summaryrefslogtreecommitdiffstats
path: root/x/binutils/gas/config/tc-i386.c
diff options
context:
space:
mode:
Diffstat (limited to 'x/binutils/gas/config/tc-i386.c')
-rw-r--r--x/binutils/gas/config/tc-i386.c6272
1 files changed, 6272 insertions, 0 deletions
diff --git a/x/binutils/gas/config/tc-i386.c b/x/binutils/gas/config/tc-i386.c
new file mode 100644
index 0000000..5de6a55
--- /dev/null
+++ b/x/binutils/gas/config/tc-i386.c
@@ -0,0 +1,6272 @@
+/* i386.c -- Assemble code for the Intel 80386
+ Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ 2000, 2001, 2002, 2003, 2004
+ Free Software Foundation, Inc.
+
+ This file is part of GAS, the GNU Assembler.
+
+ GAS is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ GAS is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GAS; see the file COPYING. If not, write to the Free
+ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+ 02111-1307, USA. */
+
+/* Intel 80386 machine specific gas.
+ Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
+ x86_64 support by Jan Hubicka (jh@suse.cz)
+ VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
+ Bugs & suggestions are completely welcome. This is free software.
+ Please help us make it better. */
+
+#include "as.h"
+#include "safe-ctype.h"
+#include "subsegs.h"
+#include "dwarf2dbg.h"
+#include "dw2gencfi.h"
+#include "opcode/i386.h"
+
+#ifndef REGISTER_WARNINGS
+#define REGISTER_WARNINGS 1
+#endif
+
+#ifndef INFER_ADDR_PREFIX
+#define INFER_ADDR_PREFIX 1
+#endif
+
+#ifndef SCALE1_WHEN_NO_INDEX
+/* Specifying a scale factor besides 1 when there is no index is
+ futile. eg. `mov (%ebx,2),%al' does exactly the same as
+ `mov (%ebx),%al'. To slavishly follow what the programmer
+ specified, set SCALE1_WHEN_NO_INDEX to 0. */
+#define SCALE1_WHEN_NO_INDEX 1
+#endif
+
+#ifndef DEFAULT_ARCH
+#define DEFAULT_ARCH "i386"
+#endif
+
+#ifndef INLINE
+#if __GNUC__ >= 2
+#define INLINE __inline__
+#else
+#define INLINE
+#endif
+#endif
+
+static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
+static INLINE int fits_in_signed_byte PARAMS ((offsetT));
+static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
+static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
+static INLINE int fits_in_signed_word PARAMS ((offsetT));
+static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
+static INLINE int fits_in_signed_long PARAMS ((offsetT));
+static int smallest_imm_type PARAMS ((offsetT));
+static offsetT offset_in_range PARAMS ((offsetT, int));
+static int add_prefix PARAMS ((unsigned int));
+static void set_code_flag PARAMS ((int));
+static void set_16bit_gcc_code_flag PARAMS ((int));
+static void set_intel_syntax PARAMS ((int));
+static void set_cpu_arch PARAMS ((int));
+static char *output_invalid PARAMS ((int c));
+static int i386_operand PARAMS ((char *operand_string));
+static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
+static const reg_entry *parse_register PARAMS ((char *reg_string,
+ char **end_op));
+static char *parse_insn PARAMS ((char *, char *));
+static char *parse_operands PARAMS ((char *, const char *));
+static void swap_operands PARAMS ((void));
+static void optimize_imm PARAMS ((void));
+static void optimize_disp PARAMS ((void));
+static int match_template PARAMS ((void));
+static int check_string PARAMS ((void));
+static int process_suffix PARAMS ((void));
+static int check_byte_reg PARAMS ((void));
+static int check_long_reg PARAMS ((void));
+static int check_qword_reg PARAMS ((void));
+static int check_word_reg PARAMS ((void));
+static int finalize_imm PARAMS ((void));
+static int process_operands PARAMS ((void));
+static const seg_entry *build_modrm_byte PARAMS ((void));
+static void output_insn PARAMS ((void));
+static void output_branch PARAMS ((void));
+static void output_jump PARAMS ((void));
+static void output_interseg_jump PARAMS ((void));
+static void output_imm PARAMS ((fragS *insn_start_frag,
+ offsetT insn_start_off));
+static void output_disp PARAMS ((fragS *insn_start_frag,
+ offsetT insn_start_off));
+#ifndef I386COFF
+static void s_bss PARAMS ((int));
+#endif
+
+static const char *default_arch = DEFAULT_ARCH;
+
+/* 'md_assemble ()' gathers together information and puts it into a
+ i386_insn. */
+
+union i386_op
+ {
+ expressionS *disps;
+ expressionS *imms;
+ const reg_entry *regs;
+ };
+
+struct _i386_insn
+ {
+ /* TM holds the template for the insn were currently assembling. */
+ template tm;
+
+ /* SUFFIX holds the instruction mnemonic suffix if given.
+ (e.g. 'l' for 'movl') */
+ char suffix;
+
+ /* OPERANDS gives the number of given operands. */
+ unsigned int operands;
+
+ /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
+ of given register, displacement, memory operands and immediate
+ operands. */
+ unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
+
+ /* TYPES [i] is the type (see above #defines) which tells us how to
+ use OP[i] for the corresponding operand. */
+ unsigned int types[MAX_OPERANDS];
+
+ /* Displacement expression, immediate expression, or register for each
+ operand. */
+ union i386_op op[MAX_OPERANDS];
+
+ /* Flags for operands. */
+ unsigned int flags[MAX_OPERANDS];
+#define Operand_PCrel 1
+
+ /* Relocation type for operand */
+ enum bfd_reloc_code_real reloc[MAX_OPERANDS];
+
+ /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
+ the base index byte below. */
+ const reg_entry *base_reg;
+ const reg_entry *index_reg;
+ unsigned int log2_scale_factor;
+
+ /* SEG gives the seg_entries of this insn. They are zero unless
+ explicit segment overrides are given. */
+ const seg_entry *seg[2];
+
+ /* PREFIX holds all the given prefix opcodes (usually null).
+ PREFIXES is the number of prefix opcodes. */
+ unsigned int prefixes;
+ unsigned char prefix[MAX_PREFIXES];
+
+ /* RM and SIB are the modrm byte and the sib byte where the
+ addressing modes of this insn are encoded. */
+
+ modrm_byte rm;
+ rex_byte rex;
+ sib_byte sib;
+ };
+
+typedef struct _i386_insn i386_insn;
+
+/* List of chars besides those in app.c:symbol_chars that can start an
+ operand. Used to prevent the scrubber eating vital white-space. */
+#ifdef LEX_AT
+const char extra_symbol_chars[] = "*%-(@[";
+#else
+const char extra_symbol_chars[] = "*%-([";
+#endif
+
+#if (defined (TE_I386AIX) \
+ || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
+ && !defined (TE_LINUX) \
+ && !defined (TE_FreeBSD) \
+ && !defined (TE_NetBSD)))
+/* This array holds the chars that always start a comment. If the
+ pre-processor is disabled, these aren't very useful. */
+const char comment_chars[] = "#/";
+#define PREFIX_SEPARATOR '\\'
+
+/* This array holds the chars that only start a comment at the beginning of
+ a line. If the line seems to have the form '# 123 filename'
+ .line and .file directives will appear in the pre-processed output.
+ Note that input_file.c hand checks for '#' at the beginning of the
+ first line of the input file. This is because the compiler outputs
+ #NO_APP at the beginning of its output.
+ Also note that comments started like this one will always work if
+ '/' isn't otherwise defined. */
+const char line_comment_chars[] = "#";
+
+#else
+/* Putting '/' here makes it impossible to use the divide operator.
+ However, we need it for compatibility with SVR4 systems. */
+const char comment_chars[] = "#";
+#define PREFIX_SEPARATOR '/'
+
+const char line_comment_chars[] = "/#";
+#endif
+
+const char line_separator_chars[] = ";";
+
+/* Chars that can be used to separate mant from exp in floating point
+ nums. */
+const char EXP_CHARS[] = "eE";
+
+/* Chars that mean this number is a floating point constant
+ As in 0f12.456
+ or 0d1.2345e12. */
+const char FLT_CHARS[] = "fFdDxX";
+
+/* Tables for lexical analysis. */
+static char mnemonic_chars[256];
+static char register_chars[256];
+static char operand_chars[256];
+static char identifier_chars[256];
+static char digit_chars[256];
+
+/* Lexical macros. */
+#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
+#define is_operand_char(x) (operand_chars[(unsigned char) x])
+#define is_register_char(x) (register_chars[(unsigned char) x])
+#define is_space_char(x) ((x) == ' ')
+#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
+#define is_digit_char(x) (digit_chars[(unsigned char) x])
+
+/* All non-digit non-letter characters that may occur in an operand. */
+static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
+
+/* md_assemble() always leaves the strings it's passed unaltered. To
+ effect this we maintain a stack of saved characters that we've smashed
+ with '\0's (indicating end of strings for various sub-fields of the
+ assembler instruction). */
+static char save_stack[32];
+static char *save_stack_p;
+#define END_STRING_AND_SAVE(s) \
+ do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
+#define RESTORE_END_STRING(s) \
+ do { *(s) = *--save_stack_p; } while (0)
+
+/* The instruction we're assembling. */
+static i386_insn i;
+
+/* Possible templates for current insn. */
+static const templates *current_templates;
+
+/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
+static expressionS disp_expressions[2], im_expressions[2];
+
+/* Current operand we are working on. */
+static int this_operand;
+
+/* We support four different modes. FLAG_CODE variable is used to distinguish
+ these. */
+
+enum flag_code {
+ CODE_32BIT,
+ CODE_16BIT,
+ CODE_64BIT };
+#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
+
+static enum flag_code flag_code;
+static int use_rela_relocations = 0;
+
+/* The names used to print error messages. */
+static const char *flag_code_names[] =
+ {
+ "32",
+ "16",
+ "64"
+ };
+
+/* 1 for intel syntax,
+ 0 if att syntax. */
+static int intel_syntax = 0;
+
+/* 1 if register prefix % not required. */
+static int allow_naked_reg = 0;
+
+/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
+ leave, push, and pop instructions so that gcc has the same stack
+ frame as in 32 bit mode. */
+static char stackop_size = '\0';
+
+/* Non-zero to optimize code alignment. */
+int optimize_align_code = 1;
+
+/* Non-zero to quieten some warnings. */
+static int quiet_warnings = 0;
+
+/* CPU name. */
+static const char *cpu_arch_name = NULL;
+
+/* CPU feature flags. */
+static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
+
+/* If set, conditional jumps are not automatically promoted to handle
+ larger than a byte offset. */
+static unsigned int no_cond_jump_promotion = 0;
+
+/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
+symbolS *GOT_symbol;
+
+/* The dwarf2 return column, adjusted for 32 or 64 bit. */
+unsigned int x86_dwarf2_return_column;
+
+/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
+int x86_cie_data_alignment;
+
+/* Interface to relax_segment.
+ There are 3 major relax states for 386 jump insns because the
+ different types of jumps add different sizes to frags when we're
+ figuring out what sort of jump to choose to reach a given label. */
+
+/* Types. */
+#define UNCOND_JUMP 0
+#define COND_JUMP 1
+#define COND_JUMP86 2
+
+/* Sizes. */
+#define CODE16 1
+#define SMALL 0
+#define SMALL16 (SMALL | CODE16)
+#define BIG 2
+#define BIG16 (BIG | CODE16)
+
+#ifndef INLINE
+#ifdef __GNUC__
+#define INLINE __inline__
+#else
+#define INLINE
+#endif
+#endif
+
+#define ENCODE_RELAX_STATE(type, size) \
+ ((relax_substateT) (((type) << 2) | (size)))
+#define TYPE_FROM_RELAX_STATE(s) \
+ ((s) >> 2)
+#define DISP_SIZE_FROM_RELAX_STATE(s) \
+ ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
+
+/* This table is used by relax_frag to promote short jumps to long
+ ones where necessary. SMALL (short) jumps may be promoted to BIG
+ (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
+ don't allow a short jump in a 32 bit code segment to be promoted to
+ a 16 bit offset jump because it's slower (requires data size
+ prefix), and doesn't work, unless the destination is in the bottom
+ 64k of the code segment (The top 16 bits of eip are zeroed). */
+
+const relax_typeS md_relax_table[] =
+{
+ /* The fields are:
+ 1) most positive reach of this state,
+ 2) most negative reach of this state,
+ 3) how many bytes this mode will have in the variable part of the frag
+ 4) which index into the table to try if we can't fit into this one. */
+
+ /* UNCOND_JUMP states. */
+ {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
+ {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
+ /* dword jmp adds 4 bytes to frag:
+ 0 extra opcode bytes, 4 displacement bytes. */
+ {0, 0, 4, 0},
+ /* word jmp adds 2 byte2 to frag:
+ 0 extra opcode bytes, 2 displacement bytes. */
+ {0, 0, 2, 0},
+
+ /* COND_JUMP states. */
+ {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
+ {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
+ /* dword conditionals adds 5 bytes to frag:
+ 1 extra opcode byte, 4 displacement bytes. */
+ {0, 0, 5, 0},
+ /* word conditionals add 3 bytes to frag:
+ 1 extra opcode byte, 2 displacement bytes. */
+ {0, 0, 3, 0},
+
+ /* COND_JUMP86 states. */
+ {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
+ {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
+ /* dword conditionals adds 5 bytes to frag:
+ 1 extra opcode byte, 4 displacement bytes. */
+ {0, 0, 5, 0},
+ /* word conditionals add 4 bytes to frag:
+ 1 displacement byte and a 3 byte long branch insn. */
+ {0, 0, 4, 0}
+};
+
+static const arch_entry cpu_arch[] = {
+ {"i8086", Cpu086 },
+ {"i186", Cpu086|Cpu186 },
+ {"i286", Cpu086|Cpu186|Cpu286 },
+ {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
+ {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
+ {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
+ {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
+ {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
+ {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
+ {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
+ {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
+ {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
+ {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
+ {NULL, 0 }
+};
+
+const pseudo_typeS md_pseudo_table[] =
+{
+#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
+ {"align", s_align_bytes, 0},
+#else
+ {"align", s_align_ptwo, 0},
+#endif
+ {"arch", set_cpu_arch, 0},
+#ifndef I386COFF
+ {"bss", s_bss, 0},
+#endif
+ {"ffloat", float_cons, 'f'},
+ {"dfloat", float_cons, 'd'},
+ {"tfloat", float_cons, 'x'},
+ {"value", cons, 2},
+ {"noopt", s_ignore, 0},
+ {"optim", s_ignore, 0},
+ {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
+ {"code16", set_code_flag, CODE_16BIT},
+ {"code32", set_code_flag, CODE_32BIT},
+ {"code64", set_code_flag, CODE_64BIT},
+ {"intel_syntax", set_intel_syntax, 1},
+ {"att_syntax", set_intel_syntax, 0},
+ {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
+ {"loc", dwarf2_directive_loc, 0},
+ {0, 0, 0}
+};
+
+/* For interface with expression (). */
+extern char *input_line_pointer;
+
+/* Hash table for instruction mnemonic lookup. */
+static struct hash_control *op_hash;
+
+/* Hash table for register lookup. */
+static struct hash_control *reg_hash;
+
+void
+i386_align_code (fragP, count)
+ fragS *fragP;
+ int count;
+{
+ /* Various efficient no-op patterns for aligning code labels.
+ Note: Don't try to assemble the instructions in the comments.
+ 0L and 0w are not legal. */
+ static const char f32_1[] =
+ {0x90}; /* nop */
+ static const char f32_2[] =
+ {0x89,0xf6}; /* movl %esi,%esi */
+ static const char f32_3[] =
+ {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
+ static const char f32_4[] =
+ {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
+ static const char f32_5[] =
+ {0x90, /* nop */
+ 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
+ static const char f32_6[] =
+ {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
+ static const char f32_7[] =
+ {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
+ static const char f32_8[] =
+ {0x90, /* nop */
+ 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
+ static const char f32_9[] =
+ {0x89,0xf6, /* movl %esi,%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_10[] =
+ {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_11[] =
+ {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_12[] =
+ {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
+ 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
+ static const char f32_13[] =
+ {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_14[] =
+ {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_15[] =
+ {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
+ 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
+ static const char f16_3[] =
+ {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
+ static const char f16_4[] =
+ {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
+ static const char f16_5[] =
+ {0x90, /* nop */
+ 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
+ static const char f16_6[] =
+ {0x89,0xf6, /* mov %si,%si */
+ 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
+ static const char f16_7[] =
+ {0x8d,0x74,0x00, /* lea 0(%si),%si */
+ 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
+ static const char f16_8[] =
+ {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
+ 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
+ static const char *const f32_patt[] = {
+ f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
+ f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
+ };
+ static const char *const f16_patt[] = {
+ f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
+ f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
+ };
+
+ if (count <= 0 || count > 15)
+ return;
+
+ /* The recommended way to pad 64bit code is to use NOPs preceded by
+ maximally four 0x66 prefixes. Balance the size of nops. */
+ if (flag_code == CODE_64BIT)
+ {
+ int i;
+ int nnops = (count + 3) / 4;
+ int len = count / nnops;
+ int remains = count - nnops * len;
+ int pos = 0;
+
+ for (i = 0; i < remains; i++)
+ {
+ memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
+ fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
+ pos += len + 1;
+ }
+ for (; i < nnops; i++)
+ {
+ memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
+ fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
+ pos += len;
+ }
+ }
+ else
+ if (flag_code == CODE_16BIT)
+ {
+ memcpy (fragP->fr_literal + fragP->fr_fix,
+ f16_patt[count - 1], count);
+ if (count > 8)
+ /* Adjust jump offset. */
+ fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
+ }
+ else
+ memcpy (fragP->fr_literal + fragP->fr_fix,
+ f32_patt[count - 1], count);
+ fragP->fr_var = count;
+}
+
+static INLINE unsigned int
+mode_from_disp_size (t)
+ unsigned int t;
+{
+ return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
+}
+
+static INLINE int
+fits_in_signed_byte (num)
+ offsetT num;
+{
+ return (num >= -128) && (num <= 127);
+}
+
+static INLINE int
+fits_in_unsigned_byte (num)
+ offsetT num;
+{
+ return (num & 0xff) == num;
+}
+
+static INLINE int
+fits_in_unsigned_word (num)
+ offsetT num;
+{
+ return (num & 0xffff) == num;
+}
+
+static INLINE int
+fits_in_signed_word (num)
+ offsetT num;
+{
+ return (-32768 <= num) && (num <= 32767);
+}
+static INLINE int
+fits_in_signed_long (num)
+ offsetT num ATTRIBUTE_UNUSED;
+{
+#ifndef BFD64
+ return 1;
+#else
+ return (!(((offsetT) -1 << 31) & num)
+ || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
+#endif
+} /* fits_in_signed_long() */
+static INLINE int
+fits_in_unsigned_long (num)
+ offsetT num ATTRIBUTE_UNUSED;
+{
+#ifndef BFD64
+ return 1;
+#else
+ return (num & (((offsetT) 2 << 31) - 1)) == num;
+#endif
+} /* fits_in_unsigned_long() */
+
+static int
+smallest_imm_type (num)
+ offsetT num;
+{
+ if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
+ {
+ /* This code is disabled on the 486 because all the Imm1 forms
+ in the opcode table are slower on the i486. They're the
+ versions with the implicitly specified single-position
+ displacement, which has another syntax if you really want to
+ use that form. */
+ if (num == 1)
+ return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
+ }
+ return (fits_in_signed_byte (num)
+ ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
+ : fits_in_unsigned_byte (num)
+ ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
+ : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
+ ? (Imm16 | Imm32 | Imm32S | Imm64)
+ : fits_in_signed_long (num)
+ ? (Imm32 | Imm32S | Imm64)
+ : fits_in_unsigned_long (num)
+ ? (Imm32 | Imm64)
+ : Imm64);
+}
+
+static offsetT
+offset_in_range (val, size)
+ offsetT val;
+ int size;
+{
+ addressT mask;
+
+ switch (size)
+ {
+ case 1: mask = ((addressT) 1 << 8) - 1; break;
+ case 2: mask = ((addressT) 1 << 16) - 1; break;
+ case 4: mask = ((addressT) 2 << 31) - 1; break;
+#ifdef BFD64
+ case 8: mask = ((addressT) 2 << 63) - 1; break;
+#endif
+ default: abort ();
+ }
+
+ /* If BFD64, sign extend val. */
