| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
MFC after: 3 days
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CTL is a disk and processor device emulation subsystem originally written
for Copan Systems under Linux starting in 2003. It has been shipping in
Copan (now SGI) products since 2005.
It was ported to FreeBSD in 2008, and thanks to an agreement between SGI
(who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is
available under a BSD-style license. The intent behind the agreement was
that Spectra would work to get CTL into the FreeBSD tree.
Some CTL features:
- Disk and processor device emulation.
- Tagged queueing
- SCSI task attribute support (ordered, head of queue, simple tags)
- SCSI implicit command ordering support. (e.g. if a read follows a mode
select, the read will be blocked until the mode select completes.)
- Full task management support (abort, LUN reset, target reset, etc.)
- Support for multiple ports
- Support for multiple simultaneous initiators
- Support for multiple simultaneous backing stores
- Persistent reservation support
- Mode sense/select support
- Error injection support
- High Availability support (1)
- All I/O handled in-kernel, no userland context switch overhead.
(1) HA Support is just an API stub, and needs much more to be fully
functional.
ctl.c: The core of CTL. Command handlers and processing,
character driver, and HA support are here.
ctl.h: Basic function declarations and data structures.
ctl_backend.c,
ctl_backend.h: The basic CTL backend API.
ctl_backend_block.c,
ctl_backend_block.h: The block and file backend. This allows for using
a disk or a file as the backing store for a LUN.
Multiple threads are started to do I/O to the
backing device, primarily because the VFS API
requires that to get any concurrency.
ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a
small amount of memory to act as a source and sink
for reads and writes from an initiator. Therefore
it cannot be used for any real data, but it can be
used to test for throughput. It can also be used
to test initiators' support for extremely large LUNs.
ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes,
and command handler functions defined for supported
opcodes.
ctl_debug.h: Debugging support.
ctl_error.c,
ctl_error.h: CTL-specific wrappers around the CAM sense building
functions.
ctl_frontend.c,
ctl_frontend.h: These files define the basic CTL frontend port API.
ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM.
This frontend allows for using CTL without any
target-capable hardware. So any LUNs you create in
CTL are visible in CAM via this port.
ctl_frontend_internal.c,
ctl_frontend_internal.h:
This is a frontend port written for Copan to do
some system-specific tasks that required sending
commands into CTL from inside the kernel. This
isn't entirely relevant to FreeBSD in general,
but can perhaps be repurposed.
ctl_ha.h: This is a stubbed-out High Availability API. Much
more is needed for full HA support. See the
comments in the header and the description of what
is needed in the README.ctl.txt file for more
details.
ctl_io.h: This defines most of the core CTL I/O structures.
union ctl_io is conceptually very similar to CAM's
union ccb.
ctl_ioctl.h: This defines all ioctls available through the CTL
character device, and the data structures needed
for those ioctls.
ctl_mem_pool.c,
ctl_mem_pool.h: Generic memory pool implementation used by the
internal frontend.
ctl_private.h: Private data structres (e.g. CTL softc) and
function prototypes. This also includes the SCSI
vendor and product names used by CTL.
ctl_scsi_all.c,
ctl_scsi_all.h: CTL wrappers around CAM sense printing functions.
ctl_ser_table.c: Command serialization table. This defines what
happens when one type of command is followed by
another type of command.
ctl_util.c,
ctl_util.h: CTL utility functions, primarily designed to be
used from userland. See ctladm for the primary
consumer of these functions. These include CDB
building functions.
scsi_ctl.c: CAM target peripheral driver and CTL frontend port.
This is the path into CTL for commands from
target-capable hardware/SIMs.
README.ctl.txt: CTL code features, roadmap, to-do list.
usr.sbin/Makefile: Add ctladm.
ctladm/Makefile,
ctladm/ctladm.8,
ctladm/ctladm.c,
ctladm/ctladm.h,
ctladm/util.c: ctladm(8) is the CTL management utility.
It fills a role similar to camcontrol(8).
It allow configuring LUNs, issuing commands,
injecting errors and various other control
functions.
usr.bin/Makefile: Add ctlstat.
ctlstat/Makefile
ctlstat/ctlstat.8,
ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8).
It reports I/O statistics for CTL.
sys/conf/files: Add CTL files.
sys/conf/NOTES: Add device ctl.
sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB
length field is now 2 bytes long.
