summaryrefslogtreecommitdiffstats
path: root/sys/compat/ndis/subr_ndis.c
Commit message (Collapse)AuthorAgeFilesLines
...
* Finally bring an end to the great "make the Atheros NDIS driverwpaul2005-03-271-23/+81
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | work on SMP" saga. After several weeks and much gnashing of teeth, I have finally tracked down all the problems, despite their best efforts to confound and annoy me. Problem nunmber one: the Atheros windows driver is _NOT_ a de-serialized miniport! It used to be that NDIS drivers relied on the NDIS library itself for all their locking and serialization needs. Transmit packet queues were all handled internally by NDIS, and all calls to MiniportXXX() routines were guaranteed to be appropriately serialized. This proved to be a performance problem however, and Microsoft introduced de-serialized miniports with the NDIS 5.x spec. Microsoft still supports serialized miniports, but recommends that all new drivers written for Windows XP and later be deserialized. Apparently Atheros wasn't listening when they said this. This means (among other things) that we have to serialize calls to MiniportSendPackets(). We also have to serialize calls to MiniportTimer() that are triggered via the NdisMInitializeTimer() routine. It finally dawned on me why NdisMInitializeTimer() takes a special NDIS_MINIPORT_TIMER structure and a pointer to the miniport block: the timer callback must be serialized, and it's only by saving the miniport block handle that we can get access to the serialization lock during the timer callback. Problem number two: haunted hardware. The thing that was _really_ driving me absolutely bonkers for the longest time is that, for some reason I couldn't understand, my test machine would occasionally freeze or more frustratingly, reset completely. That's reset and in *pow!* back to the BIOS startup. No panic, no crashdump, just a reset. This appeared to happen most often when MiniportReset() was called. (As to why MiniportReset() was being called, see problem three below.) I thought maybe I had created some sort of horrible deadlock condition in the process of adding the serialization, but after three weeks, at least 6 different locking implementations and heroic efforts to debug the spinlock code, the machine still kept resetting. Finally, I started single stepping through the MiniportReset() routine in the driver using the kernel debugger, and this ultimately led me to the source of the problem. One of the last things the Atheros MiniportReset() routine does is call NdisReadPciSlotInformation() several times to inspect a portion of the device's PCI config space. It reads the same chunk of config space repeatedly, in rapid succession. Presumeably, it's polling the hardware for some sort of event. The reset occurs partway through this process. I discovered that when I single-stepped through this portion of the routine, the reset didn't occur. So I inserted a 1 microsecond delay into the read loop in NdisReadPciSlotInformation(). Suddenly, the reset was gone!! I'm still very puzzled by the whole thing. What I suspect is happening is that reading the PCI config space so quickly is causing a severe PCI bus error. My test system is a Sun w2100z dual Opteron system, and the NIC is a miniPCI card mounted in a miniPCI-to-PCI carrier card, plugged into a 100Mhz PCI slot. It's possible that this combination of hardware causes a bus protocol violation in this scenario which leads to a fatal machine check. This is pure speculation though. Really all I know for sure is that inserting the delay makes the problem go away. (To quote Homer Simpson: "I don't know how it works, but fire makes it good!") Problem number three: NdisAllocatePacket() needs to make sure to initialize the npp_validcounts field in the 'private' section of the NDIS_PACKET structure. The reason if_ndis was calling the MiniportReset() routine in the first place is that packet transmits were sometimes hanging. When sending a packet, an NDIS driver will call NdisQueryPacket() to learn how many physical buffers the packet resides in. NdisQueryPacket() is actually a macro, which traverses the NDIS_BUFFER list attached to the NDIS_PACKET and stashes some of the results in the 'private' section of the NDIS_PACKET. It also sets the npp_validcounts field to TRUE To indicate that the results are now valid. The problem is, now that if_ndis creates a pool of transmit packets via NdisAllocatePacketPool(), it's important that each time a new packet is allocated via NdisAllocatePacket() that validcounts be initialized to FALSE. If it isn't, and a previously transmitted NDIS_PACKET is pulled out of the pool, it may contain stale data from a previous transmission which won't get updated by NdisQueryPacket(). This would cause the driver to miscompute the number of fragments for a given packet, and botch the transmission. Fixing these three problems seems to make the Atheros driver happy on SMP, which hopefully means other serialized miniports will be happy too. And there was much rejoicing. Other stuff fixed along the way: - Modified ndis_thsuspend() to take a mutex as an argument. This allows KeWaitForSingleObject() and KeWaitForMultipleObjects() to avoid any possible race conditions with other routines that use the dispatcher lock. - Fixed KeCancelTimer() so that it returns the correct value for 'pending' according to the Microsoft documentation - Modfied NdisGetSystemUpTime() to use ticks and hz rather than calling nanouptime(). Also added comment that this routine wraps after 49.7 days. - Added macros for KeAcquireSpinLock()/KeReleaseSpinLock() to hide all the MSCALL() goop. - For x86, KeAcquireSpinLockRaiseToDpc() needs to be a separate function. This is because it's supposed to be _stdcall on the x86 arch, whereas KeAcquireSpinLock() is supposed to be _fastcall. On amd64, all routines use the same calling convention so we can just map KeAcquireSpinLockRaiseToDpc() directly to KfAcquireSpinLock() and it will work. (The _fastcall attribute is a no-op on amd64.) - Implement and use IoInitializeDpcRequest() and IoRequestDpc() (they're just macros) and use them for interrupt handling. This allows us to move the ndis_intrtask() routine from if_ndis.c to kern_ndis.c. - Fix the MmInitializeMdl() macro so that is uses sizeof(vm_offset_t) when computing mdl_size instead of uint32_t, so that it matches the MmSizeOfMdl() routine. - Change a could of M_WAITOKs to M_NOWAITs in the unicode routines in subr_ndis.c. - Use the dispatcher lock a little more consistently in subr_ntoskrnl.c. - Get rid of the "wait for link event" hack in ndis_init(). Now that I fixed NdisReadPciSlotInformation(), it seems I don't need it anymore. This should fix the witness panic a couple of people have reported. - Use MSCALL1() when calling the MiniportHangCheck() function in ndis_ticktask(). I accidentally missed this one when adding the wrapping for amd64.
