| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
r294767: Parse command line arguments in loader.fi
r294769: Allow newlines to be treated as whitespace when parsing args
r295408: Implement -P command line option in for EFI booting.
Approved by: re@ (gjb@)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The MFC of the recent EFI work to stable/10 caused build breakage
under ia64.
It was not apparent that there was EFI code outside the EFI tree as
this is not the case in HEAD, however in stable/10 there is for ia64.
This change does the following:
* Re-enables libefi for ia64 under gcc.
* Adds the ignore for unsupported pragma's when building libefi for ia64.
* Adds the missing parameter to efi_handle_lookup in the ia64 loader.
This is a direct commit as ia64 is no longer supported after 10.x
Approved by: re (marius)
Sponsored by: Multiplay
|
|
|
|
|
|
|
|
|
|
|
| |
MFC r294068:
Add EFI ZFS boot support
MFC r294265:
Fix broken DPRINTF and wire up EFI_DEBUG so -DEFI_DEBUG to make works.
Relnotes: Yes
Sponsored by: Multiplay
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
MFC r281169 (by andrew):
Make global variabled only used in this file static
MFC r294058:
Make common boot file_loadraw name parameter const
MFC r294041:
Remove unused reg param from fdt_fixup_memory
MFC r293724:
Enable warnings in EFI boot code
MFC r293796:
Fix typo in libefi.c
MFC r294029:
Only build EFI components on supported compilers
Sponsored by: Multiplay
|
|
|
|
|
|
|
| |
This is based on the vidconsole implementation.
Submitted by: Toomas Soome <tsoome@me.com>
Relnotes: Yes
|
|
|
|
|
|
|
| |
It may not be the same as MACHINE_CPUARCH, it just happened to be the
case the architectures this code currently supports.
Fixes build failure reported by Oliver Pinter.
|
|
|
|
|
|
|
| |
This was originally done for the arm and arm64 loader.efi and is MFC'd
here to ease future UEFI loader MFCs.
Sponsored by: The FreeBSD Foundation
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The UEFI loader on the 10.1 release install disk (disc1) modifies an
existing EFI_DEVICE_PATH_PROTOCOL instance in an apparent attempt to
truncate the device path. In doing so it creates an invalid device
path.
Perform the equivalent action without modification of structures
allocated by firmware.
PR: 197641
Submitted by: Chris Ruffin <chris.ruffin at intel.com>
|
|
|
|
|
|
| |
Enable bzipfs support in the EFI loader.
- Add bzipfs to the list of supported filesystems in the EFI loader.
- Increase the heap size allocated for the EFI loader from 2MB to 3MB.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The System V ABI for amd64 allows functions to use space in a 128 byte
redzone below the stack pointer for scratch space and requires
interrupt and signal frames to avoid overwriting it. However, EFI uses
the Windows ABI which does not support this. As a result, interrupt
handlers in EFI push their interrupt frames directly on top of the
stack pointer. If the compiler used the red zone in a function in the
EFI loader, then a device interrupt that occurred while that function
was running could trash its local variables. In practice this happens
fairly reliable when using gzipfs as an interrupt during decompression
can trash the local variables in the inflate_table() function
resulting in corrupted output or hangs.
Fix this by disabling the redzone for amd64 EFI binaries. This
requires building not only the loader but any libraries used by the
loader without redzone support.
Thanks to Jilles for pointing me at the redzone once I found the stack
corruption.
|
|
|
|
|
|
|
|
|
| |
The loader previously failed to display on MacBooks and other
systems where the UEFI firmware remained in graphics mode.
Submitted by: Rafael Espindola
Approved by: re
|
|
|
|
|
|
| |
Add support for serial and null console to UEFI boot loader.
