diff options
Diffstat (limited to 'tools/libclang/RecursiveASTVisitor.h')
-rw-r--r-- | tools/libclang/RecursiveASTVisitor.h | 2185 |
1 files changed, 2185 insertions, 0 deletions
diff --git a/tools/libclang/RecursiveASTVisitor.h b/tools/libclang/RecursiveASTVisitor.h new file mode 100644 index 0000000..7131025 --- /dev/null +++ b/tools/libclang/RecursiveASTVisitor.h @@ -0,0 +1,2185 @@ +//===--- RecursiveASTVisitor.h - Recursive AST Visitor ----------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the RecursiveASTVisitor interface, which recursively +// traverses the entire AST. +// +//===----------------------------------------------------------------------===// +#ifndef LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H +#define LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H + +#include "clang/AST/Decl.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclFriend.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/Expr.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/ExprObjC.h" +#include "clang/AST/NestedNameSpecifier.h" +#include "clang/AST/Stmt.h" +#include "clang/AST/StmtCXX.h" +#include "clang/AST/StmtObjC.h" +#include "clang/AST/TemplateBase.h" +#include "clang/AST/TemplateName.h" +#include "clang/AST/Type.h" +#include "clang/AST/TypeLoc.h" + +// The following three macros are used for meta programming. The code +// using them is responsible for defining macro OPERATOR(). + +// All unary operators. +#define UNARYOP_LIST() \ + OPERATOR(PostInc) OPERATOR(PostDec) \ + OPERATOR(PreInc) OPERATOR(PreDec) \ + OPERATOR(AddrOf) OPERATOR(Deref) \ + OPERATOR(Plus) OPERATOR(Minus) \ + OPERATOR(Not) OPERATOR(LNot) \ + OPERATOR(Real) OPERATOR(Imag) \ + OPERATOR(Extension) + +// All binary operators (excluding compound assign operators). +#define BINOP_LIST() \ + OPERATOR(PtrMemD) OPERATOR(PtrMemI) \ + OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) \ + OPERATOR(Add) OPERATOR(Sub) OPERATOR(Shl) \ + OPERATOR(Shr) \ + \ + OPERATOR(LT) OPERATOR(GT) OPERATOR(LE) \ + OPERATOR(GE) OPERATOR(EQ) OPERATOR(NE) \ + OPERATOR(And) OPERATOR(Xor) OPERATOR(Or) \ + OPERATOR(LAnd) OPERATOR(LOr) \ + \ + OPERATOR(Assign) \ + OPERATOR(Comma) + +// All compound assign operators. +#define CAO_LIST() \ + OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) OPERATOR(Add) OPERATOR(Sub) \ + OPERATOR(Shl) OPERATOR(Shr) OPERATOR(And) OPERATOR(Or) OPERATOR(Xor) + +namespace clang { +namespace cxindex { + +// A helper macro to implement short-circuiting when recursing. It +// invokes CALL_EXPR, which must be a method call, on the derived +// object (s.t. a user of RecursiveASTVisitor can override the method +// in CALL_EXPR). +#define TRY_TO(CALL_EXPR) \ + do { if (!getDerived().CALL_EXPR) return false; } while (0) + +/// \brief A class that does preorder depth-first traversal on the +/// entire Clang AST and visits each node. +/// +/// This class performs three distinct tasks: +/// 1. traverse the AST (i.e. go to each node); +/// 2. at a given node, walk up the class hierarchy, starting from +/// the node's dynamic type, until the top-most class (e.g. Stmt, +/// Decl, or Type) is reached. +/// 3. given a (node, class) combination, where 'class' is some base +/// class of the dynamic type of 'node', call a user-overridable +/// function to actually visit the node. +/// +/// These tasks are done by three groups of methods, respectively: +/// 1. TraverseDecl(Decl *x) does task #1. It is the entry point +/// for traversing an AST rooted at x. This method simply +/// dispatches (i.e. forwards) to TraverseFoo(Foo *x) where Foo +/// is the dynamic type of *x, which calls WalkUpFromFoo(x) and +/// then recursively visits the child nodes of x. +/// TraverseStmt(Stmt *x) and TraverseType(QualType x) work +/// similarly. +/// 2. WalkUpFromFoo(Foo *x) does task #2. It does not try to visit +/// any child node of x. Instead, it first calls WalkUpFromBar(x) +/// where Bar is the direct parent class of Foo (unless Foo has +/// no parent), and then calls VisitFoo(x) (see the next list item). +/// 3. VisitFoo(Foo *x) does task #3. +/// +/// These three method groups are tiered (Traverse* > WalkUpFrom* > +/// Visit*). A method (e.g. Traverse*) may call methods from the same +/// tier (e.g. other Traverse*) or one tier lower (e.g. WalkUpFrom*). +/// It may not call methods from a higher tier. +/// +/// Note that since WalkUpFromFoo() calls WalkUpFromBar() (where Bar +/// is Foo's super class) before calling VisitFoo(), the result is +/// that the Visit*() methods for a given node are called in the +/// top-down order (e.g. for a node of type NamedDecl, the order will +/// be VisitDecl(), VisitNamedDecl(), and then VisitNamespaceDecl()). +/// +/// This scheme guarantees that all Visit*() calls for the same AST +/// node are grouped together. In other words, Visit*() methods for +/// different nodes are never interleaved. +/// +/// Stmts are traversed internally using a data queue to avoid a stack overflow +/// with hugely nested ASTs. +/// +/// Clients of this visitor should subclass the visitor (providing +/// themselves as the template argument, using the curiously recurring +/// template pattern) and override any of the Traverse*, WalkUpFrom*, +/// and Visit* methods for declarations, types, statements, +/// expressions, or other AST nodes where the visitor should customize +/// behavior. Most users only need to override Visit*. Advanced +/// users may override Traverse* and WalkUpFrom* to implement custom +/// traversal strategies. Returning false from one of these overridden +/// functions will abort the entire traversal. +/// +/// By default, this visitor tries to visit every part of the explicit +/// source code exactly once. The default policy towards templates +/// is to descend into the 'pattern' class or function body, not any +/// explicit or implicit instantiations. Explicit specializations +/// are still visited, and the patterns of partial specializations +/// are visited separately. This behavior can be changed by +/// overriding shouldVisitTemplateInstantiations() in the derived class +/// to return true, in which case all known implicit and explicit +/// instantiations will be visited at the same time as the pattern +/// from which they were produced. +template<typename Derived> +class RecursiveASTVisitor { +public: + /// \brief Return a reference to the derived class. + Derived &getDerived() { return *static_cast<Derived*>(this); } + + /// \brief Return whether this visitor should recurse into + /// template instantiations. + bool shouldVisitTemplateInstantiations() const { return false; } + + /// \brief Return whether this visitor should recurse into the types of + /// TypeLocs. + bool shouldWalkTypesOfTypeLocs() const { return true; } + + /// \brief Recursively visit a statement or expression, by + /// dispatching to Traverse*() based on the argument's dynamic type. + /// + /// \returns false if the visitation was terminated early, true + /// otherwise (including when the argument is NULL). + bool TraverseStmt(Stmt *S); + + /// \brief Recursively visit a type, by dispatching to + /// Traverse*Type() based on the argument's getTypeClass() property. + /// + /// \returns false if the visitation was terminated early, true + /// otherwise (including when the argument is a Null type). + bool TraverseType(QualType T); + + /// \brief Recursively visit a type with location, by dispatching to + /// Traverse*TypeLoc() based on the argument type's getTypeClass() property. + /// + /// \returns false if the visitation was terminated early, true + /// otherwise (including when the argument is a Null type location). + bool TraverseTypeLoc(TypeLoc TL); + + /// \brief Recursively visit a declaration, by dispatching to + /// Traverse*Decl() based on the argument's dynamic type. + /// + /// \returns false if the visitation was terminated early, true + /// otherwise (including when the argument is NULL). + bool TraverseDecl(Decl *D); + + /// \brief Recursively visit a C++ nested-name-specifier. + /// + /// \returns false if the visitation was terminated early, true otherwise. + bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS); + + /// \brief Recursively visit a C++ nested-name-specifier with location + /// information. + /// + /// \returns false if the visitation was terminated early, true otherwise. + bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS); + + /// \brief Recursively visit a name with its location information. + /// + /// \returns false if the visitation was terminated early, true otherwise. + bool TraverseDeclarationNameInfo(DeclarationNameInfo NameInfo); + + /// \brief Recursively visit a template name and dispatch to the + /// appropriate method. + /// + /// \returns false if the visitation was terminated early, true otherwise. + bool TraverseTemplateName(TemplateName Template); + + /// \brief Recursively visit a template argument and dispatch to the + /// appropriate method for the argument type. + /// + /// \returns false if the visitation was terminated early, true otherwise. + // FIXME: migrate callers to TemplateArgumentLoc instead. + bool TraverseTemplateArgument(const TemplateArgument &Arg); + + /// \brief Recursively visit a template argument location and dispatch to the + /// appropriate method for the argument type. + /// + /// \returns false if the visitation was terminated early, true otherwise. + bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc); + + /// \brief Recursively visit a set of template arguments. + /// This can be overridden by a subclass, but it's not expected that + /// will be needed -- this visitor always dispatches to another. + /// + /// \returns false if the visitation was terminated early, true otherwise. + // FIXME: take a TemplateArgumentLoc* (or TemplateArgumentListInfo) instead. + bool TraverseTemplateArguments(const TemplateArgument *Args, + unsigned NumArgs); + + /// \brief Recursively visit a constructor initializer. This + /// automatically dispatches to another visitor for the initializer + /// expression, but not for the name of the initializer, so may + /// be overridden for clients that need access to the name. + /// + /// \returns false if the visitation was terminated early, true otherwise. + bool TraverseConstructorInitializer(CXXCtorInitializer *Init); + + /// \brief Recursively visit a lambda capture. + /// + /// \returns false if the visitation was terminated early, true otherwise. + bool TraverseLambdaCapture(LambdaExpr::Capture C); + + // ---- Methods on Stmts ---- + + // Declare Traverse*() for all concrete Stmt classes. +#define ABSTRACT_STMT(STMT) +#define STMT(CLASS, PARENT) \ + bool Traverse##CLASS(CLASS *S); +#include "clang/AST/StmtNodes.inc" + // The above header #undefs ABSTRACT_STMT and STMT upon exit. + + // Define WalkUpFrom*() and empty Visit*() for all Stmt classes. + bool WalkUpFromStmt(Stmt *S) { return getDerived().VisitStmt(S); } + bool VisitStmt(Stmt *S) { return true; } +#define STMT(CLASS, PARENT) \ + bool WalkUpFrom##CLASS(CLASS *S) { \ + TRY_TO(WalkUpFrom##PARENT(S)); \ + TRY_TO(Visit##CLASS(S)); \ + return true; \ + } \ + bool Visit##CLASS(CLASS *S) { return true; } +#include "clang/AST/StmtNodes.inc" + + // Define Traverse*(), WalkUpFrom*(), and Visit*() for unary + // operator methods. Unary operators are not classes in themselves + // (they're all opcodes in UnaryOperator) but do have visitors. +#define OPERATOR(NAME) \ + bool TraverseUnary##NAME(UnaryOperator *S) { \ + TRY_TO(WalkUpFromUnary##NAME(S)); \ + StmtQueueAction StmtQueue(*this); \ + StmtQueue.queue(S->getSubExpr()); \ + return true; \ + } \ + bool WalkUpFromUnary##NAME(UnaryOperator *S) { \ + TRY_TO(WalkUpFromUnaryOperator(S)); \ + TRY_TO(VisitUnary##NAME(S)); \ + return true; \ + } \ + bool VisitUnary##NAME(UnaryOperator *S) { return true; } + + UNARYOP_LIST() +#undef OPERATOR + + // Define Traverse*(), WalkUpFrom*(), and Visit*() for binary + // operator methods. Binary operators are not classes in themselves + // (they're all opcodes in BinaryOperator) but do have visitors. +#define GENERAL_BINOP_FALLBACK(NAME, BINOP_TYPE) \ + bool TraverseBin##NAME(BINOP_TYPE *S) { \ + TRY_TO(WalkUpFromBin##NAME(S)); \ + StmtQueueAction StmtQueue(*this); \ + StmtQueue.queue(S->getLHS()); \ + StmtQueue.queue(S->getRHS()); \ + return true; \ + } \ + bool WalkUpFromBin##NAME(BINOP_TYPE *S) { \ + TRY_TO(WalkUpFrom##BINOP_TYPE(S)); \ + TRY_TO(VisitBin##NAME(S)); \ + return true; \ + } \ + bool VisitBin##NAME(BINOP_TYPE *S) { return true; } + +#define OPERATOR(NAME) GENERAL_BINOP_FALLBACK(NAME, BinaryOperator) + BINOP_LIST() +#undef OPERATOR + + // Define Traverse*(), WalkUpFrom*(), and Visit*() for compound + // assignment methods. Compound assignment operators are not + // classes in themselves (they're all opcodes in + // CompoundAssignOperator) but do have visitors. +#define OPERATOR(NAME) \ + GENERAL_BINOP_FALLBACK(NAME##Assign, CompoundAssignOperator) + + CAO_LIST() +#undef OPERATOR +#undef GENERAL_BINOP_FALLBACK + + // ---- Methods on Types ---- + // FIXME: revamp to take TypeLoc's rather than Types. + + // Declare Traverse*() for all concrete Type classes. +#define ABSTRACT_TYPE(CLASS, BASE) +#define TYPE(CLASS, BASE) \ + bool Traverse##CLASS##Type(CLASS##Type *T); +#include "clang/AST/TypeNodes.def" + // The above header #undefs ABSTRACT_TYPE and TYPE upon exit. + + // Define WalkUpFrom*() and empty Visit*() for all Type classes. + bool WalkUpFromType(Type *T) { return getDerived().VisitType(T); } + bool VisitType(Type *T) { return true; } +#define TYPE(CLASS, BASE) \ + bool WalkUpFrom##CLASS##Type(CLASS##Type *T) { \ + TRY_TO(WalkUpFrom##BASE(T)); \ + TRY_TO(Visit##CLASS##Type(T)); \ + return true; \ + } \ + bool Visit##CLASS##Type(CLASS##Type *T) { return true; } +#include "clang/AST/TypeNodes.def" + + // ---- Methods on TypeLocs ---- + // FIXME: this currently just calls the matching Type methods + + // Declare Traverse*() for all concrete Type classes. +#define ABSTRACT_TYPELOC(CLASS, BASE) +#define TYPELOC(CLASS, BASE) \ + bool Traverse##CLASS##TypeLoc(CLASS##TypeLoc TL); +#include "clang/AST/TypeLocNodes.def" + // The above header #undefs ABSTRACT_TYPELOC and TYPELOC upon exit. + + // Define WalkUpFrom*() and empty Visit*() for all TypeLoc classes. + bool WalkUpFromTypeLoc(TypeLoc TL) { return getDerived().VisitTypeLoc(TL); } + bool VisitTypeLoc(TypeLoc TL) { return true; } + + // QualifiedTypeLoc and UnqualTypeLoc are not declared in + // TypeNodes.def and thus need to be handled specially. + bool WalkUpFromQualifiedTypeLoc(QualifiedTypeLoc TL) { + return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc()); + } + bool VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { return true; } + bool WalkUpFromUnqualTypeLoc(UnqualTypeLoc TL) { + return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc()); + } + bool VisitUnqualTypeLoc(UnqualTypeLoc TL) { return true; } + + // Note that BASE includes trailing 'Type' which CLASS doesn't. +#define TYPE(CLASS, BASE) \ + bool WalkUpFrom##CLASS##TypeLoc(CLASS##TypeLoc TL) { \ + TRY_TO(WalkUpFrom##BASE##Loc(TL)); \ + TRY_TO(Visit##CLASS##TypeLoc(TL)); \ + return true; \ + } \ + bool Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { return true; } +#include "clang/AST/TypeNodes.def" + + // ---- Methods on Decls ---- + + // Declare Traverse*() for all concrete Decl classes. +#define ABSTRACT_DECL(DECL) +#define DECL(CLASS, BASE) \ + bool Traverse##CLASS##Decl(CLASS##Decl *D); +#include "clang/AST/DeclNodes.inc" + // The above header #undefs ABSTRACT_DECL and DECL upon exit. + + // Define WalkUpFrom*() and empty Visit*() for all Decl classes. + bool WalkUpFromDecl(Decl *D) { return getDerived().VisitDecl(D); } + bool VisitDecl(Decl *D) { return true; } +#define DECL(CLASS, BASE) \ + bool WalkUpFrom##CLASS##Decl(CLASS##Decl *D) { \ + TRY_TO(WalkUpFrom##BASE(D)); \ + TRY_TO(Visit##CLASS##Decl(D)); \ + return true; \ + } \ + bool Visit##CLASS##Decl(CLASS##Decl *D) { return true; } +#include "clang/AST/DeclNodes.inc" + +private: + // These are helper methods used by more than one Traverse* method. + bool TraverseTemplateParameterListHelper(TemplateParameterList *TPL); + bool TraverseClassInstantiations(ClassTemplateDecl *D); + bool TraverseFunctionInstantiations(FunctionTemplateDecl *D) ; + bool TraverseTemplateArgumentLocsHelper(const TemplateArgumentLoc *TAL, + unsigned Count); + bool TraverseArrayTypeLocHelper(ArrayTypeLoc TL); + bool TraverseRecordHelper(RecordDecl *D); + bool TraverseCXXRecordHelper(CXXRecordDecl *D); + bool TraverseDeclaratorHelper(DeclaratorDecl *D); + bool TraverseDeclContextHelper(DeclContext *DC); + bool TraverseFunctionHelper(FunctionDecl *D); + bool TraverseVarHelper(VarDecl *D); + + typedef SmallVector<Stmt *, 16> StmtsTy; + typedef SmallVector<StmtsTy *, 4> QueuesTy; + + QueuesTy Queues; + + class NewQueueRAII { + RecursiveASTVisitor &RAV; + public: + NewQueueRAII(StmtsTy &queue, RecursiveASTVisitor &RAV) : RAV(RAV) { + RAV.Queues.push_back(&queue); + } + ~NewQueueRAII() { + RAV.Queues.pop_back(); + } + }; + + StmtsTy &getCurrentQueue() { + assert(!Queues.empty() && "base TraverseStmt was never called?"); + return *Queues.back(); + } + +public: + class StmtQueueAction { + StmtsTy &CurrQueue; + public: + explicit StmtQueueAction(RecursiveASTVisitor &RAV) + : CurrQueue(RAV.getCurrentQueue()) { } + + void queue(Stmt *S) { + CurrQueue.push_back(S); + } + }; +}; + +#define DISPATCH(NAME, CLASS, VAR) \ + return getDerived().Traverse##NAME(static_cast<CLASS*>(VAR)) + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseStmt(Stmt *S) { + if (!S) + return true; + + StmtsTy Queue, StmtsToEnqueu; + Queue.push_back(S); + NewQueueRAII NQ(StmtsToEnqueu, *this); + + while (!Queue.empty()) { + S = Queue.pop_back_val(); + if (!S) + continue; + + StmtsToEnqueu.clear(); + +#define DISPATCH_STMT(NAME, CLASS, VAR) \ + TRY_TO(Traverse##NAME(static_cast<CLASS*>(VAR))); break + + // If we have a binary expr, dispatch to the subcode of the binop. A smart + // optimizer (e.g. LLVM) will fold this comparison into the switch stmt + // below. + if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(S)) { + switch (BinOp->getOpcode()) { +#define OPERATOR(NAME) \ + case BO_##NAME: DISPATCH_STMT(Bin##NAME, BinaryOperator, S); + + BINOP_LIST() +#undef OPERATOR +#undef BINOP_LIST + +#define OPERATOR(NAME) \ + case BO_##NAME##Assign: \ + DISPATCH_STMT(Bin##NAME##Assign, CompoundAssignOperator, S); + + CAO_LIST() +#undef OPERATOR +#undef CAO_LIST + } + } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(S)) { + switch (UnOp->getOpcode()) { +#define OPERATOR(NAME) \ + case UO_##NAME: DISPATCH_STMT(Unary##NAME, UnaryOperator, S); + + UNARYOP_LIST() +#undef OPERATOR +#undef UNARYOP_LIST + } + } else { + + // Top switch stmt: dispatch to TraverseFooStmt for each concrete FooStmt. + switch (S->getStmtClass()) { + case Stmt::NoStmtClass: break; +#define ABSTRACT_STMT(STMT) +#define STMT(CLASS, PARENT) \ + case Stmt::CLASS##Class: DISPATCH_STMT(CLASS, CLASS, S); +#include "clang/AST/StmtNodes.inc" + } + } + + for (SmallVector<Stmt *, 8>::reverse_iterator + RI = StmtsToEnqueu.rbegin(), + RE = StmtsToEnqueu.rend(); RI != RE; ++RI) + Queue.push_back(*RI); + } + + return true; +} + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseType(QualType T) { + if (T.isNull()) + return true; + + switch (T->getTypeClass()) { +#define ABSTRACT_TYPE(CLASS, BASE) +#define TYPE(CLASS, BASE) \ + case Type::CLASS: DISPATCH(CLASS##Type, CLASS##Type, \ + const_cast<Type*>(T.getTypePtr())); +#include "clang/AST/TypeNodes.def" + } + + return true; +} + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseTypeLoc(TypeLoc TL) { + if (TL.isNull()) + return true; + + switch (TL.getTypeLocClass()) { +#define ABSTRACT_TYPELOC(CLASS, BASE) +#define TYPELOC(CLASS, BASE) \ + case TypeLoc::CLASS: \ + return getDerived().Traverse##CLASS##TypeLoc(*cast<CLASS##TypeLoc>(&TL)); +#include "clang/AST/TypeLocNodes.def" + } + + return true; +} + + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseDecl(Decl *D) { + if (!D) + return true; + + // As a syntax visitor, we want to ignore declarations for + // implicitly-defined declarations (ones not typed explicitly by the + // user). + if (D->isImplicit()) + return true; + + switch (D->getKind()) { +#define ABSTRACT_DECL(DECL) +#define DECL(CLASS, BASE) \ + case Decl::CLASS: DISPATCH(CLASS##Decl, CLASS##Decl, D); +#include "clang/AST/DeclNodes.inc" + } + + return true; +} + +#undef DISPATCH + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifier( + NestedNameSpecifier *NNS) { + if (!NNS) + return true; + + if (NNS->getPrefix()) + TRY_TO(TraverseNestedNameSpecifier(NNS->getPrefix())); + + switch (NNS->getKind()) { + case NestedNameSpecifier::Identifier: + case NestedNameSpecifier::Namespace: + case NestedNameSpecifier::NamespaceAlias: + case NestedNameSpecifier::Global: + return true; + + case NestedNameSpecifier::TypeSpec: + case NestedNameSpecifier::TypeSpecWithTemplate: + TRY_TO(TraverseType(QualType(NNS->getAsType(), 0))); + } + + return true; +} + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifierLoc( + NestedNameSpecifierLoc NNS) { + if (!NNS) + return true; + + if (NestedNameSpecifierLoc Prefix = NNS.getPrefix()) + TRY_TO(TraverseNestedNameSpecifierLoc(Prefix)); + + switch (NNS.getNestedNameSpecifier()->getKind()) { + case NestedNameSpecifier::Identifier: + case NestedNameSpecifier::Namespace: + case NestedNameSpecifier::NamespaceAlias: + case NestedNameSpecifier::Global: + return true; + + case NestedNameSpecifier::TypeSpec: + case NestedNameSpecifier::TypeSpecWithTemplate: + TRY_TO(TraverseTypeLoc(NNS.getTypeLoc())); + break; + } + + return true; +} + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseDeclarationNameInfo( + DeclarationNameInfo NameInfo) { + switch (NameInfo.getName().getNameKind()) { + case DeclarationName::CXXConstructorName: + case DeclarationName::CXXDestructorName: + case DeclarationName::CXXConversionFunctionName: + if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo()) + TRY_TO(TraverseTypeLoc(TSInfo->getTypeLoc())); + + break; + + case DeclarationName::Identifier: + case DeclarationName::ObjCZeroArgSelector: + case DeclarationName::ObjCOneArgSelector: + case DeclarationName::ObjCMultiArgSelector: + case DeclarationName::CXXOperatorName: + case DeclarationName::CXXLiteralOperatorName: + case DeclarationName::CXXUsingDirective: + break; + } + + return true; +} + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseTemplateName(TemplateName Template) { + if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) + TRY_TO(TraverseNestedNameSpecifier(DTN->getQualifier())); + else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) + TRY_TO(TraverseNestedNameSpecifier(QTN->getQualifier())); + + return true; +} + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseTemplateArgument( + const TemplateArgument &Arg) { + switch (Arg.getKind()) { + case TemplateArgument::Null: + case TemplateArgument::Declaration: + case TemplateArgument::Integral: + return true; + + case TemplateArgument::Type: + return getDerived().TraverseType(Arg.getAsType()); + + case TemplateArgument::Template: + case TemplateArgument::TemplateExpansion: + return getDerived().TraverseTemplateName( + Arg.getAsTemplateOrTemplatePattern()); + + case TemplateArgument::Expression: + return getDerived().TraverseStmt(Arg.getAsExpr()); + + case TemplateArgument::Pack: + return getDerived().TraverseTemplateArguments(Arg.pack_begin(), + Arg.pack_size()); + } + + return true; +} + +// FIXME: no template name location? +// FIXME: no source locations for a template argument pack? +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLoc( + const TemplateArgumentLoc &ArgLoc) { + const TemplateArgument &Arg = ArgLoc.getArgument(); + + switch (Arg.getKind()) { + case TemplateArgument::Null: + case TemplateArgument::Declaration: + case TemplateArgument::Integral: + return true; + + case TemplateArgument::Type: { + // FIXME: how can TSI ever be NULL? + if (TypeSourceInfo *TSI = ArgLoc.getTypeSourceInfo()) + return getDerived().TraverseTypeLoc(TSI->getTypeLoc()); + else + return getDerived().TraverseType(Arg.getAsType()); + } + + case TemplateArgument::Template: + case TemplateArgument::TemplateExpansion: + if (ArgLoc.getTemplateQualifierLoc()) + TRY_TO(getDerived().TraverseNestedNameSpecifierLoc( + ArgLoc.getTemplateQualifierLoc())); + return getDerived().TraverseTemplateName( + Arg.getAsTemplateOrTemplatePattern()); + + case TemplateArgument::Expression: + return getDerived().TraverseStmt(ArgLoc.getSourceExpression()); + + case TemplateArgument::Pack: + return getDerived().TraverseTemplateArguments(Arg.pack_begin(), + Arg.pack_size()); + } + + return true; +} + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseTemplateArguments( + const TemplateArgument *Args, + unsigned NumArgs) { + for (unsigned I = 0; I != NumArgs; ++I) { + TRY_TO(TraverseTemplateArgument(Args[I])); + } + + return true; +} + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseConstructorInitializer( + CXXCtorInitializer *Init) { + if (TypeSourceInfo *TInfo = Init->getTypeSourceInfo()) + TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc())); + + if (Init->isWritten()) + TRY_TO(TraverseStmt(Init->getInit())); + return true; +} + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseLambdaCapture(LambdaExpr::Capture C){ + return true; +} + +// ----------------- Type traversal ----------------- + +// This macro makes available a variable T, the passed-in type. +#define DEF_TRAVERSE_TYPE(TYPE, CODE) \ + template<typename Derived> \ + bool RecursiveASTVisitor<Derived>::Traverse##TYPE (TYPE *T) { \ + TRY_TO(WalkUpFrom##TYPE (T)); \ + { CODE; } \ + return true; \ + } + +DEF_TRAVERSE_TYPE(BuiltinType, { }) + +DEF_TRAVERSE_TYPE(ComplexType, { + TRY_TO(TraverseType(T->getElementType())); + }) + +DEF_TRAVERSE_TYPE(PointerType, { + TRY_TO(TraverseType(T->getPointeeType())); + }) + +DEF_TRAVERSE_TYPE(BlockPointerType, { + TRY_TO(TraverseType(T->getPointeeType())); + }) + +DEF_TRAVERSE_TYPE(LValueReferenceType, { + TRY_TO(TraverseType(T->getPointeeType())); + }) + +DEF_TRAVERSE_TYPE(RValueReferenceType, { + TRY_TO(TraverseType(T->getPointeeType())); + }) + +DEF_TRAVERSE_TYPE(MemberPointerType, { + TRY_TO(TraverseType(QualType(T->getClass(), 0))); + TRY_TO(TraverseType(T->getPointeeType())); + }) + +DEF_TRAVERSE_TYPE(ConstantArrayType, { + TRY_TO(TraverseType(T->getElementType())); + }) + +DEF_TRAVERSE_TYPE(IncompleteArrayType, { + TRY_TO(TraverseType(T->getElementType())); + }) + +DEF_TRAVERSE_TYPE(VariableArrayType, { + TRY_TO(TraverseType(T->getElementType())); + TRY_TO(TraverseStmt(T->getSizeExpr())); + }) + +DEF_TRAVERSE_TYPE(DependentSizedArrayType, { + TRY_TO(TraverseType(T->getElementType())); + if (T->getSizeExpr()) + TRY_TO(TraverseStmt(T->getSizeExpr())); + }) + +DEF_TRAVERSE_TYPE(DependentSizedExtVectorType, { + if (T->getSizeExpr()) + TRY_TO(TraverseStmt(T->getSizeExpr())); + TRY_TO(TraverseType(T->getElementType())); + }) + +DEF_TRAVERSE_TYPE(VectorType, { + TRY_TO(TraverseType(T->getElementType())); + }) + +DEF_TRAVERSE_TYPE(ExtVectorType, { + TRY_TO(TraverseType(T->getElementType())); + }) + +DEF_TRAVERSE_TYPE(FunctionNoProtoType, { + TRY_TO(TraverseType(T->getResultType())); + }) + +DEF_TRAVERSE_TYPE(FunctionProtoType, { + TRY_TO(TraverseType(T->getResultType())); + + for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), + AEnd = T->arg_type_end(); + A != AEnd; ++A) { + TRY_TO(TraverseType(*A)); + } + + for (FunctionProtoType::exception_iterator E = T->exception_begin(), + EEnd = T->exception_end(); + E != EEnd; ++E) { + TRY_TO(TraverseType(*E)); + } + }) + +DEF_TRAVERSE_TYPE(UnresolvedUsingType, { }) +DEF_TRAVERSE_TYPE(TypedefType, { }) + +DEF_TRAVERSE_TYPE(TypeOfExprType, { + TRY_TO(TraverseStmt(T->getUnderlyingExpr())); + }) + +DEF_TRAVERSE_TYPE(TypeOfType, { + TRY_TO(TraverseType(T->getUnderlyingType())); + }) + +DEF_TRAVERSE_TYPE(DecltypeType, { + TRY_TO(TraverseStmt(T->getUnderlyingExpr())); + }) + +DEF_TRAVERSE_TYPE(UnaryTransformType, { + TRY_TO(TraverseType(T->getBaseType())); + TRY_TO(TraverseType(T->getUnderlyingType())); + }) + +DEF_TRAVERSE_TYPE(AutoType, { + TRY_TO(TraverseType(T->getDeducedType())); + }) + +DEF_TRAVERSE_TYPE(RecordType, { }) +DEF_TRAVERSE_TYPE(EnumType, { }) +DEF_TRAVERSE_TYPE(TemplateTypeParmType, { }) +DEF_TRAVERSE_TYPE(SubstTemplateTypeParmType, { }) +DEF_TRAVERSE_TYPE(SubstTemplateTypeParmPackType, { }) + +DEF_TRAVERSE_TYPE(TemplateSpecializationType, { + TRY_TO(TraverseTemplateName(T->getTemplateName())); + TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs())); + }) + +DEF_TRAVERSE_TYPE(InjectedClassNameType, { }) + +DEF_TRAVERSE_TYPE(AttributedType, { + TRY_TO(TraverseType(T->getModifiedType())); + }) + +DEF_TRAVERSE_TYPE(ParenType, { + TRY_TO(TraverseType(T->getInnerType())); + }) + +DEF_TRAVERSE_TYPE(ElaboratedType, { + if (T->getQualifier()) { + TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); + } + TRY_TO(TraverseType(T->getNamedType())); + }) + +DEF_TRAVERSE_TYPE(DependentNameType, { + TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); + }) + +DEF_TRAVERSE_TYPE(DependentTemplateSpecializationType, { + TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); + TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs())); + }) + +DEF_TRAVERSE_TYPE(PackExpansionType, { + TRY_TO(TraverseType(T->getPattern())); + }) + +DEF_TRAVERSE_TYPE(ObjCInterfaceType, { }) + +DEF_TRAVERSE_TYPE(ObjCObjectType, { + // We have to watch out here because an ObjCInterfaceType's base + // type is itself. + if (T->getBaseType().getTypePtr() != T) + TRY_TO(TraverseType(T->getBaseType())); + }) + +DEF_TRAVERSE_TYPE(ObjCObjectPointerType, { + TRY_TO(TraverseType(T->getPointeeType())); + }) + +DEF_TRAVERSE_TYPE(AtomicType, { + TRY_TO(TraverseType(T->getValueType())); + }) + +#undef DEF_TRAVERSE_TYPE + +// ----------------- TypeLoc traversal ----------------- + +// This macro makes available a variable TL, the passed-in TypeLoc. +// If requested, it calls WalkUpFrom* for the Type in the given TypeLoc, +// in addition to WalkUpFrom* for the TypeLoc itself, such that existing +// clients that override the WalkUpFrom*Type() and/or Visit*Type() methods +// continue to work. +#define DEF_TRAVERSE_TYPELOC(TYPE, CODE) \ + template<typename Derived> \ + bool RecursiveASTVisitor<Derived>::Traverse##TYPE##Loc(TYPE##Loc TL) { \ + if (getDerived().shouldWalkTypesOfTypeLocs()) \ + TRY_TO(WalkUpFrom##TYPE(const_cast<TYPE*>(TL.getTypePtr()))); \ + TRY_TO(WalkUpFrom##TYPE##Loc(TL)); \ + { CODE; } \ + return true; \ + } + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseQualifiedTypeLoc( + QualifiedTypeLoc TL) { + // Move this over to the 'main' typeloc tree. Note that this is a + // move -- we pretend that we were really looking at the unqualified + // typeloc all along -- rather than a recursion, so we don't follow + // the normal CRTP plan of going through + // getDerived().TraverseTypeLoc. If we did, we'd be traversing + // twice for the same type (once as a QualifiedTypeLoc version of + // the type, once as an UnqualifiedTypeLoc version of the type), + // which in effect means we'd call VisitTypeLoc twice with the + // 'same' type. This solves that problem, at the cost of never + // seeing the qualified version of the type (unless the client + // subclasses TraverseQualifiedTypeLoc themselves). It's not a + // perfect solution. A perfect solution probably requires making + // QualifiedTypeLoc a wrapper around TypeLoc -- like QualType is a + // wrapper around Type* -- rather than being its own class in the + // type hierarchy. + return TraverseTypeLoc(TL.getUnqualifiedLoc()); +} + +DEF_TRAVERSE_TYPELOC(BuiltinType, { }) + +// FIXME: ComplexTypeLoc is unfinished +DEF_TRAVERSE_TYPELOC(ComplexType, { + TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); + }) + +DEF_TRAVERSE_TYPELOC(PointerType, { + TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); + }) + +DEF_TRAVERSE_TYPELOC(BlockPointerType, { + TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); + }) + +DEF_TRAVERSE_TYPELOC(LValueReferenceType, { + TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); + }) + +DEF_TRAVERSE_TYPELOC(RValueReferenceType, { + TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); + }) + +// FIXME: location of base class? +// We traverse this in the type case as well, but how is it not reached through +// the pointee type? +DEF_TRAVERSE_TYPELOC(MemberPointerType, { + TRY_TO(TraverseType(QualType(TL.getTypePtr()->getClass(), 0))); + TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); + }) + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseArrayTypeLocHelper(ArrayTypeLoc TL) { + // This isn't available for ArrayType, but is for the ArrayTypeLoc. + TRY_TO(TraverseStmt(TL.getSizeExpr())); + return true; +} + +DEF_TRAVERSE_TYPELOC(ConstantArrayType, { + TRY_TO(TraverseTypeLoc(TL.getElementLoc())); + return TraverseArrayTypeLocHelper(TL); + }) + +DEF_TRAVERSE_TYPELOC(IncompleteArrayType, { + TRY_TO(TraverseTypeLoc(TL.getElementLoc())); + return TraverseArrayTypeLocHelper(TL); + }) + +DEF_TRAVERSE_TYPELOC(VariableArrayType, { + TRY_TO(TraverseTypeLoc(TL.getElementLoc())); + return TraverseArrayTypeLocHelper(TL); + }) + +DEF_TRAVERSE_TYPELOC(DependentSizedArrayType, { + TRY_TO(TraverseTypeLoc(TL.getElementLoc())); + return TraverseArrayTypeLocHelper(TL); + }) + +// FIXME: order? why not size expr first? +// FIXME: base VectorTypeLoc is unfinished +DEF_TRAVERSE_TYPELOC(DependentSizedExtVectorType, { + if (TL.getTypePtr()->getSizeExpr()) + TRY_TO(TraverseStmt(TL.getTypePtr()->getSizeExpr())); + TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); + }) + +// FIXME: VectorTypeLoc is unfinished +DEF_TRAVERSE_TYPELOC(VectorType, { + TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); + }) + +// FIXME: size and attributes +// FIXME: base VectorTypeLoc is unfinished +DEF_TRAVERSE_TYPELOC(ExtVectorType, { + TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); + }) + +DEF_TRAVERSE_TYPELOC(FunctionNoProtoType, { + TRY_TO(TraverseTypeLoc(TL.getResultLoc())); + }) + +// FIXME: location of exception specifications (attributes?) +DEF_TRAVERSE_TYPELOC(FunctionProtoType, { + TRY_TO(TraverseTypeLoc(TL.getResultLoc())); + + const FunctionProtoType *T = TL.getTypePtr(); + + for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { + if (TL.getArg(I)) { + TRY_TO(TraverseDecl(TL.getArg(I))); + } else if (I < T->getNumArgs()) { + TRY_TO(TraverseType(T->getArgType(I))); + } + } + + for (FunctionProtoType::exception_iterator E = T->exception_begin(), + EEnd = T->exception_end(); + E != EEnd; ++E) { + TRY_TO(TraverseType(*E)); + } + }) + +DEF_TRAVERSE_TYPELOC(UnresolvedUsingType, { }) +DEF_TRAVERSE_TYPELOC(TypedefType, { }) + +DEF_TRAVERSE_TYPELOC(TypeOfExprType, { + TRY_TO(TraverseStmt(TL.getUnderlyingExpr())); + }) + +DEF_TRAVERSE_TYPELOC(TypeOfType, { + TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc())); + }) + +// FIXME: location of underlying expr +DEF_TRAVERSE_TYPELOC(DecltypeType, { + TRY_TO(TraverseStmt(TL.getTypePtr()->getUnderlyingExpr())); + }) + +DEF_TRAVERSE_TYPELOC(UnaryTransformType, { + TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc())); + }) + +DEF_TRAVERSE_TYPELOC(AutoType, { + TRY_TO(TraverseType(TL.getTypePtr()->getDeducedType())); + }) + +DEF_TRAVERSE_TYPELOC(RecordType, { }) +DEF_TRAVERSE_TYPELOC(EnumType, { }) +DEF_TRAVERSE_TYPELOC(TemplateTypeParmType, { }) +DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmType, { }) +DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmPackType, { }) + +// FIXME: use the loc for the template