* MAXPATHLEN is 1024, which means NdisOpenFile() and ndis_find_sym() werewpaul2005-03-031-17/+59
| | | | | | | | | | | both consuming 1K of stack space. This is unfriendly. Allocate the buffers off the heap instead. It's a little slower, but these aren't performance critical routines. Also, add a spinlock to NdisAllocatePacketPool(), NdisAllocatePacket(), NdisFreePacketPool() and NdisFreePacket(). The pool is maintained as a linked list. I don't know for a fact that it can be corrupted, but why take chances.
* Fix a couple of u_int_foos that should have been uint_foos.wpaul2005-02-181-1/+1
|
* Add support for Windows/x86-64 binaries to Project Evil.wpaul2005-02-161-134/+72
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ville-Pertti Keinonen (will at exomi dot comohmygodnospampleasekthx) deserves a big thanks for submitting initial patches to make it work. I have mangled his contributions appropriately. The main gotcha with Windows/x86-64 is that Microsoft uses a different calling convention than everyone else. The standard ABI requires using 6 registers for argument passing, with other arguments on the stack. Microsoft uses only 4 registers, and requires the caller to leave room on the stack for the register arguments incase the callee needs to spill them. Unlike x86, where Microsoft uses a mix of _cdecl, _stdcall and _fastcall, all routines on Windows/x86-64 uses the same convention. This unfortunately means that all the functions we export to the driver require an intermediate translation wrapper. Similarly, we have to wrap all calls back into the driver binary itself. The original patches provided macros to wrap every single routine at compile time, providing a secondary jump table with a customized wrapper for each exported routine. I decided to use a different approach: the call wrapper for each function is created from a template at runtime, and the routine to jump to is patched into the wrapper as it is created. The subr_pe module has been modified to patch in the wrapped function instead of the original. (On x86, the wrapping routine is a no-op.) There are some minor API differences that had to be accounted for: - KeAcquireSpinLock() is a real function on amd64, not a macro wrapper around KfAcquireSpinLock() - NdisFreeBuffer() is actually IoFreeMdl(). I had to change the whole NDIS_BUFFER API a bit to accomodate this. Bugs fixed along the way: - IoAllocateMdl() always returned NULL - kern_windrv.c:windrv_unload() wasn't releasing private driver object extensions correctly (found thanks to memguard) This has only been tested with the driver for the Broadcom 802.11g chipset, which was the only Windows/x86-64 driver I could find.
* Next step on the road to IRPs: create and use an imitation of thewpaul2005-02-081-76/+128
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Windows DRIVER_OBJECT and DEVICE_OBJECT mechanism so that we can simulate driver stacking. In Windows, each loaded driver image is attached to a DRIVER_OBJECT structure. Windows uses the registry to match up a given vendor/device ID combination with a corresponding DRIVER_OBJECT. When a driver image is first loaded, its DriverEntry() routine is invoked, which sets up the AddDevice() function pointer in the DRIVER_OBJECT and creates a dispatch table (based on IRP major codes). When a Windows bus driver detects a new device, it creates a Physical Device Object (PDO) for it. This is a DEVICE_OBJECT structure, with semantics analagous to that of a device_t in FreeBSD. The Windows PNP manager will invoke the driver's AddDevice() function and pass it pointers to the DRIVER_OBJECT and the PDO. The AddDevice() function then creates a new DRIVER_OBJECT structure of its own. This is known as the Functional Device Object (FDO) and corresponds roughly to a private softc instance. The driver uses IoAttachDeviceToDeviceStack() to add this device object to the driver stack for this PDO. Subsequent drivers (called filter drivers in Windows-speak) can be loaded which add themselves to the stack. When someone issues an IRP to a device, it travel along the stack passing through several possible filter drivers until it reaches the functional driver (which actually knows how to talk to the hardware) at which point it will be completed. This is how Windows achieves driver layering. Project Evil now simulates most of this. if_ndis now has a modevent handler which will use MOD_LOAD and MOD_UNLOAD events to drive the creation and destruction of DRIVER_OBJECTs. (The load event also does the relocation/dynalinking of the image.) We don't have a registry, so the DRIVER_OBJECTS are stored in a linked list for now. Eventually, the list entry will contain the vendor/device ID list extracted from the .INF file. When ndis_probe() is called and detectes a supported device, it will create a PDO for the device instance and attach it to the DRIVER_OBJECT just as in Windows. ndis_attach() will then call our NdisAddDevice() handler to create the FDO. The NDIS miniport block is now a device extension hung off the FDO, just as it is in Windows. The miniport characteristics table is now an extension hung off the DRIVER_OBJECT as well (the characteristics are the same for all devices handled by a given driver, so they don't need to be per-instance.) We also do an IoAttachDeviceToDeviceStack() to put the FDO on the stack for the PDO. There are a couple of fake bus drivers created for the PCI and pccard buses. Eventually, there will be one for USB, which will actually accept USB IRP.s Things should still work just as before, only now we do things in the proper order and maintain the correct framework to support passing IRPs between drivers. Various changes: - corrected the comments about IRQL handling in subr_hal.c to more accurately reflect reality - update ndiscvt to make the drv_data symbol in ndis_driver_data.h a global so that if_ndis_pci.o and/or if_ndis_pccard.o can see it. - Obtain the softc pointer from the miniport block by referencing the PDO rather than a private pointer of our own (nmb_ifp is no longer used) - implement IoAttachDeviceToDeviceStack(), IoDetachDevice(), IoGetAttachedDevice(), IoAllocateDriverObjectExtension(), IoGetDriverObjectExtension(), IoCreateDevice(), IoDeleteDevice(), IoAllocateIrp(), IoReuseIrp(), IoMakeAssociatedIrp(), IoFreeIrp(), IoInitializeIrp() - fix a few mistakes in the driver_object and device_object definitions - add a new module, kern_windrv.c, to handle the driver registration and relocation/dynalinkign duties (which don't really belong in kern_ndis.c). - made ndis_block and ndis_chars in the ndis_softc stucture pointers and modified all references to it - fixed NdisMRegisterMiniport() and NdisInitializeWrapper() so they work correctly with the new driver_object mechanism - changed ndis_attach() to call NdisAddDevice() instead of ndis_load_driver() (which is now deprecated) - used ExAllocatePoolWithTag()/ExFreePool() in lookaside list routines instead of kludged up alloc/free routines - added kern_windrv.c to sys/modules/ndis/Makefile and files.i386.