+ if (!use_rela_relocations)
+ if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
+ val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
+
+ if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
+ {
+ char buf1[40], buf2[40];
+
+ sprint_value (buf1, val);
+ sprint_value (buf2, val & mask);
+ as_warn (_("%s shortened to %s"), buf1, buf2);
+ }
+ return val & mask;
+}
+
+/* Returns 0 if attempting to add a prefix where one from the same
+ class already exists, 1 if non rep/repne added, 2 if rep/repne
+ added. */
+static int
+add_prefix (prefix)
+ unsigned int prefix;
+{
+ int ret = 1;
+ int q;
+
+ if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
+ && flag_code == CODE_64BIT)
+ q = REX_PREFIX;
+ else
+ switch (prefix)
+ {
+ default:
+ abort ();
+
+ case CS_PREFIX_OPCODE:
+ case DS_PREFIX_OPCODE:
+ case ES_PREFIX_OPCODE:
+ case FS_PREFIX_OPCODE:
+ case GS_PREFIX_OPCODE:
+ case SS_PREFIX_OPCODE:
+ q = SEG_PREFIX;
+ break;
+
+ case REPNE_PREFIX_OPCODE:
+ case REPE_PREFIX_OPCODE:
+ ret = 2;
+ /* fall thru */
+ case LOCK_PREFIX_OPCODE:
+ q = LOCKREP_PREFIX;
+ break;
+
+ case FWAIT_OPCODE:
+ q = WAIT_PREFIX;
+ break;
+
+ case ADDR_PREFIX_OPCODE:
+ q = ADDR_PREFIX;
+ break;
+
+ case DATA_PREFIX_OPCODE:
+ q = DATA_PREFIX;
+ break;
+ }
+
+ if (i.prefix[q] != 0)
+ {
+ as_bad (_("same type of prefix used twice"));
+ return 0;
+ }
+
+ i.prefixes += 1;
+ i.prefix[q] = prefix;
+ return ret;
+}
+
+static void
+set_code_flag (value)
+ int value;
+{
+ flag_code = value;
+ cpu_arch_flags &= ~(Cpu64 | CpuNo64);
+ cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
+ if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
+ {
+ as_bad (_("64bit mode not supported on this CPU."));
+ }
+ if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
+ {
+ as_bad (_("32bit mode not supported on this CPU."));
+ }
+ stackop_size = '\0';
+}
+
+static void
+set_16bit_gcc_code_flag (new_code_flag)
+ int new_code_flag;
+{
+ flag_code = new_code_flag;
+ cpu_arch_flags &= ~(Cpu64 | CpuNo64);
+ cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
+ stackop_size = 'l';
+}
+
+static void
+set_intel_syntax (syntax_flag)
+ int syntax_flag;
+{
+ /* Find out if register prefixing is specified. */
+ int ask_naked_reg = 0;
+
+ SKIP_WHITESPACE ();
+ if (!is_end_of_line[(unsigned char) *input_line_pointer])
+ {
+ char *string = input_line_pointer;
+ int e = get_symbol_end ();
+
+ if (strcmp (string, "prefix") == 0)
+ ask_naked_reg = 1;
+ else if (strcmp (string, "noprefix") == 0)
+ ask_naked_reg = -1;
+ else
+ as_bad (_("bad argument to syntax directive."));
+ *input_line_pointer = e;
+ }
+ demand_empty_rest_of_line ();
+
+ intel_syntax = syntax_flag;
+
+ if (ask_naked_reg == 0)
+ allow_naked_reg = (intel_syntax
+ && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
+ else
+ allow_naked_reg = (ask_naked_reg < 0);
+}
+
+static void
+set_cpu_arch (dummy)
+ int dummy ATTRIBUTE_UNUSED;
+{
+ SKIP_WHITESPACE ();
+
+ if (!is_end_of_line[(unsigned char) *input_line_pointer])
+ {
+ char *string = input_line_pointer;
+ int e = get_symbol_end ();
+ int i;
+
+ for (i = 0; cpu_arch[i].name; i++)
+ {
+ if (strcmp (string, cpu_arch[i].name) == 0)
+ {
+ cpu_arch_name = cpu_arch[i].name;
+ cpu_arch_flags = (cpu_arch[i].flags
+ | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
+ break;
+ }
+ }
+ if (!cpu_arch[i].name)
+ as_bad (_("no such architecture: `%s'"), string);
+
+ *input_line_pointer = e;
+ }
+ else
+ as_bad (_("missing cpu architecture"));
+
+ no_cond_jump_promotion = 0;
+ if (*input_line_pointer == ','
+ && !is_end_of_line[(unsigned char) input_line_pointer[1]])
+ {
+ char *string = ++input_line_pointer;
+ int e = get_symbol_end ();
+
+ if (strcmp (string, "nojumps") == 0)
+ no_cond_jump_promotion = 1;
+ else if (strcmp (string, "jumps") == 0)
+ ;
+ else
+ as_bad (_("no such architecture modifier: `%s'"), string);
+
+ *input_line_pointer = e;
+ }
+
+ demand_empty_rest_of_line ();
+}
+
+unsigned long
+i386_mach ()
+{
+ if (!strcmp (default_arch, "x86_64"))
+ return bfd_mach_x86_64;
+ else if (!strcmp (default_arch, "i386"))
+ return bfd_mach_i386_i386;
+ else
+ as_fatal (_("Unknown architecture"));
+}
+
+void
+md_begin ()
+{
+ const char *hash_err;
+
+ /* Initialize op_hash hash table. */
+ op_hash = hash_new ();
+
+ {
+ const template *optab;
+ templates *core_optab;
+
+ /* Setup for loop. */
+ optab = i386_optab;
+ core_optab = (templates *) xmalloc (sizeof (templates));
+ core_optab->start = optab;
+
+ while (1)
+ {
+ ++optab;
+ if (optab->name == NULL
+ || strcmp (optab->name, (optab - 1)->name) != 0)
+ {
+ /* different name --> ship out current template list;
+ add to hash table; & begin anew. */
+ core_optab->end = optab;
+ hash_err = hash_insert (op_hash,
+ (optab - 1)->name,
+ (PTR) core_optab);
+ if (hash_err)
+ {
+ as_fatal (_("Internal Error: Can't hash %s: %s"),
+ (optab - 1)->name,
+ hash_err);
+ }
+ if (optab->name == NULL)
+ break;
+ core_optab = (templates *) xmalloc (sizeof (templates));
+ core_optab->start = optab;
+ }
+ }
+ }
+
+ /* Initialize reg_hash hash table. */
+ reg_hash = hash_new ();
+ {
+ const reg_entry *regtab;
+
+ for (regtab = i386_regtab;
+ regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
+ regtab++)
+ {
+ hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
+ if (hash_err)
+ as_fatal (_("Internal Error: Can't hash %s: %s"),
+ regtab->reg_name,
+ hash_err);
+ }
+ }
+
+ /* Fill in lexical tables: mnemonic_chars, operand_chars. */
+ {
+ int c;
+ char *p;
+
+ for (c = 0; c < 256; c++)
+ {
+ if (ISDIGIT (c))
+ {
+ digit_chars[c] = c;
+ mnemonic_chars[c] = c;
+ register_chars[c] = c;
+ operand_chars[c] = c;
+ }
+ else if (ISLOWER (c))
+ {
+ mnemonic_chars[c] = c;
+ register_chars[c] = c;
+ operand_chars[c] = c;
+ }
+ else if (ISUPPER (c))
+ {
+ mnemonic_chars[c] = TOLOWER (c);
+ register_chars[c] = mnemonic_chars[c];
+ operand_chars[c] = c;
+ }
+
+ if (ISALPHA (c) || ISDIGIT (c))
+ identifier_chars[c] = c;
+ else if (c >= 128)
+ {
+ identifier_chars[c] = c;
+ operand_chars[c] = c;
+ }
+ }
+
+#ifdef LEX_AT
+ identifier_chars['@'] = '@';
+#endif
+ digit_chars['-'] = '-';
+ identifier_chars['_'] = '_';
+ identifier_chars['.'] = '.';
+
+ for (p = operand_special_chars; *p != '\0'; p++)
+ operand_chars[(unsigned char) *p] = *p;
+ }
+
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
+ {
+ record_alignment (text_section, 2);
+ record_alignment (data_section, 2);
+ record_alignment (bss_section, 2);
+ }
+#endif
+
+ if (flag_code == CODE_64BIT)
+ {
+ x86_dwarf2_return_column = 16;
+ x86_cie_data_alignment = -8;
+ }
+ else
+ {
+ x86_dwarf2_return_column = 8;
+ x86_cie_data_alignment = -4;
+ }
+}
+
+void
+i386_print_statistics (file)
+ FILE *file;
+{
+ hash_print_statistics (file, "i386 opcode", op_hash);
+ hash_print_statistics (file, "i386 register", reg_hash);
+}
+
+#ifdef DEBUG386
+
+/* Debugging routines for md_assemble. */
+static void pi PARAMS ((char *, i386_insn *));
+static void pte PARAMS ((template *));
+static void pt PARAMS ((unsigned int));
+static void pe PARAMS ((expressionS *));
+static void ps PARAMS ((symbolS *));
+
+static void
+pi (line, x)
+ char *line;
+ i386_insn *x;
+{
+ unsigned int i;
+
+ fprintf (stdout, "%s: template ", line);
+ pte (&x->tm);
+ fprintf (stdout, " address: base %s index %s scale %x\n",
+ x->base_reg ? x->base_reg->reg_name : "none",
+ x->index_reg ? x->index_reg->reg_name : "none",
+ x->log2_scale_factor);
+ fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
+ x->rm.mode, x->rm.reg, x->rm.regmem);
+ fprintf (stdout, " sib: base %x index %x scale %x\n",
+ x->sib.base, x->sib.index, x->sib.scale);
+ fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
+ (x->rex & REX_MODE64) != 0,
+ (x->rex & REX_EXTX) != 0,
+ (x->rex & REX_EXTY) != 0,
+ (x->rex & REX_EXTZ) != 0);
+ for (i = 0; i < x->operands; i++)
+ {
+ fprintf (stdout, " #%d: ", i + 1);
+ pt (x->types[i]);
+ fprintf (stdout, "\n");
+ if (x->types[i]
+ & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
+ fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
+ if (x->types[i] & Imm)
+ pe (x->op[i].imms);
+ if (x->types[i] & Disp)
+ pe (x->op[i].disps);
+ }
+}
+
+static void
+pte (t)
+ template *t;
+{
+ unsigned int i;
+ fprintf (stdout, " %d operands ", t->operands);
+ fprintf (stdout, "opcode %x ", t->base_opcode);
+ if (t->extension_opcode != None)
+ fprintf (stdout, "ext %x ", t->extension_opcode);
+ if (t->opcode_modifier & D)
+ fprintf (stdout, "D");
+ if (t->opcode_modifier & W)
+ fprintf (stdout, "W");
+ fprintf (stdout, "\n");
+ for (i = 0; i < t->operands; i++)
+ {
+ fprintf (stdout, " #%d type ", i + 1);
+ pt (t->operand_types[i]);
+ fprintf (stdout, "\n");
+ }
+}
+
+static void
+pe (e)
+ expressionS *e;
+{
+ fprintf (stdout, " operation %d\n", e->X_op);
+ fprintf (stdout, " add_number %ld (%lx)\n",
+ (long) e->X_add_number, (long) e->X_add_number);
+ if (e->X_add_symbol)
+ {
+ fprintf (stdout, " add_symbol ");
+ ps (e->X_add_symbol);
+ fprintf (stdout, "\n");
+ }
+ if (e->X_op_symbol)
+ {
+ fprintf (stdout, " op_symbol ");
+ ps (e->X_op_symbol);
+ fprintf (stdout, "\n");
+ }
+}
+
+static void
+ps (s)
+ symbolS *s;
+{
+ fprintf (stdout, "%s type %s%s",
+ S_GET_NAME (s),
+ S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
+ segment_name (S_GET_SEGMENT (s)));
+}
+
+struct type_name
+ {
+ unsigned int mask;
+ char *tname;
+ }
+
+static const type_names[] =
+{
+ { Reg8, "r8" },
+ { Reg16, "r16" },
+ { Reg32, "r32" },
+ { Reg64, "r64" },
+ { Imm8, "i8" },
+ { Imm8S, "i8s" },
+ { Imm16, "i16" },
+ { Imm32, "i32" },
+ { Imm32S, "i32s" },
+ { Imm64, "i64" },
+ { Imm1, "i1" },
+ { BaseIndex, "BaseIndex" },
+ { Disp8, "d8" },
+ { Disp16, "d16" },
+ { Disp32, "d32" },
+ { Disp32S, "d32s" },
+ { Disp64, "d64" },
+ { InOutPortReg, "InOutPortReg" },
+ { ShiftCount, "ShiftCount" },
+ { Control, "control reg" },
+ { Test, "test reg" },
+ { Debug, "debug reg" },
+ { FloatReg, "FReg" },
+ { FloatAcc, "FAcc" },
+ { SReg2, "SReg2" },
+ { SReg3, "SReg3" },
+ { Acc, "Acc" },
+ { JumpAbsolute, "Jump Absolute" },
+ { RegMMX, "rMMX" },
+ { RegXMM, "rXMM" },
+ { EsSeg, "es" },
+ { 0, "" }
+};
+
+static void
+pt (t)
+ unsigned int t;
+{
+ const struct type_name *ty;
+
+ for (ty = type_names; ty->mask; ty++)
+ if (t & ty->mask)
+ fprintf (stdout, "%s, ", ty->tname);
+ fflush (stdout);
+}
+
+#endif /* DEBUG386 */
+
+static bfd_reloc_code_real_type reloc
+ PARAMS ((int, int, int, bfd_reloc_code_real_type));
+
+static bfd_reloc_code_real_type
+reloc (size, pcrel, sign, other)
+ int size;
+ int pcrel;
+ int sign;
+ bfd_reloc_code_real_type other;
+{
+ if (other != NO_RELOC)
+ return other;
+
+ if (pcrel)
+ {
+ if (!sign)
+ as_bad (_("There are no unsigned pc-relative relocations"));
+ switch (size)
+ {
+ case 1: return BFD_RELOC_8_PCREL;
+ case 2: return BFD_RELOC_16_PCREL;
+ case 4: return BFD_RELOC_32_PCREL;
+ }
+ as_bad (_("can not do %d byte pc-relative relocation"), size);
+ }
+ else
+ {
+ if (sign)
+ switch (size)
+ {
+ case 4: return BFD_RELOC_X86_64_32S;
+ }
+ else
+ switch (size)
+ {
+ case 1: return BFD_RELOC_8;
+ case 2: return BFD_RELOC_16;
+ case 4: return BFD_RELOC_32;
+ case 8: return BFD_RELOC_64;
+ }
+ as_bad (_("can not do %s %d byte relocation"),
+ sign ? "signed" : "unsigned", size);
+ }
+
+ abort ();
+ return BFD_RELOC_NONE;
+}
+
+/* Here we decide which fixups can be adjusted to make them relative to
+ the beginning of the section instead of the symbol. Basically we need
+ to make sure that the dynamic relocations are done correctly, so in
+ some cases we force the original symbol to be used. */
+
+int
+tc_i386_fix_adjustable (fixP)
+ fixS *fixP ATTRIBUTE_UNUSED;
+{
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
+ return 1;
+
+ /* Don't adjust pc-relative references to merge sections in 64-bit
+ mode. */
+ if (use_rela_relocations
+ && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
+ && fixP->fx_pcrel)
+ return 0;
+
+ /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
+ and changed later by validate_fix. */
+ if (GOT_symbol && fixP->fx_subsy == GOT_symbol
+ && fixP->fx_r_type == BFD_RELOC_32_PCREL)
+ return 0;
+
+ /* adjust_reloc_syms doesn't know about the GOT. */
+ if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
+ || fixP->fx_r_type == BFD_RELOC_386_PLT32
+ || fixP->fx_r_type == BFD_RELOC_386_GOT32
+ || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
+ || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
+ || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
+ || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
+ || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
+ || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
+ || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
+ || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
+ || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
+ || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
+ || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
+ || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
+ || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
+ || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
+ || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
+ || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
+ || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
+ || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
+ return 0;
+#endif
+ return 1;
+}
+
+static int intel_float_operand PARAMS ((const char *mnemonic));
+
+static int
+intel_float_operand (mnemonic)
+ const char *mnemonic;
+{
+ if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
+ return 2;
+
+ if (mnemonic[0] == 'f')
+ return 1;
+
+ return 0;
+}
+
+/* This is the guts of the machine-dependent assembler. LINE points to a
+ machine dependent instruction. This function is supposed to emit
+ the frags/bytes it assembles to. */
+
+void
+md_assemble (line)
+ char *line;
+{
+ int j;
+ char mnemonic[MAX_MNEM_SIZE];
+
+ /* Initialize globals. */
+ memset (&i, '\0', sizeof (i));
+ for (j = 0; j < MAX_OPERANDS; j++)
+ i.reloc[j] = NO_RELOC;
+ memset (disp_expressions, '\0', sizeof (disp_expressions));
+ memset (im_expressions, '\0', sizeof (im_expressions));
+ save_stack_p = save_stack;
+
+ /* First parse an instruction mnemonic & call i386_operand for the operands.
+ We assume that the scrubber has arranged it so that line[0] is the valid
+ start of a (possibly prefixed) mnemonic. */
+
+ line = parse_insn (line, mnemonic);
+ if (line == NULL)
+ return;
+
+ line = parse_operands (line, mnemonic);
+ if (line == NULL)
+ return;
+
+ /* Now we've parsed the mnemonic into a set of templates, and have the
+ operands at hand. */
+
+ /* All intel opcodes have reversed operands except for "bound" and
+ "enter". We also don't reverse intersegment "jmp" and "call"
+ instructions with 2 immediate operands so that the immediate segment
+ precedes the offset, as it does when in AT&T mode. "enter" and the
+ intersegment "jmp" and "call" instructions are the only ones that
+ have two immediate operands. */
+ if (intel_syntax && i.operands > 1
+ && (strcmp (mnemonic, "bound") != 0)
+ && !((i.types[0] & Imm) && (i.types[1] & Imm)))
+ swap_operands ();
+
+ if (i.imm_operands)
+ optimize_imm ();
+
+ if (i.disp_operands)
+ optimize_disp ();
+
+ /* Next, we find a template that matches the given insn,
+ making sure the overlap of the given operands types is consistent
+ with the template operand types. */
+
+ if (!match_template ())
+ return;
+
+ if (intel_syntax)
+ {
+ /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
+ if (SYSV386_COMPAT
+ && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
+ i.tm.base_opcode ^= FloatR;
+
+ /* Zap movzx and movsx suffix. The suffix may have been set from
+ "word ptr" or "byte ptr" on the source operand, but we'll use
+ the suffix later to choose the destination register. */
+ if ((i.tm.base_opcode & ~9) == 0x0fb6)
+ i.suffix = 0;
+ }
+
+ if (i.tm.opcode_modifier & FWait)
+ if (!add_prefix (FWAIT_OPCODE))
+ return;
+
+ /* Check string instruction segment overrides. */
+ if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
+ {
+ if (!check_string ())
+ return;
+ }
+
+ if (!process_suffix ())
+ return;
+
+ /* Make still unresolved immediate matches conform to size of immediate
+ given in i.suffix. */
+ if (!finalize_imm ())
+ return;
+
+ if (i.types[0] & Imm1)
+ i.imm_operands = 0; /* kludge for shift insns. */
+ if (i.types[0] & ImplicitRegister)
+ i.reg_operands--;
+ if (i.types[1] & ImplicitRegister)
+ i.reg_operands--;
+ if (i.types[2] & ImplicitRegister)
+ i.reg_operands--;
+
+ if (i.tm.opcode_modifier & ImmExt)
+ {
+ expressionS *exp;
+
+ if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
+ {
+ /* These Intel Prescott New Instructions have the fixed
+ operands with an opcode suffix which is coded in the same
+ place as an 8-bit immediate field would be. Here we check
+ those operands and remove them afterwards. */
+ unsigned int x;
+
+ for (x = 0; x < i.operands; x++)
+ if (i.op[x].regs->reg_num != x)
+ as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
+ i.op[x].regs->reg_name, x + 1, i.tm.name);
+ i.operands = 0;
+ }
+
+ /* These AMD 3DNow! and Intel Katmai New Instructions have an
+ opcode suffix which is coded in the same place as an 8-bit
+ immediate field would be. Here we fake an 8-bit immediate
+ operand from the opcode suffix stored in tm.extension_opcode. */
+
+ assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
+
+ exp = &im_expressions[i.imm_operands++];
+ i.op[i.operands].imms = exp;
+ i.types[i.operands++] = Imm8;
+ exp->X_op = O_constant;
+ exp->X_add_number = i.tm.extension_opcode;
+ i.tm.extension_opcode = None;
+ }
+
+ /* For insns with operands there are more diddles to do to the opcode. */
+ if (i.operands)
+ {
+ if (!process_operands ())
+ return;
+ }
+ else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
+ {
+ /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
+ as_warn (_("translating to `%sp'"), i.tm.name);
+ }
+
+ /* Handle conversion of 'int $3' --> special int3 insn. */
+ if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
+ {
+ i.tm.base_opcode = INT3_OPCODE;
+ i.imm_operands = 0;
+ }
+
+ if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
+ && i.op[0].disps->X_op == O_constant)
+ {
+ /* Convert "jmp constant" (and "call constant") to a jump (call) to
+ the absolute address given by the constant. Since ix86 jumps and
+ calls are pc relative, we need to generate a reloc. */
+ i.op[0].disps->X_add_symbol = &abs_symbol;
+ i.op[0].disps->X_op = O_symbol;
+ }
+
+ if ((i.tm.opcode_modifier & Rex64) != 0)
+ i.rex |= REX_MODE64;
+
+ /* For 8 bit registers we need an empty rex prefix. Also if the
+ instruction already has a prefix, we need to convert old
+ registers to new ones. */
+
+ if (((i.types[0] & Reg8) != 0
+ && (i.op[0].regs->reg_flags & RegRex64) != 0)
+ || ((i.types[1] & Reg8) != 0
+ && (i.op[1].regs->reg_flags & RegRex64) != 0)
+ || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
+ && i.rex != 0))
+ {
+ int x;
+
+ i.rex |= REX_OPCODE;
+ for (x = 0; x < 2; x++)
+ {
+ /* Look for 8 bit operand that uses old registers. */
+ if ((i.types[x] & Reg8) != 0
+ && (i.op[x].regs->reg_flags & RegRex64) == 0)
+ {
+ /* In case it is "hi" register, give up. */
+ if (i.op[x].regs->reg_num > 3)
+ as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix.\n"),
+ i.op[x].regs->reg_name);
+
+ /* Otherwise it is equivalent to the extended register.
+ Since the encoding doesn't change this is merely
+ cosmetic cleanup for debug output. */
+
+ i.op[x].regs = i.op[x].regs + 8;
+ }
+ }
+ }
+
+ if (i.rex != 0)
+ add_prefix (REX_OPCODE | i.rex);
+
+ /* We are ready to output the insn. */
+ output_insn ();
+}
+
+static char *
+parse_insn (line, mnemonic)
+ char *line;
+ char *mnemonic;
+{
+ char *l = line;
+ char *token_start = l;
+ char *mnem_p;
+
+ /* Non-zero if we found a prefix only acceptable with string insns. */
+ const char *expecting_string_instruction = NULL;
+
+ while (1)
+ {
+ mnem_p = mnemonic;
+ while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
+ {
+ mnem_p++;
+ if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
+ {
+ as_bad (_("no such instruction: `%s'"), token_start);
+ return NULL;
+ }
+ l++;
+ }
+ if (!is_space_char (*l)
+ && *l != END_OF_INSN
+ && *l != PREFIX_SEPARATOR
+ && *l != ',')
+ {
+ as_bad (_("invalid character %s in mnemonic"),
+ output_invalid (*l));
+ return NULL;
+ }
+ if (token_start == l)
+ {
+ if (*l == PREFIX_SEPARATOR)
+ as_bad (_("expecting prefix; got nothing"));
+ else
+ as_bad (_("expecting mnemonic; got nothing"));
+ return NULL;
+ }
+
+ /* Look up instruction (or prefix) via hash table. */
+ current_templates = hash_find (op_hash, mnemonic);
+
+ if (*l != END_OF_INSN
+ && (!is_space_char (*l) || l[1] != END_OF_INSN)
+ && current_templates
+ && (current_templates->start->opcode_modifier & IsPrefix))
+ {
+ /* If we are in 16-bit mode, do not allow addr16 or data16.