name? +DEF_TRAVERSE_TYPELOC(TemplateSpecializationType, { + TRY_TO(TraverseTemplateName(TL.getTypePtr()->getTemplateName())); + for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { + TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I))); + } + }) + +DEF_TRAVERSE_TYPELOC(InjectedClassNameType, { }) + +DEF_TRAVERSE_TYPELOC(ParenType, { + TRY_TO(TraverseTypeLoc(TL.getInnerLoc())); + }) + +DEF_TRAVERSE_TYPELOC(AttributedType, { + TRY_TO(TraverseTypeLoc(TL.getModifiedLoc())); + }) + +DEF_TRAVERSE_TYPELOC(ElaboratedType, { + if (TL.getQualifierLoc()) { + TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); + } + TRY_TO(TraverseTypeLoc(TL.getNamedTypeLoc())); + }) + +DEF_TRAVERSE_TYPELOC(DependentNameType, { + TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); + }) + +DEF_TRAVERSE_TYPELOC(DependentTemplateSpecializationType, { + if (TL.getQualifierLoc()) { + TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); + } + + for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { + TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I))); + } + }) + +DEF_TRAVERSE_TYPELOC(PackExpansionType, { + TRY_TO(TraverseTypeLoc(TL.getPatternLoc())); + }) + +DEF_TRAVERSE_TYPELOC(ObjCInterfaceType, { }) + +DEF_TRAVERSE_TYPELOC(ObjCObjectType, { + // We have to watch out here because an ObjCInterfaceType's base + // type is itself. + if (TL.getTypePtr()->getBaseType().getTypePtr() != TL.getTypePtr()) + TRY_TO(TraverseTypeLoc(TL.getBaseLoc())); + }) + +DEF_TRAVERSE_TYPELOC(ObjCObjectPointerType, { + TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); + }) + +DEF_TRAVERSE_TYPELOC(AtomicType, { + TRY_TO(TraverseTypeLoc(TL.getValueLoc())); + }) + +#undef DEF_TRAVERSE_TYPELOC + +// ----------------- Decl traversal ----------------- +// +// For a Decl, we automate (in the DEF_TRAVERSE_DECL macro) traversing +// the children that come from the DeclContext associated with it. +// Therefore each Traverse* only needs to worry about children other +// than those. + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseDeclContextHelper(DeclContext *DC) { + if (!DC) + return true; + + for (DeclContext::decl_iterator Child = DC->decls_begin(), + ChildEnd = DC->decls_end(); + Child != ChildEnd; ++Child) { + // BlockDecls are traversed through BlockExprs. + if (!isa<BlockDecl>(*Child)) + TRY_TO(TraverseDecl(*Child)); + } + + return true; +} + +// This macro makes available a variable D, the passed-in decl. +#define DEF_TRAVERSE_DECL(DECL, CODE) \ +template<typename Derived> \ +bool RecursiveASTVisitor<Derived>::Traverse##DECL (DECL *D) { \ + TRY_TO(WalkUpFrom##DECL (D)); \ + { CODE; } \ + TRY_TO(TraverseDeclContextHelper(dyn_cast<DeclContext>(D))); \ + return true; \ +} + +DEF_TRAVERSE_DECL(AccessSpecDecl, { }) + +DEF_TRAVERSE_DECL(BlockDecl, { + if (TypeSourceInfo *TInfo = D->getSignatureAsWritten()) + TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc())); + TRY_TO(TraverseStmt(D->getBody())); + // This return statement makes sure the traversal of nodes in + // decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro) + // is skipped - don't remove it. + return true; + }) + +DEF_TRAVERSE_DECL(FileScopeAsmDecl, { + TRY_TO(TraverseStmt(D->getAsmString())); + }) + +DEF_TRAVERSE_DECL(ImportDecl, { }) + +DEF_TRAVERSE_DECL(FriendDecl, { + // Friend is either decl or a type. + if (D->getFriendType()) + TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc())); + else + TRY_TO(TraverseDecl(D->getFriendDecl())); + }) + +DEF_TRAVERSE_DECL(FriendTemplateDecl, { + if (D->getFriendType()) + TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc())); + else + TRY_TO(TraverseDecl(D->getFriendDecl())); + for (unsigned I = 0, E = D->getNumTemplateParameters(); I < E; ++I) { + TemplateParameterList *TPL = D->getTemplateParameterList(I); + for (TemplateParameterList::iterator ITPL = TPL->begin(), + ETPL = TPL->end(); + ITPL != ETPL; ++ITPL) { + TRY_TO(TraverseDecl(*ITPL)); + } + } + }) + +DEF_TRAVERSE_DECL(ClassScopeFunctionSpecializationDecl, { + TRY_TO(TraverseDecl(D->getSpecialization())); + }) + +DEF_TRAVERSE_DECL(LinkageSpecDecl, { }) + +DEF_TRAVERSE_DECL(ObjCPropertyImplDecl, { + // FIXME: implement this + }) + +DEF_TRAVERSE_DECL(StaticAssertDecl, { + TRY_TO(TraverseStmt(D->getAssertExpr())); + TRY_TO(TraverseStmt(D->getMessage())); + }) + +DEF_TRAVERSE_DECL(TranslationUnitDecl, { + // Code in an unnamed namespace shows up automatically in + // decls_begin()/decls_end(). Thus we don't need to recurse on + // D->getAnonymousNamespace(). + }) + +DEF_TRAVERSE_DECL(NamespaceAliasDecl, { + // We shouldn't traverse an aliased namespace, since it will be + // defined (and, therefore, traversed) somewhere else. + // + // This return statement makes sure the traversal of nodes in + // decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro) + // is skipped - don't remove it. + return true; + }) + +DEF_TRAVERSE_DECL(LabelDecl, { + // There is no code in a LabelDecl. +}) + + +DEF_TRAVERSE_DECL(NamespaceDecl, { + // Code in an unnamed namespace shows up automatically in + // decls_begin()/decls_end(). Thus we don't need to recurse on + // D->getAnonymousNamespace(). + }) + +DEF_TRAVERSE_DECL(ObjCCompatibleAliasDecl, { + // FIXME: implement + }) + +DEF_TRAVERSE_DECL(ObjCCategoryDecl, { + // FIXME: implement + }) + +DEF_TRAVERSE_DECL(ObjCCategoryImplDecl, { + // FIXME: implement + }) + +DEF_TRAVERSE_DECL(ObjCImplementationDecl, { + // FIXME: implement + }) + +DEF_TRAVERSE_DECL(ObjCInterfaceDecl, { + // FIXME: implement + }) + +DEF_TRAVERSE_DECL(ObjCProtocolDecl, { + // FIXME: implement + }) + +DEF_TRAVERSE_DECL(ObjCMethodDecl, { + if (D->getResultTypeSourceInfo()) { + TRY_TO(TraverseTypeLoc(D->getResultTypeSourceInfo()->getTypeLoc())); + } + for (ObjCMethodDecl::param_iterator + I = D->param_begin(), E = D->param_end(); I != E; ++I) { + TRY_TO(TraverseDecl(*I)); + } + if (D->isThisDeclarationADefinition()) { + TRY_TO(TraverseStmt(D->getBody())); + } + return true; + }) + +DEF_TRAVERSE_DECL(ObjCPropertyDecl, { + // FIXME: implement + }) + +DEF_TRAVERSE_DECL(UsingDecl, { + TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); + TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo())); + }) + +DEF_TRAVERSE_DECL(UsingDirectiveDecl, { + TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); + }) + +DEF_TRAVERSE_DECL(UsingShadowDecl, { }) + +// A helper method for TemplateDecl's children. +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseTemplateParameterListHelper( + TemplateParameterList *TPL) { + if (TPL) { + for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end(); + I != E; ++I) { + TRY_TO(TraverseDecl(*I)); + } + } + return true; +} + +// A helper method for traversing the implicit instantiations of a +// class template. +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseClassInstantiations( + ClassTemplateDecl *D) { + ClassTemplateDecl::spec_iterator end = D->spec_end(); + for (ClassTemplateDecl::spec_iterator it = D->spec_begin(); it != end; ++it) { + ClassTemplateSpecializationDecl* SD = *it; + + switch (SD->getSpecializationKind()) { + // Visit the implicit instantiations with the requested pattern. + case TSK_Undeclared: + case TSK_ImplicitInstantiation: + TRY_TO(TraverseDecl(SD)); + break; + + // We don't need to do anything on an explicit instantiation + // or explicit specialization because there will be an explicit + // node for it elsewhere. + case TSK_ExplicitInstantiationDeclaration: + case TSK_ExplicitInstantiationDefinition: + case TSK_ExplicitSpecialization: + break; + } + } + + return true; +} + +DEF_TRAVERSE_DECL(ClassTemplateDecl, { + CXXRecordDecl* TempDecl = D->getTemplatedDecl(); + TRY_TO(TraverseDecl(TempDecl)); + TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); + + // By default, we do not traverse the instantiations of + // class templates since they do not appear in the user code. The + // following code optionally traverses them. + // + // We only traverse the class instantiations when we see the canonical + // declaration of the template, to ensure we only visit them once. + if (getDerived().shouldVisitTemplateInstantiations() && + D == D->getCanonicalDecl()) + TRY_TO(TraverseClassInstantiations(D)); + + // Note that getInstantiatedFromMemberTemplate() is just a link + // from a template instantiation back to the template from which + // it was instantiated, and thus should not be traversed. + }) + +// A helper method for traversing the instantiations of a +// function while skipping its specializations. +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseFunctionInstantiations( + FunctionTemplateDecl *D) { + FunctionTemplateDecl::spec_iterator end = D->spec_end(); + for (FunctionTemplateDecl::spec_iterator it = D->spec_begin(); it != end; + ++it) { + FunctionDecl* FD = *it; + switch (FD->getTemplateSpecializationKind()) { + case TSK_Undeclared: + case TSK_ImplicitInstantiation: + // We don't know what kind of FunctionDecl this is. + TRY_TO(TraverseDecl(FD)); + break; + + // No