* Apparently, the Intel icc compiler doesn't like it when you usewpaul2005-01-251-1/+1
| | | | | | attributes in casts (i.e. foo = (__stdcall sometype)bar). This only happens in two places where we need to set up function pointers, so work around the problem with some void pointer magic.
* Begin the first phase of trying to add IRP support (and ultimatelywpaul2005-01-241-431/+439
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | USB device support): - Convert all of my locally chosen function names to their actual Windows equivalents, where applicable. This is a big no-op change since it doesn't affect functionality, but it helps avoid a bit of confusion (it's now a lot easier to see which functions are emulated Windows API routines and which are just locally defined). - Turn ndis_buffer into an mdl, like it should have been. The structure is the same, but now it belongs to the subr_ntoskrnl module. - Implement a bunch of MDL handling macros from Windows and use them where applicable. - Correct the implementation of IoFreeMdl(). - Properly implement IoAllocateMdl() and MmBuildMdlForNonPagedPool(). - Add the definitions for struct irp and struct driver_object. - Add IMPORT_FUNC() and IMPORT_FUNC_MAP() macros to make formatting the module function tables a little cleaner. (Should also help with AMD64 support later on.) - Fix if_ndis.c to use KeRaiseIrql() and KeLowerIrql() instead of the previous calls to hal_raise_irql() and hal_lower_irql() which have been renamed. The function renaming generated a lot of churn here, but there should be very little operational effect.
* Fix a problem reported by Pierre Beyssac. Sometinmes when ndis_get_info()wpaul2005-01-141-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | calls MiniportQueryInformation(), it will return NDIS_STATUS_PENDING. When this happens, ndis_get_info() will sleep waiting for a completion event. If two threads call ndis_get_info() and both end up having to sleep, they will both end up waiting on the same wait channel, which can cause a panic in sleepq_add() if INVARIANTS are turned on. Fix this by having ndis_get_info() use a common mutex rather than using the process mutex with PROC_LOCK(). Also do the same for ndis_set_info(). Note that Pierre's original patch also made ndis_thsuspend() use the new mutex, but ndis_thsuspend() shouldn't need this since it will make each thread that calls it sleep on a unique wait channel. Also, it occured to me that we probably don't want to enter MiniportQueryInformation() or MiniportSetInformation() from more than one thread at any given time, so now we acquire a Windows spinlock before calling either of them. The Microsoft documentation says that MiniportQueryInformation() and MiniportSetInformation() are called at DISPATCH_LEVEL, and previously we would call KeRaiseIrql() to set the IRQL to DISPATCH_LEVEL before entering either routine, but this only guarantees mutual exclusion on uniprocessor machines. To make it SMP safe, we need to use a real spinlock. For now, I'm abusing the spinlock embedded in the NDIS_MINIPORT_BLOCK structure for this purpose. (This may need to be applied to some of the other routines in kern_ndis.c at a later date.) Export ntoskrnl_init_lock() (KeInitializeSpinlock()) from subr_ntoskrnl.c since we need to use in in kern_ndis.c, and since it's technically part of the Windows kernel DDK API along with the other spinlock routines. Use it in subr_ndis.c too rather than frobbing the spinlock directly.
* Start each of the license/copyright comments with /*-imp2005-01-051-1/+1
|
* Fix compiler warnings, when __stdcall is #defined, by adding explicit casts.bms2004-09-171-1/+1
| | | | | | | | | | These normally only manifest if the ndis compat module is statically compiled into a kernel image by way of 'options NDISAPI'. Submitted by: Dmitri Nikulin Approved by: wpaul PR: kern/71449 MFC after: 1 week
* I'm a dumbass: remember to initialize fh->nf_map to NULL inwpaul2004-08-161-0/+1
| | | | ndis_open_file() in the module loading case.
* Make the Texas Instruments 802.11g chipset work with the NDISulator.wpaul2004-08-161-2/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | This was tested with a Netgear WG311v2 802.11b/g PCI card. Things that were fixed: - This chip has two memory mapped regions, one at PCIR_BAR(0) and the other at PCIR_BAR(1). This is a little different from the other chips I've seen with two PCI shared memory regions, since they tend to have the second BAR ad PCIR_BAR(2). if_ndis_pci.c tests explicitly for PCIR_BAR(2). This has been changed to simply fill in ndis_res_mem first and ndis_res_altmem second, if a second shared memory range exists. Given that NDIS drivers seem to scan for BARs in ascending order, I think this should be ok. - Fixed the code that tries to process firmware images that have been loaded as .ko files. To save a step, I was setting up the address mapping in ndis_open_file(), but ndis_map_file() flags pre-existing mappings as an error (to avoid duplicate mappings). Changed this so that the mapping is now donw in ndis_map_file() as expected. - Made the typedef for 'driver_entry' explicitly include __stdcall to silence gcc warning in ndis_load_driver(). NOTE: the Texas Instruments ACX111 driver needs firmware. With my card, there were 3 .bin files shipped with the driver. You must either put these files in /compat/ndis or convert them with ndiscvt -f and kldload them so the driver can use them. Without the firmware image, the NIC won't work.
