| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
emulation.
The vlapic initialization and cleanup is done via processor specific vmm_ops.
This will allow the VT-x/SVM modules to layer any hardware-assist for APIC
emulation or virtual interrupt delivery on top of the vlapic device model.
Add a parameter to 'vcpu_notify_event()' to distinguish between vlapic
interrupts versus other events (e.g. NMI). This provides an opportunity to
use hardware-assists like Posted Interrupts (VT-x) or doorbell MSR (SVM)
to deliver an interrupt to a guest without causing a VM-exit.
Get rid of lapic_pending_intr() and lapic_intr_accepted() and use the
vlapic_xxx() counterparts directly.
Associate an 'Apic Page' with each vcpu and reference it from the 'vlapic'.
The 'Apic Page' is intended to be referenced from the Intel VMCS as the
'virtual APIC page' or from the AMD VMCB as the 'vAPIC backing page'.
|
|
|
|
|
|
|
| |
resume. For Intel CPUs, invoke vmxon for CPUs that were in VMX mode
at the time of suspend.
Reviewed by: neel
|
|
|
|
|
|
|
|
|
|
| |
The least significant 8 bits of 'pm_flags' are now used for the IPI vector
to use for nested page table TLB shootdown.
Previously we used IPI_AST to interrupt the host cpu which is functionally
correct but could lead to misleading interrupt counts for AST handler. The
AST handler was also doing a lot more than what is required for the nested
page table TLB shootdown (EOI and IRET).
|
|
|
|
|
| |
respectively. The vmcs_xxx() functions provide inline error checking of
all accesses to the VMCS.
|
|
|
|
|
|
|
|
|
|
|
|
| |
When the guest is bringing up the APs in the x2APIC mode a write to the
ICR register will now trigger a return to userspace with an exitcode of
VM_EXITCODE_SPINUP_AP. This gets SMP guests working again with x2APIC.
Change the vlapic timer lock to be a spinlock because the vlapic can be
accessed from within a critical section (vm run loop) when guest is using
x2apic mode.
Reviewed by: grehan@
|
|
|
|
|
|
|
|
| |
This decouples the guest's 'hz' from the host's 'hz' setting. For e.g. it is
now possible to have a guest run at 'hz=1000' while the host is at 'hz=100'.
Discussed with: grehan@
Tested by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
|
|
|
|
|
|
|
|
|
|
|
|
| |
vcpu and destroy its thread context. Also modify the 'HLT' processing to ignore
pending interrupts in the IRR if interrupts have been disabled by the guest.
The interrupt cannot be injected into the guest in any case so resuming it
is futile.
With this change "halt" from a Linux guest works correctly.
Reviewed by: grehan@
Tested by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
|
|
|
|
| |
used - get rid of it.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
shifts into the sign bit. Instead use (1U << 31) which gets the
expected result.
This fix is not ideal as it assumes a 32 bit int, but does fix the issue
for most cases.
A similar change was made in OpenBSD.
Discussed with: -arch, rdivacky
Reviewed by: cperciva
|
|
|
|
|
|
|
| |
tracepoints are vcpu-specific.
Add support for tracepoints that are global to the virtual machine - these
tracepoints are called VM_CTRx().
|
|
|
|
| |
Requested by: alc@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
'invpcid' instruction to the guest. Currently bhyve will try to enable this
capability unconditionally if it is available.
Consolidate code in bhyve to set the capabilities so it is no longer
duplicated in BSP and AP bringup.
Add a sysctl 'vm.pmap.invpcid_works' to display whether the 'invpcid'
instruction is available.
Reviewed by: grehan
MFC after: 3 days
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Make the amd64/pmap code aware of nested page table mappings used by bhyve
guests. This allows bhyve to associate each guest with its own vmspace and
deal with nested page faults in the context of that vmspace. This also
enables features like accessed/dirty bit tracking, swapping to disk and
transparent superpage promotions of guest memory.