need to visit explicit instantiations, we'll find the node + // eventually. + case TSK_ExplicitInstantiationDeclaration: + case TSK_ExplicitInstantiationDefinition: + break; + + case TSK_ExplicitSpecialization: + break; + } + } + + return true; +} + +DEF_TRAVERSE_DECL(FunctionTemplateDecl, { + TRY_TO(TraverseDecl(D->getTemplatedDecl())); + TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); + + // By default, we do not traverse the instantiations of + // function templates since they do not appear in the user code. The + // following code optionally traverses them. + // + // We only traverse the function instantiations when we see the canonical + // declaration of the template, to ensure we only visit them once. + if (getDerived().shouldVisitTemplateInstantiations() && + D == D->getCanonicalDecl()) + TRY_TO(TraverseFunctionInstantiations(D)); + }) + +DEF_TRAVERSE_DECL(TemplateTemplateParmDecl, { + // D is the "T" in something like + // template <template <typename> class T> class container { }; + TRY_TO(TraverseDecl(D->getTemplatedDecl())); + if (D->hasDefaultArgument()) { + TRY_TO(TraverseTemplateArgumentLoc(D->getDefaultArgument())); + } + TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); + }) + +DEF_TRAVERSE_DECL(TemplateTypeParmDecl, { + // D is the "T" in something like "template<typename T> class vector;" + if (D->getTypeForDecl()) + TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0))); + if (D->hasDefaultArgument()) + TRY_TO(TraverseTypeLoc(D->getDefaultArgumentInfo()->getTypeLoc())); + }) + +DEF_TRAVERSE_DECL(TypedefDecl, { + TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); + // We shouldn't traverse D->getTypeForDecl(); it's a result of + // declaring the typedef, not something that was written in the + // source. + }) + +DEF_TRAVERSE_DECL(TypeAliasDecl, { + TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); + // We shouldn't traverse D->getTypeForDecl(); it's a result of + // declaring the type alias, not something that was written in the + // source. + }) + +DEF_TRAVERSE_DECL(TypeAliasTemplateDecl, { + TRY_TO(TraverseDecl(D->getTemplatedDecl())); + TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); + }) + +DEF_TRAVERSE_DECL(UnresolvedUsingTypenameDecl, { + // A dependent using declaration which was marked with 'typename'. + // template<class T> class A : public B<T> { using typename B<T>::foo; }; + TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); + // We shouldn't traverse D->getTypeForDecl(); it's a result of + // declaring the type, not something that was written in the + // source. + }) + +DEF_TRAVERSE_DECL(EnumDecl, { + if (D->getTypeForDecl()) + TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0))); + + TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); + // The enumerators are already traversed by + // decls_begin()/decls_end(). + }) + + +// Helper methods for RecordDecl and its children. +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseRecordHelper( + RecordDecl *D) { + // We shouldn't traverse D->getTypeForDecl(); it's a result of + // declaring the type, not something that was written in the source. + + TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); + return true; +} + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseCXXRecordHelper( + CXXRecordDecl *D) { + if (!TraverseRecordHelper(D)) + return false; + if (D->isCompleteDefinition()) { + for (CXXRecordDecl::base_class_iterator I = D->bases_begin(), + E = D->bases_end(); + I != E; ++I) { + TRY_TO(TraverseTypeLoc(I->getTypeSourceInfo()->getTypeLoc())); + } + // We don't traverse the friends or the conversions, as they are + // already in decls_begin()/decls_end(). + } + return true; +} + +DEF_TRAVERSE_DECL(RecordDecl, { + TRY_TO(TraverseRecordHelper(D)); + }) + +DEF_TRAVERSE_DECL(CXXRecordDecl, { + TRY_TO(TraverseCXXRecordHelper(D)); + }) + +DEF_TRAVERSE_DECL(ClassTemplateSpecializationDecl, { + // For implicit instantiations ("set<int> x;"), we don't want to + // recurse at all, since the instatiated class isn't written in + // the source code anywhere. (Note the instatiated *type* -- + // set<int> -- is written, and will still get a callback of + // TemplateSpecializationType). For explicit instantiations + // ("template set<int>;"), we do need a callback, since this + // is the only callback that's made for this instantiation. + // We use getTypeAsWritten() to distinguish. + if (TypeSourceInfo *TSI = D->getTypeAsWritten()) + TRY_TO(TraverseTypeLoc(TSI->getTypeLoc())); + + if (!getDerived().shouldVisitTemplateInstantiations() && + D->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) + // Returning from here skips traversing the + // declaration context of the ClassTemplateSpecializationDecl + // (embedded in the DEF_TRAVERSE_DECL() macro) + // which contains the instantiated members of the class. + return true; + }) + +template <typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLocsHelper( + const TemplateArgumentLoc *TAL, unsigned Count) { + for (unsigned I = 0; I < Count; ++I) { + TRY_TO(TraverseTemplateArgumentLoc(TAL[I])); + } + return true; +} + +DEF_TRAVERSE_DECL(ClassTemplatePartialSpecializationDecl, { + // The partial specialization. + if (TemplateParameterList *TPL = D->getTemplateParameters()) { + for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end(); + I != E; ++I) { + TRY_TO(TraverseDecl(*I)); + } + } + // The args that remains unspecialized. + TRY_TO(TraverseTemplateArgumentLocsHelper( + D->getTemplateArgsAsWritten(), D->getNumTemplateArgsAsWritten())); + + // Don't need the ClassTemplatePartialSpecializationHelper, even + // though that's our parent class -- we already visit all the + // template args here. + TRY_TO(TraverseCXXRecordHelper(D)); + + // Instantiations will have been visited with the primary template. + }) + +DEF_TRAVERSE_DECL(EnumConstantDecl, { + TRY_TO(TraverseStmt(D->getInitExpr())); + }) + +DEF_TRAVERSE_DECL(UnresolvedUsingValueDecl, { + // Like UnresolvedUsingTypenameDecl, but without the 'typename': + // template <class T> Class A : public Base<T> { using Base<T>::foo; }; + TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); + TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo())); + }) + +DEF_TRAVERSE_DECL(IndirectFieldDecl, {}) + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseDeclaratorHelper(DeclaratorDecl *D) { + TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); + if (D->getTypeSourceInfo()) + TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); + else + TRY_TO(TraverseType(D->getType())); + return true; +} + +DEF_TRAVERSE_DECL(FieldDecl, { + TRY_TO(TraverseDeclaratorHelper(D)); + if (D->isBitField()) + TRY_TO(TraverseStmt(D->getBitWidth())); + else if (D->hasInClassInitializer()) + TRY_TO(TraverseStmt(D->getInClassInitializer())); + }) + +DEF_TRAVERSE_DECL(ObjCAtDefsFieldDecl, { + TRY_TO(TraverseDeclaratorHelper(D)); + if (D->isBitField()) + TRY_TO(TraverseStmt(D->getBitWidth())); + // FIXME: implement the rest. + }) + +DEF_TRAVERSE_DECL(ObjCIvarDecl, { + TRY_TO(TraverseDeclaratorHelper(D)); + if (D->isBitField()) + TRY_TO(TraverseStmt(D->getBitWidth())); + // FIXME: implement the rest. + }) + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseFunctionHelper(FunctionDecl *D) { + TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); + TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo())); + + // If we're an explicit template specialization, iterate over the + // template args that were explicitly specified. If we were doing + // this in typing order, we'd do it between the return type and + // the function args, but both are handled by the FunctionTypeLoc + // above, so we have to choose one side. I've decided to do before. + if (const FunctionTemplateSpecializationInfo *FTSI = + D->getTemplateSpecializationInfo()) { + if (FTSI->getTemplateSpecializationKind() != TSK_Undeclared && + FTSI->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) { + // A specialization might not have explicit template arguments if it has + // a templated return type and concrete arguments. + if (const ASTTemplateArgumentListInfo *TALI = + FTSI->TemplateArgumentsAsWritten) { + TRY_TO(TraverseTemplateArgumentLocsHelper(TALI->getTemplateArgs(), + TALI->NumTemplateArgs)); + } + } + } + + // Visit the function type itself, which can be either + // FunctionNoProtoType or FunctionProtoType, or a typedef. This + // also covers the return type and the function parameters, + // including exception specifications. + TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); + + if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(D)) { + // Constructor initializers. + for (CXXConstructorDecl::init_iterator I = Ctor->init_begin(), + E = Ctor->init_end(); + I != E; ++I) { + TRY_TO(TraverseConstructorInitializer(*I)); + } + } + + if (D->isThisDeclarationADefinition()) { + TRY_TO(TraverseStmt(D->getBody())); // Function body. + } + return