* More minor cleanups and one small bug fix:wpaul2004-08-041-12/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | - In ntoskrnl_var.h, I had defined compat macros for ntoskrnl_acquire_spinlock() and ntoskrnl_release_spinlock() but never used them. This is fortunate since they were stale. Fix them to work properly. (In Windows/x86 KeAcquireSpinLock() is a macro that calls KefAcquireSpinLock(), which lives in HAL.dll. To imitate this, ntoskrnl_acquire_spinlock() is just a macro that calls hal_lock(), which lives in subr_hal.o.) - Add macros for ntoskrnl_raise_irql() and ntoskrnl_lower_irql() that call hal_raise_irql() and hal_lower_irql(). - Use these macros in kern_ndis.c, subr_ndis.c and subr_ntoskrnl.c. - Along the way, I realised subr_ndis.c:ndis_lock() was not calling hal_lock() correctly (it was using the FASTCALL2() wrapper when in reality this routine is FASTCALL1()). Using the ntoskrnl_acquire_spinlock() fixes this. Not sure if this actually caused any bugs since hal_lock() would have just ignored what was in %edx, but it was still bogus. This hides many of the uses of the FASTCALLx() macros which makes the code a little cleaner. Should not have any effect on generated object code, other than the one fix in ndis_lock().
* In ndis_alloc_bufpool() and ndis_alloc_packetpool(), the test to see ifwpaul2004-08-011-2/+2
| | | | | allocating pool memory succeeded was checking the wrong pointer (should have been looking at *pool, not pool). Corrected this.
* Big mess 'o changes:wpaul2004-08-011-9/+130
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Give ndiscvt(8) the ability to process a .SYS file directly into a .o file so that we don't have to emit big messy char arrays into the ndis_driver_data.h file. This behavior is currently optional, but may become the default some day. - Give ndiscvt(8) the ability to turn arbitrary files into .ko files so that they can be pre-loaded or kldloaded. (Both this and the previous change involve using objcopy(1)). - Give NdisOpenFile() the ability to 'read' files out of kernel memory that have been kldloaded or pre-loaded, and disallow the use of the normal vn_open() file opening method during bootstrap (when no filesystems have been mounted yet). Some people have reported that kldloading if_ndis.ko works fine when the system is running multiuser but causes a panic when the modile is pre-loaded by /boot/loader. This happens with drivers that need to use NdisOpenFile() to access external files (i.e. firmware images). NdisOpenFile() won't work during kernel bootstrapping because no filesystems have been mounted. To get around this, you can now do the following: o Say you have a firmware file called firmware.img o Do: ndiscvt -f firmware.img -- this creates firmware.img.ko o Put the firmware.img.ko in /boot/kernel o add firmware.img_load="YES" in /boot/loader.conf o add if_ndis_load="YES" and ndis_load="YES" as well Now the loader will suck the additional file into memory as a .ko. The phony .ko has two symbols in it: filename_start and filename_end, which are generated by objcopy(1). ndis_open_file() will traverse each module in the module list looking for these symbols and, if it finds them, it'll use them to generate the file mapping address and length values that the caller of NdisOpenFile() wants. As a bonus, this will even work if the file has been statically linked into the kernel itself, since the "kernel" module is searched too. (ndiscvt(8) will generate both filename.o and filename.ko for you). - Modify the mechanism used to provide make-pretend FASTCALL support. Rather than using inline assembly to yank the first two arguments out of %ecx and %edx, we now use the __regparm__(3) attribute (and the __stdcall__ attribute) and use some macro magic to re-order the arguments and provide dummy arguments as needed so that the arguments passed in registers end up in the right place. Change taken from DragonflyBSD version of the NDISulator.
* Make NdisReadPcmciaAttributeMemory() and NdisWritePcmciaAttributeMemory()wpaul2004-07-111-8/+12
| | | | | | | | | | | | | | | | | | | | | | | actually work. Make the PCI and PCCARD attachments provide a bus_get_resource_list() method so that resource listing for PCCARD works. PCCARD does not have a bus_get_resource_list() method (yet), so I faked up the resource list management in if_ndis_pccard.c, and added bus_get_resource_list() methods to both if_ndis_pccard.c and if_ndis_pci.c. The one in the PCI attechment just hands off to the PCI bus code. The difference is transparent to the NDIS resource handler code. Fixed ndis_open_file() so that opening files which live on NFS filesystems work: pass an actual ucred structure to VOP_GETATTR() (NFS explodes if the ucred structure is NOCRED). Make NdisMMapIoSpace() handle mapping of PCMCIA attribute memory resources correctly. Turn subr_ndis.c:my_strcasecmp() into ndis_strcasecmp() and export it so that if_ndis_pccard.c can use it, and junk the other copy of my_strcasecmp() from if_ndis_pccard.c.
* Fix two problems:wpaul2004-07-071-1/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - In subr_ndis.c:ndis_allocate_sharemem(), create the busdma tags used for shared memory allocations with a lowaddr of 0x3E7FFFFF. This forces the buffers to be mapped to physical/bus addresses within the first 1GB of physical memory. It seems that at least one card (Linksys Instant Wireless PCI V2.7) depends on this behavior. I don't know if this is a hardware restriction, or if the NDIS driver for this card is truncating the addresses itself, but using physical/bus addresses beyong the 1GB limit causes initialization failures. - Create am NDIS_INITIALIZED() macro in if_ndisvar.h and use it in if_ndis.c to test whether the device has been initialized rather than checking for the presence of the IFF_UP flag in if_flags. While debugging the previous problem, I noticed that bringing up the device would always produce failures from ndis_setmulti(). It turns out that the following steps now occur during device initialization: - IFF_UP flag is set in if_flags - ifp->if_ioctl() called with SIOCSIFADDR (which we don't handle) - ifp->if_ioctl() called with SIOCADDMULTI - ifp->if_ioctl() called with SIOCADDMULTI (again) - ifp->if_ioctl() called with SIOCADDMULTI (yet again) - ifp->if_ioctl() called with SIOCSIFFLAGS Setting the receive filter and multicast filters can only be done when the underlying NDIS driver has been initialized, which is done by ifp->if_init(). However, we don't call ifp->if_init() until ifp->if_ioctl() is called with SIOCSIFFLAGS and IFF_UP has been set. It appears that now, the network stack tries to add multicast addresses to interface's filter before those steps occur. Normally, ndis_setmulti() would trap this condition by checking for the IFF_UP flag, but the network code has in fact set this flag already, so ndis_setmulti() is fooled into thinking the interface has been initialized when it really hasn't. It turns out this is usually harmless because the ifp->if_init() routine (in this case ndis_init()) will set up the multicast filter when it initializes the hardware anyway, and the underlying routines (ndis_get_info()/ndis_set_info()) know that the driver/NIC haven't been initialized yet, but you end up spurious error messages on the console all the time. Something tells me this new behavior isn't really correct. I think the intention was to fix it so that ifp->if_init() is only called once when we ifconfig an interface up, but the end result seems a little bogus: the change of the IFF_UP flag should be propagated down to the driver before calling any other ioctl() that might actually require the hardware to be up and running.