Approved by: re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This MFC consists of the following SVN revisions:
258741 261568 261603 261668 263115 263117 263968 264078 264087 264088
264092 264095 264115 264132 264208 264261 264262 264263 264319 265028
265057 268974
Detailed commit messages:
r258741: Note that libstand is 32-bit on amd64 and powerpc64
r261568: Build libstand as a 64-bit library on amd64
The 32-bit bootloaders now link against libstand.a in
sys/boot/libstand32, so there is no need to force /usr/lib/libstand.a
to be 32-bit.
r261603: Don't force efi to a 32-bit build on amd64
r261668: Build libstand as a 64-bit library on ppc64
The 32-bit bootloaders now link against libstand.a in
sys/boot/libstand32, so there is no need to force /usr/lib/libstand.a
to be 32-bit.
This is equivalent to r261568 for amd64.
r263115: Add amd64 EFI headers
r263117: Connect 64-bit boot ficl to the build
It is not yet used, but this will ensure it doesn't get broken.
r263968: Use EFI types for EFI values (silences warnings).
EFI UINTN is actually a 64-bit type on 64-bit processors.
r264078: Put each source file on a separate line
This will simplify rebasing the amd64 UEFI patch set.
r264087: Build boot/ficl as 64-bit library on amd64
The 32-bit bootloaders on amd64 now use the 32-bit version in ficl32,
as is done with libstand32. The native 64-bit ficl will be used by the
upcoming UEFI loader.
r264088: Merge efilib changes from projects/uefi
r247216: Add the ability for a device to have an "alias" handle.
r247379: Fix network device registration.
r247380: Adjust our load device when we boot from CD under UEFI.
The process for booting from a CD under UEFI involves adding a FAT
filesystem containing your loader code as an El Torito boot image.
When UEFI detects this, it provides a block IO instance that points
at the FAT filesystem as a child of the device that represents the CD
itself. The problem being that the CD device is flagged as a "raw
device" while the boot image is flagged as a "logical partition".
The existing EFI partition code only looks for logical partitions and
so the CD filesystem was rendered invisible.
To fix this, check the type of each block IO device. If it's found to
be a CD, and thus an El Torito boot image, look up its parent device
and add that instead so that the loader will then load the kernel from
the CD filesystem. This is done by using the handle for the boot
filesystem as an alias.
Something similar to this will be required for booting from other media
as well as the loader will live in the EFI system partition, not on the
partition containing the kernel.
r247381: Remove a scatalogical debug printf that crept in.
r264092: Add -fPIC for amd64
r264095: Support UEFI booting on amd64 via loader.efi
This is largely the work from the projects/uefi branch, with some
additional refinements. This is derived from (and replaces) the
original i386 efi implementation; i386 support will be restored later.
Specific revisions of note from projects/uefi:
r247380:
Adjust our load device when we boot from CD under UEFI.
The process for booting from a CD under UEFI involves adding a FAT
filesystem containing your loader code as an El Torito boot image.
When UEFI detects this, it provides a block IO instance that points at
the FAT filesystem as a child of the device that represents the CD
itself. The problem being that the CD device is flagged as a "raw
device" while the boot image is flagged as a "logical partition". The
existing EFI partition code only looks for logical partitions and so
the CD filesystem was rendered invisible.
To fix this, check the type of each block IO device. If it's found to
be a CD, and thus an El Torito boot image, look up its parent device
and add that instead so that the loader will then load the kernel from
the CD filesystem. This is done by using the handle for the boot
filesystem as an alias.
Something similar to this will be required for booting from other
media as well as the loader will live in the EFI system partition, not
on the partition containing the kernel.
r246231:
Add necessary code to hand off from loader to an amd64 kernel.
r246335:
Grab the EFI memory map and store it as module metadata on the kernel.
This is the same approach used to provide the BIOS SMAP to the kernel.
r246336:
Pass the ACPI table metadata via hints so the kernel ACPI code can
find them.
r246608:
Rework copy routines to ensure we always use memory allocated via EFI.
The previous code assumed it could copy wherever it liked. This is not
the case. The approach taken by this code is pretty ham-fisted in that
it simply allocates a large (32MB) buffer area and stages into that,
then copies the whole area into place when it's time to execute. A more
elegant solution could be used but this works for now.
r247214:
Fix a number of problems preventing proper handover to the kernel.
