summaryrefslogtreecommitdiffstats
path: root/sys/kern/vfs_bio.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/kern/vfs_bio.c')
-rw-r--r--sys/kern/vfs_bio.c3092
1 files changed, 3092 insertions, 0 deletions
diff --git a/sys/kern/vfs_bio.c b/sys/kern/vfs_bio.c
new file mode 100644
index 0000000..dd135cf
--- /dev/null
+++ b/sys/kern/vfs_bio.c
@@ -0,0 +1,3092 @@
+/*
+ * Copyright (c) 1994,1997 John S. Dyson
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice immediately at the beginning of the file, without modification,
+ * this list of conditions, and the following disclaimer.
+ * 2. Absolutely no warranty of function or purpose is made by the author
+ * John S. Dyson.
+ *
+ * $FreeBSD$
+ */
+
+/*
+ * this file contains a new buffer I/O scheme implementing a coherent
+ * VM object and buffer cache scheme. Pains have been taken to make
+ * sure that the performance degradation associated with schemes such
+ * as this is not realized.
+ *
+ * Author: John S. Dyson
+ * Significant help during the development and debugging phases
+ * had been provided by David Greenman, also of the FreeBSD core team.
+ *
+ * see man buf(9) for more info.
+ */
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/kernel.h>
+#include <sys/sysctl.h>
+#include <sys/proc.h>
+#include <sys/kthread.h>
+#include <sys/vnode.h>
+#include <sys/vmmeter.h>
+#include <sys/lock.h>
+#include <vm/vm.h>
+#include <vm/vm_param.h>
+#include <vm/vm_kern.h>
+#include <vm/vm_pageout.h>
+#include <vm/vm_page.h>
+#include <vm/vm_object.h>
+#include <vm/vm_extern.h>
+#include <vm/vm_map.h>
+#include <sys/buf.h>
+#include <sys/mount.h>
+#include <sys/malloc.h>
+#include <sys/resourcevar.h>
+#include <sys/conf.h>
+
+static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
+
+struct bio_ops bioops; /* I/O operation notification */
+
+struct buf *buf; /* buffer header pool */
+struct swqueue bswlist;
+
+static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
+ vm_offset_t to);
+static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
+ vm_offset_t to);
+static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
+ int pageno, vm_page_t m);
+static void vfs_clean_pages(struct buf * bp);
+static void vfs_setdirty(struct buf *bp);
+static void vfs_vmio_release(struct buf *bp);
+static int flushbufqueues(void);
+
+static int bd_request;
+
+static void buf_daemon __P((void));
+/*
+ * bogus page -- for I/O to/from partially complete buffers
+ * this is a temporary solution to the problem, but it is not
+ * really that bad. it would be better to split the buffer
+ * for input in the case of buffers partially already in memory,
+ * but the code is intricate enough already.
+ */
+vm_page_t bogus_page;
+int runningbufspace;
+int vmiodirenable = FALSE;
+int buf_maxio = DFLTPHYS;
+static vm_offset_t bogus_offset;
+
+static int bufspace, maxbufspace, vmiospace,
+ bufmallocspace, maxbufmallocspace, hibufspace;
+static int maxbdrun;
+static int needsbuffer;
+static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
+static int numfreebuffers, lofreebuffers, hifreebuffers;
+static int getnewbufcalls;
+static int getnewbufrestarts;
+static int kvafreespace;
+
+SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
+ &numdirtybuffers, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
+ &lodirtybuffers, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
+ &hidirtybuffers, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
+ &numfreebuffers, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
+ &lofreebuffers, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
+ &hifreebuffers, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
+ &runningbufspace, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
+ &maxbufspace, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
+ &hibufspace, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
+ &bufspace, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, maxbdrun, CTLFLAG_RW,
+ &maxbdrun, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
+ &vmiospace, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
+ &maxbufmallocspace, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
+ &bufmallocspace, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
+ &kvafreespace, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
+ &getnewbufcalls, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
+ &getnewbufrestarts, 0, "");
+SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
+ &vmiodirenable, 0, "");
+
+
+static int bufhashmask;
+static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
+struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
+char *buf_wmesg = BUF_WMESG;
+
+extern int vm_swap_size;
+
+#define BUF_MAXUSE 24
+
+#define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
+#define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */
+#define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */
+#define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
+#define VFS_BIO_NEED_KVASPACE 0x10 /* wait for buffer_map space, emerg */
+
+/*
+ * Buffer hash table code. Note that the logical block scans linearly, which
+ * gives us some L1 cache locality.