* Take advantage of the dev sysctl tree.des2004-06-041-0/+8
| | | | Approved by: wpaul
* Grrr. Really check subr_ndis.c in this time. (fixed my_strcasecmp())wpaul2004-06-041-13/+19
|
* Fix build with ndisulator: Add prototype for my_strcasecmp().wpaul2004-05-291-0/+1
|
* In subr_ndis.c, when searching for keys in our make-pretend registry,wpaul2004-05-291-2/+21
| | | | | | | | | | | | | | | | | | | | | make the key name matching case-insensitive. There are some drivers and .inf files that have mismatched cases, e.g. the driver will look for "AdhocBand" whereas the .inf file specifies a registry key to be created called "AdHocBand." The mismatch is probably a typo that went undetected (so much for QA), but since Windows seems to be case-insensitive, we should be too. In if_ndis.c, initialize rates and channels correctly so that specify frequences correctly when trying to set channels in the 5Ghz band, and so that 802.11b rates show up for some a/b/g cards (which otherwise appear to have no 802.11b modes). Also, when setting OID_802_11_CONFIGURATION in ndis_80211_setstate(), provide default values for the beacon interval, ATIM window and dwelltime. The Atheros "Aries" driver will crash if you try to select ad-hoc mode and leave the beacon interval set to 0: it blindly uses this value and does a division by 0 in the interrupt handler, causing an integer divide trap.
* - Use memory barrier with atomic operations in ntoskrnl_lock_dpc() andwpaul2004-04-161-2/+1
| | | | | | | | | | | | | | ntoskrnl_unlocl_dpc(). - hal_raise_irql(), hal_lower_irql() and hal_irql() didn't work right on SMP (priority inheritance makes things... interesting). For now, use only two states: DISPATCH_LEVEL (PI_REALTIME) and PASSIVE_LEVEL (everything else). Tested on a dual PIII box. - Use ndis_thsuspend() in ndis_sleep() instead of tsleep(). (I added ndis_thsuspend() and ndis_thresume() to replace kthread_suspend() and kthread_resume(); the former will preserve a thread's priority when it wakes up, the latter will not.) - Change use of tsleep() in ndis_stop_thread() to prevent priority change on wakeup.
* Continue my efforts to imitate Windows as closely as possible bywpaul2004-04-141-21/+68
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | attempting to duplicate Windows spinlocks. Windows spinlocks differ from FreeBSD spinlocks in the way they block preemption. FreeBSD spinlocks use critical_enter(), which masks off _all_ interrupts. This prevents any other threads from being scheduled, but it also prevents ISRs from running. In Windows, preemption is achieved by raising the processor IRQL to DISPATCH_LEVEL, which prevents other threads from preempting you, but does _not_ prevent device ISRs from running. (This is essentially what Solaris calls dispatcher locks.) The Windows spinlock itself (kspin_lock) is just an integer value which is atomically set when you acquire the lock and atomically cleared when you release it. FreeBSD doesn't have IRQ levels, so we have to cheat a little by using thread priorities: normal thread priority is PASSIVE_LEVEL, lowest interrupt thread priority is DISPATCH_LEVEL, highest thread priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL matter to us. The immediate benefit of all this is that I no longer have to rely on a mutex pool. Now, I'm sure many people will be seized by the urge to criticize me for doing an end run around our own spinlock implementation, but it makes more sense to do it this way. Well, it does to me anyway. Overview of the changes: - Properly implement hal_lock(), hal_unlock(), hal_irql(), hal_raise_irql() and hal_lower_irql() so that they more closely resemble their Windows counterparts. The IRQL is determined by thread priority. - Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do in Windows, which is to atomically set/clear the lock value. These routines are designed to be called from DISPATCH_LEVEL, and are actually half of the work involved in acquiring/releasing spinlocks. - Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers that allow us to call a _fastcall function in spite of the fact that our version of gcc doesn't support __attribute__((__fastcall__)) yet. The macros take 1, 2 or 3 arguments, respectively. We need to call hal_lock(), hal_unlock() etc... ourselves, but can't really invoke the function directly. I could have just made the underlying functions native routines and put _fastcall wrappers around them for the benefit of Windows binaries, but that would create needless bloat. - Remove ndis_mtxpool and all references to it. We don't need it anymore. - Re-implement the NdisSpinLock routines so that they use hal_lock() and friends like they do in Windows. - Use the new spinlock methods for handling lookaside lists and linked list updates in place of the mutex locks that were there before. - Remove mutex locking from ndis_isr() and ndis_intrhand() since they're already called with ndis_intrmtx held in if_ndis.c. - Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif. It turns out there are some drivers which stupidly free the memory in which their spinlocks reside before calling ndis_destroy_lock() on them (touch-after-free bug). The ADMtek wireless driver is guilty of this faux pas. (Why this doesn't clobber Windows I have no idea.) - Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into real functions instead of aliasing them to NdisAcaquireSpinLock() and NdisReleaseSpinLock(). The Dpr routines use KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(), which acquires the lock without twiddling the IRQL. - In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some drivers may call the status/status done callbacks as the result of setting an OID: ndis_80211_getstate() gets OIDs, which means we might cause the driver to recursively access some of its internal structures unexpectedly. The ndis_ticktask() routine will call ndis_80211_getstate() for us eventually anyway. - Fix the channel setting code a little in ndis_80211_setstate(), and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft spec says you're not supposed to twiddle the channel in BSS mode; I may need to enforce this later.) This fixes the problems I was having with the ADMtek adm8211 driver: we were setting the channel to a non-standard default, which would cause it to fail to associate in BSS mode. - Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when calling certain miniport routines, per the Microsoft documentation. I think that's everything. Hopefully, other than fixing the ADMtek driver, there should be no apparent change in behavior.