Add several mode page definitions for CTL.
sys/cam/scsi_all.c: Handle the new 2 byte inquiry length.
sys/dev/ciss/ciss.c,
sys/dev/ata/atapi-cam.c,
sys/cam/scsi/scsi_targ_bh.c,
scsi_target/scsi_cmds.c,
mlxcontrol/interface.c: Update for 2 byte inquiry length field.
scsi_da.h: Add versions of the format and rigid disk pages
that are in a more reasonable format for CTL.
amd64/conf/GENERIC,
i386/conf/GENERIC,
ia64/conf/GENERIC,
sparc64/conf/GENERIC: Add device ctl.
i386/conf/PAE: The CTL frontend SIM at least does not compile
cleanly on PAE.
Sponsored by: Copan Systems, SGI and Spectra Logic
MFC after: 1 month
|
| |
|
|
|
|
| |
PAE kernel config, do that also for those added to GENERIC lately.
|
|
|
|
|
|
|
|
|
| |
Introduce the AHB glue for Atheros embedded systems. Right now it's
hard-coded for the AR9130 chip whose support isn't yet in this HAL;
it'll be added in a subsequent commit.
Kernel configuration files now need both 'ath' and 'ath_pci' devices; both
modules need to be loaded for the ath device to work.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
module; the ath module now brings in the hal support. Kernel
config files are almost backwards compatible; supplying
device ath_hal
gives you the same chip support that the binary hal did but you
must also include
options AH_SUPPORT_AR5416
to enable the extended format descriptors used by 11n parts.
It is now possible to control the chip support included in a
build by specifying exactly which chips are to be supported
in the config file; consult ath_hal(4) for information.
|
|
|
|
| |
Reviewed by: imp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cards:
o RocketRAID 172x series
o RocketRAID 174x series
o RocketRAID 2210
o RocketRAID 222x series
o RocketRAID 2240
o RocketRAID 230x series
o RocketRAID 231x series
o RocketRAID 232x series
o RocketRAID 2340
o RocketRAID 2522
Many thanks to Highpoint for their continued support of FreeBSD.
Submitted by: Highpoint
|
|
|
|
| |
remove the nodevice lines that elided wlan support
|
| |
|
|
|
|
|
|
|
| |
using bus_dma(9) for quite a while now and has been used on 64-bit archs
as well.
MFC after: 1 month
|
| |
|
| |
|
|
|
|
| |
has its firmware resident as well.
|
| |
|
|
|
|
| |
now mark these "nodevice" or we'll get undefined references
|
| |
|
|
|
|
|
|
|
|
| |
This hasn't been true on i386 for at least a decade, probably longer, but
I'm too lazy to look up the exact year that PAE support was introduced.
Thus, this driver doesn't work on PAE.
X-MFC After: now
|
|
|
|
| |
Reviewed by: jhb
|
|
|
|
|
|
| |
they have dependency on wlan and usb.
Reported by: make universe
|
|
|
|
| |
Both have been busdma'ed for use and tested in the Sparc64 kenrel.
|
|
|
|
| |
for EHCI, exclude that driver also.
|
|
|
|
|
|
|
|
|
|
| |
FreeBSD based on aue(4) it was picked by OpenBSD, then from OpenBSD ported
to NetBSD and finally NetBSD version merged with original one goes into
FreeBSD.
Obtained from: http://www.gank.org/freebsd/cdce/
NetBSD
OpenBSD
|
| |
|
|
|
|
| |
state.
|
| |
|
| |
|
| |
|
|
|
|
| |
includes) already has those enabled by default.
|
|
|
|
| |
use with PAE kernels.
|
|
|
|
| |
Submitted by: Hidetoshi Shimokawa <simokawa@sat.t.u-tokyo.ac.jp>
|
|
|
|
| |
Approved by: re (scottl)
|
|
|
|
|
|
|
|
| |
- atomically load and clear the status block so we dont miss an
update.
Submitted by: jdp
Approved by: re (scottl)
|
|
|
|
|
| |
Submitted by: harti@
Approved by: jake@
|
| |
|
|
mechanism, and then excludes device drivers which have not been tested or
are known to not work with more than 4G of ram.
Sponsored by: DARPA, Network Associates Laboratories
|