+ Similarly, in 32-bit mode, do not allow addr32 or data32. */
+ if ((current_templates->start->opcode_modifier & (Size16 | Size32))
+ && flag_code != CODE_64BIT
+ && (((current_templates->start->opcode_modifier & Size32) != 0)
+ ^ (flag_code == CODE_16BIT)))
+ {
+ as_bad (_("redundant %s prefix"),
+ current_templates->start->name);
+ return NULL;
+ }
+ /* Add prefix, checking for repeated prefixes. */
+ switch (add_prefix (current_templates->start->base_opcode))
+ {
+ case 0:
+ return NULL;
+ case 2:
+ expecting_string_instruction = current_templates->start->name;
+ break;
+ }
+ /* Skip past PREFIX_SEPARATOR and reset token_start. */
+ token_start = ++l;
+ }
+ else
+ break;
+ }
+
+ if (!current_templates)
+ {
+ /* See if we can get a match by trimming off a suffix. */
+ switch (mnem_p[-1])
+ {
+ case WORD_MNEM_SUFFIX:
+ case BYTE_MNEM_SUFFIX:
+ case QWORD_MNEM_SUFFIX:
+ i.suffix = mnem_p[-1];
+ mnem_p[-1] = '\0';
+ current_templates = hash_find (op_hash, mnemonic);
+ break;
+ case SHORT_MNEM_SUFFIX:
+ case LONG_MNEM_SUFFIX:
+ if (!intel_syntax)
+ {
+ i.suffix = mnem_p[-1];
+ mnem_p[-1] = '\0';
+ current_templates = hash_find (op_hash, mnemonic);
+ }
+ break;
+
+ /* Intel Syntax. */
+ case 'd':
+ if (intel_syntax)
+ {
+ if (intel_float_operand (mnemonic))
+ i.suffix = SHORT_MNEM_SUFFIX;
+ else
+ i.suffix = LONG_MNEM_SUFFIX;
+ mnem_p[-1] = '\0';
+ current_templates = hash_find (op_hash, mnemonic);
+ }
+ break;
+ }
+ if (!current_templates)
+ {
+ as_bad (_("no such instruction: `%s'"), token_start);
+ return NULL;
+ }
+ }
+
+ if (current_templates->start->opcode_modifier & (Jump | JumpByte))
+ {
+ /* Check for a branch hint. We allow ",pt" and ",pn" for
+ predict taken and predict not taken respectively.
+ I'm not sure that branch hints actually do anything on loop
+ and jcxz insns (JumpByte) for current Pentium4 chips. They
+ may work in the future and it doesn't hurt to accept them
+ now. */
+ if (l[0] == ',' && l[1] == 'p')
+ {
+ if (l[2] == 't')
+ {
+ if (!add_prefix (DS_PREFIX_OPCODE))
+ return NULL;
+ l += 3;
+ }
+ else if (l[2] == 'n')
+ {
+ if (!add_prefix (CS_PREFIX_OPCODE))
+ return NULL;
+ l += 3;
+ }
+ }
+ }
+ /* Any other comma loses. */
+ if (*l == ',')
+ {
+ as_bad (_("invalid character %s in mnemonic"),
+ output_invalid (*l));
+ return NULL;
+ }
+
+ /* Check if instruction is supported on specified architecture. */
+ if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
+ & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
+ {
+ as_warn (_("`%s' is not supported on `%s'"),
+ current_templates->start->name, cpu_arch_name);
+ }
+ else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
+ {
+ as_warn (_("use .code16 to ensure correct addressing mode"));
+ }
+
+ /* Check for rep/repne without a string instruction. */
+ if (expecting_string_instruction
+ && !(current_templates->start->opcode_modifier & IsString))
+ {
+ as_bad (_("expecting string instruction after `%s'"),
+ expecting_string_instruction);
+ return NULL;
+ }
+
+ return l;
+}
+
+static char *
+parse_operands (l, mnemonic)
+ char *l;
+ const char *mnemonic;
+{
+ char *token_start;
+
+ /* 1 if operand is pending after ','. */
+ unsigned int expecting_operand = 0;
+
+ /* Non-zero if operand parens not balanced. */
+ unsigned int paren_not_balanced;
+
+ while (*l != END_OF_INSN)
+ {
+ /* Skip optional white space before operand. */
+ if (is_space_char (*l))
+ ++l;
+ if (!is_operand_char (*l) && *l != END_OF_INSN)
+ {
+ as_bad (_("invalid character %s before operand %d"),
+ output_invalid (*l),
+ i.operands + 1);
+ return NULL;
+ }
+ token_start = l; /* after white space */
+ paren_not_balanced = 0;
+ while (paren_not_balanced || *l != ',')
+ {
+ if (*l == END_OF_INSN)
+ {
+ if (paren_not_balanced)
+ {
+ if (!intel_syntax)
+ as_bad (_("unbalanced parenthesis in operand %d."),
+ i.operands + 1);
+ else
+ as_bad (_("unbalanced brackets in operand %d."),
+ i.operands + 1);
+ return NULL;
+ }
+ else
+ break; /* we are done */
+ }
+ else if (!is_operand_char (*l) && !is_space_char (*l))
+ {
+ as_bad (_("invalid character %s in operand %d"),
+ output_invalid (*l),
+ i.operands + 1);
+ return NULL;
+ }
+ if (!intel_syntax)
+ {
+ if (*l == '(')
+ ++paren_not_balanced;
+ if (*l == ')')
+ --paren_not_balanced;
+ }
+ else
+ {
+ if (*l == '[')
+ ++paren_not_balanced;
+ if (*l == ']')
+ --paren_not_balanced;
+ }
+ l++;
+ }
+ if (l != token_start)
+ { /* Yes, we've read in another operand. */
+ unsigned int operand_ok;
+ this_operand = i.operands++;
+ if (i.operands > MAX_OPERANDS)
+ {
+ as_bad (_("spurious operands; (%d operands/instruction max)"),
+ MAX_OPERANDS);
+ return NULL;
+ }
+ /* Now parse operand adding info to 'i' as we go along. */
+ END_STRING_AND_SAVE (l);
+
+ if (intel_syntax)
+ operand_ok =
+ i386_intel_operand (token_start,
+ intel_float_operand (mnemonic));
+ else
+ operand_ok = i386_operand (token_start);
+
+ RESTORE_END_STRING (l);
+ if (!operand_ok)
+ return NULL;
+ }
+ else
+ {
+ if (expecting_operand)
+ {
+ expecting_operand_after_comma:
+ as_bad (_("expecting operand after ','; got nothing"));
+ return NULL;
+ }
+ if (*l == ',')
+ {
+ as_bad (_("expecting operand before ','; got nothing"));
+ return NULL;
+ }
+ }
+
+ /* Now *l must be either ',' or END_OF_INSN. */
+ if (*l == ',')
+ {
+ if (*++l == END_OF_INSN)
+ {
+ /* Just skip it, if it's \n complain. */
+ goto expecting_operand_after_comma;
+ }
+ expecting_operand = 1;
+ }
+ }
+ return l;
+}
+
+static void
+swap_operands ()
+{
+ union i386_op temp_op;
+ unsigned int temp_type;
+ enum bfd_reloc_code_real temp_reloc;
+ int xchg1 = 0;
+ int xchg2 = 0;
+
+ if (i.operands == 2)
+ {
+ xchg1 = 0;
+ xchg2 = 1;
+ }
+ else if (i.operands == 3)
+ {
+ xchg1 = 0;
+ xchg2 = 2;
+ }
+ temp_type = i.types[xchg2];
+ i.types[xchg2] = i.types[xchg1];
+ i.types[xchg1] = temp_type;
+ temp_op = i.op[xchg2];
+ i.op[xchg2] = i.op[xchg1];
+ i.op[xchg1] = temp_op;
+ temp_reloc = i.reloc[xchg2];
+ i.reloc[xchg2] = i.reloc[xchg1];
+ i.reloc[xchg1] = temp_reloc;
+
+ if (i.mem_operands == 2)
+ {
+ const seg_entry *temp_seg;
+ temp_seg = i.seg[0];
+ i.seg[0] = i.seg[1];
+ i.seg[1] = temp_seg;
+ }
+}
+
+/* Try to ensure constant immediates are represented in the smallest
+ opcode possible. */
+static void
+optimize_imm ()
+{
+ char guess_suffix = 0;
+ int op;
+
+ if (i.suffix)
+ guess_suffix = i.suffix;
+ else if (i.reg_operands)
+ {
+ /* Figure out a suffix from the last register operand specified.
+ We can't do this properly yet, ie. excluding InOutPortReg,
+ but the following works for instructions with immediates.
+ In any case, we can't set i.suffix yet. */
+ for (op = i.operands; --op >= 0;)
+ if (i.types[op] & Reg)
+ {
+ if (i.types[op] & Reg8)
+ guess_suffix = BYTE_MNEM_SUFFIX;
+ else if (i.types[op] & Reg16)
+ guess_suffix = WORD_MNEM_SUFFIX;
+ else if (i.types[op] & Reg32)
+ guess_suffix = LONG_MNEM_SUFFIX;
+ else if (i.types[op] & Reg64)
+ guess_suffix = QWORD_MNEM_SUFFIX;
+ break;
+ }
+ }
+ else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
+ guess_suffix = WORD_MNEM_SUFFIX;
+
+ for (op = i.operands; --op >= 0;)
+ if (i.types[op] & Imm)
+ {
+ switch (i.op[op].imms->X_op)
+ {
+ case O_constant:
+ /* If a suffix is given, this operand may be shortened. */
+ switch (guess_suffix)
+ {
+ case LONG_MNEM_SUFFIX:
+ i.types[op] |= Imm32 | Imm64;
+ break;
+ case WORD_MNEM_SUFFIX:
+ i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
+ break;
+ case BYTE_MNEM_SUFFIX:
+ i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
+ break;
+ }
+
+ /* If this operand is at most 16 bits, convert it
+ to a signed 16 bit number before trying to see
+ whether it will fit in an even smaller size.
+ This allows a 16-bit operand such as $0xffe0 to
+ be recognised as within Imm8S range. */
+ if ((i.types[op] & Imm16)
+ && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
+ {
+ i.op[op].imms->X_add_number =
+ (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
+ }
+ if ((i.types[op] & Imm32)
+ && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
+ == 0))
+ {
+ i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
+ ^ ((offsetT) 1 << 31))
+ - ((offsetT) 1 << 31));
+ }
+ i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
+
+ /* We must avoid matching of Imm32 templates when 64bit
+ only immediate is available. */
+ if (guess_suffix == QWORD_MNEM_SUFFIX)
+ i.types[op] &= ~Imm32;
+ break;
+
+ case O_absent:
+ case O_register:
+ abort ();
+
+ /* Symbols and expressions. */
+ default:
+ /* Convert symbolic operand to proper sizes for matching. */
+ switch (guess_suffix)
+ {
+ case QWORD_MNEM_SUFFIX:
+ i.types[op] = Imm64 | Imm32S;
+ break;
+ case LONG_MNEM_SUFFIX:
+ i.types[op] = Imm32 | Imm64;
+ break;
+ case WORD_MNEM_SUFFIX:
+ i.types[op] = Imm16 | Imm32 | Imm64;
+ break;
+ break;
+ case BYTE_MNEM_SUFFIX:
+ i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
+ break;
+ break;
+ }
+ break;
+ }
+ }
+}
+
+/* Try to use the smallest displacement type too. */
+static void
+optimize_disp ()
+{
+ int op;
+
+ for (op = i.operands; --op >= 0;)
+ if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
+ {
+ offsetT disp = i.op[op].disps->X_add_number;
+
+ if (i.types[op] & Disp16)
+ {
+ /* We know this operand is at most 16 bits, so
+ convert to a signed 16 bit number before trying
+ to see whether it will fit in an even smaller
+ size. */
+
+ disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
+ }
+ else if (i.types[op] & Disp32)
+ {
+ /* We know this operand is at most 32 bits, so convert to a
+ signed 32 bit number before trying to see whether it will
+ fit in an even smaller size. */
+ disp &= (((offsetT) 2 << 31) - 1);
+ disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
+ }
+ if (flag_code == CODE_64BIT)
+ {
+ if (fits_in_signed_long (disp))
+ i.types[op] |= Disp32S;
+ if (fits_in_unsigned_long (disp))
+ i.types[op] |= Disp32;
+ }
+ if ((i.types[op] & (Disp32 | Disp32S | Disp16))
+ && fits_in_signed_byte (disp))
+ i.types[op] |= Disp8;
+ }
+}
+
+static int
+match_template ()
+{
+ /* Points to template once we've found it. */
+ const template *t;
+ unsigned int overlap0, overlap1, overlap2;
+ unsigned int found_reverse_match;
+ int suffix_check;
+
+#define MATCH(overlap, given, template) \
+ ((overlap & ~JumpAbsolute) \
+ && (((given) & (BaseIndex | JumpAbsolute)) \
+ == ((overlap) & (BaseIndex | JumpAbsolute))))
+
+ /* If given types r0 and r1 are registers they must be of the same type
+ unless the expected operand type register overlap is null.
+ Note that Acc in a template matches every size of reg. */
+#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
+ (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
+ || ((g0) & Reg) == ((g1) & Reg) \
+ || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
+
+ overlap0 = 0;
+ overlap1 = 0;
+ overlap2 = 0;
+ found_reverse_match = 0;
+ suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
+ ? No_bSuf
+ : (i.suffix == WORD_MNEM_SUFFIX
+ ? No_wSuf
+ : (i.suffix == SHORT_MNEM_SUFFIX
+ ? No_sSuf
+ : (i.suffix == LONG_MNEM_SUFFIX
+ ? No_lSuf
+ : (i.suffix == QWORD_MNEM_SUFFIX
+ ? No_qSuf
+ : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
+ ? No_xSuf : 0))))));
+
+ for (t = current_templates->start;
+ t < current_templates->end;
+ t++)
+ {
+ /* Must have right number of operands. */
+ if (i.operands != t->operands)
+ continue;
+
+ /* Check the suffix, except for some instructions in intel mode. */
+ if ((t->opcode_modifier & suffix_check)
+ && !(intel_syntax
+ && (t->opcode_modifier & IgnoreSize))
+ && !(intel_syntax
+ && t->base_opcode == 0xd9
+ && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
+ || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
+ continue;
+
+ /* Do not verify operands when there are none. */
+ else if (!t->operands)
+ {
+ if (t->cpu_flags & ~cpu_arch_flags)
+ continue;
+ /* We've found a match; break out of loop. */
+ break;
+ }
+
+ overlap0 = i.types[0] & t->operand_types[0];
+ switch (t->operands)
+ {
+ case 1:
+ if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
+ continue;
+ break;
+ case 2:
+ case 3:
+ overlap1 = i.types[1] & t->operand_types[1];
+ if (!MATCH (overlap0, i.types[0], t->operand_types[0])
+ || !MATCH (overlap1, i.types[1], t->operand_types[1])
+ || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
+ t->operand_types[0],
+ overlap1, i.types[1],
+ t->operand_types[1]))
+ {
+ /* Check if other direction is valid ... */
+ if ((t->opcode_modifier & (D | FloatD)) == 0)
+ continue;
+
+ /* Try reversing direction of operands. */
+ overlap0 = i.types[0] & t->operand_types[1];
+ overlap1 = i.types[1] & t->operand_types[0];
+ if (!MATCH (overlap0, i.types[0], t->operand_types[1])
+ || !MATCH (overlap1, i.types[1], t->operand_types[0])
+ || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
+ t->operand_types[1],
+ overlap1, i.types[1],
+ t->operand_types[0]))
+ {
+ /* Does not match either direction. */
+ continue;
+ }
+ /* found_reverse_match holds which of D or FloatDR
+ we've found. */
+ found_reverse_match = t->opcode_modifier & (D | FloatDR);
+ }
+ /* Found a forward 2 operand match here. */
+ else if (t->operands == 3)
+ {
+ /* Here we make use of the fact that there are no
+ reverse match 3 operand instructions, and all 3
+ operand instructions only need to be checked for
+ register consistency between operands 2 and 3. */
+ overlap2 = i.types[2] & t->operand_types[2];
+ if (!MATCH (overlap2, i.types[2], t->operand_types[2])
+ || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
+ t->operand_types[1],
+ overlap2, i.types[2],
+ t->operand_types[2]))
+
+ continue;
+ }
+ /* Found either forward/reverse 2 or 3 operand match here:
+ slip through to break. */
+ }
+ if (t->cpu_flags & ~cpu_arch_flags)
+ {
+ found_reverse_match = 0;
+ continue;
+ }
+ /* We've found a match; break out of loop. */
+ break;
+ }
+
+ if (t == current_templates->end)
+ {
+ /* We found no match. */
+ as_bad (_("suffix or operands invalid for `%s'"),
+ current_templates->start->name);
+ return 0;
+ }
+
+ if (!quiet_warnings)
+ {
+ if (!intel_syntax
+ && ((i.types[0] & JumpAbsolute)
+ != (t->operand_types[0] & JumpAbsolute)))
+ {
+ as_warn (_("indirect %s without `*'"), t->name);
+ }
+
+ if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
+ == (IsPrefix | IgnoreSize))
+ {
+ /* Warn them that a data or address size prefix doesn't
+ affect assembly of the next line of code. */
+ as_warn (_("stand-alone `%s' prefix"), t->name);
+ }
+ }
+
+ /* Copy the template we found. */
+ i.tm = *t;
+ if (found_reverse_match)
+ {
+ /* If we found a reverse match we must alter the opcode
+ direction bit. found_reverse_match holds bits to change
+ (different for int & float insns). */
+
+ i.tm.base_opcode ^= found_reverse_match;
+
+ i.tm.operand_types[0] = t->operand_types[1];
+ i.tm.operand_types[1] = t->operand_types[0];
+ }
+
+ return 1;
+}
+
+static int
+check_string ()
+{
+ int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
+ if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
+ {
+ if (i.seg[0] != NULL && i.seg[0] != &es)
+ {
+ as_bad (_("`%s' operand %d must use `%%es' segment"),
+ i.tm.name,
+ mem_op + 1);
+ return 0;
+ }
+ /* There's only ever one segment override allowed per instruction.