+ */
+
+static __inline
+struct bufhashhdr *
+bufhash(struct vnode *vnp, daddr_t bn)
+{
+ return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
+}
+
+/*
+ * kvaspacewakeup:
+ *
+ * Called when kva space is potential available for recovery or when
+ * kva space is recovered in the buffer_map. This function wakes up
+ * anyone waiting for buffer_map kva space. Even though the buffer_map
+ * is larger then maxbufspace, this situation will typically occur
+ * when the buffer_map gets fragmented.
+ */
+
+static __inline void
+kvaspacewakeup(void)
+{
+ /*
+ * If someone is waiting for KVA space, wake them up. Even
+ * though we haven't freed the kva space yet, the waiting
+ * process will be able to now.
+ */
+ if (needsbuffer & VFS_BIO_NEED_KVASPACE) {
+ needsbuffer &= ~VFS_BIO_NEED_KVASPACE;
+ wakeup(&needsbuffer);
+ }
+}
+
+/*
+ * numdirtywakeup:
+ *
+ * If someone is blocked due to there being too many dirty buffers,
+ * and numdirtybuffers is now reasonable, wake them up.
+ */
+
+static __inline void
+numdirtywakeup(void)
+{
+ if (numdirtybuffers < hidirtybuffers) {
+ if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
+ needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
+ wakeup(&needsbuffer);
+ }
+ }
+}
+
+/*
+ * bufspacewakeup:
+ *
+ * Called when buffer space is potentially available for recovery or when
+ * buffer space is recovered. getnewbuf() will block on this flag when
+ * it is unable to free sufficient buffer space. Buffer space becomes
+ * recoverable when bp's get placed back in the queues.
+ */
+
+static __inline void
+bufspacewakeup(void)
+{
+ /*
+ * If someone is waiting for BUF space, wake them up. Even
+ * though we haven't freed the kva space yet, the waiting
+ * process will be able to now.
+ */
+ if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
+ needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
+ wakeup(&needsbuffer);
+ }
+}
+
+/*
+ * bufcountwakeup:
+ *
+ * Called when a buffer has been added to one of the free queues to
+ * account for the buffer and to wakeup anyone waiting for free buffers.
+ * This typically occurs when large amounts of metadata are being handled
+ * by the buffer cache ( else buffer space runs out first, usually ).
+ */
+
+static __inline void
+bufcountwakeup(void)
+{
+ ++numfreebuffers;
+ if (needsbuffer) {
+ needsbuffer &= ~VFS_BIO_NEED_ANY;
+ if (numfreebuffers >= hifreebuffers)
+ needsbuffer &= ~VFS_BIO_NEED_FREE;
+ wakeup(&needsbuffer);
+ }
+}
+
+/*
+ * vfs_buf_test_cache:
+ *
+ * Called when a buffer is extended. This function clears the B_CACHE
+ * bit if the newly extended portion of the buffer does not contain
+ * valid data.
+ */
+static __inline__
+void
+vfs_buf_test_cache(struct buf *bp,
+ vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
+ vm_page_t m)
+{
+ if (bp->b_flags & B_CACHE) {
+ int base = (foff + off) & PAGE_MASK;
+ if (vm_page_is_valid(m, base, size) == 0)
+ bp->b_flags &= ~B_CACHE;
+ }
+}
+
+static __inline__
+void
+bd_wakeup(int dirtybuflevel)
+{
+ if (numdirtybuffers >= dirtybuflevel && bd_request == 0) {
+ bd_request = 1;
+ wakeup(&bd_request);
+ }
+}
+
+
+/*
+ * Initialize buffer headers and related structures.