Guest vmspace:
Each bhyve guest has a unique vmspace to represent the physical memory
allocated to the guest. Each memory segment allocated by the guest is
mapped into the guest's address space via the 'vmspace->vm_map' and is
backed by an object of type OBJT_DEFAULT.
pmap types:
The amd64/pmap now understands two types of pmaps: PT_X86 and PT_EPT.
The PT_X86 pmap type is used by the vmspace associated with the host kernel
as well as user processes executing on the host. The PT_EPT pmap is used by
the vmspace associated with a bhyve guest.
Page Table Entries:
The EPT page table entries as mostly similar in functionality to regular
page table entries although there are some differences in terms of what
bits are used to express that functionality. For e.g. the dirty bit is
represented by bit 9 in the nested PTE as opposed to bit 6 in the regular
x86 PTE. Therefore the bitmask representing the dirty bit is now computed
at runtime based on the type of the pmap. Thus PG_M that was previously a
macro now becomes a local variable that is initialized at runtime using
'pmap_modified_bit(pmap)'.
An additional wrinkle associated with EPT mappings is that older Intel
processors don't have hardware support for tracking accessed/dirty bits in
the PTE. This means that the amd64/pmap code needs to emulate these bits to
provide proper accounting to the VM subsystem. This is achieved by using
the following mapping for EPT entries that need emulation of A/D bits:
Bit Position Interpreted By
PG_V 52 software (accessed bit emulation handler)
PG_RW 53 software (dirty bit emulation handler)
PG_A 0 hardware (aka EPT_PG_RD)
PG_M 1 hardware (aka EPT_PG_WR)
The idea to use the mapping listed above for A/D bit emulation came from
Alan Cox (alc@).
The final difference with respect to x86 PTEs is that some EPT implementations
do not support superpage mappings. This is recorded in the 'pm_flags' field
of the pmap.
TLB invalidation:
The amd64/pmap code has a number of ways to do invalidation of mappings
that may be cached in the TLB: single page, multiple pages in a range or the
entire TLB. All of these funnel into a single EPT invalidation routine called
'pmap_invalidate_ept()'. This routine bumps up the EPT generation number and
sends an IPI to the host cpus that are executing the guest's vcpus. On a
subsequent entry into the guest it will detect that the EPT has changed and
invalidate the mappings from the TLB.
Guest memory access:
Since the guest memory is no longer wired we need to hold the host physical
page that backs the guest physical page before we can access it. The helper
functions 'vm_gpa_hold()/vm_gpa_release()' are available for this purpose.
PCI passthru:
Guest's with PCI passthru devices will wire the entire guest physical address
space. The MMIO BAR associated with the passthru device is backed by a
vm_object of type OBJT_SG. An IOMMU domain is created only for guest's that
have one or more PCI passthru devices attached to them.
Limitations:
There isn't a way to map a guest physical page without execute permissions.
This is because the amd64/pmap code interprets the guest physical mappings as
user mappings since they are numerically below VM_MAXUSER_ADDRESS. Since PG_U
shares the same bit position as EPT_PG_EXECUTE all guest mappings become
automatically executable.
Thanks to Alan Cox and Konstantin Belousov for their rigorous code reviews
as well as their support and encouragement.
Thanks for John Baldwin for reviewing the use of OBJT_SG as the backing
object for pci passthru mmio regions.
Special thanks to Peter Holm for testing the patch on short notice.
Approved by: re
Discussed with: grehan
Reviewed by: alc, kib
Tested by: pho
|
|
|
|
|
| |
Also deal with VPID exhaustion by allocating out of a reserved range as the
last resort.
|
|
|
|
|
|
| |
This is a workaround to hide the fact that we do not have any code to
demote a superpage mapping before we unmap a single page that is part
of the superpage.
|
|
|
|
| |
Submitted by: Gopakumar T (gopakumar_thekkedath@yahoo.co.in)
|
|
|
|
|
|
|
|
| |
architectural state on CR vmexits by guaranteeing
that EFER, CR0 and the VMCS entry controls are
all in sync when transitioning to IA-32e mode.