+ This instruction possibly has a legal segment override on the
+ second operand, so copy the segment to where non-string
+ instructions store it, allowing common code. */
+ i.seg[0] = i.seg[1];
+ }
+ else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
+ {
+ if (i.seg[1] != NULL && i.seg[1] != &es)
+ {
+ as_bad (_("`%s' operand %d must use `%%es' segment"),
+ i.tm.name,
+ mem_op + 2);
+ return 0;
+ }
+ }
+ return 1;
+}
+
+static int
+process_suffix ()
+{
+ /* If matched instruction specifies an explicit instruction mnemonic
+ suffix, use it. */
+ if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
+ {
+ if (i.tm.opcode_modifier & Size16)
+ i.suffix = WORD_MNEM_SUFFIX;
+ else if (i.tm.opcode_modifier & Size64)
+ i.suffix = QWORD_MNEM_SUFFIX;
+ else
+ i.suffix = LONG_MNEM_SUFFIX;
+ }
+ else if (i.reg_operands)
+ {
+ /* If there's no instruction mnemonic suffix we try to invent one
+ based on register operands. */
+ if (!i.suffix)
+ {
+ /* We take i.suffix from the last register operand specified,
+ Destination register type is more significant than source
+ register type. */
+ int op;
+ for (op = i.operands; --op >= 0;)
+ if ((i.types[op] & Reg)
+ && !(i.tm.operand_types[op] & InOutPortReg))
+ {
+ i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
+ (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
+ (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
+ LONG_MNEM_SUFFIX);
+ break;
+ }
+ }
+ else if (i.suffix == BYTE_MNEM_SUFFIX)
+ {
+ if (!check_byte_reg ())
+ return 0;
+ }
+ else if (i.suffix == LONG_MNEM_SUFFIX)
+ {
+ if (!check_long_reg ())
+ return 0;
+ }
+ else if (i.suffix == QWORD_MNEM_SUFFIX)
+ {
+ if (!check_qword_reg ())
+ return 0;
+ }
+ else if (i.suffix == WORD_MNEM_SUFFIX)
+ {
+ if (!check_word_reg ())
+ return 0;
+ }
+ else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
+ /* Do nothing if the instruction is going to ignore the prefix. */
+ ;
+ else
+ abort ();
+ }
+ else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
+ {
+ i.suffix = stackop_size;
+ }
+
+ /* Change the opcode based on the operand size given by i.suffix;
+ We need not change things for byte insns. */
+
+ if (!i.suffix && (i.tm.opcode_modifier & W))
+ {
+ as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
+ return 0;
+ }
+
+ if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
+ {
+ /* It's not a byte, select word/dword operation. */
+ if (i.tm.opcode_modifier & W)
+ {
+ if (i.tm.opcode_modifier & ShortForm)
+ i.tm.base_opcode |= 8;
+ else
+ i.tm.base_opcode |= 1;
+ }
+
+ /* Now select between word & dword operations via the operand
+ size prefix, except for instructions that will ignore this
+ prefix anyway. */
+ if (i.suffix != QWORD_MNEM_SUFFIX
+ && !(i.tm.opcode_modifier & IgnoreSize)
+ && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
+ || (flag_code == CODE_64BIT
+ && (i.tm.opcode_modifier & JumpByte))))
+ {
+ unsigned int prefix = DATA_PREFIX_OPCODE;
+ if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
+ prefix = ADDR_PREFIX_OPCODE;
+
+ if (!add_prefix (prefix))
+ return 0;
+ }
+
+ /* Set mode64 for an operand. */
+ if (i.suffix == QWORD_MNEM_SUFFIX
+ && flag_code == CODE_64BIT
+ && (i.tm.opcode_modifier & NoRex64) == 0)
+ i.rex |= REX_MODE64;
+
+ /* Size floating point instruction. */
+ if (i.suffix == LONG_MNEM_SUFFIX)
+ {
+ if (i.tm.opcode_modifier & FloatMF)
+ i.tm.base_opcode ^= 4;
+ }
+ }
+
+ return 1;
+}
+
+static int
+check_byte_reg ()
+{
+ int op;
+ for (op = i.operands; --op >= 0;)
+ {
+ /* If this is an eight bit register, it's OK. If it's the 16 or
+ 32 bit version of an eight bit register, we will just use the
+ low portion, and that's OK too. */
+ if (i.types[op] & Reg8)
+ continue;
+
+ /* movzx and movsx should not generate this warning. */
+ if (intel_syntax
+ && (i.tm.base_opcode == 0xfb7
+ || i.tm.base_opcode == 0xfb6
+ || i.tm.base_opcode == 0x63
+ || i.tm.base_opcode == 0xfbe
+ || i.tm.base_opcode == 0xfbf))
+ continue;
+
+ if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
+#if 0
+ /* Check that the template allows eight bit regs. This
+ kills insns such as `orb $1,%edx', which maybe should be
+ allowed. */
+ && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
+#endif
+ )
+ {
+ /* Prohibit these changes in the 64bit mode, since the
+ lowering is more complicated. */
+ if (flag_code == CODE_64BIT
+ && (i.tm.operand_types[op] & InOutPortReg) == 0)
+ {
+ as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
+ i.op[op].regs->reg_name,
+ i.suffix);
+ return 0;
+ }
+#if REGISTER_WARNINGS
+ if (!quiet_warnings
+ && (i.tm.operand_types[op] & InOutPortReg) == 0)
+ as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
+ (i.op[op].regs + (i.types[op] & Reg16
+ ? REGNAM_AL - REGNAM_AX
+ : REGNAM_AL - REGNAM_EAX))->reg_name,
+ i.op[op].regs->reg_name,
+ i.suffix);
+#endif
+ continue;
+ }
+ /* Any other register is bad. */
+ if (i.types[op] & (Reg | RegMMX | RegXMM
+ | SReg2 | SReg3
+ | Control | Debug | Test
+ | FloatReg | FloatAcc))
+ {
+ as_bad (_("`%%%s' not allowed with `%s%c'"),
+ i.op[op].regs->reg_name,
+ i.tm.name,
+ i.suffix);
+ return 0;
+ }
+ }
+ return 1;
+}
+
+static int
+check_long_reg ()
+{
+ int op;
+
+ for (op = i.operands; --op >= 0;)
+ /* Reject eight bit registers, except where the template requires
+ them. (eg. movzb) */
+ if ((i.types[op] & Reg8) != 0
+ && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
+ {
+ as_bad (_("`%%%s' not allowed with `%s%c'"),
+ i.op[op].regs->reg_name,
+ i.tm.name,
+ i.suffix);
+ return 0;
+ }
+ /* Warn if the e prefix on a general reg is missing. */
+ else if ((!quiet_warnings || flag_code == CODE_64BIT)
+ && (i.types[op] & Reg16) != 0
+ && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
+ {
+ /* Prohibit these changes in the 64bit mode, since the
+ lowering is more complicated. */
+ if (flag_code == CODE_64BIT)
+ {
+ as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
+ i.op[op].regs->reg_name,
+ i.suffix);
+ return 0;
+ }
+#if REGISTER_WARNINGS
+ else
+ as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
+ (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
+ i.op[op].regs->reg_name,
+ i.suffix);
+#endif
+ }
+ /* Warn if the r prefix on a general reg is missing. */
+ else if ((i.types[op] & Reg64) != 0
+ && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
+ {
+ as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
+ i.op[op].regs->reg_name,
+ i.suffix);
+ return 0;
+ }
+ return 1;
+}
+
+static int
+check_qword_reg ()
+{
+ int op;
+
+ for (op = i.operands; --op >= 0; )
+ /* Reject eight bit registers, except where the template requires
+ them. (eg. movzb) */
+ if ((i.types[op] & Reg8) != 0
+ && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
+ {
+ as_bad (_("`%%%s' not allowed with `%s%c'"),
+ i.op[op].regs->reg_name,
+ i.tm.name,
+ i.suffix);
+ return 0;
+ }
+ /* Warn if the e prefix on a general reg is missing. */
+ else if (((i.types[op] & Reg16) != 0
+ || (i.types[op] & Reg32) != 0)
+ && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
+ {
+ /* Prohibit these changes in the 64bit mode, since the
+ lowering is more complicated. */
+ as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
+ i.op[op].regs->reg_name,
+ i.suffix);
+ return 0;
+ }
+ return 1;
+}
+
+static int
+check_word_reg ()
+{
+ int op;
+ for (op = i.operands; --op >= 0;)
+ /* Reject eight bit registers, except where the template requires
+ them. (eg. movzb) */
+ if ((i.types[op] & Reg8) != 0
+ && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
+ {
+ as_bad (_("`%%%s' not allowed with `%s%c'"),
+ i.op[op].regs->reg_name,
+ i.tm.name,
+ i.suffix);
+ return 0;
+ }
+ /* Warn if the e prefix on a general reg is present. */
+ else if ((!quiet_warnings || flag_code == CODE_64BIT)
+ && (i.types[op] & Reg32) != 0
+ && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
+ {
+ /* Prohibit these changes in the 64bit mode, since the
+ lowering is more complicated. */
+ if (flag_code == CODE_64BIT)
+ {
+ as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
+ i.op[op].regs->reg_name,
+ i.suffix);
+ return 0;
+ }
+ else
+#if REGISTER_WARNINGS
+ as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
+ (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
+ i.op[op].regs->reg_name,
+ i.suffix);
+#endif
+ }
+ return 1;
+}
+
+static int
+finalize_imm ()
+{
+ unsigned int overlap0, overlap1, overlap2;
+
+ overlap0 = i.types[0] & i.tm.operand_types[0];
+ if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
+ && overlap0 != Imm8 && overlap0 != Imm8S
+ && overlap0 != Imm16 && overlap0 != Imm32S
+ && overlap0 != Imm32 && overlap0 != Imm64)
+ {
+ if (i.suffix)
+ {
+ overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
+ ? Imm8 | Imm8S
+ : (i.suffix == WORD_MNEM_SUFFIX
+ ? Imm16
+ : (i.suffix == QWORD_MNEM_SUFFIX
+ ? Imm64 | Imm32S
+ : Imm32)));
+ }
+ else if (overlap0 == (Imm16 | Imm32S | Imm32)
+ || overlap0 == (Imm16 | Imm32)
+ || overlap0 == (Imm16 | Imm32S))
+ {
+ overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
+ ? Imm16 : Imm32S);
+ }
+ if (overlap0 != Imm8 && overlap0 != Imm8S
+ && overlap0 != Imm16 && overlap0 != Imm32S
+ && overlap0 != Imm32 && overlap0 != Imm64)
+ {
+ as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
+ return 0;
+ }
+ }
+ i.types[0] = overlap0;
+
+ overlap1 = i.types[1] & i.tm.operand_types[1];
+ if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
+ && overlap1 != Imm8 && overlap1 != Imm8S
+ && overlap1 != Imm16 && overlap1 != Imm32S
+ && overlap1 != Imm32 && overlap1 != Imm64)
+ {
+ if (i.suffix)
+ {
+ overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
+ ? Imm8 | Imm8S
+ : (i.suffix == WORD_MNEM_SUFFIX
+ ? Imm16
+ : (i.suffix == QWORD_MNEM_SUFFIX
+ ? Imm64 | Imm32S
+ : Imm32)));
+ }
+ else if (overlap1 == (Imm16 | Imm32 | Imm32S)
+ || overlap1 == (Imm16 | Imm32)
+ || overlap1 == (Imm16 | Imm32S))
+ {
+ overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
+ ? Imm16 : Imm32S);
+ }
+ if (overlap1 != Imm8 && overlap1 != Imm8S
+ && overlap1 != Imm16 && overlap1 != Imm32S
+ && overlap1 != Imm32 && overlap1 != Imm64)
+ {
+ as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
+ return 0;
+ }
+ }
+ i.types[1] = overlap1;
+
+ overlap2 = i.types[2] & i.tm.operand_types[2];
+ assert ((overlap2 & Imm) == 0);
+ i.types[2] = overlap2;
+
+ return 1;
+}
+
+static int
+process_operands ()
+{
+ /* Default segment register this instruction will use for memory
+ accesses. 0 means unknown. This is only for optimizing out
+ unnecessary segment overrides. */
+ const seg_entry *default_seg = 0;
+
+ /* The imul $imm, %reg instruction is converted into
+ imul $imm, %reg, %reg, and the clr %reg instruction
+ is converted into xor %reg, %reg. */
+ if (i.tm.opcode_modifier & regKludge)
+ {
+ unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
+ /* Pretend we saw the extra register operand. */
+ assert (i.op[first_reg_op + 1].regs == 0);
+ i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
+ i.types[first_reg_op + 1] = i.types[first_reg_op];
+ i.reg_operands = 2;
+ }
+
+ if (i.tm.opcode_modifier & ShortForm)
+ {
+ /* The register or float register operand is in operand 0 or 1. */
+ unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
+ /* Register goes in low 3 bits of opcode. */
+ i.tm.base_opcode |= i.op[op].regs->reg_num;
+ if ((i.op[op].regs->reg_flags & RegRex) != 0)
+ i.rex |= REX_EXTZ;
+ if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
+ {
+ /* Warn about some common errors, but press on regardless.
+ The first case can be generated by gcc (<= 2.8.1). */
+ if (i.operands == 2)
+ {
+ /* Reversed arguments on faddp, fsubp, etc. */
+ as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
+ i.op[1].regs->reg_name,
+ i.op[0].regs->reg_name);
+ }
+ else
+ {
+ /* Extraneous `l' suffix on fp insn. */
+ as_warn (_("translating to `%s %%%s'"), i.tm.name,
+ i.op[0].regs->reg_name);
+ }
+ }
+ }
+ else if (i.tm.opcode_modifier & Modrm)
+ {
+ /* The opcode is completed (modulo i.tm.extension_opcode which
+ must be put into the modrm byte). Now, we make the modrm and
+ index base bytes based on all the info we've collected. */
+
+ default_seg = build_modrm_byte ();
+ }
+ else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
+ {
+ if (i.tm.base_opcode == POP_SEG_SHORT
+ && i.op[0].regs->reg_num == 1)
+ {
+ as_bad (_("you can't `pop %%cs'"));
+ return 0;
+ }
+ i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
+ if ((i.op[0].regs->reg_flags & RegRex) != 0)
+ i.rex |= REX_EXTZ;
+ }
+ else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
+ {
+ default_seg = &ds;
+ }
+ else if ((i.tm.opcode_modifier & IsString) != 0)
+ {
+ /* For the string instructions that allow a segment override
+ on one of their operands, the default segment is ds. */
+ default_seg = &ds;
+ }
+
+ if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
+ as_warn (_("segment override on `lea' is ineffectual"));
+
+ /* If a segment was explicitly specified, and the specified segment
+ is not the default, use an opcode prefix to select it. If we
+ never figured out what the default segment is, then default_seg
+ will be zero at this point, and the specified segment prefix will
+ always be used. */
+ if ((i.seg[0]) && (i.seg[0] != default_seg))
+ {
+ if (!add_prefix (i.seg[0]->seg_prefix))
+ return 0;
+ }
+ return 1;
+}
+
+static const seg_entry *
+build_modrm_byte ()
+{
+ const seg_entry *default_seg = 0;
+
+ /* i.reg_operands MUST be the number of real register operands;
+ implicit registers do not count. */
+ if (i.reg_operands == 2)
+ {
+ unsigned int source, dest;
+ source = ((i.types[0]
+ & (Reg | RegMMX | RegXMM
+ | SReg2 | SReg3
+ | Control | Debug | Test))
+ ? 0 : 1);
+ dest = source + 1;
+
+ i.rm.mode = 3;
+ /* One of the register operands will be encoded in the i.tm.reg
+ field, the other in the combined i.tm.mode and i.tm.regmem
+ fields. If no form of this instruction supports a memory
+ destination operand, then we assume the source operand may
+ sometimes be a memory operand and so we need to store the
+ destination in the i.rm.reg field. */
+ if ((i.tm.operand_types[dest] & AnyMem) == 0)
+ {
+ i.rm.reg = i.op[dest].regs->reg_num;
+ i.rm.regmem = i.op[source].regs->reg_num;
+ if ((i.op[dest].regs->reg_flags & RegRex) != 0)
+ i.rex |= REX_EXTX;
+ if ((i.op[source].regs->reg_flags & RegRex) != 0)
+ i.rex |= REX_EXTZ;
+ }
+ else
+ {
+ i.rm.reg = i.op[source].regs->reg_num;
+ i.rm.regmem = i.op[dest].regs->reg_num;
+ if ((i.op[dest].regs->reg_flags & RegRex) != 0)
+ i.rex |= REX_EXTZ;
+ if ((i.op[source].regs->reg_flags & RegRex) != 0)
+ i.rex |= REX_EXTX;
+ }
+ }
+ else
+ { /* If it's not 2 reg operands... */
+ if (i.mem_operands)
+ {
+ unsigned int fake_zero_displacement = 0;
+ unsigned int op = ((i.types[0] & AnyMem)
+ ? 0
+ : (i.types[1] & AnyMem) ? 1 : 2);
+
+ default_seg = &ds;
+
+ if (i.base_reg == 0)
+ {
+ i.rm.mode = 0;
+ if (!i.disp_operands)
+ fake_zero_displacement = 1;
+ if (i.index_reg == 0)
+ {
+ /* Operand is just <disp> */
+ if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
+ && (flag_code != CODE_64BIT))
+ {
+ i.rm.regmem = NO_BASE_REGISTER_16;
+ i.types[op] &= ~Disp;
+ i.types[op] |= Disp16;
+ }
+ else if (flag_code != CODE_64BIT
+ || (i.prefix[ADDR_PREFIX] != 0))
+ {
+ i.rm.regmem = NO_BASE_REGISTER;
+ i.types[op] &= ~Disp;
+ i.types[op] |= Disp32;
+ }
+ else
+ {
+ /* 64bit mode overwrites the 32bit absolute
+ addressing by RIP relative addressing and
+ absolute addressing is encoded by one of the
+ redundant SIB forms. */
+ i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+ i.sib.base = NO_BASE_REGISTER;
+ i.sib.index = NO_INDEX_REGISTER;
+ i.types[op] &= ~Disp;
+ i.types[op] |= Disp32S;
+ }
+ }
+ else /* !i.base_reg && i.index_reg */
+ {
+ i.sib.index = i.index_reg->reg_num;
+ i.sib.base = NO_BASE_REGISTER;
+ i.sib.scale = i.log2_scale_factor;
+ i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+ i.types[op] &= ~Disp;
+ if (flag_code != CODE_64BIT)
+ i.types[op] |= Disp32; /* Must be 32 bit */
+ else
+ i.types[op] |= Disp32S;
+ if ((i.index_reg->reg_flags & RegRex) != 0)
+ i.rex |= REX_EXTY;
+ }
+ }
+ /* RIP addressing for 64bit mode. */
+ else if (i.base_reg->reg_type == BaseIndex)
+ {
+ i.rm.regmem = NO_BASE_REGISTER;
+ i.types[op] &= ~Disp;
+ i.types[op] |= Disp32S;
+ i.flags[op] = Operand_PCrel;
+ }
+ else if (i.base_reg->reg_type & Reg16)
+ {
+ switch (i.base_reg->reg_num)
+ {
+ case 3: /* (%bx) */
+ if (i.index_reg == 0)
+ i.rm.regmem = 7;
+ else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
+ i.rm.regmem = i.index_reg->reg_num - 6;
+ break;
+ case 5: /* (%bp) */
+ default_seg = &ss;
+ if (i.index_reg == 0)
+ {
+ i.rm.regmem = 6;
+ if ((i.types[op] & Disp) == 0)
+ {
+ /* fake (%bp) into 0(%bp) */
+ i.types[op] |= Disp8;
+ fake_zero_displacement = 1;
+ }
+ }
+ else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
+ i.rm.regmem = i.index_reg->reg_num - 6 + 2;
+ break;
+ default: /* (%si) -> 4 or (%di) -> 5 */
+ i.rm.regmem = i.base_reg->reg_num - 6 + 4;
+ }
+ i.rm.mode = mode_from_disp_size (i.types[op]);
+ }
+ else /* i.base_reg and 32/64 bit mode */
+ {
+ if (flag_code == CODE_64BIT
+ && (i.types[op] & Disp))
+ {
+ if (i.types[op] & Disp8)
+ i.types[op] = Disp8 | Disp32S;
+ else
+ i.types[op] = Disp32S;
+ }
+ i.rm.regmem = i.base_reg->reg_num;
+ if ((i.base_reg->reg_flags & RegRex) != 0)
+ i.rex |= REX_EXTZ;
+ i.sib.base = i.base_reg->reg_num;
+ /* x86-64 ignores REX prefix bit here to avoid decoder
+ complications. */
+ if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
+ {
+ default_seg = &ss;
+ if (i.disp_operands == 0)
+ {
+ fake_zero_displacement = 1;
+ i.types[op] |= Disp8;
+ }
+ }
+ else if (i.base_reg->reg_num == ESP_REG_NUM)
+ {
+ default_seg = &ss;
+ }
+ i.sib.scale = i.log2_scale_factor;
+ if (i.index_reg == 0)
+ {
+ /* <disp>(%esp) becomes two byte modrm with no index
+ register. We've already stored the code for esp
+ in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
+ Any base register besides %esp will not use the
+ extra modrm byte. */
+ i.sib.index = NO_INDEX_REGISTER;
+#if !SCALE1_WHEN_NO_INDEX
+ /* Another case where we force the second modrm byte. */
+ if (i.log2_scale_factor)
+ i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+#endif
+ }
+ else
+ {
+ i.sib.index = i.index_reg->reg_num;
+ i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+ if ((i.index_reg->reg_flags & RegRex) != 0)
+ i.rex |= REX_EXTY;
+ }
+ i.rm.mode = mode_from_disp_size (i.types[op]);
+ }
+
+ if (fake_zero_displacement)
+ {
+ /* Fakes a zero displacement assuming that i.types[op]
+ holds the correct displacement size. */
+ expressionS *exp;
+
+ assert (i.op[op].disps == 0);
+ exp = &disp_expressions[i.disp_operands++];
+ i.op[op].disps = exp;
+ exp->X_op = O_constant;
+ exp->X_add_number = 0;
+ exp->X_add_symbol = (symbolS *) 0;
+ exp->X_op_symbol = (symbolS *) 0;
+ }
+ }
+
+ /* Fill in i.rm.reg or i.rm.regmem field with register operand
+ (if any) based on i.tm.extension_opcode. Again, we must be
+ careful to make sure that segment/control/debug/test/MMX
+ registers are coded into the i.rm.reg field. */
+ if (i.reg_operands)
+ {
+ unsigned int op =
+ ((i.types[0]
+ & (Reg | RegMMX | RegXMM
+ | SReg2 | SReg3
+ | Control | Debug | Test))
+ ? 0
+ : ((i.types[1]
+ & (Reg | RegMMX | RegXMM
+ | SReg2 | SReg3
+ | Control | Debug | Test))
+ ? 1
+ : 2));
+ /* If there is an extension opcode to put here, the register
+ number must be put into the regmem field. */
+ if (i.tm.extension_opcode != None)
+ {
+ i.rm.regmem = i.op[op].regs->reg_num;
+ if ((i.op[op].regs->reg_flags & RegRex) != 0)
+ i.rex |= REX_EXTZ;
+ }
+ else
+ {
+ i.rm.reg = i.op[op].regs->reg_num;
+ if ((i.op[op].regs->reg_flags & RegRex) != 0)
+ i.rex |= REX_EXTX;
+ }
+
+ /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
+ must set it to 3 to indicate this is a register operand
+ in the regmem field. */
+ if (!i.mem_operands)
+ i.rm.mode = 3;
+ }
+
+ /* Fill in i.rm.reg field with extension opcode (if any). */
+ if (i.tm.extension_opcode != None)
+ i.rm.reg = i.tm.extension_opcode;
+ }
+ return default_seg;
+}
+
+static void
+output_branch ()
+{
+ char *p;
+ int code16;
+ int prefix;
+ relax_substateT subtype;
+ symbolS *sym;
+ offsetT off;
+
+ code16 = 0;
+ if (flag_code == CODE_16BIT)
+ code16 = CODE16;
+
+ prefix = 0;
+ if (i.prefix[DATA_PREFIX] != 0)
+ {
+ prefix = 1;
+ i.prefixes -= 1;
+ code16 ^= CODE16;
+ }
+ /* Pentium4 branch hints. */
+ if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
+ || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
+ {
+ prefix++;
+ i.prefixes--;
+ }
+ if (i.prefix[REX_PREFIX] != 0)
+ {
+ prefix++;
+ i.prefixes--;
+ }
+
+ if (i.prefixes != 0 && !intel_syntax)
+ as_warn (_("skipping prefixes on this instruction"));
+
+ /* It's always a symbol; End frag & setup for relax.
+ Make sure there is enough room in this frag for the largest
+ instruction we may generate in md_convert_frag. This is 2
+ bytes for the opcode and room for the prefix and largest
+ displacement. */
+ frag_grow (prefix + 2 + 4);
+ /* Prefix and 1 opcode byte go in fr_fix. */
+ p = frag_more (prefix + 1);
+ if (i.prefix[DATA_PREFIX] != 0)
+ *p++ = DATA_PREFIX_OPCODE;
+ if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
+ || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
+ *p++ = i.prefix[SEG_PREFIX];
+ if (i.prefix[REX_PREFIX] != 0)
+ *p++ = i.prefix[REX_PREFIX];
+ *p = i.tm.base_opcode;
+
+ if ((unsigned char) *p == JUMP_PC_RELATIVE)
+ subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
+ else if ((cpu_arch_flags & Cpu386) != 0)
+ subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
+ else
+ subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
+ subtype |= code16;
+
+ sym = i.op[0].disps->X_add_symbol;
+ off = i.op[0].disps->X_add_number;
+
+ if (i.op[0].disps->X_op != O_constant
+ && i.op[0].disps->X_op != O_symbol)
+ {
+ /* Handle complex expressions. */
+ sym = make_expr_symbol (i.op[0].disps);
+ off = 0;
+ }
+
+ /* 1 possible extra opcode + 4 byte displacement go in var part.