+ */
+
+caddr_t
+bufhashinit(caddr_t vaddr)
+{
+ /* first, make a null hash table */
+ for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
+ ;
+ bufhashtbl = (void *)vaddr;
+ vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
+ --bufhashmask;
+ return(vaddr);
+}
+
+void
+bufinit(void)
+{
+ struct buf *bp;
+ int i;
+
+ TAILQ_INIT(&bswlist);
+ LIST_INIT(&invalhash);
+ simple_lock_init(&buftimelock);
+
+ for (i = 0; i <= bufhashmask; i++)
+ LIST_INIT(&bufhashtbl[i]);
+
+ /* next, make a null set of free lists */
+ for (i = 0; i < BUFFER_QUEUES; i++)
+ TAILQ_INIT(&bufqueues[i]);
+
+ /* finally, initialize each buffer header and stick on empty q */
+ for (i = 0; i < nbuf; i++) {
+ bp = &buf[i];
+ bzero(bp, sizeof *bp);
+ bp->b_flags = B_INVAL; /* we're just an empty header */
+ bp->b_dev = NODEV;
+ bp->b_rcred = NOCRED;
+ bp->b_wcred = NOCRED;
+ bp->b_qindex = QUEUE_EMPTY;
+ bp->b_xflags = 0;
+ LIST_INIT(&bp->b_dep);
+ BUF_LOCKINIT(bp);
+ TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
+ LIST_INSERT_HEAD(&invalhash, bp, b_hash);
+ }
+
+ /*
+ * maxbufspace is currently calculated to be maximally efficient
+ * when the filesystem block size is DFLTBSIZE or DFLTBSIZE*2
+ * (4K or 8K). To reduce the number of stall points our calculation
+ * is based on DFLTBSIZE which should reduce the chances of actually
+ * running out of buffer headers. The maxbufspace calculation is also
+ * based on DFLTBSIZE (4K) instead of BKVASIZE (8K) in order to
+ * reduce the chance that a KVA allocation will fail due to
+ * fragmentation. While this does not usually create a stall,
+ * the KVA map allocation/free functions are O(N) rather then O(1)
+ * so running them constantly would result in inefficient O(N*M)
+ * buffer cache operation.
+ */
+ maxbufspace = (nbuf + 8) * DFLTBSIZE;
+ hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 5);
+/*
+ * Limit the amount of malloc memory since it is wired permanently into
+ * the kernel space. Even though this is accounted for in the buffer
+ * allocation, we don't want the malloced region to grow uncontrolled.
+ * The malloc scheme improves memory utilization significantly on average
+ * (small) directories.
+ */
+ maxbufmallocspace = hibufspace / 20;
+
+/*
+ * Reduce the chance of a deadlock occuring by limiting the number
+ * of delayed-write dirty buffers we allow to stack up.
+ */
+ lodirtybuffers = nbuf / 7 + 10;
+ hidirtybuffers = nbuf / 4 + 20;
+ numdirtybuffers = 0;
+/*
+ * To support extreme low-memory systems, make sure hidirtybuffers cannot
+ * eat up all available buffer space. This occurs when our minimum cannot
+ * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming
+ * BKVASIZE'd (8K) buffers. We also reduce buf_maxio in this case (used
+ * by the clustering code) in an attempt to further reduce the load on
+ * the buffer cache.
+ */
+ while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
+ lodirtybuffers >>= 1;
+ hidirtybuffers >>= 1;
+ buf_maxio >>= 1;
+ }
+ if (lodirtybuffers < 2) {
+ lodirtybuffers = 2;
+ hidirtybuffers = 4;
+ }
+
+ /*
+ * Temporary, BKVASIZE may be manipulated soon, make sure we don't
+ * do something illegal. XXX
+ */
+#if BKVASIZE < MAXBSIZE
+ if (buf_maxio < BKVASIZE * 2)
+ buf_maxio = BKVASIZE * 2;
+#else
+ if (buf_maxio < MAXBSIZE)
+ buf_maxio = MAXBSIZE;
+#endif
+
+/*
+ * Try to keep the number of free buffers in the specified range,
+ * and give the syncer access to an emergency reserve.
+ */
+ lofreebuffers = nbuf / 18 + 5;
+ hifreebuffers = 2 * lofreebuffers;
+ numfreebuffers = nbuf;
+
+/*
+ * Maximum number of async ops initiated per buf_daemon loop. This is
+ * somewhat of a hack at the moment, we really need to limit ourselves
+ * based on the number of bytes of I/O in-transit that were initiated
+ * from buf_daemon.
+ */
+ if ((maxbdrun = nswbuf / 4) < 4)
+ maxbdrun = 4;
+
+ kvafreespace = 0;
+
+ bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
+ bogus_page = vm_page_alloc(kernel_object,
+ ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
+ VM_ALLOC_NORMAL);
+ cnt.v_wire_count++;
+
+}
+
+/*
+ * Free the kva allocation for a buffer
+ * Must be called only at splbio or higher,
+ * as this is the only locking for buffer_map.
+ */
+static void
+bfreekva(struct buf * bp)
+{
+ if (bp->b_kvasize) {
+ vm_map_delete(buffer_map,
+ (vm_offset_t) bp->b_kvabase,
+ (vm_offset_t) bp->b_kvabase + bp->b_kvasize
+ );
+ bp->b_kvasize = 0;
+ kvaspacewakeup();
+ }
+}
+
+/*
+ * bremfree:
+ *
+ * Remove the buffer from the appropriate free list.