Submitted by: Tycho Nightingale (tycho.nightingale <at> plurisbusnetworks.com)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was exposed with AP spinup of Linux, and
booting OpenBSD, where the CR0 register is unconditionally
written to prior to the longjump to enter protected
mode. The CR-vmexit handling was not updating CPU state which
resulted in a vmentry failure with invalid guest state.
A follow-on submit will fix the CPU state issue, but this
fix prevents the CR-vmexit prior to entering protected
mode by properly initializing and maintaining CR* state.
Reviewed by: neel
Reported by: Gopakumar.T @ netapp
|
|
|
|
|
|
|
| |
From experimentation, other hypervisors also do this.
Diagnosed by: tycho nightingale at pluribusnetworks com
Reviewed by: neel
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rework the guest register fetch code to allow the RIP to
be extracted from the VMCS while the kernel decoder is
functioning.
Hit by the OpenBSD local-apic code.
Submitted by: neel
Reviewed by: grehan
Obtained from: NetApp
|
|
|
|
|
|
| |
hardware capabilities.
Obtained from: NetApp
|
|
|
|
|
|
| |
instead of magic numbers.
Discussed with: Chris Torek
|
| |
|
|
|
|
|
|
|
|
|
| |
This can be done by using the new macros VMM_STAT_INTEL() and VMM_STAT_AMD().
Statistic counters that are common across the two are defined using VMM_STAT().
Suggested by: Anish Gupta
Discussed with: grehan
Obtained from: NetApp
|
|
|
|
|
|
|
| |
are automatically saved and restored in the VMCS.
Reviewed by: neel
Obtained from: NetApp
|
|
|
|
|
|
|
|
|
|
|
| |
by clang in the local APIC code.
0x81 is a read-modify-write instruction - the EPT check
that only allowed read or write and not both has been
relaxed to allow read and write.
Reviewed by: neel
Obtained from: NetApp
|
|
|
|
|
|
| |
emulation is in place.
Obtained from: NetApp
|
|
|
|
|
|
|
| |
failure. The conversion from the return value to HANDLED or UNHANDLED can be
done locally in vmx_exit_process().
Obtained from: NetApp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On a nested page table fault the hypervisor will:
- fetch the instruction using the guest %rip and %cr3
- decode the instruction in 'struct vie'
- emulate the instruction in host kernel context for local apic accesses
- any other type of mmio access is punted up to user-space (e.g. ioapic)
The decoded instruction is passed as collateral to the user-space process
that is handling the PAGING exit.
The emulation code is fleshed out to include more addressing modes (e.g. SIB)
and more types of operands (e.g. imm8). The source code is unified into a
single file (vmm_instruction_emul.c) that is compiled into vmm.ko as well
as /usr/sbin/bhyve.
Reviewed by: grehan
Obtained from: NetApp
|
|
|
|
|
|
| |
integers.
Obtained from: NetApp
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
between inline asm statements that would in turn modify the flags
value set by the first asm, and used by the second.
Solve by making the common error block a string that can be pulled
into the first inline asm, and using symbolic labels for asm variables.
bhyve can now build/run fine when compiled with clang.
Reviewed by: neel
Obtained from: NetApp
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to vmcs_getreg(). Without this conversion vmcs_getreg() will return EINVAL.
In particular this prevented injection of the breakpoint exception into the
guest via the "-B" option to /usr/sbin/bhyve which is hugely useful when
debugging guest hangs.
This was broken in r241921.
Pointy hat: me
Obtained from: NetApp
|
|
|
|
|
|
|
| |
This state is independent of the type of hardware assist used so there is
really no need for it to be in Intel-specific code.
Obtained from: NetApp
|
|
|
|
|
|
|
|
|
|
| |
guest does a vm exit.
This allows us to trap any fpu access in the host context while the fpu still
has "dirty" state belonging to the guest.
Reported by: "s vas" on freebsd-virtualization@
Obtained from: NetApp
|
|
|
|
|
|
|
|
|
|
|
|
| |
host cpu to the scheduler until the guest is ready to run again.