+ Pass reloc in fr_var. */
+ frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
+}
+
+static void
+output_jump ()
+{
+ char *p;
+ int size;
+ fixS *fixP;
+
+ if (i.tm.opcode_modifier & JumpByte)
+ {
+ /* This is a loop or jecxz type instruction. */
+ size = 1;
+ if (i.prefix[ADDR_PREFIX] != 0)
+ {
+ FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
+ i.prefixes -= 1;
+ }
+ /* Pentium4 branch hints. */
+ if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
+ || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
+ {
+ FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
+ i.prefixes--;
+ }
+ }
+ else
+ {
+ int code16;
+
+ code16 = 0;
+ if (flag_code == CODE_16BIT)
+ code16 = CODE16;
+
+ if (i.prefix[DATA_PREFIX] != 0)
+ {
+ FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
+ i.prefixes -= 1;
+ code16 ^= CODE16;
+ }
+
+ size = 4;
+ if (code16)
+ size = 2;
+ }
+
+ if (i.prefix[REX_PREFIX] != 0)
+ {
+ FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
+ i.prefixes -= 1;
+ }
+
+ if (i.prefixes != 0 && !intel_syntax)
+ as_warn (_("skipping prefixes on this instruction"));
+
+ p = frag_more (1 + size);
+ *p++ = i.tm.base_opcode;
+
+ fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
+ i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
+
+ /* All jumps handled here are signed, but don't use a signed limit
+ check for 32 and 16 bit jumps as we want to allow wrap around at
+ 4G and 64k respectively. */
+ if (size == 1)
+ fixP->fx_signed = 1;
+}
+
+static void
+output_interseg_jump ()
+{
+ char *p;
+ int size;
+ int prefix;
+ int code16;
+
+ code16 = 0;
+ if (flag_code == CODE_16BIT)
+ code16 = CODE16;
+
+ prefix = 0;
+ if (i.prefix[DATA_PREFIX] != 0)
+ {
+ prefix = 1;
+ i.prefixes -= 1;
+ code16 ^= CODE16;
+ }
+ if (i.prefix[REX_PREFIX] != 0)
+ {
+ prefix++;
+ i.prefixes -= 1;
+ }
+
+ size = 4;
+ if (code16)
+ size = 2;
+
+ if (i.prefixes != 0 && !intel_syntax)
+ as_warn (_("skipping prefixes on this instruction"));
+
+ /* 1 opcode; 2 segment; offset */
+ p = frag_more (prefix + 1 + 2 + size);
+
+ if (i.prefix[DATA_PREFIX] != 0)
+ *p++ = DATA_PREFIX_OPCODE;
+
+ if (i.prefix[REX_PREFIX] != 0)
+ *p++ = i.prefix[REX_PREFIX];
+
+ *p++ = i.tm.base_opcode;
+ if (i.op[1].imms->X_op == O_constant)
+ {
+ offsetT n = i.op[1].imms->X_add_number;
+
+ if (size == 2
+ && !fits_in_unsigned_word (n)
+ && !fits_in_signed_word (n))
+ {
+ as_bad (_("16-bit jump out of range"));
+ return;
+ }
+ md_number_to_chars (p, n, size);
+ }
+ else
+ fix_new_exp (frag_now, p - frag_now->fr_literal, size,
+ i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
+ if (i.op[0].imms->X_op != O_constant)
+ as_bad (_("can't handle non absolute segment in `%s'"),
+ i.tm.name);
+ md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
+}
+
+static void
+output_insn ()
+{
+ fragS *insn_start_frag;
+ offsetT insn_start_off;
+
+ /* Tie dwarf2 debug info to the address at the start of the insn.
+ We can't do this after the insn has been output as the current
+ frag may have been closed off. eg. by frag_var. */
+ dwarf2_emit_insn (0);
+
+ insn_start_frag = frag_now;
+ insn_start_off = frag_now_fix ();
+
+ /* Output jumps. */
+ if (i.tm.opcode_modifier & Jump)
+ output_branch ();
+ else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
+ output_jump ();
+ else if (i.tm.opcode_modifier & JumpInterSegment)
+ output_interseg_jump ();
+ else
+ {
+ /* Output normal instructions here. */
+ char *p;
+ unsigned char *q;
+
+ /* All opcodes on i386 have either 1 or 2 bytes, PadLock instructions
+ have 3 bytes. We may use one more higher byte to specify a prefix
+ the instruction requires. */
+ if ((i.tm.cpu_flags & CpuPadLock) != 0
+ && (i.tm.base_opcode & 0xff000000) != 0)
+ {
+ unsigned int prefix;
+ prefix = (i.tm.base_opcode >> 24) & 0xff;
+
+ if (prefix != REPE_PREFIX_OPCODE
+ || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
+ add_prefix (prefix);
+ }
+ else
+ if ((i.tm.cpu_flags & CpuPadLock) == 0
+ && (i.tm.base_opcode & 0xff0000) != 0)
+ add_prefix ((i.tm.base_opcode >> 16) & 0xff);
+
+ /* The prefix bytes. */
+ for (q = i.prefix;
+ q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
+ q++)
+ {
+ if (*q)
+ {
+ p = frag_more (1);
+ md_number_to_chars (p, (valueT) *q, 1);
+ }
+ }
+
+ /* Now the opcode; be careful about word order here! */
+ if (fits_in_unsigned_byte (i.tm.base_opcode))
+ {
+ FRAG_APPEND_1_CHAR (i.tm.base_opcode);
+ }
+ else
+ {
+ if ((i.tm.cpu_flags & CpuPadLock) != 0)
+ {
+ p = frag_more (3);
+ *p++ = (i.tm.base_opcode >> 16) & 0xff;
+ }
+ else
+ p = frag_more (2);
+
+ /* Put out high byte first: can't use md_number_to_chars! */
+ *p++ = (i.tm.base_opcode >> 8) & 0xff;
+ *p = i.tm.base_opcode & 0xff;
+ }
+
+ /* Now the modrm byte and sib byte (if present). */
+ if (i.tm.opcode_modifier & Modrm)
+ {
+ p = frag_more (1);
+ md_number_to_chars (p,
+ (valueT) (i.rm.regmem << 0
+ | i.rm.reg << 3
+ | i.rm.mode << 6),
+ 1);
+ /* If i.rm.regmem == ESP (4)
+ && i.rm.mode != (Register mode)
+ && not 16 bit
+ ==> need second modrm byte. */
+ if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
+ && i.rm.mode != 3
+ && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
+ {
+ p = frag_more (1);
+ md_number_to_chars (p,
+ (valueT) (i.sib.base << 0
+ | i.sib.index << 3
+ | i.sib.scale << 6),
+ 1);
+ }
+ }
+
+ if (i.disp_operands)
+ output_disp (insn_start_frag, insn_start_off);
+
+ if (i.imm_operands)
+ output_imm (insn_start_frag, insn_start_off);
+ }
+
+#ifdef DEBUG386
+ if (flag_debug)
+ {
+ pi (line, &i);
+ }
+#endif /* DEBUG386 */
+}
+
+static void
+output_disp (insn_start_frag, insn_start_off)
+ fragS *insn_start_frag;
+ offsetT insn_start_off;
+{
+ char *p;
+ unsigned int n;
+
+ for (n = 0; n < i.operands; n++)
+ {
+ if (i.types[n] & Disp)
+ {
+ if (i.op[n].disps->X_op == O_constant)
+ {
+ int size;
+ offsetT val;
+
+ size = 4;
+ if (i.types[n] & (Disp8 | Disp16 | Disp64))
+ {
+ size = 2;
+ if (i.types[n] & Disp8)
+ size = 1;
+ if (i.types[n] & Disp64)
+ size = 8;
+ }
+ val = offset_in_range (i.op[n].disps->X_add_number,
+ size);
+ p = frag_more (size);
+ md_number_to_chars (p, val, size);
+ }
+ else
+ {
+ enum bfd_reloc_code_real reloc_type;
+ int size = 4;
+ int sign = 0;
+ int pcrel = (i.flags[n] & Operand_PCrel) != 0;
+
+ /* The PC relative address is computed relative
+ to the instruction boundary, so in case immediate
+ fields follows, we need to adjust the value. */
+ if (pcrel && i.imm_operands)
+ {
+ int imm_size = 4;
+ unsigned int n1;
+
+ for (n1 = 0; n1 < i.operands; n1++)
+ if (i.types[n1] & Imm)
+ {
+ if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
+ {
+ imm_size = 2;
+ if (i.types[n1] & (Imm8 | Imm8S))
+ imm_size = 1;
+ if (i.types[n1] & Imm64)
+ imm_size = 8;
+ }
+ break;
+ }
+ /* We should find the immediate. */
+ if (n1 == i.operands)
+ abort ();
+ i.op[n].disps->X_add_number -= imm_size;
+ }
+
+ if (i.types[n] & Disp32S)
+ sign = 1;
+
+ if (i.types[n] & (Disp16 | Disp64))
+ {
+ size = 2;
+ if (i.types[n] & Disp64)
+ size = 8;
+ }
+
+ p = frag_more (size);
+ reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
+ if (reloc_type == BFD_RELOC_32
+ && GOT_symbol
+ && GOT_symbol == i.op[n].disps->X_add_symbol
+ && (i.op[n].disps->X_op == O_symbol
+ || (i.op[n].disps->X_op == O_add
+ && ((symbol_get_value_expression
+ (i.op[n].disps->X_op_symbol)->X_op)
+ == O_subtract))))
+ {
+ offsetT add;
+
+ if (insn_start_frag == frag_now)
+ add = (p - frag_now->fr_literal) - insn_start_off;
+ else
+ {
+ fragS *fr;
+
+ add = insn_start_frag->fr_fix - insn_start_off;
+ for (fr = insn_start_frag->fr_next;
+ fr && fr != frag_now; fr = fr->fr_next)
+ add += fr->fr_fix;
+ add += p - frag_now->fr_literal;
+ }
+
+ /* We don't support dynamic linking on x86-64 yet. */
+ if (flag_code == CODE_64BIT)
+ abort ();
+ reloc_type = BFD_RELOC_386_GOTPC;
+ i.op[n].disps->X_add_number += add;
+ }
+ fix_new_exp (frag_now, p - frag_now->fr_literal, size,
+ i.op[n].disps, pcrel, reloc_type);
+ }
+ }
+ }
+}
+
+static void
+output_imm (insn_start_frag, insn_start_off)
+ fragS *insn_start_frag;
+ offsetT insn_start_off;
+{
+ char *p;
+ unsigned int n;
+
+ for (n = 0; n < i.operands; n++)
+ {
+ if (i.types[n] & Imm)
+ {
+ if (i.op[n].imms->X_op == O_constant)
+ {
+ int size;
+ offsetT val;
+
+ size = 4;
+ if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
+ {
+ size = 2;
+ if (i.types[n] & (Imm8 | Imm8S))
+ size = 1;
+ else if (i.types[n] & Imm64)
+ size = 8;
+ }
+ val = offset_in_range (i.op[n].imms->X_add_number,
+ size);
+ p = frag_more (size);
+ md_number_to_chars (p, val, size);
+ }
+ else
+ {
+ /* Not absolute_section.
+ Need a 32-bit fixup (don't support 8bit
+ non-absolute imms). Try to support other
+ sizes ... */
+ enum bfd_reloc_code_real reloc_type;
+ int size = 4;
+ int sign = 0;
+
+ if ((i.types[n] & (Imm32S))
+ && i.suffix == QWORD_MNEM_SUFFIX)
+ sign = 1;
+ if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
+ {
+ size = 2;
+ if (i.types[n] & (Imm8 | Imm8S))
+ size = 1;
+ if (i.types[n] & Imm64)
+ size = 8;
+ }
+
+ p = frag_more (size);
+ reloc_type = reloc (size, 0, sign, i.reloc[n]);
+
+ /* This is tough to explain. We end up with this one if we
+ * have operands that look like
+ * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
+ * obtain the absolute address of the GOT, and it is strongly
+ * preferable from a performance point of view to avoid using
+ * a runtime relocation for this. The actual sequence of
+ * instructions often look something like:
+ *
+ * call .L66
+ * .L66:
+ * popl %ebx
+ * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
+ *
+ * The call and pop essentially return the absolute address
+ * of the label .L66 and store it in %ebx. The linker itself
+ * will ultimately change the first operand of the addl so
+ * that %ebx points to the GOT, but to keep things simple, the
+ * .o file must have this operand set so that it generates not
+ * the absolute address of .L66, but the absolute address of
+ * itself. This allows the linker itself simply treat a GOTPC
+ * relocation as asking for a pcrel offset to the GOT to be
+ * added in, and the addend of the relocation is stored in the
+ * operand field for the instruction itself.
+ *
+ * Our job here is to fix the operand so that it would add
+ * the correct offset so that %ebx would point to itself. The
+ * thing that is tricky is that .-.L66 will point to the
+ * beginning of the instruction, so we need to further modify
+ * the operand so that it will point to itself. There are
+ * other cases where you have something like:
+ *
+ * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
+ *
+ * and here no correction would be required. Internally in
+ * the assembler we treat operands of this form as not being
+ * pcrel since the '.' is explicitly mentioned, and I wonder
+ * whether it would simplify matters to do it this way. Who
+ * knows. In earlier versions of the PIC patches, the
+ * pcrel_adjust field was used to store the correction, but
+ * since the expression is not pcrel, I felt it would be
+ * confusing to do it this way. */
+
+ if (reloc_type == BFD_RELOC_32
+ && GOT_symbol
+ && GOT_symbol == i.op[n].imms->X_add_symbol
+ && (i.op[n].imms->X_op == O_symbol
+ || (i.op[n].imms->X_op == O_add
+ && ((symbol_get_value_expression
+ (i.op[n].imms->X_op_symbol)->X_op)
+ == O_subtract))))
+ {
+ offsetT add;
+
+ if (insn_start_frag == frag_now)
+ add = (p - frag_now->fr_literal) - insn_start_off;
+ else
+ {
+ fragS *fr;
+
+ add = insn_start_frag->fr_fix - insn_start_off;
+ for (fr = insn_start_frag->fr_next;
+ fr && fr != frag_now; fr = fr->fr_next)
+ add += fr->fr_fix;
+ add += p - frag_now->fr_literal;
+ }
+
+ /* We don't support dynamic linking on x86-64 yet. */
+ if (flag_code == CODE_64BIT)
+ abort ();
+ reloc_type = BFD_RELOC_386_GOTPC;
+ i.op[n].imms->X_add_number += add;
+ }
+ fix_new_exp (frag_now, p - frag_now->fr_literal, size,
+ i.op[n].imms, 0, reloc_type);
+ }
+ }
+ }
+}
+
+#ifndef LEX_AT
+static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
+
+/* Parse operands of the form
+ <symbol>@GOTOFF+<nnn>
+ and similar .plt or .got references.
+
+ If we find one, set up the correct relocation in RELOC and copy the
+ input string, minus the `@GOTOFF' into a malloc'd buffer for
+ parsing by the calling routine. Return this buffer, and if ADJUST
+ is non-null set it to the length of the string we removed from the
+ input line. Otherwise return NULL. */
+static char *
+lex_got (reloc, adjust)
+ enum bfd_reloc_code_real *reloc;
+ int *adjust;
+{
+ static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
+ static const struct {
+ const char *str;
+ const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
+ } gotrel[] = {
+ { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
+ { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
+ { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
+ { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
+ { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
+ { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
+ { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
+ { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
+ { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
+ { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
+ { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
+ { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
+ { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
+ };
+ char *cp;
+ unsigned int j;
+
+ for (cp = input_line_pointer; *cp != '@'; cp++)
+ if (is_end_of_line[(unsigned char) *cp])
+ return NULL;
+
+ for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
+ {
+ int len;
+
+ len = strlen (gotrel[j].str);
+ if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
+ {
+ if (gotrel[j].rel[(unsigned int) flag_code] != 0)
+ {
+ int first, second;
+ char *tmpbuf, *past_reloc;
+
+ *reloc = gotrel[j].rel[(unsigned int) flag_code];
+ if (adjust)
+ *adjust = len;
+
+ if (GOT_symbol == NULL)
+ GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
+
+ /* Replace the relocation token with ' ', so that
+ errors like foo@GOTOFF1 will be detected. */
+
+ /* The length of the first part of our input line. */
+ first = cp - input_line_pointer;
+
+ /* The second part goes from after the reloc token until
+ (and including) an end_of_line char. Don't use strlen
+ here as the end_of_line char may not be a NUL. */
+ past_reloc = cp + 1 + len;
+ for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
+ ;
+ second = cp - past_reloc;
+
+ /* Allocate and copy string. The trailing NUL shouldn't
+ be necessary, but be safe. */
+ tmpbuf = xmalloc (first + second + 2);
+ memcpy (tmpbuf, input_line_pointer, first);
+ tmpbuf[first] = ' ';
+ memcpy (tmpbuf + first + 1, past_reloc, second);
+ tmpbuf[first + second + 1] = '\0';
+ return tmpbuf;
+ }
+
+ as_bad (_("@%s reloc is not supported in %s bit mode"),
+ gotrel[j].str, mode_name[(unsigned int) flag_code]);
+ return NULL;
+ }
+ }
+
+ /* Might be a symbol version string. Don't as_bad here. */
+ return NULL;
+}
+
+/* x86_cons_fix_new is called via the expression parsing code when a
+ reloc is needed. We use this hook to get the correct .got reloc. */
+static enum bfd_reloc_code_real got_reloc = NO_RELOC;
+
+void
+x86_cons_fix_new (frag, off, len, exp)
+ fragS *frag;
+ unsigned int off;
+ unsigned int len;
+ expressionS *exp;
+{
+ enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
+ got_reloc = NO_RELOC;
+ fix_new_exp (frag, off, len, exp, 0, r);
+}
+
+void
+x86_cons (exp, size)
+ expressionS *exp;
+ int size;
+{
+ if (size == 4)
+ {
+ /* Handle @GOTOFF and the like in an expression. */
+ char *save;
+ char *gotfree_input_line;
+ int adjust;
+
+ save = input_line_pointer;
+ gotfree_input_line = lex_got (&got_reloc, &adjust);
+ if (gotfree_input_line)
+ input_line_pointer = gotfree_input_line;
+
+ expression (exp);
+
+ if (gotfree_input_line)
+ {
+ /* expression () has merrily parsed up to the end of line,
+ or a comma - in the wrong buffer. Transfer how far
+ input_line_pointer has moved to the right buffer. */
+ input_line_pointer = (save
+ + (input_line_pointer - gotfree_input_line)
+ + adjust);
+ free (gotfree_input_line);
+ }
+ }
+ else
+ expression (exp);
+}
+#endif
+
+static int i386_immediate PARAMS ((char *));
+
+static int
+i386_immediate (imm_start)
+ char *imm_start;
+{
+ char *save_input_line_pointer;
+#ifndef LEX_AT
+ char *gotfree_input_line;
+#endif
+ segT exp_seg = 0;
+ expressionS *exp;
+
+ if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
+ {
+ as_bad (_("only 1 or 2 immediate operands are allowed"));
+ return 0;
+ }
+
+ exp = &im_expressions[i.imm_operands++];
+ i.op[this_operand].imms = exp;
+
+ if (is_space_char (*imm_start))
+ ++imm_start;
+
+ save_input_line_pointer = input_line_pointer;
+ input_line_pointer = imm_start;
+
+#ifndef LEX_AT
+ gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
+ if (gotfree_input_line)
+ input_line_pointer = gotfree_input_line;
+#endif
+
+ exp_seg = expression (exp);
+
+ SKIP_WHITESPACE ();
+ if (*input_line_pointer)
+ as_bad (_("junk `%s' after expression"), input_line_pointer);
+
+ input_line_pointer = save_input_line_pointer;
+#ifndef LEX_AT
+ if (gotfree_input_line)
+ free (gotfree_input_line);
+#endif
+
+ if (exp->X_op == O_absent || exp->X_op == O_big)
+ {
+ /* Missing or bad expr becomes absolute 0. */
+ as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
+ imm_start);
+ exp->X_op = O_constant;
+ exp->X_add_number = 0;
+ exp->X_add_symbol = (symbolS *) 0;
+ exp->X_op_symbol = (symbolS *) 0;
+ }
+ else if (exp->X_op == O_constant)
+ {
+ /* Size it properly later. */
+ i.types[this_operand] |= Imm64;
+ /* If BFD64, sign extend val. */
+ if (!use_rela_relocations)
+ if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
+ exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
+ }
+#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
+ else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
+ && exp_seg != absolute_section
+ && exp_seg != text_section
+ && exp_seg != data_section
+ && exp_seg != bss_section
+ && exp_seg != undefined_section
+ && !bfd_is_com_section (exp_seg))
+ {
+ as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
+ return 0;
+ }
+#endif
+ else
+ {
+ /* This is an address. The size of the address will be
+ determined later, depending on destination register,
+ suffix, or the default for the section. */
+ i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
+ }
+
+ return 1;
+}
+
+static char *i386_scale PARAMS ((char *));
+
+static char *
+i386_scale (scale)
+ char *scale;
+{
+ offsetT val;
+ char *save = input_line_pointer;
+
+ input_line_pointer = scale;
+ val = get_absolute_expression ();
+
+ switch (val)
+ {
+ case 0:
+ case 1:
+ i.log2_scale_factor = 0;
+ break;
+ case 2:
+ i.log2_scale_factor = 1;
+ break;
+ case 4:
+ i.log2_scale_factor = 2;
+ break;
+ case 8:
+ i.log2_scale_factor = 3;
+ break;
+ default:
+ as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
+ scale);
+ input_line_pointer = save;
+ return NULL;
+ }
+ if (i.log2_scale_factor != 0 && i.index_reg == 0)
+ {
+ as_warn (_("scale factor of %d without an index register"),
+ 1 << i.log2_scale_factor);
+#if SCALE1_WHEN_NO_INDEX
+ i.log2_scale_factor = 0;
+#endif
+ }
+ scale = input_line_pointer;
+ input_line_pointer = save;
+ return scale;
+}
+
+static int i386_displacement PARAMS ((char *, char *));
+
+static int
+i386_displacement (disp_start, disp_end)
+ char *disp_start;
+ char *disp_end;
+{
+ expressionS *exp;
+ segT exp_seg = 0;
+ char *save_input_line_pointer;
+#ifndef LEX_AT
+ char *gotfree_input_line;
+#endif
+ int bigdisp = Disp32;
+
+ if (flag_code == CODE_64BIT)
+ {
+ if (i.prefix[ADDR_PREFIX] == 0)
+ bigdisp = Disp64;
+ }
+ else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
+ bigdisp = Disp16;
+ i.types[this_operand] |= bigdisp;
+
+ exp = &disp_expressions[i.disp_operands];
+ i.op[this_operand].disps = exp;
+ i.disp_operands++;
+ save_input_line_pointer = input_line_pointer;
+ input_line_pointer = disp_start;
+ END_STRING_AND_SAVE (disp_end);
+
+#ifndef GCC_ASM_O_HACK
+#define GCC_ASM_O_HACK 0
+#endif
+#if GCC_ASM_O_HACK
+ END_STRING_AND_SAVE (disp_end + 1);
+ if ((i.types[this_operand] & BaseIndex) != 0
+ && displacement_string_end[-1] == '+')
+ {
+ /* This hack is to avoid a warning when using the "o"
+ constraint within gcc asm statements.