* - The MiniportReset() function can return NDIS_STATUS_PENDING, in whichwpaul2004-04-051-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | case we should wait for the resetdone handler to be called before returning. - When providing resources via ndis_query_resources(), uses the computed rsclen when using bcopy() to copy out the resource data rather than the caller-supplied buffer length. - Avoid using ndis_reset_nic() in if_ndis.c unless we really need to reset the NIC because of a problem. - Allow interrupts to be fielded during ndis_attach(), at least as far as allowing ndis_isr() and ndis_intrhand() to run. - Use ndis_80211_rates_ex when probing for supported rates. Technically, this isn't supposed to work since, although Microsoft added the extended rate structure with the NDIS 5.1 update, the spec still says that the OID_802_11_SUPPORTED_RATES OID uses ndis_80211_rates. In spite of this, it appears some drivers use it anyway. - When adding in our guessed rates, check to see if they already exist so that we avoid any duplicates. - Add a printf() to ndis_open_file() that alerts the user when a driver attempts to open a file under /compat/ndis. With these changes, I can get the driver for the SMC 2802W 54g PCI card to load and run. This board uses a Prism54G chip. Note that in order for this driver to work, you must place the supplied smc2802w.arm firmware image under /compat/ndis. (The firmware is not resident on the device.) Note that this should also allow the 3Com 3CRWE154G72 card to work as well; as far as I can tell, these cards also use a Prism54G chip.
* - In subr_ndis.c:ndis_init_event(), initialize events as notificationwpaul2004-03-251-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | objects rather than synchronization objects. When a sync object is signaled, only the first thread waiting on it is woken up, and then it's automatically reset to the not-signaled state. When a notification object is signaled, all threads waiting on it will be woken up, and it remains in the signaled state until someone resets it manually. We want the latter behavior for NDIS events. - In kern_ndis.c:ndis_convert_res(), we have to create a temporary copy of the list returned by BUS_GET_RESOURCE_LIST(). When the PCI bus code probes resources for a given device, it enters them into a singly linked list, head first. The result is that traversing this list gives you the resources in reverse order. This means when we create the Windows resource list, it will be in reverse order too. Unfortunately, this can hose drivers for devices with multiple I/O ranges of the same type, like, say, two memory mapped I/O regions (one for registers, one to map the NVRAM/bootrom/whatever). Some drivers test the range size to figure out which region is which, but others just assume that the resources will be listed in ascending order from lowest numbered BAR to highest. Reversing the order means such drivers will choose the wrong resource as their I/O register range. Since we can't traverse the resource SLIST backwards, we have to make a temporary copy of the list in the right order and then build the Windows resource list from that. I suppose we could just fix the PCI bus code to use a TAILQ instead, but then I'd have to track down all the consumers of the BUS_GET_RESOURCE_LIST() and fix them too.
* - Rewrite the timer and event API routines in subr_ndis.c so that theywpaul2004-03-201-171/+60
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just as it is in Windows. This reduces code duplication and more closely imitates the way things are done in Windows. - Modify ndis_encode_parm() to deal with the case where we have a registry key expressed as a hex value ("0x1") which is being read via NdisReadConfiguration() as an int. Previously, we tried to decode things like "0x1" with strtol() using a base of 10, which would always yield 0. This is what was causing problems with the Intel 2200BG Centrino 802.11g driver: the .inf file that comes with it has a key called RadioEnable with a value of 0x1. We incorrectly decoded this value to '0' when it was queried, hence the driver thought we wanted the radio turned off. - In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO, but NDIS_80211_AUTHMODE_SHARED may not be right in some cases, so for now always use NDIS_80211_AUTHMODE_OPEN. NOTE: There is still one problem with the Intel 2200BG driver: it happens that the kernel stack in Windows is larger than the kernel stack in FreeBSD. The 2200BG driver sometimes eats up more than 2 pages of stack space, which can lead to a double fault panic. For the moment, I got things to work by adding the following to my kernel config file: options KSTACK_PAGES=8 I'm pretty sure 8 is too big; I just picked this value out of a hat as a test, and it happened to work, so I left it. 4 pages might be enough. Unfortunately, I don't think you can dynamically give a thread a larger stack, so I'm not sure how to handle this short of putting a note in the man page about it and dealing with the flood of mail from people who never read man pages.
* Fix the problem with the Cisco Aironet 340 PCMCIA card. Most newer driverswpaul2004-03-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | for Windows are deserialized miniports. Such drivers maintain their own queues and do their own locking. This particular driver is not deserialized though, and we need special support to handle it correctly. Typically, in the ndis_rxeof() handler, we pass all incoming packets directly to (*ifp->if_input)(). This in turn may cause another thread to run and preempt us, and the packet may actually be processed and then released before we even exit the ndis_rxeof() routine. The problem with this is that releasing a packet calls the ndis_return_packet() function, which hands the packet and its buffers back to the driver. Calling ndis_return_packet() before ndis_rxeof() returns will screw up the driver's internal queues since, not being deserialized, it does no locking. To avoid this problem, if we detect a serialized driver (by checking the attribute flags passed to NdisSetAttributesEx(), we use an alternate ndis_rxeof() handler, ndis_rxeof_serial(), which puts the call to (*ifp->if_input)() on the NDIS SWI work queue. This guarantees the packet won't be processed until after ndis_rxeof_serial() returns. Note that another approach is to always copy the packet data into another mbuf and just let the driver retain ownership of the ndis_packet structure (ndis_return_packet() never needs to be called in this case). I'm not sure which method is faster.