This implies that the host cpu utilization will now closely mirror the actual
load imposed by the guest vcpu.
Also, the vcpu mutex now needs to be of type MTX_SPIN since we need to acquire
it inside a critical section.
Obtained from: NetApp
|
|
|
|
|
|
| |
Also add a stats counter to count the number of NMIs delivered per vcpu.
Obtained from: NetApp
|
|
|
|
|
|
|
| |
If an IPI was delivered to this cpu before interrupts were disabled
then return right away via vmx_setjmp() with a return value of VMX_RETURN_AST.
Obtained from: NetApp
|
|
|
|
|
|
|
|
| |
the paging exit in preparation for a rework of
bhyve MMIO handling.
Reviewed by: neel
Obtained from: NetApp
|
|
|
|
|
|
|
| |
This also gets rid of all the witness.watch warnings related to calling
malloc(M_WAITOK) while holding a mutex.
Reviewed by: grehan
|
|
|
|
|
| |
It is no longer necessary to hard-partition the memory between the host
and guests at boot time.
|
|
|
|
|
|
|
| |
associated with guest physical memory is contiguous.
Rewrite vm_gpa2hpa() to get the GPA to HPA mapping by querying the nested
page tables.
|
|
|
|
|
|
|
|
|
|
| |
page table fault. Use this when fetching the instruction bytes from the guest
memory.
Also modify the lapic_mmio() API so that a decoded instruction is fed into it
instead of having it fetch the instruction bytes from the guest. This is
useful for hardware assists like SVM that provide the faulting instruction
as part of the vmexit.
|
|
|
|
|
| |
The default behavior is still to present the local apic to the guest in the
x2apic mode.
|
|
|
|
|
|
|
|
|
|
| |
AP needs to be activated by spinning up an execution context for it.
The local apic emulation is now completely done in the hypervisor and it will
detect writes to the ICR_LO register that try to bring up the AP. In response
to such writes it will return to userspace with an exit code of SPINUP_AP.
Reviewed by: grehan
|
|
|
|
|
| |
There is no functional change at this time but this paves the way for vm exit
handler functions to easily modify the exit reason going forward.
|
|
|
|
|
|
|
| |
perspective. If we don't do this some guest OSes (e.g. Linux) will reset
the CR4_VMXE bit in %cr4 with disastrous consequences.
Reported by: grehan
|
|
|
|
|
|
| |
VMXON instruction.
Reported by "s vas" on freebsd-virtualization@
|
|
|
|
|
|
|
|
|
|
| |
Includes instruction emulation for memory r/w access. This
opens the door for io-apic, local apic, hpet timer, and
legacy device emulation.
Submitted by: ryan dot berryhill at sandvine dot com
Reviewed by: grehan
Obtained from: Sandvine
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
systems with VT-x/EPT (e.g. Sandybridge Macbooks). This will most
likely work on VMWare Workstation8/Player4 as well. See the VMWare app
note at:
http://communities.vmware.com/docs/DOC-8970
Fusion doesn't propagate the PAT MSR auto save-restore entry/exit
control bits. Deal with this by noting that fact and setting up the
PAT MSR to essentially be a no-op - it is init'd to power-on default,
and a software shadow copy maintained.
Since it is treated as a no-op, o/s settings are essentially ignored.
This may not give correct results, but since the hypervisor is running
nested, a number of bets are already off.
On a quad-core/HT-enabled 'MacBook8,2', nested VMs with 1/2/4 vCPUs were
fired up. The more nested vCPUs the worse the performance, unless the VMs
were started up in multiplexed mode where things worked perfectly up to
the limit of 8 vCPUs.
Reviewed by: neel
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Don't always pass the cpuid request to the current CPU as some nodes
we will emulate purely in software.
- Pass in the APIC ID of the virtual CPU so we can return the proper APIC
ID.
- Always report a completely flat topology with no SMT or multicore.
- Report the CPUID2_HV feature and implement support for the 0x40000000
CPUID level.
- Use existing constants from <machine/specialreg.h> when possible and
use cpu_feature2 when checking for VMX support.
|