+ For instance:
+
+ #define _set_tssldt_desc(n,addr,limit,type) \
+ __asm__ __volatile__ ( \
+ "movw %w2,%0\n\t" \
+ "movw %w1,2+%0\n\t" \
+ "rorl $16,%1\n\t" \
+ "movb %b1,4+%0\n\t" \
+ "movb %4,5+%0\n\t" \
+ "movb $0,6+%0\n\t" \
+ "movb %h1,7+%0\n\t" \
+ "rorl $16,%1" \
+ : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
+
+ This works great except that the output assembler ends
+ up looking a bit weird if it turns out that there is
+ no offset. You end up producing code that looks like:
+
+ #APP
+ movw $235,(%eax)
+ movw %dx,2+(%eax)
+ rorl $16,%edx
+ movb %dl,4+(%eax)
+ movb $137,5+(%eax)
+ movb $0,6+(%eax)
+ movb %dh,7+(%eax)
+ rorl $16,%edx
+ #NO_APP
+
+ So here we provide the missing zero. */
+
+ *displacement_string_end = '0';
+ }
+#endif
+#ifndef LEX_AT
+ gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
+ if (gotfree_input_line)
+ input_line_pointer = gotfree_input_line;
+#endif
+
+ exp_seg = expression (exp);
+
+ SKIP_WHITESPACE ();
+ if (*input_line_pointer)
+ as_bad (_("junk `%s' after expression"), input_line_pointer);
+#if GCC_ASM_O_HACK
+ RESTORE_END_STRING (disp_end + 1);
+#endif
+ RESTORE_END_STRING (disp_end);
+ input_line_pointer = save_input_line_pointer;
+#ifndef LEX_AT
+ if (gotfree_input_line)
+ free (gotfree_input_line);
+#endif
+
+ /* We do this to make sure that the section symbol is in
+ the symbol table. We will ultimately change the relocation
+ to be relative to the beginning of the section. */
+ if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
+ || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
+ {
+ if (exp->X_op != O_symbol)
+ {
+ as_bad (_("bad expression used with @%s"),
+ (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
+ ? "GOTPCREL"
+ : "GOTOFF"));
+ return 0;
+ }
+
+ if (S_IS_LOCAL (exp->X_add_symbol)
+ && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
+ section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
+ exp->X_op = O_subtract;
+ exp->X_op_symbol = GOT_symbol;
+ if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
+ i.reloc[this_operand] = BFD_RELOC_32_PCREL;
+ else
+ i.reloc[this_operand] = BFD_RELOC_32;
+ }
+
+ if (exp->X_op == O_absent || exp->X_op == O_big)
+ {
+ /* Missing or bad expr becomes absolute 0. */
+ as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
+ disp_start);
+ exp->X_op = O_constant;
+ exp->X_add_number = 0;
+ exp->X_add_symbol = (symbolS *) 0;
+ exp->X_op_symbol = (symbolS *) 0;
+ }
+
+#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
+ if (exp->X_op != O_constant
+ && OUTPUT_FLAVOR == bfd_target_aout_flavour
+ && exp_seg != absolute_section
+ && exp_seg != text_section
+ && exp_seg != data_section
+ && exp_seg != bss_section
+ && exp_seg != undefined_section
+ && !bfd_is_com_section (exp_seg))
+ {
+ as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
+ return 0;
+ }
+#endif
+ else if (flag_code == CODE_64BIT)
+ i.types[this_operand] |= Disp32S | Disp32;
+ return 1;
+}
+
+static int i386_index_check PARAMS ((const char *));
+
+/* Make sure the memory operand we've been dealt is valid.
+ Return 1 on success, 0 on a failure. */
+
+static int
+i386_index_check (operand_string)
+ const char *operand_string;
+{
+ int ok;
+#if INFER_ADDR_PREFIX
+ int fudged = 0;
+
+ tryprefix:
+#endif
+ ok = 1;
+ if (flag_code == CODE_64BIT)
+ {
+ if (i.prefix[ADDR_PREFIX] == 0)
+ {
+ /* 64bit checks. */
+ if ((i.base_reg
+ && ((i.base_reg->reg_type & Reg64) == 0)
+ && (i.base_reg->reg_type != BaseIndex
+ || i.index_reg))
+ || (i.index_reg
+ && ((i.index_reg->reg_type & (Reg64 | BaseIndex))
+ != (Reg64 | BaseIndex))))
+ ok = 0;
+ }
+ else
+ {
+ /* 32bit checks. */
+ if ((i.base_reg
+ && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
+ || (i.index_reg
+ && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
+ != (Reg32 | BaseIndex))))
+ ok = 0;
+ }
+ }
+ else
+ {
+ if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
+ {
+ /* 16bit checks. */
+ if ((i.base_reg
+ && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
+ != (Reg16 | BaseIndex)))
+ || (i.index_reg
+ && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
+ != (Reg16 | BaseIndex))
+ || !(i.base_reg
+ && i.base_reg->reg_num < 6
+ && i.index_reg->reg_num >= 6
+ && i.log2_scale_factor == 0))))
+ ok = 0;
+ }
+ else
+ {
+ /* 32bit checks. */
+ if ((i.base_reg
+ && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
+ || (i.index_reg
+ && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
+ != (Reg32 | BaseIndex))))
+ ok = 0;
+ }
+ }
+ if (!ok)
+ {
+#if INFER_ADDR_PREFIX
+ if (flag_code != CODE_64BIT
+ && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
+ {
+ i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
+ i.prefixes += 1;
+ /* Change the size of any displacement too. At most one of
+ Disp16 or Disp32 is set.
+ FIXME. There doesn't seem to be any real need for separate
+ Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
+ Removing them would probably clean up the code quite a lot. */
+ if (i.types[this_operand] & (Disp16 | Disp32))
+ i.types[this_operand] ^= (Disp16 | Disp32);
+ fudged = 1;
+ goto tryprefix;
+ }
+ if (fudged)
+ as_bad (_("`%s' is not a valid base/index expression"),
+ operand_string);
+ else
+#endif
+ as_bad (_("`%s' is not a valid %s bit base/index expression"),
+ operand_string,
+ flag_code_names[flag_code]);
+ return 0;
+ }
+ return 1;
+}
+
+/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
+ on error. */
+
+static int
+i386_operand (operand_string)
+ char *operand_string;
+{
+ const reg_entry *r;
+ char *end_op;
+ char *op_string = operand_string;
+
+ if (is_space_char (*op_string))
+ ++op_string;
+
+ /* We check for an absolute prefix (differentiating,
+ for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
+ if (*op_string == ABSOLUTE_PREFIX)
+ {
+ ++op_string;
+ if (is_space_char (*op_string))
+ ++op_string;
+ i.types[this_operand] |= JumpAbsolute;
+ }
+
+ /* Check if operand is a register. */
+ if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
+ && (r = parse_register (op_string, &end_op)) != NULL)
+ {
+ /* Check for a segment override by searching for ':' after a
+ segment register. */
+ op_string = end_op;
+ if (is_space_char (*op_string))
+ ++op_string;
+ if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
+ {
+ switch (r->reg_num)
+ {
+ case 0:
+ i.seg[i.mem_operands] = &es;
+ break;
+ case 1:
+ i.seg[i.mem_operands] = &cs;
+ break;
+ case 2:
+ i.seg[i.mem_operands] = &ss;
+ break;
+ case 3:
+ i.seg[i.mem_operands] = &ds;
+ break;
+ case 4:
+ i.seg[i.mem_operands] = &fs;
+ break;
+ case 5:
+ i.seg[i.mem_operands] = &gs;
+ break;
+ }
+
+ /* Skip the ':' and whitespace. */
+ ++op_string;
+ if (is_space_char (*op_string))
+ ++op_string;
+
+ if (!is_digit_char (*op_string)
+ && !is_identifier_char (*op_string)
+ && *op_string != '('
+ && *op_string != ABSOLUTE_PREFIX)
+ {
+ as_bad (_("bad memory operand `%s'"), op_string);
+ return 0;
+ }
+ /* Handle case of %es:*foo. */
+ if (*op_string == ABSOLUTE_PREFIX)
+ {
+ ++op_string;
+ if (is_space_char (*op_string))
+ ++op_string;
+ i.types[this_operand] |= JumpAbsolute;
+ }
+ goto do_memory_reference;
+ }
+ if (*op_string)
+ {
+ as_bad (_("junk `%s' after register"), op_string);
+ return 0;
+ }
+ i.types[this_operand] |= r->reg_type & ~BaseIndex;
+ i.op[this_operand].regs = r;
+ i.reg_operands++;
+ }
+ else if (*op_string == REGISTER_PREFIX)
+ {
+ as_bad (_("bad register name `%s'"), op_string);
+ return 0;
+ }
+ else if (*op_string == IMMEDIATE_PREFIX)
+ {
+ ++op_string;
+ if (i.types[this_operand] & JumpAbsolute)
+ {
+ as_bad (_("immediate operand illegal with absolute jump"));
+ return 0;
+ }
+ if (!i386_immediate (op_string))
+ return 0;
+ }
+ else if (is_digit_char (*op_string)
+ || is_identifier_char (*op_string)
+ || *op_string == '(')
+ {
+ /* This is a memory reference of some sort. */
+ char *base_string;
+
+ /* Start and end of displacement string expression (if found). */
+ char *displacement_string_start;
+ char *displacement_string_end;
+
+ do_memory_reference:
+ if ((i.mem_operands == 1
+ && (current_templates->start->opcode_modifier & IsString) == 0)
+ || i.mem_operands == 2)
+ {
+ as_bad (_("too many memory references for `%s'"),
+ current_templates->start->name);
+ return 0;
+ }
+
+ /* Check for base index form. We detect the base index form by
+ looking for an ')' at the end of the operand, searching
+ for the '(' matching it, and finding a REGISTER_PREFIX or ','
+ after the '('. */
+ base_string = op_string + strlen (op_string);
+
+ --base_string;
+ if (is_space_char (*base_string))
+ --base_string;
+
+ /* If we only have a displacement, set-up for it to be parsed later. */
+ displacement_string_start = op_string;
+ displacement_string_end = base_string + 1;
+
+ if (*base_string == ')')
+ {
+ char *temp_string;
+ unsigned int parens_balanced = 1;
+ /* We've already checked that the number of left & right ()'s are
+ equal, so this loop will not be infinite. */
+ do
+ {
+ base_string--;
+ if (*base_string == ')')
+ parens_balanced++;
+ if (*base_string == '(')
+ parens_balanced--;
+ }
+ while (parens_balanced);
+
+ temp_string = base_string;
+
+ /* Skip past '(' and whitespace. */
+ ++base_string;
+ if (is_space_char (*base_string))
+ ++base_string;
+
+ if (*base_string == ','
+ || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
+ && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
+ {
+ displacement_string_end = temp_string;
+
+ i.types[this_operand] |= BaseIndex;
+
+ if (i.base_reg)
+ {
+ base_string = end_op;
+ if (is_space_char (*base_string))
+ ++base_string;
+ }
+
+ /* There may be an index reg or scale factor here. */
+ if (*base_string == ',')
+ {
+ ++base_string;
+ if (is_space_char (*base_string))
+ ++base_string;
+
+ if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
+ && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
+ {
+ base_string = end_op;
+ if (is_space_char (*base_string))
+ ++base_string;
+ if (*base_string == ',')
+ {
+ ++base_string;
+ if (is_space_char (*base_string))
+ ++base_string;
+ }
+ else if (*base_string != ')')
+ {
+ as_bad (_("expecting `,' or `)' after index register in `%s'"),
+ operand_string);
+ return 0;
+ }
+ }
+ else if (*base_string == REGISTER_PREFIX)
+ {
+ as_bad (_("bad register name `%s'"), base_string);
+ return 0;
+ }
+
+ /* Check for scale factor. */
+ if (*base_string != ')')
+ {
+ char *end_scale = i386_scale (base_string);
+
+ if (!end_scale)
+ return 0;
+
+ base_string = end_scale;
+ if (is_space_char (*base_string))
+ ++base_string;
+ if (*base_string != ')')
+ {
+ as_bad (_("expecting `)' after scale factor in `%s'"),
+ operand_string);
+ return 0;
+ }
+ }
+ else if (!i.index_reg)
+ {
+ as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
+ *base_string);
+ return 0;
+ }
+ }
+ else if (*base_string != ')')
+ {
+ as_bad (_("expecting `,' or `)' after base register in `%s'"),
+ operand_string);
+ return 0;
+ }
+ }
+ else if (*base_string == REGISTER_PREFIX)
+ {
+ as_bad (_("bad register name `%s'"), base_string);
+ return 0;
+ }
+ }
+
+ /* If there's an expression beginning the operand, parse it,
+ assuming displacement_string_start and
+ displacement_string_end are meaningful. */
+ if (displacement_string_start != displacement_string_end)
+ {
+ if (!i386_displacement (displacement_string_start,
+ displacement_string_end))
+ return 0;
+ }
+
+ /* Special case for (%dx) while doing input/output op. */
+ if (i.base_reg
+ && i.base_reg->reg_type == (Reg16 | InOutPortReg)
+ && i.index_reg == 0
+ && i.log2_scale_factor == 0
+ && i.seg[i.mem_operands] == 0
+ && (i.types[this_operand] & Disp) == 0)
+ {
+ i.types[this_operand] = InOutPortReg;
+ return 1;
+ }
+
+ if (i386_index_check (operand_string) == 0)
+ return 0;
+ i.mem_operands++;
+ }
+ else
+ {
+ /* It's not a memory operand; argh! */
+ as_bad (_("invalid char %s beginning operand %d `%s'"),
+ output_invalid (*op_string),
+ this_operand + 1,
+ op_string);
+ return 0;
+ }
+ return 1; /* Normal return. */
+}
+
+/* md_estimate_size_before_relax()
+
+ Called just before relax() for rs_machine_dependent frags. The x86
+ assembler uses these frags to handle variable size jump
+ instructions.
+
+ Any symbol that is now undefined will not become defined.
+ Return the correct fr_subtype in the frag.
+ Return the initial "guess for variable size of frag" to caller.
+ The guess is actually the growth beyond the fixed part. Whatever
+ we do to grow the fixed or variable part contributes to our
+ returned value. */
+
+int
+md_estimate_size_before_relax (fragP, segment)
+ fragS *fragP;
+ segT segment;
+{
+ /* We've already got fragP->fr_subtype right; all we have to do is
+ check for un-relaxable symbols. On an ELF system, we can't relax
+ an externally visible symbol, because it may be overridden by a
+ shared library. */
+ if (S_GET_SEGMENT (fragP->fr_symbol) != segment
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ || (OUTPUT_FLAVOR == bfd_target_elf_flavour
+ && (S_IS_EXTERNAL (fragP->fr_symbol)
+ || S_IS_WEAK (fragP->fr_symbol)))
+#endif
+ )
+ {
+ /* Symbol is undefined in this segment, or we need to keep a
+ reloc so that weak symbols can be overridden. */
+ int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
+ enum bfd_reloc_code_real reloc_type;
+ unsigned char *opcode;
+ int old_fr_fix;
+
+ if (fragP->fr_var != NO_RELOC)
+ reloc_type = fragP->fr_var;
+ else if (size == 2)
+ reloc_type = BFD_RELOC_16_PCREL;
+ else
+ reloc_type = BFD_RELOC_32_PCREL;
+
+ old_fr_fix = fragP->fr_fix;
+ opcode = (unsigned char *) fragP->fr_opcode;
+
+ switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
+ {
+ case UNCOND_JUMP:
+ /* Make jmp (0xeb) a (d)word displacement jump. */
+ opcode[0] = 0xe9;
+ fragP->fr_fix += size;
+ fix_new (fragP, old_fr_fix, size,
+ fragP->fr_symbol,
+ fragP->fr_offset, 1,
+ reloc_type);
+ break;
+
+ case COND_JUMP86:
+ if (size == 2
+ && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
+ {
+ /* Negate the condition, and branch past an
+ unconditional jump. */
+ opcode[0] ^= 1;
+ opcode[1] = 3;
+ /* Insert an unconditional jump. */
+ opcode[2] = 0xe9;
+ /* We added two extra opcode bytes, and have a two byte
+ offset. */
+ fragP->fr_fix += 2 + 2;
+ fix_new (fragP, old_fr_fix + 2, 2,
+ fragP->fr_symbol,
+ fragP->fr_offset, 1,
+ reloc_type);
+ break;
+ }
+ /* Fall through. */
+
+ case COND_JUMP:
+ if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
+ {
+ fixS *fixP;
+
+ fragP->fr_fix += 1;
+ fixP = fix_new (fragP, old_fr_fix, 1,
+ fragP->fr_symbol,
+ fragP->fr_offset, 1,
+ BFD_RELOC_8_PCREL);
+ fixP->fx_signed = 1;
+ break;
+ }
+
+ /* This changes the byte-displacement jump 0x7N
+ to the (d)word-displacement jump 0x0f,0x8N. */
+ opcode[1] = opcode[0] + 0x10;
+ opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
+ /* We've added an opcode byte. */
+ fragP->fr_fix += 1 + size;
+ fix_new (fragP, old_fr_fix + 1, size,
+ fragP->fr_symbol,
+ fragP->fr_offset, 1,
+ reloc_type);
+ break;
+
+ default:
+ BAD_CASE (fragP->fr_subtype);
+ break;
+ }
+ frag_wane (fragP);
+ return fragP->fr_fix - old_fr_fix;
+ }
+
+ /* Guess size depending on current relax state. Initially the relax
+ state will correspond to a short jump and we return 1, because
+ the variable part of the frag (the branch offset) is one byte
+ long. However, we can relax a section more than once and in that
+ case we must either set fr_subtype back to the unrelaxed state,
+ or return the value for the appropriate branch. */
+ return md_relax_table[fragP->fr_subtype].rlx_length;
+}
+
+/* Called after relax() is finished.
+
+ In: Address of frag.
+ fr_type == rs_machine_dependent.
+ fr_subtype is what the address relaxed to.
+
+ Out: Any fixSs and constants are set up.
+ Caller will turn frag into a ".space 0". */
+
+void
+md_convert_frag (abfd, sec, fragP)
+ bfd *abfd ATTRIBUTE_UNUSED;
+ segT sec ATTRIBUTE_UNUSED;
+ fragS *fragP;
+{
+ unsigned char *opcode;
+ unsigned char *where_to_put_displacement = NULL;
+ offsetT target_address;
+ offsetT opcode_address;
+ unsigned int extension = 0;
+ offsetT displacement_from_opcode_start;
+
+ opcode = (unsigned char *) fragP->fr_opcode;
+
+ /* Address we want to reach in file space. */
+ target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
+
+ /* Address opcode resides at in file space. */
+ opcode_address = fragP->fr_address + fragP->fr_fix;
+
+ /* Displacement from opcode start to fill into instruction. */
+ displacement_from_opcode_start = target_address - opcode_address;
+
+ if ((fragP->fr_subtype & BIG) == 0)
+ {
+ /* Don't have to change opcode. */
+ extension = 1; /* 1 opcode + 1 displacement */
+ where_to_put_displacement = &opcode[1];
+ }
+ else
+ {
+ if (no_cond_jump_promotion
+ && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
+ as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
+
+ switch (fragP->fr_subtype)
+ {
+ case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
+ extension = 4; /* 1 opcode + 4 displacement */
+ opcode[0] = 0xe9;
+ where_to_put_displacement = &opcode[1];
+ break;
+
+ case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
+ extension = 2; /* 1 opcode + 2 displacement */
+ opcode[0] = 0xe9;
+ where_to_put_displacement = &opcode[1];
+ break;
+
+ case ENCODE_RELAX_STATE (COND_JUMP, BIG):
+ case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
+ extension = 5; /* 2 opcode + 4 displacement */
+ opcode[1] = opcode[0] + 0x10;
+ opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
+ where_to_put_displacement = &opcode[2];
+ break;
+
+ case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
+ extension = 3; /* 2 opcode + 2 displacement */
+ opcode[1] = opcode[0] + 0x10;
+ opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
+ where_to_put_displacement = &opcode[2];
+ break;
+
+ case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
+ extension = 4;
+ opcode[0] ^= 1;
+ opcode[1] = 3;
+ opcode[2] = 0xe9;
+ where_to_put_displacement = &opcode[3];
+ break;
+
+ default:
+ BAD_CASE (fragP->fr_subtype);
+ break;
+ }
+ }
+
+ /* Now put displacement after opcode. */
+ md_number_to_chars ((char *) where_to_put_displacement,
+ (valueT) (displacement_from_opcode_start - extension),
+ DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
+ fragP->fr_fix += extension;
+}
+
+/* Size of byte displacement jmp. */
+int md_short_jump_size = 2;
+
+/* Size of dword displacement jmp. */
+int md_long_jump_size = 5;
+
+/* Size of relocation record. */
+const int md_reloc_size = 8;
+
+void
+md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
+ char *ptr;
+ addressT from_addr, to_addr;
+ fragS *frag ATTRIBUTE_UNUSED;
+ symbolS *to_symbol ATTRIBUTE_UNUSED;
+{
+ offsetT offset;
+
+ offset = to_addr - (from_addr + 2);
+ /* Opcode for byte-disp jump. */
+ md_number_to_chars (ptr, (valueT) 0xeb, 1);
+ md_number_to_chars (ptr + 1, (valueT) offset, 1);
+}
+
+void
+md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
+ char *ptr;
+ addressT from_addr, to_addr;
+ fragS *frag ATTRIBUTE_UNUSED;
+ symbolS *to_symbol ATTRIBUTE_UNUSED;
+{
+ offsetT offset;
+
+ offset = to_addr - (from_addr + 5);
+ md_number_to_chars (ptr, (valueT) 0xe9, 1);
+ md_number_to_chars (ptr + 1, (valueT) offset, 4);
+}
+
+/* Apply a fixup (fixS) to segment data, once it has been determined
+ by our caller that we have all the info we need to fix it up.
+
+ On the 386, immediates, displacements, and data pointers are all in
+ the same (little-endian) format, so we don't need to care about which
+ we are handling. */
+
+void
+md_apply_fix3 (fixP, valP, seg)
+ /* The fix we're to put in. */
+ fixS *fixP;
+ /* Pointer to the value of the bits. */
+ valueT *valP;
+ /* Segment fix is from. */
+ segT seg ATTRIBUTE_UNUSED;
+{
+ char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
+ valueT value = *valP;
+
+#if !defined (TE_Mach)
+ if (fixP->fx_pcrel)
+ {
+ switch (fixP->fx_r_type)
+ {
+ default:
+ break;
+
+ case BFD_RELOC_32:
+ fixP->fx_r_type = BFD_RELOC_32_PCREL;
+ break;
+ case BFD_RELOC_16:
+ fixP->fx_r_type = BFD_RELOC_16_PCREL;
+ break;
+ case BFD_RELOC_8:
+ fixP->fx_r_type = BFD_RELOC_8_PCREL;
+ break;
+ }
+ }
+
+ if (fixP->fx_addsy != NULL
+ && (fixP->fx_r_type == BFD_RELOC_32_PCREL
+ || fixP->fx_r_type == BFD_RELOC_16_PCREL
+ || fixP->fx_r_type == BFD_RELOC_8_PCREL)
+ && !use_rela_relocations)
+ {
+ /* This is a hack. There should be a better way to handle this.