* Fix several issues related to the KeInitializeTimer() etc... API stuffwpaul2004-03-101-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | that I added recently: - When a periodic timer fires, it's automatically re-armed. We must make sure to re-arm the timer _before_ invoking any caller-supplied defered procedure call: the DPC may choose to call KeCancelTimer(), and re-arming the timer after the DPC un-does the effect of the cancel. - Fix similar issue with periodic timers in subr_ndis.c. - When calling KeSetTimer() or KeSetTimerEx(), if the timer is already pending, untimeout() it first before timeout()ing it again. - The old Atheros driver for the 5211 seems to use KeSetTimerEx() incorrectly, or at the very least in a very strange way that doesn't quite follow the Microsoft documentation. In one case, it calls KeSetTimerEx() with a duetime of 0 and a period of 5000. The Microsoft documentation says that negative duetime values are relative to the current time and positive values are absolute. But it doesn't say what's supposed to happen with positive values that less than the current time, i.e. absolute values that are in the past. Lacking any further information, I have decided that timers with positive duetimes that are in the past should fire right away (or in our case, after only 1 tick). This also takes care of the other strange usage in the Atheros driver, where the duetime is specified as 500000 and the period is 50. I think someone may have meant to use -500000 and misinterpreted the documentation. - Also modified KeWaitForSingleObject() and KeWaitForMultipleObjects() to make the same duetime adjustment, since they have the same rules regarding timeout values. - Cosmetic: change name of 'timeout' variable in KeWaitForSingleObject() and KeWaitForMultipleObjects() to 'duetime' to avoid senseless (though harmless) overlap with timeout() function name. With these fixes, I can get the 5211 card to associate properly with my adhoc net using driver AR5211.SYS version 2.4.1.6.
* Add sanity checks to the ndis_packet and ndis_buffer pool handlingwpaul2004-03-041-2/+76
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | routines to guard against problems caused by (possibly) buggy drivers. The RealTek 8180 wireless driver calls NdisFreeBuffer() to release some of its buffers _after_ it's already called NdisFreeBufferPool() to destroy the pool to which the buffers belong. In our implementation, this error causes NdisFreeBuffer() to touch stale heap memory. If you are running a release kernel, and hence have INVARIANTS et al turned off, it turns out nothing happens. But if you're using a development kernel config with INVARIANTS on, the malloc()/free() sanity checks will scribble over the pool memory with 0xdeadc0de once it's released so that any attempts to touch it will cause a trap, and indeed this is what happens. It happens that I run 5.2-RELEASE on my laptop, so when I tested the rtl8180.sys driver, it worked fine for me, but people trying to run it with development systems checked out or cvsupped from -current would get a page fault on driver load. I can't find any reason why the NDISulator would cause the RealTek driver to do the NdisFreeBufferPool() prematurely, and the same driver obviously works with Windows -- or at least, it doesn't cause a crash: the Microsoft documentation for NdisFreeBufferPool() says that failing to return all buffers to the pool before calling NdisFreeBufferPool() causes a memory leak. I've written to my contacts at RealTek asking them to check if this is indeed a bug in their driver. In the meantime, these new sanity checks will catch this problem and issue a warning rather than causing a trap. The trick is to keep a count of outstanding buffers for each buffer pool, and if the driver tries to call NdisFreeBufferPool() while there are still buffers outstanding, we mark the pool for deletion and then defer destroying it until after the last buffer has been reclaimed.
* More cleanups/fixes for the AMD Am1771 driver:wpaul2004-02-161-1/+1
| | | | | | | | | | | | | | | | | | | | | - When adding new waiting threads to the waitlist for an object, use INSERT_LIST_TAIL() instead of INSERT_LIST_HEAD() so that new waiters go at the end of the list instead of the beginning. When we wake up a synchronization object, only the first waiter is awakened, and this needs to be the first thread that actually waited on the object. - Correct missing semicolon in INSERT_LIST_TAIL() macro. - Implement lookaside lists correctly. Note that the Am1771 driver uses lookaside lists to manage shared memory (i.e. DMAable) buffers by specifying its own alloc and free routines. The Microsoft documentation says you should avoid doing this, but apparently this did not deter the developers at AMD from doing it anyway. With these changes (which are the result of two straight days of almost non-stop debugging), I think I finally have the object/thread handling semantics implemented correctly. The Am1771 driver no longer crashes unexpectedly during association or bringing the interface up.
* Make NdisMMapIoSpace() guard against NULL/uninitialized resource pointers too.wpaul2004-02-081-2/+4
|
* Make NdisMMapIoSpace() handle the case where a device has both memwpaul2004-02-081-3/+5
| | | | and altmem ranges mapped.
* Argh. kthread_suspend() when in P_KTHREAD context, tsleep() when not,wpaul2004-02-071-2/+2
| | | | not the other way around.
* Correct an intance of mtx_pool_lock() that should have been mtx_pool_unlock().wpaul2004-02-071-1/+1
|
* Add a whole bunch of new stuff to make the driver for the AMD Am1771/Am1772wpaul2004-02-071-60/+158
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 802.11b chipset work. This chip is present on the SMC2602W version 3 NIC, which is what was used for testing. This driver creates kernel threads (12 of them!) for various purposes, and required the following routines: PsCreateSystemThread() PsTerminateSystemThread() KeInitializeEvent() KeSetEvent() KeResetEvent() KeInitializeMutex() KeReleaseMutex() KeWaitForSingleObject() KeWaitForMultipleObjects() IoGetDeviceProperty() and several more. Also, this driver abuses the fact that NDIS events and timers are actually Windows events and timers, and uses NDIS events with KeWaitForSingleObject(). The NDIS event routines have been rewritten to interface with the ntoskrnl module. Many routines with incorrect prototypes have been cleaned up. Also, this driver puts jobs on the NDIS taskqueue (via NdisScheduleWorkItem()) which block on events, and this interferes with the operation of NdisMAllocateSharedMemoryAsync(), which was also being put on the NDIS taskqueue. To avoid the deadlock, NdisMAllocateSharedMemoryAsync() is now performed in the NDIS SWI thread instead. There's still room for some cleanups here, and I really should implement KeInitializeTimer() and friends.
* Correct/improve the implementation of NdisMAllocateSharedMemoryAsync().wpaul2004-02-041-13/+50
| | | | | | | | | | | Since we have a worker thread now, we can actually do the allocation asynchronously in that thread's context. Also, we need to return a status value: if we're unable to queue up the async allocation, we return NDIS_STATUS_FAILURE, otherwise we return NDIS_STATUS_PENDING to indicate the allocation has been queued and will occur later. This replaces the kludge where we just invoked the callback routine right away in the current context.