There were two issues at play here. Firstly, there was nothing
preventing UEFI from placing the loader code above 1GB in RAM. This
meant that when we switched in the page tables the kernel expects to
be running on, we are suddenly unmapped and things no longer work. We
solve this by making our trampoline code not dependent on being at any
given position and simply copying it to a "safe" location before
calling it.
Secondly, UEFI could allocate our stack wherever it wants. As it
happened on my PC, that was right where I was copying the kernel to.
This did not cause happiness. The solution to this was to also switch
to a temporary stack in a safe location before performing the final
copy of the loaded kernel.
r246231:
Add necessary code to hand off from loader to an amd64 kernel.
r246335:
Grab the EFI memory map and store it as module metadata on the kernel.
This is the same approach used to provide the BIOS SMAP to the kernel.
r246336:
Pass the ACPI table metadata via hints so the kernel ACPI code can
find them.
r246608:
Rework copy routines to ensure we always use memory allocated via EFI.
The previous code assumed it could copy wherever it liked. This is not
the case. The approach taken by this code is pretty ham-fisted in that
it simply allocates a large (32MB) buffer area and stages into that,
then copies the whole area into place when it's time to execute. A more
elegant solution could be used but this works for now.
r247214:
Fix a number of problems preventing proper handover to the kernel.
There were two issues at play here. Firstly, there was nothing
preventing UEFI from placing the loader code above 1GB in RAM. This
meant that when we switched in the page tables the kernel expects to
be running on, we are suddenly unmapped and things no longer work. We
solve this by making our trampoline code not dependent on being at any
given position and simply copying it to a "safe" location before
calling it.
Secondly, UEFI could allocate our stack wherever it wants. As it
happened on my PC, that was right where I was copying the kernel to.
This did not cause happiness. The solution to this was to also switch
to a temporary stack in a safe location before performing the final
copy of the loaded kernel.
r247216:
Use the UEFI Graphics Output Protocol to get the parameters of the
framebuffer.
r264115: Fix printf format mismatches
r264132: Connect sys/boot/amd64 to the build
r264208: Do not build the amd64 UEFI loader with GCC
The UEFI loader causes buildworld to fail when building with (in-tree)
GCC, due to a typedef redefinition. As it happens the in-tree GCC
cannot successfully build the UEFI loader anyhow, as it does not support
__attribute__((ms_abi)). Thus, just avoid trying to build it with GCC,
rather than disconnecting it from the build until the underlying issue
is fixed.
r264261: Correct a variable's type for 64-bit Ficl
FICL_INT is long.
r264262: Fix printf args for 64-bit archs
r264263: Add explicit casts to quiet warnings in libefi
r264319: Fix EFI loader object tree creation on 9.x build hosts
Previously ${COMPILER_TYPE} was checked in sys/boot/amd64, and the efi
subdirectory was skipped altogether for gcc (since GCC does not support
a required attribute). However, during the early buildworld stages
${COMPILER_TYPE} is the existing system compiler (i.e., gcc on 9.x build
hosts), not the compiler that will eventually be used. This caused
"make obj" to skip the efi subdirectory. In later build stages
${COMPILER_TYPE} is "clang", and then the efi loader would attempt to
build in the source directory.
r265028 (dteske): Disable the beastie menu for EFI console ...
which doesn't support ANSI codes (so things like `at-xy', `clear', and
other commands don't work making it impossible to generate a living
menu).
r265057 (nwhitehorn): Turn off various fancy instruction sets...
as well as deduplicate some options. This makes the EFI loader build
work with CPUTYPE=native in make.conf on my Core i5.
r268974 (sbruno): Supress clang warning for FreeBSD printf %b and %D formats
Relnotes: Yes
Sponsored by: The FreeBSD Foundation
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for Pre-Boot Virtual Memory (PBVM) to the loader.