+ */
+void
+bremfree(struct buf * bp)
+{
+ int s = splbio();
+ int old_qindex = bp->b_qindex;
+
+ if (bp->b_qindex != QUEUE_NONE) {
+ if (bp->b_qindex == QUEUE_EMPTYKVA) {
+ kvafreespace -= bp->b_kvasize;
+ }
+ KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
+ TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
+ bp->b_qindex = QUEUE_NONE;
+ runningbufspace += bp->b_bufsize;
+ } else {
+#if !defined(MAX_PERF)
+ if (BUF_REFCNT(bp) <= 1)
+ panic("bremfree: removing a buffer not on a queue");
+#endif
+ }
+
+ /*
+ * Fixup numfreebuffers count. If the buffer is invalid or not
+ * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
+ * the buffer was free and we must decrement numfreebuffers.
+ */
+ if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
+ switch(old_qindex) {
+ case QUEUE_DIRTY:
+ case QUEUE_CLEAN:
+ case QUEUE_EMPTY:
+ case QUEUE_EMPTYKVA:
+ --numfreebuffers;
+ break;
+ default:
+ break;
+ }
+ }
+ splx(s);
+}
+
+
+/*
+ * Get a buffer with the specified data. Look in the cache first. We
+ * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
+ * is set, the buffer is valid and we do not have to do anything ( see
+ * getblk() ).
+ */
+int
+bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
+ struct buf ** bpp)
+{
+ struct buf *bp;
+
+ bp = getblk(vp, blkno, size, 0, 0);
+ *bpp = bp;
+
+ /* if not found in cache, do some I/O */
+ if ((bp->b_flags & B_CACHE) == 0) {
+ if (curproc != NULL)
+ curproc->p_stats->p_ru.ru_inblock++;
+ KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
+ bp->b_flags |= B_READ;
+ bp->b_flags &= ~(B_ERROR | B_INVAL);
+ if (bp->b_rcred == NOCRED) {
+ if (cred != NOCRED)
+ crhold(cred);
+ bp->b_rcred = cred;
+ }
+ vfs_busy_pages(bp, 0);
+ VOP_STRATEGY(vp, bp);
+ return (biowait(bp));
+ }
+ return (0);
+}
+
+/*
+ * Operates like bread, but also starts asynchronous I/O on
+ * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
+ * to initiating I/O . If B_CACHE is set, the buffer is valid
+ * and we do not have to do anything.
+ */
+int
+breadn(struct vnode * vp, daddr_t blkno, int size,
+ daddr_t * rablkno, int *rabsize,
+ int cnt, struct ucred * cred, struct buf ** bpp)
+{
+ struct buf *bp, *rabp;
+ int i;
+ int rv = 0, readwait = 0;
+
+ *bpp = bp = getblk(vp, blkno, size, 0, 0);
+
+ /* if not found in cache, do some I/O */
+ if ((bp->b_flags & B_CACHE) == 0) {
+ if (curproc != NULL)
+ curproc->p_stats->p_ru.ru_inblock++;
+ bp->b_flags |= B_READ;
+ bp->b_flags &= ~(B_ERROR | B_INVAL);
+ if (bp->b_rcred == NOCRED) {
+ if (cred != NOCRED)
+ crhold(cred);
+ bp->b_rcred = cred;
+ }
+ vfs_busy_pages(bp, 0);
+ VOP_STRATEGY(vp, bp);
+ ++readwait;
+ }
+
+ for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
+ if (inmem(vp, *rablkno))
+ continue;
+ rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
+
+ if ((rabp->b_flags & B_CACHE) == 0) {
+ if (curproc != NULL)
+ curproc->p_stats->p_ru.ru_inblock++;
+ rabp->b_flags |= B_READ | B_ASYNC;
+ rabp->b_flags &= ~(B_ERROR | B_INVAL);
+ if (rabp->b_rcred == NOCRED) {
+ if (cred != NOCRED)
+ crhold(cred);
+ rabp->b_rcred = cred;
+ }
+ vfs_busy_pages(rabp, 0);
+ BUF_KERNPROC(rabp);
+ VOP_STRATEGY(vp, rabp);
+ } else {
+ brelse(rabp);
+ }
+ }
+
+ if (readwait) {
+ rv = biowait(bp);
+ }
+ return (rv);
+}
+
+/*
+ * Write, release buffer on completion. (Done by iodone
+ * if async). Do not bother writing anything if the buffer
+ * is invalid.
+ *
+ * Note that we set B_CACHE here, indicating that buffer is
+ * fully valid and thus cacheable. This is true even of NFS
+ * now so we set it generally. This could be set either here
+ * or in biodone() since the I/O is synchronous. We put it
+ * here.