+ This covers for the fact that bfd_install_relocation will
+ subtract the current location (for partial_inplace, PC relative
+ relocations); see more below. */
+#ifndef OBJ_AOUT
+ if (OUTPUT_FLAVOR == bfd_target_elf_flavour
+#ifdef TE_PE
+ || OUTPUT_FLAVOR == bfd_target_coff_flavour
+#endif
+ )
+ value += fixP->fx_where + fixP->fx_frag->fr_address;
+#endif
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
+ {
+ segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
+
+ if ((sym_seg == seg
+ || (symbol_section_p (fixP->fx_addsy)
+ && sym_seg != absolute_section))
+ && !generic_force_reloc (fixP))
+ {
+ /* Yes, we add the values in twice. This is because
+ bfd_install_relocation subtracts them out again. I think
+ bfd_install_relocation is broken, but I don't dare change
+ it. FIXME. */
+ value += fixP->fx_where + fixP->fx_frag->fr_address;
+ }
+ }
+#endif
+#if defined (OBJ_COFF) && defined (TE_PE)
+ /* For some reason, the PE format does not store a section
+ address offset for a PC relative symbol. */
+ if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
+ value += md_pcrel_from (fixP);
+#endif
+ }
+
+ /* Fix a few things - the dynamic linker expects certain values here,
+ and we must not disappoint it. */
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ if (OUTPUT_FLAVOR == bfd_target_elf_flavour
+ && fixP->fx_addsy)
+ switch (fixP->fx_r_type)
+ {
+ case BFD_RELOC_386_PLT32:
+ case BFD_RELOC_X86_64_PLT32:
+ /* Make the jump instruction point to the address of the operand. At
+ runtime we merely add the offset to the actual PLT entry. */
+ value = -4;
+ break;
+
+ case BFD_RELOC_386_TLS_GD:
+ case BFD_RELOC_386_TLS_LDM:
+ case BFD_RELOC_386_TLS_IE_32:
+ case BFD_RELOC_386_TLS_IE:
+ case BFD_RELOC_386_TLS_GOTIE:
+ case BFD_RELOC_X86_64_TLSGD:
+ case BFD_RELOC_X86_64_TLSLD:
+ case BFD_RELOC_X86_64_GOTTPOFF:
+ value = 0; /* Fully resolved at runtime. No addend. */
+ /* Fallthrough */
+ case BFD_RELOC_386_TLS_LE:
+ case BFD_RELOC_386_TLS_LDO_32:
+ case BFD_RELOC_386_TLS_LE_32:
+ case BFD_RELOC_X86_64_DTPOFF32:
+ case BFD_RELOC_X86_64_TPOFF32:
+ S_SET_THREAD_LOCAL (fixP->fx_addsy);
+ break;
+
+ case BFD_RELOC_386_GOT32:
+ case BFD_RELOC_X86_64_GOT32:
+ value = 0; /* Fully resolved at runtime. No addend. */
+ break;
+
+ case BFD_RELOC_VTABLE_INHERIT:
+ case BFD_RELOC_VTABLE_ENTRY:
+ fixP->fx_done = 0;
+ return;
+
+ default:
+ break;
+ }
+#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
+ *valP = value;
+#endif /* !defined (TE_Mach) */
+
+ /* Are we finished with this relocation now? */
+ if (fixP->fx_addsy == NULL)
+ fixP->fx_done = 1;
+ else if (use_rela_relocations)
+ {
+ fixP->fx_no_overflow = 1;
+ /* Remember value for tc_gen_reloc. */
+ fixP->fx_addnumber = value;
+ value = 0;
+ }
+
+ md_number_to_chars (p, value, fixP->fx_size);
+}
+
+#define MAX_LITTLENUMS 6
+
+/* Turn the string pointed to by litP into a floating point constant
+ of type TYPE, and emit the appropriate bytes. The number of
+ LITTLENUMS emitted is stored in *SIZEP. An error message is
+ returned, or NULL on OK. */
+
+char *
+md_atof (type, litP, sizeP)
+ int type;
+ char *litP;
+ int *sizeP;
+{
+ int prec;
+ LITTLENUM_TYPE words[MAX_LITTLENUMS];
+ LITTLENUM_TYPE *wordP;
+ char *t;
+
+ switch (type)
+ {
+ case 'f':
+ case 'F':
+ prec = 2;
+ break;
+
+ case 'd':
+ case 'D':
+ prec = 4;
+ break;
+
+ case 'x':
+ case 'X':
+ prec = 5;
+ break;
+
+ default:
+ *sizeP = 0;
+ return _("Bad call to md_atof ()");
+ }
+ t = atof_ieee (input_line_pointer, type, words);
+ if (t)
+ input_line_pointer = t;
+
+ *sizeP = prec * sizeof (LITTLENUM_TYPE);
+ /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
+ the bigendian 386. */
+ for (wordP = words + prec - 1; prec--;)
+ {
+ md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
+ litP += sizeof (LITTLENUM_TYPE);
+ }
+ return 0;
+}
+
+char output_invalid_buf[8];
+
+static char *
+output_invalid (c)
+ int c;
+{
+ if (ISPRINT (c))
+ sprintf (output_invalid_buf, "'%c'", c);
+ else
+ sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
+ return output_invalid_buf;
+}
+
+/* REG_STRING starts *before* REGISTER_PREFIX. */
+
+static const reg_entry *
+parse_register (reg_string, end_op)
+ char *reg_string;
+ char **end_op;
+{
+ char *s = reg_string;
+ char *p;
+ char reg_name_given[MAX_REG_NAME_SIZE + 1];
+ const reg_entry *r;
+
+ /* Skip possible REGISTER_PREFIX and possible whitespace. */
+ if (*s == REGISTER_PREFIX)
+ ++s;
+
+ if (is_space_char (*s))
+ ++s;
+
+ p = reg_name_given;
+ while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
+ {
+ if (p >= reg_name_given + MAX_REG_NAME_SIZE)
+ return (const reg_entry *) NULL;
+ s++;
+ }
+
+ /* For naked regs, make sure that we are not dealing with an identifier.
+ This prevents confusing an identifier like `eax_var' with register
+ `eax'. */
+ if (allow_naked_reg && identifier_chars[(unsigned char) *s])
+ return (const reg_entry *) NULL;
+
+ *end_op = s;
+
+ r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
+
+ /* Handle floating point regs, allowing spaces in the (i) part. */
+ if (r == i386_regtab /* %st is first entry of table */)
+ {
+ if (is_space_char (*s))
+ ++s;
+ if (*s == '(')
+ {
+ ++s;
+ if (is_space_char (*s))
+ ++s;
+ if (*s >= '0' && *s <= '7')
+ {
+ r = &i386_float_regtab[*s - '0'];
+ ++s;
+ if (is_space_char (*s))
+ ++s;
+ if (*s == ')')
+ {
+ *end_op = s + 1;
+ return r;
+ }
+ }
+ /* We have "%st(" then garbage. */
+ return (const reg_entry *) NULL;
+ }
+ }
+
+ if (r != NULL
+ && (r->reg_flags & (RegRex64 | RegRex)) != 0
+ && flag_code != CODE_64BIT)
+ {
+ return (const reg_entry *) NULL;
+ }
+
+ return r;
+}
+
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+const char *md_shortopts = "kVQ:sqn";
+#else
+const char *md_shortopts = "qn";
+#endif
+
+struct option md_longopts[] = {
+#define OPTION_32 (OPTION_MD_BASE + 0)
+ {"32", no_argument, NULL, OPTION_32},
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+#define OPTION_64 (OPTION_MD_BASE + 1)
+ {"64", no_argument, NULL, OPTION_64},
+#endif
+ {NULL, no_argument, NULL, 0}
+};
+size_t md_longopts_size = sizeof (md_longopts);
+
+int
+md_parse_option (c, arg)
+ int c;
+ char *arg ATTRIBUTE_UNUSED;
+{
+ switch (c)
+ {
+ case 'n':
+ optimize_align_code = 0;
+ break;
+
+ case 'q':
+ quiet_warnings = 1;
+ break;
+
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
+ should be emitted or not. FIXME: Not implemented. */
+ case 'Q':
+ break;
+
+ /* -V: SVR4 argument to print version ID. */
+ case 'V':
+ print_version_id ();
+ break;
+
+ /* -k: Ignore for FreeBSD compatibility. */
+ case 'k':
+ break;
+
+ case 's':
+ /* -s: On i386 Solaris, this tells the native assembler to use
+ .stab instead of .stab.excl. We always use .stab anyhow. */
+ break;
+
+ case OPTION_64:
+ {
+ const char **list, **l;
+
+ list = bfd_target_list ();
+ for (l = list; *l != NULL; l++)
+ if (strcmp (*l, "elf64-x86-64") == 0)
+ {
+ default_arch = "x86_64";
+ break;
+ }
+ if (*l == NULL)
+ as_fatal (_("No compiled in support for x86_64"));
+ free (list);
+ }
+ break;
+#endif
+
+ case OPTION_32:
+ default_arch = "i386";
+ break;
+
+ default:
+ return 0;
+ }
+ return 1;
+}
+
+void
+md_show_usage (stream)
+ FILE *stream;
+{
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ fprintf (stream, _("\
+ -Q ignored\n\
+ -V print assembler version number\n\
+ -k ignored\n\
+ -n Do not optimize code alignment\n\
+ -q quieten some warnings\n\
+ -s ignored\n"));
+#else
+ fprintf (stream, _("\
+ -n Do not optimize code alignment\n\
+ -q quieten some warnings\n"));
+#endif
+}
+
+#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
+ || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
+
+/* Pick the target format to use. */
+
+const char *
+i386_target_format ()
+{
+ if (!strcmp (default_arch, "x86_64"))
+ set_code_flag (CODE_64BIT);
+ else if (!strcmp (default_arch, "i386"))
+ set_code_flag (CODE_32BIT);
+ else
+ as_fatal (_("Unknown architecture"));
+ switch (OUTPUT_FLAVOR)
+ {
+#ifdef OBJ_MAYBE_AOUT
+ case bfd_target_aout_flavour:
+ return AOUT_TARGET_FORMAT;
+#endif
+#ifdef OBJ_MAYBE_COFF
+ case bfd_target_coff_flavour:
+ return "coff-i386";
+#endif
+#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
+ case bfd_target_elf_flavour:
+ {
+ if (flag_code == CODE_64BIT)
+ use_rela_relocations = 1;
+ return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
+ }
+#endif
+ default:
+ abort ();
+ return NULL;
+ }
+}
+
+#endif /* OBJ_MAYBE_ more than one */
+
+#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
+void i386_elf_emit_arch_note ()
+{
+ if (OUTPUT_FLAVOR == bfd_target_elf_flavour
+ && cpu_arch_name != NULL)
+ {
+ char *p;
+ asection *seg = now_seg;
+ subsegT subseg = now_subseg;
+ Elf_Internal_Note i_note;
+ Elf_External_Note e_note;
+ asection *note_secp;
+ int len;
+
+ /* Create the .note section. */
+ note_secp = subseg_new (".note", 0);
+ bfd_set_section_flags (stdoutput,
+ note_secp,
+ SEC_HAS_CONTENTS | SEC_READONLY);
+
+ /* Process the arch string. */
+ len = strlen (cpu_arch_name);
+
+ i_note.namesz = len + 1;
+ i_note.descsz = 0;
+ i_note.type = NT_ARCH;
+ p = frag_more (sizeof (e_note.namesz));
+ md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
+ p = frag_more (sizeof (e_note.descsz));
+ md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
+ p = frag_more (sizeof (e_note.type));
+ md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
+ p = frag_more (len + 1);
+ strcpy (p, cpu_arch_name);
+
+ frag_align (2, 0, 0);
+
+ subseg_set (seg, subseg);
+ }
+}
+#endif
+
+symbolS *
+md_undefined_symbol (name)
+ char *name;
+{
+ if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
+ && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
+ && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
+ && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
+ {
+ if (!GOT_symbol)
+ {
+ if (symbol_find (name))
+ as_bad (_("GOT already in symbol table"));
+ GOT_symbol = symbol_new (name, undefined_section,
+ (valueT) 0, &zero_address_frag);
+ };
+ return GOT_symbol;
+ }
+ return 0;
+}
+
+/* Round up a section size to the appropriate boundary. */
+
+valueT
+md_section_align (segment, size)
+ segT segment ATTRIBUTE_UNUSED;
+ valueT size;
+{
+#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
+ if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
+ {
+ /* For a.out, force the section size to be aligned. If we don't do
+ this, BFD will align it for us, but it will not write out the
+ final bytes of the section. This may be a bug in BFD, but it is
+ easier to fix it here since that is how the other a.out targets
+ work. */
+ int align;
+
+ align = bfd_get_section_alignment (stdoutput, segment);
+ size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
+ }
+#endif
+
+ return size;
+}
+
+/* On the i386, PC-relative offsets are relative to the start of the
+ next instruction. That is, the address of the offset, plus its
+ size, since the offset is always the last part of the insn. */
+
+long
+md_pcrel_from (fixP)
+ fixS *fixP;
+{
+ return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
+}
+
+#ifndef I386COFF
+
+static void
+s_bss (ignore)
+ int ignore ATTRIBUTE_UNUSED;
+{
+ int temp;
+
+ temp = get_absolute_expression ();
+ subseg_set (bss_section, (subsegT) temp);
+ demand_empty_rest_of_line ();
+}
+
+#endif
+
+void
+i386_validate_fix (fixp)
+ fixS *fixp;
+{
+ if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
+ {
+ /* GOTOFF relocation are nonsense in 64bit mode. */
+ if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
+ {
+ if (flag_code != CODE_64BIT)
+ abort ();
+ fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
+ }
+ else
+ {
+ if (flag_code == CODE_64BIT)
+ abort ();
+ fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
+ }
+ fixp->fx_subsy = 0;
+ }
+}
+
+arelent *
+tc_gen_reloc (section, fixp)
+ asection *section ATTRIBUTE_UNUSED;
+ fixS *fixp;
+{
+ arelent *rel;
+ bfd_reloc_code_real_type code;
+
+ switch (fixp->fx_r_type)
+ {
+ case BFD_RELOC_X86_64_PLT32:
+ case BFD_RELOC_X86_64_GOT32:
+ case BFD_RELOC_X86_64_GOTPCREL:
+ case BFD_RELOC_386_PLT32:
+ case BFD_RELOC_386_GOT32:
+ case BFD_RELOC_386_GOTOFF:
+ case BFD_RELOC_386_GOTPC:
+ case BFD_RELOC_386_TLS_GD:
+ case BFD_RELOC_386_TLS_LDM:
+ case BFD_RELOC_386_TLS_LDO_32:
+ case BFD_RELOC_386_TLS_IE_32:
+ case BFD_RELOC_386_TLS_IE:
+ case BFD_RELOC_386_TLS_GOTIE:
+ case BFD_RELOC_386_TLS_LE_32:
+ case BFD_RELOC_386_TLS_LE:
+ case BFD_RELOC_X86_64_32S:
+ case BFD_RELOC_X86_64_TLSGD:
+ case BFD_RELOC_X86_64_TLSLD:
+ case BFD_RELOC_X86_64_DTPOFF32:
+ case BFD_RELOC_X86_64_GOTTPOFF:
+ case BFD_RELOC_X86_64_TPOFF32:
+ case BFD_RELOC_RVA:
+ case BFD_RELOC_VTABLE_ENTRY:
+ case BFD_RELOC_VTABLE_INHERIT:
+ code = fixp->fx_r_type;
+ break;
+ default:
+ if (fixp->fx_pcrel)
+ {
+ switch (fixp->fx_size)
+ {
+ default:
+ as_bad_where (fixp->fx_file, fixp->fx_line,
+ _("can not do %d byte pc-relative relocation"),
+ fixp->fx_size);
+ code = BFD_RELOC_32_PCREL;
+ break;
+ case 1: code = BFD_RELOC_8_PCREL; break;
+ case 2: code = BFD_RELOC_16_PCREL; break;
+ case 4: code = BFD_RELOC_32_PCREL; break;
+ }
+ }
+ else
+ {
+ switch (fixp->fx_size)
+ {
+ default:
+ as_bad_where (fixp->fx_file, fixp->fx_line,
+ _("can not do %d byte relocation"),
+ fixp->fx_size);
+ code = BFD_RELOC_32;
+ break;
+ case 1: code = BFD_RELOC_8; break;
+ case 2: code = BFD_RELOC_16; break;
+ case 4: code = BFD_RELOC_32; break;
+#ifdef BFD64
+ case 8: code = BFD_RELOC_64; break;
+#endif
+ }
+ }
+ break;
+ }
+
+ if (code == BFD_RELOC_32
+ && GOT_symbol
+ && fixp->fx_addsy == GOT_symbol)
+ {
+ /* We don't support GOTPC on 64bit targets. */
+ if (flag_code == CODE_64BIT)
+ abort ();
+ code = BFD_RELOC_386_GOTPC;
+ }
+
+ rel = (arelent *) xmalloc (sizeof (arelent));
+ rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
+ *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
+
+ rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
+ if (!use_rela_relocations)
+ {
+ /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
+ vtable entry to be used in the relocation's section offset. */
+ if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
+ rel->address = fixp->fx_offset;
+
+ rel->addend = 0;
+ }
+ /* Use the rela in 64bit mode. */
+ else
+ {
+ if (!fixp->fx_pcrel)
+ rel->addend = fixp->fx_offset;
+ else
+ switch (code)
+ {
+ case BFD_RELOC_X86_64_PLT32:
+ case BFD_RELOC_X86_64_GOT32:
+ case BFD_RELOC_X86_64_GOTPCREL:
+ case BFD_RELOC_X86_64_TLSGD:
+ case BFD_RELOC_X86_64_TLSLD:
+ case BFD_RELOC_X86_64_GOTTPOFF:
+ rel->addend = fixp->fx_offset - fixp->fx_size;
+ break;
+ default:
+ rel->addend = (section->vma
+ - fixp->fx_size
+ + fixp->fx_addnumber
+ + md_pcrel_from (fixp));
+ break;
+ }
+ }
+
+ rel->howto = bfd_reloc_type_lookup (stdoutput, code);
+ if (rel->howto == NULL)
+ {
+ as_bad_where (fixp->fx_file, fixp->fx_line,
+ _("cannot represent relocation type %s"),
+ bfd_get_reloc_code_name (code));
+ /* Set howto to a garbage value so that we can keep going. */
+ rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
+ assert (rel->howto != NULL);
+ }
+
+ return rel;
+}
+
+
+/* Parse operands using Intel syntax. This implements a recursive descent
+ parser based on the BNF grammar published in Appendix B of the MASM 6.1
+ Programmer's Guide.
+
+ FIXME: We do not recognize the full operand grammar defined in the MASM
+ documentation. In particular, all the structure/union and
+ high-level macro operands are missing.
+
+ Uppercase words are terminals, lower case words are non-terminals.
+ Objects surrounded by double brackets '[[' ']]' are optional. Vertical
+ bars '|' denote choices. Most grammar productions are implemented in
+ functions called 'intel_<production>'.
+
+ Initial production is 'expr'.
+
+ addOp + | -
+
+ alpha [a-zA-Z]
+
+ byteRegister AL | AH | BL | BH | CL | CH | DL | DH
+
+ constant digits [[ radixOverride ]]
+
+ dataType BYTE | WORD | DWORD | QWORD | XWORD
+
+ digits decdigit
+ | digits decdigit
+ | digits hexdigit
+
+ decdigit [0-9]
+
+ e05 e05 addOp e06
+ | e06
+
+ e06 e06 mulOp e09
+ | e09
+
+ e09 OFFSET e10
+ | e09 PTR e10
+ | e09 : e10
+ | e10
+
+ e10 e10 [ expr ]
+ | e11
+
+ e11 ( expr )
+ | [ expr ]
+ | constant
+ | dataType
+ | id
+ | $
+ | register
+
+ => expr SHORT e05
+ | e05
+
+ gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
+ | BP | EBP | SP | ESP | DI | EDI | SI | ESI
+
+ hexdigit a | b | c | d | e | f
+ | A | B | C | D | E | F
+
+ id alpha
+ | id alpha
+ | id decdigit
+
+ mulOp * | / | MOD
+
+ quote " | '
+
+ register specialRegister
+ | gpRegister
+ | byteRegister
+
+ segmentRegister CS | DS | ES | FS | GS | SS
+
+ specialRegister CR0 | CR2 | CR3
+ | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
+ | TR3 | TR4 | TR5 | TR6 | TR7
+
+ We simplify the grammar in obvious places (e.g., register parsing is
+ done by calling parse_register) and eliminate immediate left recursion
+ to implement a recursive-descent parser.
+
+ expr SHORT e05
+ | e05
+
+ e05 e06 e05'
+
+ e05' addOp e06 e05'
+ | Empty
+
+ e06 e09 e06'
+
+ e06' mulOp e09 e06'
+ | Empty
+
+ e09 OFFSET e10 e09'
+ | e10 e09'
+
+ e09' PTR e10 e09'
+ | : e10 e09'
+ | Empty
+
+ e10 e11 e10'
+
+ e10' [ expr ] e10'
+ | Empty
+
+ e11 ( expr )
+ | [ expr ]
+ | BYTE
+ | WORD
+ | DWORD
+ | QWORD
+ | XWORD
+ | .