PBVM allows us to link the kernel at a fixed virtual address without
having to make any assumptions about the physical memory layout. On
the SGI Altix 350 for example, there's no usuable physical memory
below 192GB. Also, the PBVM allows us to control better where we're
going to physically load the kernel and its modules so that we can
make sure we load the kernel in memory that's close to the BSP.
The PBVM is managed by a simple page table. The minimum size of the
page table is 4KB (EFI page size) and the maximum is currently set
to 1MB. A page in the PBVM is 64KB, as that's the maximum alignment
one can specify in a linker script. The bottom line is that PBVM is
between 64KB and 8GB in size.
The loader maps the PBVM page table at a fixed virtual address and
using a single translations. The PBVM itself is also mapped using a
single translation for a maximum of 32MB.
While here, increase the heap in the EFI loader from 512KB to 2MB
and set the stage for supporting relocatable modules.
|
|
|
|
|
|
|
|
| |
compile warning on i386 (where EFI_STATUS is a 32-bit integral) by casting
the status argument to u_long instead.
Pointy hat: brucec
MFC after: 3 days
|
|
|
|
|
|
| |
PR: i386/85652
Submitted by: Ben Thomas <bthomas at virtualiron.com>
MFC after: 3 days
|
|
|
|
| |
used uninitialized, but which cannot be inferred from the code itself.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
as this only allows us to access file systems that EFI knows about.
With a loader that can only use EFI-supported file systems, we're
forced to put /boot on the EFI system partition. This is suboptimal
in the following ways:
1. With /boot a symlink to /efi/boot, mergemaster complains about
the mismatch and there's no quick solution.
2. The EFI loader can only boot a single version of FreeBSD. There's
no way to install multiple versions of FreeBSD and select one
at the loader prompt.
3. ZFS maintains /boot/zfs/zpool.cache and with /boot a symlink we
end up with the file on a MSDOS file system. ZFS does not have
proper handling of file systems that are under Giant.
Implement a disk device based on the block I/O protocol instead and
pull in file system code from libstand. The disk devices are really
the partitions that EFI knows about.
This change is backward compatible.
MFC after: 1 week
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1. Make libefi portable by removing ia64 specific code and build
it on i386 and amd64 by default to prevent regressions. These
changes include fixes and improvements over previous code to
establish or improve APIs where none existed or when the amount
of kluging was unacceptably high.
2. Increase the amount of sharing between the efi and ski loaders
to improve maintainability of the loaders and simplify making
changes to the loader-kernel handshaking in the future.
The version of the efi and ski loaders are now both changed to 1.2
as user visible improvements and changes have been made.
|
|
|
|
| |
64-bit, even when sizeof(void *) is 32-bit.
|
|
|
|
|
|
|
|
|
| |
device (kind) specific unit field to the common field. This change
allows a future version of libefi to work without requiring anything
more than what is defined in struct devdesc and as such makes it
possible to compile said version of libefi for different platforms
without requiring that those platforms have identical derivatives
of struct devdesc.
|
|
|
|
| |
stale comments.
|
|
|
|
| |
"boot_dfltroot", "boot_mute", and "boot_pause" respectively.
|
| |
|
|
|
|
| |
did anything, so this commit should be considered a NO-OP.
|
|
|
|
|
| |
and efi_readin(). This removes MD code from copy.c.
o Don't unconditionally add pal.S to SRCS. It's specific to ia64.
|
| |
|
|
|
|
| |
any fake value.
|
|
|
|
|
| |
bit-fields. Unify the PTE defines accordingly and update all
uses.
|
|
|
|
|
|
|
|
|
| |
we construct the EFI image. It doesn't seem to actually end up
in the EFI image, AFAICT.
o Replace .quad, .long and .short with data8, data4 and data2 resp.
The former are gnuisms.
o Redefine _start_plabel as a data16 with @iplt(_start) as its
value. This is the preferred way to create user PLT entries.
|
|
|
|
|
|
|
|
|
| |
binutils 2.15. The linker now creates a .rela.dyn section for
dynamic relocations, while our script created a .rela section.