+ */
+int
+bwrite(struct buf * bp)
+{
+ int oldflags, s;
+
+ if (bp->b_flags & B_INVAL) {
+ brelse(bp);
+ return (0);
+ }
+
+ oldflags = bp->b_flags;
+
+#if !defined(MAX_PERF)
+ if (BUF_REFCNT(bp) == 0)
+ panic("bwrite: buffer is not busy???");
+#endif
+ s = splbio();
+ bundirty(bp);
+
+ bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
+ bp->b_flags |= B_WRITEINPROG | B_CACHE;
+
+ bp->b_vp->v_numoutput++;
+ vfs_busy_pages(bp, 1);
+ if (curproc != NULL)
+ curproc->p_stats->p_ru.ru_oublock++;
+ splx(s);
+ if (oldflags & B_ASYNC)
+ BUF_KERNPROC(bp);
+ VOP_STRATEGY(bp->b_vp, bp);
+
+ if ((oldflags & B_ASYNC) == 0) {
+ int rtval = biowait(bp);
+ brelse(bp);
+ return (rtval);
+ }
+
+ return (0);
+}
+
+/*
+ * Delayed write. (Buffer is marked dirty). Do not bother writing
+ * anything if the buffer is marked invalid.
+ *
+ * Note that since the buffer must be completely valid, we can safely
+ * set B_CACHE. In fact, we have to set B_CACHE here rather then in
+ * biodone() in order to prevent getblk from writing the buffer
+ * out synchronously.
+ */
+void
+bdwrite(struct buf * bp)
+{
+#if !defined(MAX_PERF)
+ if (BUF_REFCNT(bp) == 0)
+ panic("bdwrite: buffer is not busy");
+#endif
+
+ if (bp->b_flags & B_INVAL) {
+ brelse(bp);
+ return;
+ }
+ bdirty(bp);
+
+ /*
+ * Set B_CACHE, indicating that the buffer is fully valid. This is
+ * true even of NFS now.
+ */
+ bp->b_flags |= B_CACHE;
+
+ /*
+ * This bmap keeps the system from needing to do the bmap later,
+ * perhaps when the system is attempting to do a sync. Since it
+ * is likely that the indirect block -- or whatever other datastructure
+ * that the filesystem needs is still in memory now, it is a good
+ * thing to do this. Note also, that if the pageout daemon is
+ * requesting a sync -- there might not be enough memory to do
+ * the bmap then... So, this is important to do.
+ */
+ if (bp->b_lblkno == bp->b_blkno) {
+ VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
+ }
+
+ /*
+ * Set the *dirty* buffer range based upon the VM system dirty pages.
+ */
+ vfs_setdirty(bp);
+
+ /*
+ * We need to do this here to satisfy the vnode_pager and the
+ * pageout daemon, so that it thinks that the pages have been
+ * "cleaned". Note that since the pages are in a delayed write
+ * buffer -- the VFS layer "will" see that the pages get written
+ * out on the next sync, or perhaps the cluster will be completed.
+ */
+ vfs_clean_pages(bp);
+ bqrelse(bp);
+
+ /*
+ * Wakeup the buffer flushing daemon if we have saturated the
+ * buffer cache.
+ */
+
+ bd_wakeup(hidirtybuffers);
+
+ /*
+ * note: we cannot initiate I/O from a bdwrite even if we wanted to,
+ * due to the softdep code.
+ */
+}
+
+/*
+ * bdirty:
+ *
+ * Turn buffer into delayed write request. We must clear B_READ and
+ * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to
+ * itself to properly update it in the dirty/clean lists. We mark it
+ * B_DONE to ensure that any asynchronization of the buffer properly
+ * clears B_DONE ( else a panic will occur later ).
+ *
+ * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
+ * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty()
+ * should only be called if the buffer is known-good.
+ *
+ * Since the buffer is not on a queue, we do not update the numfreebuffers
+ * count.
+ *
+ * Must be called at splbio().
+ * The buffer must be on QUEUE_NONE.
+ */
+void
+bdirty(bp)
+ struct buf *bp;
+{
+ KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
+ bp->b_flags &= ~(B_READ|B_RELBUF);
+
+ if ((bp->b_flags & B_DELWRI) == 0) {
+ bp->b_flags |= B_DONE | B_DELWRI;
+ reassignbuf(bp, bp->b_vp);
+ ++numdirtybuffers;
+ bd_wakeup(hidirtybuffers);
+ }
+}
+
+/*
+ * bundirty:
+ *
+ * Clear B_DELWRI for buffer.