+ | $
+ | register
+ | id
+ | constant */
+
+/* Parsing structure for the intel syntax parser. Used to implement the
+ semantic actions for the operand grammar. */
+struct intel_parser_s
+ {
+ char *op_string; /* The string being parsed. */
+ int got_a_float; /* Whether the operand is a float. */
+ int op_modifier; /* Operand modifier. */
+ int is_mem; /* 1 if operand is memory reference. */
+ const reg_entry *reg; /* Last register reference found. */
+ char *disp; /* Displacement string being built. */
+ };
+
+static struct intel_parser_s intel_parser;
+
+/* Token structure for parsing intel syntax. */
+struct intel_token
+ {
+ int code; /* Token code. */
+ const reg_entry *reg; /* Register entry for register tokens. */
+ char *str; /* String representation. */
+ };
+
+static struct intel_token cur_token, prev_token;
+
+/* Token codes for the intel parser. Since T_SHORT is already used
+ by COFF, undefine it first to prevent a warning. */
+#define T_NIL -1
+#define T_CONST 1
+#define T_REG 2
+#define T_BYTE 3
+#define T_WORD 4
+#define T_DWORD 5
+#define T_QWORD 6
+#define T_XWORD 7
+#undef T_SHORT
+#define T_SHORT 8
+#define T_OFFSET 9
+#define T_PTR 10
+#define T_ID 11
+
+/* Prototypes for intel parser functions. */
+static int intel_match_token PARAMS ((int code));
+static void intel_get_token PARAMS ((void));
+static void intel_putback_token PARAMS ((void));
+static int intel_expr PARAMS ((void));
+static int intel_e05 PARAMS ((void));
+static int intel_e05_1 PARAMS ((void));
+static int intel_e06 PARAMS ((void));
+static int intel_e06_1 PARAMS ((void));
+static int intel_e09 PARAMS ((void));
+static int intel_e09_1 PARAMS ((void));
+static int intel_e10 PARAMS ((void));
+static int intel_e10_1 PARAMS ((void));
+static int intel_e11 PARAMS ((void));
+
+static int
+i386_intel_operand (operand_string, got_a_float)
+ char *operand_string;
+ int got_a_float;
+{
+ int ret;
+ char *p;
+
+ /* Initialize token holders. */
+ cur_token.code = prev_token.code = T_NIL;
+ cur_token.reg = prev_token.reg = NULL;
+ cur_token.str = prev_token.str = NULL;
+
+ /* Initialize parser structure. */
+ p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
+ if (p == NULL)
+ abort ();
+ strcpy (intel_parser.op_string, operand_string);
+ intel_parser.got_a_float = got_a_float;
+ intel_parser.op_modifier = -1;
+ intel_parser.is_mem = 0;
+ intel_parser.reg = NULL;
+ intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
+ if (intel_parser.disp == NULL)
+ abort ();
+ intel_parser.disp[0] = '\0';
+
+ /* Read the first token and start the parser. */
+ intel_get_token ();
+ ret = intel_expr ();
+
+ if (ret)
+ {
+ /* If we found a memory reference, hand it over to i386_displacement
+ to fill in the rest of the operand fields. */
+ if (intel_parser.is_mem)
+ {
+ if ((i.mem_operands == 1
+ && (current_templates->start->opcode_modifier & IsString) == 0)
+ || i.mem_operands == 2)
+ {
+ as_bad (_("too many memory references for '%s'"),
+ current_templates->start->name);
+ ret = 0;
+ }
+ else
+ {
+ char *s = intel_parser.disp;
+ i.mem_operands++;
+
+ /* Add the displacement expression. */
+ if (*s != '\0')
+ ret = i386_displacement (s, s + strlen (s));
+ if (ret)
+ ret = i386_index_check (operand_string);
+ }
+ }
+
+ /* Constant and OFFSET expressions are handled by i386_immediate. */
+ else if (intel_parser.op_modifier == OFFSET_FLAT
+ || intel_parser.reg == NULL)
+ ret = i386_immediate (intel_parser.disp);
+ }
+
+ free (p);
+ free (intel_parser.disp);
+
+ return ret;
+}
+
+/* expr SHORT e05
+ | e05 */
+static int
+intel_expr ()
+{
+ /* expr SHORT e05 */
+ if (cur_token.code == T_SHORT)
+ {
+ intel_parser.op_modifier = SHORT;
+ intel_match_token (T_SHORT);
+
+ return (intel_e05 ());
+ }
+
+ /* expr e05 */
+ else
+ return intel_e05 ();
+}
+
+/* e05 e06 e05'
+
+ e05' addOp e06 e05'
+ | Empty */
+static int
+intel_e05 ()
+{
+ return (intel_e06 () && intel_e05_1 ());
+}
+
+static int
+intel_e05_1 ()
+{
+ /* e05' addOp e06 e05' */
+ if (cur_token.code == '+' || cur_token.code == '-')
+ {
+ strcat (intel_parser.disp, cur_token.str);
+ intel_match_token (cur_token.code);
+
+ return (intel_e06 () && intel_e05_1 ());
+ }
+
+ /* e05' Empty */
+ else
+ return 1;
+}
+
+/* e06 e09 e06'
+
+ e06' mulOp e09 e06'
+ | Empty */
+static int
+intel_e06 ()
+{
+ return (intel_e09 () && intel_e06_1 ());
+}
+
+static int
+intel_e06_1 ()
+{
+ /* e06' mulOp e09 e06' */
+ if (cur_token.code == '*' || cur_token.code == '/')
+ {
+ strcat (intel_parser.disp, cur_token.str);
+ intel_match_token (cur_token.code);
+
+ return (intel_e09 () && intel_e06_1 ());
+ }
+
+ /* e06' Empty */
+ else
+ return 1;
+}
+
+/* e09 OFFSET e10 e09'
+ | e10 e09'
+
+ e09' PTR e10 e09'
+ | : e10 e09'
+ | Empty */
+static int
+intel_e09 ()
+{
+ /* e09 OFFSET e10 e09' */
+ if (cur_token.code == T_OFFSET)
+ {
+ intel_parser.is_mem = 0;
+ intel_parser.op_modifier = OFFSET_FLAT;
+ intel_match_token (T_OFFSET);
+
+ return (intel_e10 () && intel_e09_1 ());
+ }
+
+ /* e09 e10 e09' */
+ else
+ return (intel_e10 () && intel_e09_1 ());
+}
+
+static int
+intel_e09_1 ()
+{
+ /* e09' PTR e10 e09' */
+ if (cur_token.code == T_PTR)
+ {
+ if (prev_token.code == T_BYTE)
+ i.suffix = BYTE_MNEM_SUFFIX;
+
+ else if (prev_token.code == T_WORD)
+ {
+ if (intel_parser.got_a_float == 2) /* "fi..." */
+ i.suffix = SHORT_MNEM_SUFFIX;
+ else
+ i.suffix = WORD_MNEM_SUFFIX;
+ }
+
+ else if (prev_token.code == T_DWORD)
+ {
+ if (intel_parser.got_a_float == 1) /* "f..." */
+ i.suffix = SHORT_MNEM_SUFFIX;
+ else
+ i.suffix = LONG_MNEM_SUFFIX;
+ }
+
+ else if (prev_token.code == T_QWORD)
+ {
+ if (intel_parser.got_a_float == 1) /* "f..." */
+ i.suffix = LONG_MNEM_SUFFIX;
+ else
+ i.suffix = QWORD_MNEM_SUFFIX;
+ }
+
+ else if (prev_token.code == T_XWORD)
+ i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
+
+ else
+ {
+ as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
+ return 0;
+ }
+
+ intel_match_token (T_PTR);
+
+ return (intel_e10 () && intel_e09_1 ());
+ }
+
+ /* e09 : e10 e09' */
+ else if (cur_token.code == ':')
+ {
+ /* Mark as a memory operand only if it's not already known to be an
+ offset expression. */
+ if (intel_parser.op_modifier != OFFSET_FLAT)
+ intel_parser.is_mem = 1;
+
+ return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
+ }
+
+ /* e09' Empty */
+ else
+ return 1;
+}
+
+/* e10 e11 e10'
+
+ e10' [ expr ] e10'
+ | Empty */
+static int
+intel_e10 ()
+{
+ return (intel_e11 () && intel_e10_1 ());
+}
+
+static int
+intel_e10_1 ()
+{
+ /* e10' [ expr ] e10' */
+ if (cur_token.code == '[')
+ {
+ intel_match_token ('[');
+
+ /* Mark as a memory operand only if it's not already known to be an
+ offset expression. If it's an offset expression, we need to keep
+ the brace in. */
+ if (intel_parser.op_modifier != OFFSET_FLAT)
+ intel_parser.is_mem = 1;
+ else
+ strcat (intel_parser.disp, "[");
+
+ /* Add a '+' to the displacement string if necessary. */
+ if (*intel_parser.disp != '\0'
+ && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
+ strcat (intel_parser.disp, "+");
+
+ if (intel_expr () && intel_match_token (']'))
+ {
+ /* Preserve brackets when the operand is an offset expression. */
+ if (intel_parser.op_modifier == OFFSET_FLAT)
+ strcat (intel_parser.disp, "]");
+
+ return intel_e10_1 ();
+ }
+ else
+ return 0;
+ }
+
+ /* e10' Empty */
+ else
+ return 1;
+}
+
+/* e11 ( expr )
+ | [ expr ]
+ | BYTE
+ | WORD
+ | DWORD
+ | QWORD
+ | XWORD
+ | $
+ | .
+ | register
+ | id
+ | constant */
+static int
+intel_e11 ()
+{
+ /* e11 ( expr ) */
+ if (cur_token.code == '(')
+ {
+ intel_match_token ('(');
+ strcat (intel_parser.disp, "(");
+
+ if (intel_expr () && intel_match_token (')'))
+ {
+ strcat (intel_parser.disp, ")");
+ return 1;
+ }
+ else
+ return 0;
+ }
+
+ /* e11 [ expr ] */
+ else if (cur_token.code == '[')
+ {
+ intel_match_token ('[');
+
+ /* Mark as a memory operand only if it's not already known to be an
+ offset expression. If it's an offset expression, we need to keep
+ the brace in. */
+ if (intel_parser.op_modifier != OFFSET_FLAT)
+ intel_parser.is_mem = 1;
+ else
+ strcat (intel_parser.disp, "[");
+
+ /* Operands for jump/call inside brackets denote absolute addresses. */
+ if (current_templates->start->opcode_modifier & Jump
+ || current_templates->start->opcode_modifier & JumpDword
+ || current_templates->start->opcode_modifier & JumpByte
+ || current_templates->start->opcode_modifier & JumpInterSegment)
+ i.types[this_operand] |= JumpAbsolute;
+
+ /* Add a '+' to the displacement string if necessary. */
+ if (*intel_parser.disp != '\0'
+ && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
+ strcat (intel_parser.disp, "+");
+
+ if (intel_expr () && intel_match_token (']'))
+ {
+ /* Preserve brackets when the operand is an offset expression. */
+ if (intel_parser.op_modifier == OFFSET_FLAT)
+ strcat (intel_parser.disp, "]");
+
+ return 1;
+ }
+ else
+ return 0;
+ }
+
+ /* e11 BYTE
+ | WORD
+ | DWORD
+ | QWORD
+ | XWORD */
+ else if (cur_token.code == T_BYTE
+ || cur_token.code == T_WORD
+ || cur_token.code == T_DWORD
+ || cur_token.code == T_QWORD
+ || cur_token.code == T_XWORD)
+ {
+ intel_match_token (cur_token.code);
+
+ return 1;
+ }
+
+ /* e11 $
+ | . */
+ else if (cur_token.code == '$' || cur_token.code == '.')
+ {
+ strcat (intel_parser.disp, cur_token.str);
+ intel_match_token (cur_token.code);
+
+ /* Mark as a memory operand only if it's not already known to be an
+ offset expression. */
+ if (intel_parser.op_modifier != OFFSET_FLAT)
+ intel_parser.is_mem = 1;
+
+ return 1;
+ }
+
+ /* e11 register */
+ else if (cur_token.code == T_REG)
+ {
+ const reg_entry *reg = intel_parser.reg = cur_token.reg;
+
+ intel_match_token (T_REG);
+
+ /* Check for segment change. */
+ if (cur_token.code == ':')
+ {
+ if (reg->reg_type & (SReg2 | SReg3))
+ {
+ switch (reg->reg_num)
+ {
+ case 0:
+ i.seg[i.mem_operands] = &es;
+ break;
+ case 1:
+ i.seg[i.mem_operands] = &cs;
+ break;
+ case 2:
+ i.seg[i.mem_operands] = &ss;
+ break;
+ case 3:
+ i.seg[i.mem_operands] = &ds;
+ break;
+ case 4:
+ i.seg[i.mem_operands] = &fs;
+ break;
+ case 5:
+ i.seg[i.mem_operands] = &gs;
+ break;
+ }
+ }
+ else
+ {
+ as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
+ return 0;
+ }
+ }
+
+ /* Not a segment register. Check for register scaling. */
+ else if (cur_token.code == '*')
+ {
+ if (!intel_parser.is_mem)
+ {
+ as_bad (_("Register scaling only allowed in memory operands."));
+ return 0;
+ }
+
+ /* What follows must be a valid scale. */
+ if (intel_match_token ('*')
+ && strchr ("01248", *cur_token.str))
+ {
+ i.index_reg = reg;
+ i.types[this_operand] |= BaseIndex;
+
+ /* Set the scale after setting the register (otherwise,
+ i386_scale will complain) */
+ i386_scale (cur_token.str);
+ intel_match_token (T_CONST);
+ }
+ else
+ {
+ as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
+ cur_token.str);
+ return 0;
+ }
+ }
+
+ /* No scaling. If this is a memory operand, the register is either a
+ base register (first occurrence) or an index register (second
+ occurrence). */
+ else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
+ {
+ if (i.base_reg && i.index_reg)
+ {
+ as_bad (_("Too many register references in memory operand.\n"));
+ return 0;
+ }
+
+ if (i.base_reg == NULL)
+ i.base_reg = reg;
+ else
+ i.index_reg = reg;
+
+ i.types[this_operand] |= BaseIndex;
+ }
+
+ /* Offset modifier. Add the register to the displacement string to be
+ parsed as an immediate expression after we're done. */
+ else if (intel_parser.op_modifier == OFFSET_FLAT)
+ strcat (intel_parser.disp, reg->reg_name);
+
+ /* It's neither base nor index nor offset. */
+ else
+ {
+ i.types[this_operand] |= reg->reg_type & ~BaseIndex;
+ i.op[this_operand].regs = reg;
+ i.reg_operands++;
+ }
+
+ /* Since registers are not part of the displacement string (except
+ when we're parsing offset operands), we may need to remove any
+ preceding '+' from the displacement string. */
+ if (*intel_parser.disp != '\0'
+ && intel_parser.op_modifier != OFFSET_FLAT)
+ {
+ char *s = intel_parser.disp;
+ s += strlen (s) - 1;
+ if (*s == '+')
+ *s = '\0';
+ }
+
+ return 1;
+ }
+
+ /* e11 id */
+ else if (cur_token.code == T_ID)
+ {
+ /* Add the identifier to the displacement string. */
+ strcat (intel_parser.disp, cur_token.str);
+ intel_match_token (T_ID);
+
+ /* The identifier represents a memory reference only if it's not
+ preceded by an offset modifier. */
+ if (intel_parser.op_modifier != OFFSET_FLAT)
+ intel_parser.is_mem = 1;
+
+ return 1;
+ }
+
+ /* e11 constant */
+ else if (cur_token.code == T_CONST
+ || cur_token.code == '-'
+ || cur_token.code == '+')
+ {
+ char *save_str;
+
+ /* Allow constants that start with `+' or `-'. */
+ if (cur_token.code == '-' || cur_token.code == '+')
+ {
+ strcat (intel_parser.disp, cur_token.str);
+ intel_match_token (cur_token.code);
+ if (cur_token.code != T_CONST)
+ {
+ as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
+ cur_token.str);
+ return 0;
+ }
+ }
+
+ save_str = (char *) malloc (strlen (cur_token.str) + 1);
+ if (save_str == NULL)
+ abort ();
+ strcpy (save_str, cur_token.str);
+
+ /* Get the next token to check for register scaling. */
+ intel_match_token (cur_token.code);
+
+ /* Check if this constant is a scaling factor for an index register. */
+ if (cur_token.code == '*')
+ {
+ if (intel_match_token ('*') && cur_token.code == T_REG)
+ {
+ if (!intel_parser.is_mem)
+ {
+ as_bad (_("Register scaling only allowed in memory operands."));
+ return 0;
+ }
+
+ /* The constant is followed by `* reg', so it must be
+ a valid scale. */
+ if (strchr ("01248", *save_str))
+ {
+ i.index_reg = cur_token.reg;
+ i.types[this_operand] |= BaseIndex;
+
+ /* Set the scale after setting the register (otherwise,
+ i386_scale will complain) */
+ i386_scale (save_str);
+ intel_match_token (T_REG);
+
+ /* Since registers are not part of the displacement
+ string, we may need to remove any preceding '+' from
+ the displacement string. */
+ if (*intel_parser.disp != '\0')
+ {
+ char *s = intel_parser.disp;
+ s += strlen (s) - 1;
+ if (*s == '+')
+ *s = '\0';
+ }
+
+ free (save_str);
+
+ return 1;
+ }
+ else
+ return 0;
+ }
+
+ /* The constant was not used for register scaling. Since we have
+ already consumed the token following `*' we now need to put it
+ back in the stream. */
+ else
+ intel_putback_token ();
+ }
+
+ /* Add the constant to the displacement string. */
+ strcat (intel_parser.disp, save_str);
+ free (save_str);
+
+ return 1;
+ }
+
+ as_bad (_("Unrecognized token '%s'"), cur_token.str);
+ return 0;
+}
+
+/* Match the given token against cur_token. If they match, read the next
+ token from the operand string. */
+static int
+intel_match_token (code)
+ int code;
+{
+ if (cur_token.code == code)
+ {
+ intel_get_token ();
+ return 1;
+ }
+ else
+ {
+ as_bad (_("Unexpected token `%s'\n"), cur_token.str);
+ return 0;
+ }
+}
+
+/* Read a new token from intel_parser.op_string and store it in cur_token. */
+static void
+intel_get_token ()
+{
+ char *end_op;
+ const reg_entry *reg;
+ struct intel_token new_token;
+
+ new_token.code = T_NIL;
+ new_token.reg = NULL;
+ new_token.str = NULL;
+
+ /* Free the memory allocated to the previous token and move
+ cur_token to prev_token. */
+ if (prev_token.str)
+ free (prev_token.str);
+
+ prev_token = cur_token;
+
+ /* Skip whitespace. */
+ while (is_space_char (*intel_parser.op_string))
+ intel_parser.op_string++;
+
+ /* Return an empty token if we find nothing else on the line. */
+ if (*intel_parser.op_string == '\0')
+ {
+ cur_token = new_token;
+ return;
+ }
+
+ /* The new token cannot be larger than the remainder of the operand
+ string. */
+ new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
+ if (new_token.str == NULL)
+ abort ();
+ new_token.str[0] = '\0';
+
+ if (strchr ("0123456789", *intel_parser.op_string))
+ {
+ char *p = new_token.str;
+ char *q = intel_parser.op_string;
+ new_token.code = T_CONST;
+
+ /* Allow any kind of identifier char to encompass floating point and
+ hexadecimal numbers. */
+ while (is_identifier_char (*q))
+ *p++ = *q++;
+ *p = '\0';
+
+ /* Recognize special symbol names [0-9][bf]. */
+ if (strlen (intel_parser.op_string) == 2
+ && (intel_parser.op_string[1] == 'b'
+ || intel_parser.op_string[1] == 'f'))
+ new_token.code = T_ID;
+ }
+
+ else if (strchr ("+-/*:[]()", *intel_parser.op_string))
+ {
+ new_token.code = *intel_parser.op_string;
+ new_token.str[0] = *intel_parser.op_string;
+ new_token.str[1] = '\0';
+ }
+
+ else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
+ && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
+ {
+ new_token.code = T_REG;
+ new_token.reg = reg;
+
+ if (*intel_parser.op_string == REGISTER_PREFIX)
+ {
+ new_token.str[0] = REGISTER_PREFIX;
+ new_token.str[1] = '\0';
+ }
+
+ strcat (new_token.str, reg->reg_name);
+ }
+
+ else if (is_identifier_char (*intel_parser.op_string))
+ {
+ char *p = new_token.str;
+ char *q = intel_parser.op_string;
+
+ /* A '.' or '$' followed by an identifier char is an identifier.
+ Otherwise, it's operator '.' followed by an expression. */
+ if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
+ {
+ new_token.code = *q;
+ new_token.str[0] = *q;
+ new_token.str[1] = '\0';
+ }
+ else
+ {
+ while (is_identifier_char (*q) || *q == '@')
+ *p++ = *q++;
+ *p = '\0';
+
+ if (strcasecmp (new_token.str, "BYTE") == 0)
+ new_token.code = T_BYTE;
+
+ else if (strcasecmp (new_token.str, "WORD") == 0)
+ new_token.code = T_WORD;
+
+ else if (strcasecmp (new_token.str, "DWORD") == 0)
+ new_token.code = T_DWORD;
+
+ else if (strcasecmp (new_token.str, "QWORD") == 0)
+ new_token.code = T_QWORD;
+
+ else if (strcasecmp (new_token.str, "XWORD") == 0)
+ new_token.code = T_XWORD;
+
+ else if (strcasecmp (new_token.str, "PTR") == 0)
+ new_token.code = T_PTR;
+
+ else if (strcasecmp (new_token.str, "SHORT") == 0)
+ new_token.code = T_SHORT;
+
+ else if (strcasecmp (new_token.str, "OFFSET") == 0)
+ {
+ new_token.code = T_OFFSET;
+
+ /* ??? This is not mentioned in the MASM grammar but gcc
+ makes use of it with -mintel-syntax. OFFSET may be
+ followed by FLAT: */
+ if (strncasecmp (q, " FLAT:", 6) == 0)
+ strcat (new_token.str, " FLAT:");
+ }
+
+ /* ??? This is not mentioned in the MASM grammar. */
+ else if (strcasecmp (new_token.str, "FLAT") == 0)
+ new_token.code = T_OFFSET;
+
+ else
+ new_token.code = T_ID;
+ }
+ }
+
+ else
+ as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
+
+ intel_parser.op_string += strlen (new_token.str);
+ cur_token = new_token;
+}
+
+/* Put cur_token back into the token stream and make cur_token point to
+ prev_token. */
+static void
+intel_putback_token ()
+{
+ intel_parser.op_string -= strlen (cur_token.str);
+ free (cur_token.str);
+ cur_token = prev_token;
+
+ /* Forget prev_token. */
+ prev_token.code = T_NIL;
+ prev_token.reg = NULL;
+ prev_token.str = NULL;
+}
+
+int
+tc_x86_regname_to_dw2regnum (const char *regname)
+{
+ unsigned int regnum;
+ unsigned int regnames_count;
+ char *regnames_32[] =
+ {
+ "eax", "ecx", "edx", "ebx",
+ "esp", "ebp", "esi", "edi",
+ "eip"
+ };
+ char *regnames_64[] =
+ {
+ "rax", "rbx", "rcx", "rdx",
+ "rdi", "rsi", "rbp", "rsp",
+ "r8", "r9", "r10", "r11",
+ "r12", "r13", "r14", "r15",
+ "rip"
+ };
+ char **regnames;
+
+ if (flag_code == CODE_64BIT)
+ {
+ regnames = regnames_64;
+ regnames_count = ARRAY_SIZE (regnames_64);
+ }
+ else
+ {
+ regnames = regnames_32;
+ regnames_count = ARRAY_SIZE (regnames_32);
+ }
+
+ for (regnum = 0; regnum < regnames_count; regnum++)
+ if (strcmp (regname, regnames[regnum]) == 0)
+ return regnum;
+
+ return -1;
+}
+
+void
+tc_x86_frame_initial_instructions (void)
+{
+ static unsigned int sp_regno;
+
+ if (!sp_regno)
+ sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
+ ? "rsp" : "esp");
+
+ cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
+ cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
+}
OpenPOWER on IntegriCloud