true; +} + +DEF_TRAVERSE_DECL(FunctionDecl, { + // We skip decls_begin/decls_end, which are already covered by + // TraverseFunctionHelper(). + return TraverseFunctionHelper(D); + }) + +DEF_TRAVERSE_DECL(CXXMethodDecl, { + // We skip decls_begin/decls_end, which are already covered by + // TraverseFunctionHelper(). + return TraverseFunctionHelper(D); + }) + +DEF_TRAVERSE_DECL(CXXConstructorDecl, { + // We skip decls_begin/decls_end, which are already covered by + // TraverseFunctionHelper(). + return TraverseFunctionHelper(D); + }) + +// CXXConversionDecl is the declaration of a type conversion operator. +// It's not a cast expression. +DEF_TRAVERSE_DECL(CXXConversionDecl, { + // We skip decls_begin/decls_end, which are already covered by + // TraverseFunctionHelper(). + return TraverseFunctionHelper(D); + }) + +DEF_TRAVERSE_DECL(CXXDestructorDecl, { + // We skip decls_begin/decls_end, which are already covered by + // TraverseFunctionHelper(). + return TraverseFunctionHelper(D); + }) + +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseVarHelper(VarDecl *D) { + TRY_TO(TraverseDeclaratorHelper(D)); + // Default params are taken care of when we traverse the ParmVarDecl. + if (!isa<ParmVarDecl>(D)) + TRY_TO(TraverseStmt(D->getInit())); + return true; +} + +DEF_TRAVERSE_DECL(VarDecl, { + TRY_TO(TraverseVarHelper(D)); + }) + +DEF_TRAVERSE_DECL(ImplicitParamDecl, { + TRY_TO(TraverseVarHelper(D)); + }) + +DEF_TRAVERSE_DECL(NonTypeTemplateParmDecl, { + // A non-type template parameter, e.g. "S" in template<int S> class Foo ... + TRY_TO(TraverseDeclaratorHelper(D)); + TRY_TO(TraverseStmt(D->getDefaultArgument())); + }) + +DEF_TRAVERSE_DECL(ParmVarDecl, { + TRY_TO(TraverseVarHelper(D)); + + if (D->hasDefaultArg() && + D->hasUninstantiatedDefaultArg() && + !D->hasUnparsedDefaultArg()) + TRY_TO(TraverseStmt(D->getUninstantiatedDefaultArg())); + + if (D->hasDefaultArg() && + !D->hasUninstantiatedDefaultArg() && + !D->hasUnparsedDefaultArg()) + TRY_TO(TraverseStmt(D->getDefaultArg())); + }) + +#undef DEF_TRAVERSE_DECL + +// ----------------- Stmt traversal ----------------- +// +// For stmts, we automate (in the DEF_TRAVERSE_STMT macro) iterating +// over the children defined in children() (every stmt defines these, +// though sometimes the range is empty). Each individual Traverse* +// method only needs to worry about children other than those. To see +// what children() does for a given class, see, e.g., +// http://clang.llvm.org/doxygen/Stmt_8cpp_source.html + +// This macro makes available a variable S, the passed-in stmt. +#define DEF_TRAVERSE_STMT(STMT, CODE) \ +template<typename Derived> \ +bool RecursiveASTVisitor<Derived>::Traverse##STMT (STMT *S) { \ + TRY_TO(WalkUpFrom##STMT(S)); \ + StmtQueueAction StmtQueue(*this); \ + { CODE; } \ + for (Stmt::child_range range = S->children(); range; ++range) { \ + StmtQueue.queue(*range); \ + } \ + return true; \ +} + +DEF_TRAVERSE_STMT(AsmStmt, { + StmtQueue.queue(S->getAsmString()); + for (unsigned I = 0, E = S->getNumInputs(); I < E; ++I) { + StmtQueue.queue(S->getInputConstraintLiteral(I)); + } + for (unsigned I = 0, E = S->getNumOutputs(); I < E; ++I) { + StmtQueue.queue(S->getOutputConstraintLiteral(I)); + } + for (unsigned I = 0, E = S->getNumClobbers(); I < E; ++I) { + StmtQueue.queue(S->getClobber(I)); + } + // children() iterates over inputExpr and outputExpr. + }) + +DEF_TRAVERSE_STMT(MSAsmStmt, { + // FIXME: MS Asm doesn't currently parse Constraints, Clobbers, etc. Once + // added this needs to be implemented. + }) + +DEF_TRAVERSE_STMT(CXXCatchStmt, { + TRY_TO(TraverseDecl(S->getExceptionDecl())); + // children() iterates over the handler block. + }) + +DEF_TRAVERSE_STMT(DeclStmt, { + for (DeclStmt::decl_iterator I = S->decl_begin(), E = S->decl_end(); + I != E; ++I) { + TRY_TO(TraverseDecl(*I)); + } + // Suppress the default iteration over children() by + // returning. Here's why: A DeclStmt looks like 'type var [= + // initializer]'. The decls above already traverse over the + // initializers, so we don't have to do it again (which + // children() would do). + return true; + }) + + +// These non-expr stmts (most of them), do not need any action except +// iterating over the children. +DEF_TRAVERSE_STMT(BreakStmt, { }) +DEF_TRAVERSE_STMT(CXXTryStmt, { }) +DEF_TRAVERSE_STMT(CaseStmt, { }) +DEF_TRAVERSE_STMT(CompoundStmt, { }) +DEF_TRAVERSE_STMT(ContinueStmt, { }) +DEF_TRAVERSE_STMT(DefaultStmt, { }) +DEF_TRAVERSE_STMT(DoStmt, { }) +DEF_TRAVERSE_STMT(ForStmt, { }) +DEF_TRAVERSE_STMT(GotoStmt, { }) +DEF_TRAVERSE_STMT(IfStmt, { }) +DEF_TRAVERSE_STMT(IndirectGotoStmt, { }) +DEF_TRAVERSE_STMT(LabelStmt, { }) +DEF_TRAVERSE_STMT(AttributedStmt, { }) +DEF_TRAVERSE_STMT(NullStmt, { }) +DEF_TRAVERSE_STMT(ObjCAtCatchStmt, { }) +DEF_TRAVERSE_STMT(ObjCAtFinallyStmt, { }) +DEF_TRAVERSE_STMT(ObjCAtSynchronizedStmt, { }) +DEF_TRAVERSE_STMT(ObjCAtThrowStmt, { }) +DEF_TRAVERSE_STMT(ObjCAtTryStmt, { }) +DEF_TRAVERSE_STMT(ObjCForCollectionStmt, { }) +DEF_TRAVERSE_STMT(ObjCAutoreleasePoolStmt, { }) +DEF_TRAVERSE_STMT(CXXForRangeStmt, { }) +DEF_TRAVERSE_STMT(MSDependentExistsStmt, { + TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); + TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo())); +}) +DEF_TRAVERSE_STMT(ReturnStmt, { }) +DEF_TRAVERSE_STMT(SwitchStmt, { }) +DEF_TRAVERSE_STMT(WhileStmt, { }) + + +DEF_TRAVERSE_STMT(CXXDependentScopeMemberExpr, { + TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); + TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo())); + if (S->hasExplicitTemplateArgs()) { + TRY_TO(TraverseTemplateArgumentLocsHelper( + S->getTemplateArgs(), S->getNumTemplateArgs())); + } + }) + +DEF_TRAVERSE_STMT(DeclRefExpr, { + TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); + TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo())); + TRY_TO(TraverseTemplateArgumentLocsHelper( + S->getTemplateArgs(), S->getNumTemplateArgs())); + }) + +DEF_TRAVERSE_STMT(DependentScopeDeclRefExpr, { + TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); + TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo())); + if (S->hasExplicitTemplateArgs()) { + TRY_TO(TraverseTemplateArgumentLocsHelper( + S->getExplicitTemplateArgs().getTemplateArgs(), + S->getNumTemplateArgs())); + } + }) + +DEF_TRAVERSE_STMT(MemberExpr, { + TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); + TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo())); + TRY_TO(TraverseTemplateArgumentLocsHelper( + S->getTemplateArgs(), S->getNumTemplateArgs())); + }) + +DEF_TRAVERSE_STMT(ImplicitCastExpr, { + // We don't traverse the cast type, as it's not written in the + // source code. + }) + +DEF_TRAVERSE_STMT(CStyleCastExpr, { + TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(CXXFunctionalCastExpr, { + TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(CXXConstCastExpr, { + TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(CXXDynamicCastExpr, { + TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(CXXReinterpretCastExpr, { + TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(CXXStaticCastExpr, { + TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); + }) + +// InitListExpr is a tricky one, because we want to do all our work on +// the syntactic form of the listexpr, but this method takes the +// semantic form by default. We can't use the macro helper because it +// calls WalkUp*() on the semantic form, before our code can convert +// to the syntactic form. +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseInitListExpr(InitListExpr *S) { + if (InitListExpr *Syn = S->getSyntacticForm()) + S = Syn; + TRY_TO(WalkUpFromInitListExpr(S)); + StmtQueueAction StmtQueue(*this); + // All we need are the default actions. FIXME: use a helper function. + for (Stmt::child_range range = S->children(); range; ++range) { + StmtQueue.queue(*range); + } + return true; +} + +// GenericSelectionExpr is a special case because the types and expressions +// are interleaved. We also need to watch out for null types (default +// generic associations). +template<typename Derived> +bool RecursiveASTVisitor<Derived>:: +TraverseGenericSelectionExpr(GenericSelectionExpr *S) { + TRY_TO(WalkUpFromGenericSelectionExpr(S)); + StmtQueueAction StmtQueue(*this); + StmtQueue.queue(S->getControllingExpr()); + for (unsigned i = 0; i != S->getNumAssocs(); ++i) { + if (TypeSourceInfo *TS = S->getAssocTypeSourceInfo(i)) + TRY_TO(TraverseTypeLoc(TS->getTypeLoc())); + StmtQueue.queue(S->getAssocExpr(i)); + } + return true; +} + +// PseudoObjectExpr is a special case because of the wierdness with +// syntactic expressions and opaque values. +template<typename Derived> +bool RecursiveASTVisitor<Derived>:: +TraversePseudoObjectExpr(PseudoObjectExpr *S) { + TRY_TO(WalkUpFromPseudoObjectExpr(S)); + StmtQueueAction StmtQueue(*this); + StmtQueue.queue(S->getSyntacticForm()); + for (PseudoObjectExpr::semantics_iterator + i = S->semantics_begin(), e = S->semantics_end(); i != e; ++i) { + Expr *sub = *i; + if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(sub)) + sub = OVE->getSourceExpr(); + StmtQueue.queue(sub); + } + return true; +} + +DEF_TRAVERSE_STMT(CXXScalarValueInitExpr, { + // This is called for code like 'return T()' where T is a built-in + // (i.e. non-class) type. + TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(CXXNewExpr, { + // The child-iterator will pick up the other arguments. + TRY_TO(TraverseTypeLoc(S->getAllocatedTypeSourceInfo()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(OffsetOfExpr, { + // The child-iterator will pick up the expression representing + // the field. + // FIMXE: for code like offsetof(Foo, a.b.c), should we get + // making a MemberExpr callbacks for Foo.a, Foo.a.b, and Foo.a.b.c? + TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(UnaryExprOrTypeTraitExpr, { + // The child-iterator will pick up the arg if it's an expression, + // but not if it's a type. + if (S->isArgumentType()) + TRY_TO(TraverseTypeLoc(S->getArgumentTypeInfo()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(CXXTypeidExpr, { + // The child-iterator will pick up the arg if it's an expression, + // but not if it's a type. + if (S->isTypeOperand()) + TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(CXXUuidofExpr, { + // The child-iterator will pick up the arg if it's an expression, + // but not if it's a type. + if (S->isTypeOperand()) + TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(UnaryTypeTraitExpr, { + TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(BinaryTypeTraitExpr, { + TRY_TO(TraverseTypeLoc(S->getLhsTypeSourceInfo()->getTypeLoc())); + TRY_TO(TraverseTypeLoc(S->getRhsTypeSourceInfo()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(TypeTraitExpr, { + for (unsigned I = 0, N = S->getNumArgs(); I != N; ++I) + TRY_TO(TraverseTypeLoc(S->getArg(I)->getTypeLoc())); +}) + +DEF_TRAVERSE_STMT(ArrayTypeTraitExpr, { + TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(ExpressionTraitExpr, { + StmtQueue.queue(S->getQueriedExpression()); + }) + +DEF_TRAVERSE_STMT(VAArgExpr, { + // The child-iterator will pick up the expression argument. + TRY_TO(TraverseTypeLoc(S->getWrittenTypeInfo()->getTypeLoc())); + }) + +DEF_TRAVERSE_STMT(CXXTemporaryObjectExpr, { + // This is called for code like 'return T()' where T is a class type. + TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); + }) + +// Walk only the visible parts of lambda expressions. +template<typename Derived> +bool RecursiveASTVisitor<Derived>::TraverseLambdaExpr(LambdaExpr *S) { + for (LambdaExpr::capture_iterator C = S->explicit_capture_begin(), + CEnd = S->explicit_capture_end(); + C != CEnd; ++C) { + TRY_TO(TraverseLambdaCapture(*C)); + } + + if (S->hasExplicitParameters() || S->hasExplicitResultType()) { + TypeLoc TL = S->getCallOperator()->getTypeSourceInfo()->getTypeLoc(); + if (S->hasExplicitParameters() && S->hasExplicitResultType()) { + // Visit the whole type. + TRY_TO(TraverseTypeLoc(TL)); + } else if (isa<FunctionProtoTypeLoc>(TL)) { + FunctionProtoTypeLoc Proto = cast<FunctionProtoTypeLoc>(TL); + if (S->hasExplicitParameters()) { + // Visit parameters. + for (unsigned I = 0, N = Proto.getNumArgs(); I != N; ++I) { + TRY_TO(TraverseDecl(Proto.getArg(I))); + } + } else { + TRY_TO(TraverseTypeLoc(Proto.getResultLoc())); + } + } + } + + StmtQueueAction StmtQueue(*this); + StmtQueue.queue(S->getBody()); + return true; +} + +DEF_TRAVERSE_STMT(CXXUnresolvedConstructExpr, { + // This is called for code like 'T()', where T is a template argument. + TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); + }) + +// These expressions all might take explicit template arguments. +// We traverse those if so. FIXME: implement these. +DEF_TRAVERSE_STMT(CXXConstructExpr, { }) +DEF_TRAVERSE_STMT(CallExpr, { }) +DEF_TRAVERSE_STMT(CXXMemberCallExpr, { }) + +// These exprs (most of them), do not need any action except iterating +// over the children. +DEF_TRAVERSE_STMT(AddrLabelExpr, { }) +DEF_TRAVERSE_STMT(ArraySubscriptExpr, { }) +DEF_TRAVERSE_STMT(BlockExpr, { + TRY_TO(TraverseDecl(S->getBlockDecl())); + return true; // no child statements to loop through. +}) +DEF_TRAVERSE_STMT(ChooseExpr, { }) +DEF_TRAVERSE_STMT(CompoundLiteralExpr, { }) +DEF_TRAVERSE_STMT(CXXBindTemporaryExpr, { }) +DEF_TRAVERSE_STMT(CXXBoolLiteralExpr, { }) +DEF_TRAVERSE_STMT(CXXDefaultArgExpr, { }) +DEF_TRAVERSE_STMT(CXXDeleteExpr, { }) +DEF_TRAVERSE_STMT(ExprWithCleanups, { }) +DEF_TRAVERSE_STMT(CXXNullPtrLiteralExpr, { }) +DEF_TRAVERSE_STMT(CXXPseudoDestructorExpr, { + TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); + if (TypeSourceInfo *ScopeInfo = S->getScopeTypeInfo()) + TRY_TO(TraverseTypeLoc(ScopeInfo->getTypeLoc())); + if (TypeSourceInfo *DestroyedTypeInfo = S->getDestroyedTypeInfo()) + TRY_TO(TraverseTypeLoc(DestroyedTypeInfo->getTypeLoc())); +}) +DEF_TRAVERSE_STMT(CXXThisExpr, { }) +DEF_TRAVERSE_STMT(CXXThrowExpr, { }) +DEF_TRAVERSE_STMT(UserDefinedLiteral, { }) +DEF_TRAVERSE_STMT(DesignatedInitExpr, { }) +DEF_TRAVERSE_STMT(ExtVectorElementExpr, { }) +DEF_TRAVERSE_STMT(GNUNullExpr, { }) +DEF_TRAVERSE_STMT(ImplicitValueInitExpr, { }) +DEF_TRAVERSE_STMT(ObjCBoolLiteralExpr, { }) +DEF_TRAVERSE_STMT(ObjCEncodeExpr, { + if (TypeSourceInfo *TInfo = S->getEncodedTypeSourceInfo()) + TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc())); +}) +DEF_TRAVERSE_STMT(ObjCIsaExpr, { }) +DEF_TRAVERSE_STMT(ObjCIvarRefExpr, { }) +DEF_TRAVERSE_STMT(ObjCMessageExpr, { }) +DEF_TRAVERSE_STMT(ObjCPropertyRefExpr, { }) +DEF_TRAVERSE_STMT(ObjCSubscriptRefExpr, { }) +DEF_TRAVERSE_STMT(ObjCProtocolExpr, { }) +DEF_TRAVERSE_STMT(ObjCSelectorExpr, { }) +DEF_TRAVERSE_STMT(ObjCIndirectCopyRestoreExpr, { }) +DEF_TRAVERSE_STMT(ObjCBridgedCastExpr, { + TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); +}) +DEF_TRAVERSE_STMT(ParenExpr, { }) +DEF_TRAVERSE_STMT(ParenListExpr, { }) +DEF_TRAVERSE_STMT(PredefinedExpr, { }) +DEF_TRAVERSE_STMT(ShuffleVectorExpr, { }) +DEF_TRAVERSE_STMT(StmtExpr, { }) +DEF_TRAVERSE_STMT(UnresolvedLookupExpr, { + TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); + if (S->hasExplicitTemplateArgs()) { + TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(), + S->getNumTemplateArgs())); + } +}) + +DEF_TRAVERSE_STMT(UnresolvedMemberExpr, { + TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); + if (S->hasExplicitTemplateArgs()) { + TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(), + S->getNumTemplateArgs())); + } +}) + +DEF_TRAVERSE_STMT(SEHTryStmt, {}) +DEF_TRAVERSE_STMT(SEHExceptStmt, {}) +DEF_TRAVERSE_STMT(SEHFinallyStmt,{}) + +DEF_TRAVERSE_STMT(CXXOperatorCallExpr, { }) +DEF_TRAVERSE_STMT(OpaqueValueExpr, { }) +DEF_TRAVERSE_STMT(CUDAKernelCallExpr, { }) + +// These operators (all of them) do not need any action except +// iterating over the children. +DEF_TRAVERSE_STMT(BinaryConditionalOperator, { }) +DEF_TRAVERSE_STMT(ConditionalOperator, { }) +DEF_TRAVERSE_STMT(UnaryOperator, { }) +DEF_TRAVERSE_STMT(BinaryOperator, { }) +DEF_TRAVERSE_STMT(CompoundAssignOperator, { }) +DEF_TRAVERSE_STMT(CXXNoexceptExpr, { }) +DEF_TRAVERSE_STMT(PackExpansionExpr, { }) +DEF_TRAVERSE_STMT(SizeOfPackExpr, { }) +DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmPackExpr, { }) +DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmExpr, { }) +DEF_TRAVERSE_STMT(MaterializeTemporaryExpr, { }) +DEF_TRAVERSE_STMT(AtomicExpr, { }) + +// These literals (all of them) do not need any action. +DEF_TRAVERSE_STMT(IntegerLiteral, { }) +DEF_TRAVERSE_STMT(CharacterLiteral, { }) +DEF_TRAVERSE_STMT(FloatingLiteral, { }) +DEF_TRAVERSE_STMT(ImaginaryLiteral, { }) +DEF_TRAVERSE_STMT(StringLiteral, { }) +DEF_TRAVERSE_STMT(ObjCStringLiteral, { }) +DEF_TRAVERSE_STMT(ObjCBoxedExpr, { }) +DEF_TRAVERSE_STMT(ObjCArrayLiteral, { }) +DEF_TRAVERSE_STMT(ObjCDictionaryLiteral, { }) + +// Traverse OpenCL: AsType, Convert. +DEF_TRAVERSE_STMT(AsTypeExpr, { }) + +// FIXME: look at the following tricky-seeming exprs to see if we +// need to recurse on anything. These are ones that have methods +// returning decls or qualtypes or nestednamespecifier -- though I'm +// not sure if they own them -- or just seemed very complicated, or +// had lots of sub-types to explore. +// +// VisitOverloadExpr and its children: recurse on template args? etc? + +// FIXME: go through all the stmts and exprs again, and see which of them +// create new types, and recurse on the types (TypeLocs?) of those. +// Candidates: +// +// http://clang.llvm.org/doxygen/classclang_1_1CXXTypeidExpr.html +// http://clang.llvm.org/doxygen/classclang_1_1UnaryExprOrTypeTraitExpr.html +// http://clang.llvm.org/doxygen/classclang_1_1TypesCompatibleExpr.html +// Every class that has getQualifier. + +#undef DEF_TRAVERSE_STMT + +#undef TRY_TO + +} // end namespace cxindex +} // end namespace clang + +#endif // LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H |