+ *
+ * Since the buffer is not on a queue, we do not update the numfreebuffers
+ * count.
+ *
+ * Must be called at splbio().
+ * The buffer must be on QUEUE_NONE.
+ */
+
+void
+bundirty(bp)
+ struct buf *bp;
+{
+ KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
+
+ if (bp->b_flags & B_DELWRI) {
+ bp->b_flags &= ~B_DELWRI;
+ reassignbuf(bp, bp->b_vp);
+ --numdirtybuffers;
+ numdirtywakeup();
+ }
+}
+
+/*
+ * bawrite:
+ *
+ * Asynchronous write. Start output on a buffer, but do not wait for
+ * it to complete. The buffer is released when the output completes.
+ *
+ * bwrite() ( or the VOP routine anyway ) is responsible for handling
+ * B_INVAL buffers. Not us.
+ */
+void
+bawrite(struct buf * bp)
+{
+ bp->b_flags |= B_ASYNC;
+ (void) VOP_BWRITE(bp->b_vp, bp);
+}
+
+/*
+ * bowrite:
+ *
+ * Ordered write. Start output on a buffer, and flag it so that the
+ * device will write it in the order it was queued. The buffer is
+ * released when the output completes. bwrite() ( or the VOP routine
+ * anyway ) is responsible for handling B_INVAL buffers.
+ */
+int
+bowrite(struct buf * bp)
+{
+ bp->b_flags |= B_ORDERED | B_ASYNC;
+ return (VOP_BWRITE(bp->b_vp, bp));
+}
+
+/*
+ * bwillwrite:
+ *
+ * Called prior to the locking of any vnodes when we are expecting to
+ * write. We do not want to starve the buffer cache with too many
+ * dirty buffers so we block here. By blocking prior to the locking
+ * of any vnodes we attempt to avoid the situation where a locked vnode
+ * prevents the various system daemons from flushing related buffers.
+ */
+
+void
+bwillwrite(void)
+{
+ int twenty = (hidirtybuffers - lodirtybuffers) / 5;
+
+ if (numdirtybuffers > hidirtybuffers + twenty) {
+ int s;
+
+ s = splbio();
+ while (numdirtybuffers > hidirtybuffers) {
+ bd_wakeup(hidirtybuffers);
+ needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
+ tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
+ }
+ splx(s);
+ }
+}
+
+/*
+ * brelse:
+ *
+ * Release a busy buffer and, if requested, free its resources. The
+ * buffer will be stashed in the appropriate bufqueue[] allowing it
+ * to be accessed later as a cache entity or reused for other purposes.
+ */
+void
+brelse(struct buf * bp)
+{
+ int s;
+ int kvawakeup = 0;
+
+ KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
+
+ s = splbio();
+
+ if (bp->b_flags & B_LOCKED)
+ bp->b_flags &= ~B_ERROR;
+
+ if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
+ /*
+ * Failed write, redirty. Must clear B_ERROR to prevent
+ * pages from being scrapped. If B_INVAL is set then
+ * this case is not run and the next case is run to
+ * destroy the buffer. B_INVAL can occur if the buffer
+ * is outside the range supported by the underlying device.
+ */
+ bp->b_flags &= ~B_ERROR;
+ bdirty(bp);
+ } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
+ (bp->b_bufsize <= 0)) {
+ /*
+ * Either a failed I/O or we were asked to free or not
+ * cache the buffer.
+ */
+ bp->b_flags |= B_INVAL;
+ if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
+ (*bioops.io_deallocate)(bp);
+ if (bp->b_flags & B_DELWRI) {
+ --numdirtybuffers;
+ numdirtywakeup();
+ }
+ bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
+ if ((bp->b_flags & B_VMIO) == 0) {
+ if (bp->b_bufsize)
+ allocbuf(bp, 0);
+ if (bp->b_vp)
+ brelvp(bp);
+ }
+ }
+
+ /*
+ * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release()
+ * is called with B_DELWRI set, the underlying pages may wind up
+ * getting freed causing a previous write (bdwrite()) to get 'lost'
+ * because pages associated with a B_DELWRI bp are marked clean.
+ *
+ * We still allow the B_INVAL case to call vfs_vmio_release(), even
+ * if B_DELWRI is set.
+ */
+
+ if (bp->b_flags & B_DELWRI)
+ bp->b_flags &= ~B_RELBUF;
+
+ /*
+ * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer
+ * constituted, not even NFS buffers now. Two flags effect this. If
+ * B_INVAL, the struct buf is invalidated but the VM object is kept
+ * around ( i.e. so it is trivial to reconstitute the buffer later ).