* Implement support for single packet sends. The Intel Centrino driverwpaul2004-02-031-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | that Asus provides on its CDs has both a MiniportSend() routine and a MiniportSendPackets() function. The Microsoft NDIS docs say that if a driver has both, only the MiniportSendPackets() routine will be used. Although I think I implemented the support correctly, calling the MiniportSend() routine seems to result in no packets going out on the air, even though no error status is returned. The MiniportSendPackets() function does work though, so at least in this case it doesn't matter. In if_ndis.c:ndis_getstate_80211(), if ndis_get_assoc() returns an error, don't bother trying to obtain any other state since the calls may fail, or worse cause the underlying driver to crash. (The above two changes make the Asus-supplied Centrino work.) Also, when calling the OID_802_11_CONFIGURATION OID, remember to initialize the structure lengths correctly. In subr_ndis.c:ndis_open_file(), set the current working directory to rootvnode if we're in a thread that doesn't have a current working directory set.
* Implement NdisVirtualBufferAddress() and NdisVirtualBufferAddressSafe().wpaul2004-01-271-0/+21
| | | | The RealTek 8180 driver seems to need this.
* Reorganize the timer code a little and implement NdisInitializeTimer()wpaul2004-01-261-11/+85
| | | | | | | | | | | and NdisCancelTimer(). NdisInitializeTimer() doesn't accept an NDIS miniport context argument, so we have to derive it from the timer function context (which is supposed to be the adapter private context). NdisCancelTimer is now an alias for NdisMCancelTimer(). Also add stubs for NdisMRegisterDevice() and NdisMDeregisterDevice(). These are no-ops for now, but will likely get fleshed in once I start working on the Am1771/Am1772 wireless driver.
* Convert from using taskqueue_swi to using private kernel threads. Thewpaul2004-01-181-14/+9
| | | | | | | | | | problem with using taskqueue_swi is that some of the things we defer into threads might block for up to several seconds. This is an unfriendly thing to do to taskqueue_swi, since it is assumed the taskqueue threads will execute fairly quickly once a task is submitted. Reorganized the locking in if_ndis.c in the process. Cleaned up ndis_write_cfg() and ndis_decode_parm() a little.
* Implement NdisCopyFromPacketToPacket() and NdisCopyFromPacketToPacketSafe().wpaul2004-01-151-0/+110
| | | | | I only have one driver that references this routine (for the 3Com 3cR990) and it never gets called, but just in case, here it is.
* mp_ncpus is always defined now, so no need to do an #ifdef SMP inwpaul2004-01-141-5/+1
| | | | ndis_cpu_cnt().
* AMD64 has a single MS-Win calling convention, so provide an empty __stdcall.obrien2004-01-131-1/+0
| | | | Centralize the definition to make it easier to change.
* Loosen up the range test in ndis_register_ioport(). Allow drivers towpaul2004-01-131-1/+2
| | | | | | | | map ranges that are smaller than what our resource manager code knows is available, rather than requiring that they match exactly. This fixes a problem with the Intel PRO/1000 gigE driver: it wants to map a range of 32 I/O ports, even though some chips appear set up to decode a range of 64. With this fix, it loads and runs correctly.
* Merge in some changes submitted by Brian Feldman. Among other things,wpaul2004-01-121-59/+18
| | | | | | | | | | | | these add support for listing BSSIDs via wicontrol -l. I added code to call OID_802_11_BSSID_LIST_SCAN to allow scanning for any nearby wirelsss nets. Convert from using individual mutexes to a mutex pool, created in subr_ndis.c. This deals with the problem of drivers creating locks in their DriverEntry() routines which might get trashed later. Put some messages under IFF_DEBUG.
* The private data section of ndis_packets has a 'packet flags' bytewpaul2004-01-091-0/+7
| | | | | | | | | | | | | | | which has two important flags in it: the 'allocated by NDIS' flag and the 'media specific info present' flag. There are two Windows macros for getting/setting media specific info fields within the ndis_packet structure which can behave improperly if these flags are not initialized correctly when a packet is allocated. It seems the correct thing to do is always set the NDIS_PACKET_ALLOCATED_BY_NDIS flag on all newly allocated packets. This fixes the crashes with the Intel Centrino wireless driver. My sample card now seems to work correctly. Also, fix a potential LOR involving ndis_txeof() in if_ndis.c.
* Implement NdisOpenFile()/NdisCloseFile()/NdisMapFile()/NdisUnmapFile().wpaul2004-01-091-6/+121
| | | | | | | | | By default, we search for files in /compat/ndis. This can be changed with a systcl. These routines are used by some drivers which need to download firmware or microcode into their respective devices during initialization. Also, remove extraneous newlines from the 'built-in' sysctl/registry variables.
* It appears drivers may call NdisWriteErrorLogEntry() with lockswpaul2004-01-071-3/+5
| | | | | | | | held. However, if we need to translate a unicode message table message, ndis_unicode_to_ascii() might malloc() some memory, which causes a warning from witness. Avoid this by using some stack space to hold the translated message. (Also bounds check to make sure we don't overrun the stack buffer.)
* Use atomic ops for the interlocked increment and decrement routineswpaul2004-01-071-6/+3
| | | | | | | | in subr_ndis and subr_ntoskrnl. This is faster and avoids potential LOR whinage from witness (an LOR couldn't happen with the old code since the interlocked inc/dec routines could not sleep with a lock held, but this will keep witness happy and it's more efficient anyway. I think.)
* In subr_ndis.c: correct ndis_interlock_inc() and ndis_interlock_dec()wpaul2004-01-071-8/+8
| | | | | | | | | | | | so we increment the right thing. (All work and not enough parens make Bill something something...) This makes the RealTek 8139C+ driver work correctly. Also fix some mtx_lock_spin()s and mtx_unlock_spin()s that should have been just plain mtx_lock()s and mtx_unlock()s. In kern_ndis.c: remove duplicate code from ndis_send_packets() and just call the senddone handler (ndis_txeof()).
OpenPOWER on IntegriCloud