Likewise, we copied the .rela section to the EFI image, but not
the .rela.dyn section. The fix is to rename .rela to .rela.dyn
in the linker script so that all relocations end up in the same
section again. This we copy into the EFI image.
|
|
|
|
|
|
| |
per letter dated July 22, 1999.
Approved by: core
|
|
|
|
|
| |
loader typically doesn't do this so that we end up booting the
with whatever the EFI loader has set it to last.
|
|
|
|
|
| |
other constributions are compiled.
o Remove powerpc specific additions to CFLAGS.
|
|
|
|
| |
Tested by: marcel
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
EFI file system. When booting from a CD and there's already an EFI
system partition on the disk, setting the current device to unit 0
will select the harddisk. This invariably breaks installing FreeBSD
when other operating systems have been installed before.
We obviously want to do the same when we're booting over the network.
Maybe later.
Based on a patch (from memory) from: arun
|
|
|
|
|
| |
on ia64. This fixes the breakage caused by the gcc upgrade that
resulted in a broken executable.
|
|
|
|
|
| |
Approved by: marcel
Repocopied by: joe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
things over floppy size limits, I can exclude it for release builds or
something like that. Most of the changes are to get the load_elf.c file
into a seperate elf32_ or elf64_ namespace so that you can have two
ELF loaders present at once. Note that for 64 bit kernels, it actually
starts up the kernel already in 64 bit mode with paging enabled. This
is really easy because we have a known minimum feature set.
Of note is that for amd64, we have to pass in the bios int 15 0xe821
memory map because once in long mode, you absolutely cannot make VM86
calls. amd64 does not use 'struct bootinfo' at all. It is a pure loader
metadata startup, just like sparc64 and powerpc. Much of the
infrastructure to support this was adapted from sparc64.
|
| |
|
|
|
|
|
| |
determine whether we have command line options. We expect a
valid string pointer as well.
|
|
|
|
|
|
|
| |
introduce a preprocessor define for it. The larger block size
significantly speeds up the loading of the kernel.
Submitted by: Arun Sharma <arun.sharma@intel.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
NULL is passed. The address of the HCDP table can be found by
iterating over the configuration tables in the EFI system table.
To avoid more duplication, a function can be called with the GUID
of interest. The function will do the scanning. Use the function
in all places where we iterate over the configuration tables in
an attempt to find a specific one.
Bump the loader version number as the result of this.
Approved by: re (blanket)
|
|
|
|
|
|
|
| |
cleaning up after ourselves.
Approved by: re (blankoscheck)
German corrections: Alexander (both :-)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
accept load options (=command line options).
The call graph changes from *entry*->efi_main->efi_init, where
efi_main is the EFI equivalent of main to *entry*->efi_main->main,
where main is what you'd expect. efi_main now is what efi_init was.
The prototype of main follows that of C. The first argument is argc
and the second is argv. There is no third argument.
Allocation of heap pages is now handled by the EFI library and it
now deallocates the pages when main() returns or when exit() is
called. This allows us to safely return to the boot manager (or
EFI shell) without leaks. EFI applications are responsible to free
all memory themselves.
Handling of the load options is a bit tricky. There are either no
load options, load options in ASCII or load options in Unicode.
The EFI library will translate the ASCII options to Unicode options
as to simplify user code. Since the load options are passed as a
single string (if present) and main() accepts argc and argv, the
startup code also has to split the string into words and build the
argv vector. Here the trickiness starts. When the loader is started
from the EFI shell, argv[0] will automaticly load the program name.
In all other cases (ie through the boot manager), this is not the
case. Unfortunately, there's no trivial way to check. Hence, a
set of conditions is checked to determine if we need to fill in
argv[0] ourselves or not. This checking is not perfect. There are
known cases where it fails to do the right thing. The logic works
for most expected cases, though. This includes the case where no
options are given.
Approved by: re (blanket)
|
|
|
|
| |
Approved by: re (blanket)
|