+ *
+ * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
+ * invalidated. B_ERROR cannot be set for a failed write unless the
+ * buffer is also B_INVAL because it hits the re-dirtying code above.
+ *
+ * Normally we can do this whether a buffer is B_DELWRI or not. If
+ * the buffer is an NFS buffer, it is tracking piecemeal writes or
+ * the commit state and we cannot afford to lose the buffer.
+ */
+ if ((bp->b_flags & B_VMIO)
+ && !(bp->b_vp->v_tag == VT_NFS &&
+ !vn_isdisk(bp->b_vp) &&
+ (bp->b_flags & B_DELWRI))
+ ) {
+
+ int i, j, resid;
+ vm_page_t m;
+ off_t foff;
+ vm_pindex_t poff;
+ vm_object_t obj;
+ struct vnode *vp;
+
+ vp = bp->b_vp;
+
+ /*
+ * Get the base offset and length of the buffer. Note that
+ * for block sizes that are less then PAGE_SIZE, the b_data
+ * base of the buffer does not represent exactly b_offset and
+ * neither b_offset nor b_size are necessarily page aligned.
+ * Instead, the starting position of b_offset is:
+ *
+ * b_data + (b_offset & PAGE_MASK)
+ *
+ * block sizes less then DEV_BSIZE (usually 512) are not
+ * supported due to the page granularity bits (m->valid,
+ * m->dirty, etc...).
+ *
+ * See man buf(9) for more information
+ */
+
+ resid = bp->b_bufsize;
+ foff = bp->b_offset;
+
+ for (i = 0; i < bp->b_npages; i++) {
+ m = bp->b_pages[i];
+ vm_page_flag_clear(m, PG_ZERO);
+ if (m == bogus_page) {
+
+ obj = (vm_object_t) vp->v_object;
+ poff = OFF_TO_IDX(bp->b_offset);
+
+ for (j = i; j < bp->b_npages; j++) {
+ m = bp->b_pages[j];
+ if (m == bogus_page) {
+ m = vm_page_lookup(obj, poff + j);
+#if !defined(MAX_PERF)
+ if (!m) {
+ panic("brelse: page missing\n");
+ }
+#endif
+ bp->b_pages[j] = m;
+ }
+ }
+
+ if ((bp->b_flags & B_INVAL) == 0) {
+ pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
+ }
+ }
+ if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
+ int poffset = foff & PAGE_MASK;
+ int presid = resid > (PAGE_SIZE - poffset) ?
+ (PAGE_SIZE - poffset) : resid;
+
+ KASSERT(presid >= 0, ("brelse: extra page"));
+ vm_page_set_invalid(m, poffset, presid);
+ }
+ resid -= PAGE_SIZE - (foff & PAGE_MASK);
+ foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
+ }
+
+ if (bp->b_flags & (B_INVAL | B_RELBUF))
+ vfs_vmio_release(bp);
+
+ } else if (bp->b_flags & B_VMIO) {
+
+ if (bp->b_flags & (B_INVAL | B_RELBUF))
+ vfs_vmio_release(bp);
+
+ }
+
+#if !defined(MAX_PERF)
+ if (bp->b_qindex != QUEUE_NONE)
+ panic("brelse: free buffer onto another queue???");
+#endif
+ if (BUF_REFCNT(bp) > 1) {
+ /* Temporary panic to verify exclusive locking */
+ /* This panic goes away when we allow shared refs */
+ panic("brelse: multiple refs");
+ /* do not release to free list */
+ BUF_UNLOCK(bp);
+ splx(s);
+ return;
+ }
+
+ /* enqueue */
+
+ /* buffers with no memory */
+ if (bp->b_bufsize == 0) {
+ bp->b_flags |= B_INVAL;
+ if (bp->b_kvasize) {
+ bp->b_qindex = QUEUE_EMPTYKVA;
+ kvawakeup = 1;
+ } else {
+ bp->b_qindex = QUEUE_EMPTY;
+ }
+ TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
+ LIST_REMOVE(bp, b_hash);
+ LIST_INSERT_HEAD(&invalhash, bp, b_hash);
+ bp->b_dev = NODEV;
+ kvafreespace += bp->b_kvasize;
+ /* buffers with junk contents */
+ } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
+ bp->b_flags |= B_INVAL;
+ bp->b_qindex = QUEUE_CLEAN;
+ if (bp->b_kvasize)
+ kvawakeup = 1;
+ TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
+ LIST_REMOVE(bp, b_hash);
+ LIST_INSERT_HEAD(&invalhash, bp, b_hash);
+ bp->b_dev = NODEV;
+
+ /* buffers that are locked */
+ } else if (bp->b_flags & B_LOCKED) {
+ bp->b_qindex = QUEUE_LOCKED;
+ TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
+
+ /* remaining buffers */
+ } else {
+ switch(bp->b_flags & (B_DELWRI|B_AGE)) {
+ case B_DELWRI | B_AGE:
+ bp->b_qindex = QUEUE_DIRTY;
+ TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
+ break;
+ case B_DELWRI:
+ bp->b_qindex = QUEUE_DIRTY;
+ TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
+ break;
+ case B_AGE:
+ bp->b_qindex = QUEUE_CLEAN;
+ TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
+ if (bp->b_kvasize)
+ kvawakeup = 1;
+ break;
+ default:
+ bp->b_qindex = QUEUE_CLEAN;
+ TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
+ if (bp->b_kvasize)
+ kvawakeup = 1;
+ break;
+ }
+ }
+
+ /*
+ * If B_INVAL, clear B_DELWRI. We've already placed the buffer
+ * on the correct queue.
