD kenrel module. usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf into an ndis_driver_data.h file that can be compiled into if_ndis.o. Contains an .inf file parser graciously provided by Matt Dodd (and mercilessly hacked upon by me) that strips out device ID info and registry key info from a .INF file and packages it up with a binary image array. The ndiscvt(8) utility also does some manipulation of the segments within the .sys file to make life easier for the kernel loader. (Doing the manipulation here saves the kernel code from having to move things around later, which would waste memory.) ndiscvt is only built for the i386 arch. Only files.i386 has been updated, and none of this is turned on in GENERIC. It should probably work on pc98. I have no idea about amd64 or ia64 at this point. This is still a work in progress. I estimate it's about %85 done, but I want it under CVS control so I can track subsequent changes. It has been tested with exactly three drivers: the LinkSys LNE100TX v4 driver (Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK (e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It still needs to have a net80211 stuff added to it. To use it, you would do something like this: # cd /sys/modules/ndis # make; make load # cd /sys/modules/if_ndis # ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h # make; make load # sysctl -a | grep ndis All registry keys are mapped to sysctl nodes. Sometimes drivers refer to registry keys that aren't mentioned in foo.inf. If this happens, the NDIS API module creates sysctl nodes for these keys on the fly so you can tweak them. An example usage of the Broadcom wireless driver would be: # sysctl hw.ndis0.EnableAutoConnect=1 # sysctl hw.ndis0.SSID="MY_SSID" # sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc) # ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up Things to be done: - get rid of debug messages - add in ndis80211 support - defer transmissions until after a status update with NDIS_STATUS_CONNECTED occurs - Create smarter lookaside list support - Split off if_ndis_pci.c and if_ndis_pccard.c attachments - Make sure PCMCIA support works - Fix ndiscvt to properly parse PCMCIA device IDs from INF files - write ndisapi.9 man page
OpenPOWER on IntegriCloud