+ */
+ if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
+ bp->b_flags &= ~B_DELWRI;
+ --numdirtybuffers;
+ numdirtywakeup();
+ }
+
+ runningbufspace -= bp->b_bufsize;
+
+ /*
+ * Fixup numfreebuffers count. The bp is on an appropriate queue
+ * unless locked. We then bump numfreebuffers if it is not B_DELWRI.
+ * We've already handled the B_INVAL case ( B_DELWRI will be clear
+ * if B_INVAL is set ).
+ */
+
+ if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
+ bufcountwakeup();
+
+ /*
+ * Something we can maybe free.
+ */
+
+ if (bp->b_bufsize)
+ bufspacewakeup();
+ if (kvawakeup)
+ kvaspacewakeup();
+
+ /* unlock */
+ BUF_UNLOCK(bp);
+ bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
+ splx(s);
+}
+
+/*
+ * Release a buffer back to the appropriate queue but do not try to free
+ * it.
+ *
+ * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
+ * biodone() to requeue an async I/O on completion. It is also used when
+ * known good buffers need to be requeued but we think we may need the data
+ * again soon.
+ */
+void
+bqrelse(struct buf * bp)
+{
+ int s;
+
+ s = splbio();
+
+ KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
+
+#if !defined(MAX_PERF)
+ if (bp->b_qindex != QUEUE_NONE)
+ panic("bqrelse: free buffer onto another queue???");
+#endif
+ if (BUF_REFCNT(bp) > 1) {
+ /* do not release to free list */
+ panic("bqrelse: multiple refs");
+ BUF_UNLOCK(bp);
+ splx(s);
+ return;
+ }
+ if (bp->b_flags & B_LOCKED) {
+ bp->b_flags &= ~B_ERROR;
+ bp->b_qindex = QUEUE_LOCKED;
+ TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
+ /* buffers with stale but valid contents */
+ } else if (bp->b_flags & B_DELWRI) {
+ bp->b_qindex = QUEUE_DIRTY;
+ TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
+ } else {
+ bp->b_qindex = QUEUE_CLEAN;
+ TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
+ }
+
+ runningbufspace -= bp->b_bufsize;
+
+ if ((bp->b_flags & B_LOCKED) == 0 &&
+ ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
+ bufcountwakeup();
+ }
+
+ /*
+ * Something we can maybe wakeup
+ */
+ if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
+ bufspacewakeup();
+
+ /* unlock */
+ BUF_UNLOCK(bp);
+ bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
+ splx(s);
+}
+
+static void
+vfs_vmio_release(bp)
+ struct buf *bp;
+{
+ int i, s;
+ vm_page_t m;
+
+ s = splvm();
+ for (i = 0; i < bp->b_npages; i++) {
+ m = bp->b_pages[i];
+ bp->b_pages[i] = NULL;
+ /*
+ * In order to keep page LRU ordering consistent, put
+ * everything on the inactive queue.
+ */
+ vm_page_unwire(m, 0);
+ /*
+ * We don't mess with busy pages, it is
+ * the responsibility of the process that
+ * busied the pages to deal with them.
+ */
+ if ((m->flags & PG_BUSY) || (m->busy != 0))
+ continue;
+
+ if (m->wire_count == 0) {
+ vm_page_flag_clear(m, PG_ZERO);
+ /*
+ * Might as well free the page if we can and it has
+ * no valid data.
+ */
+ if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
+ vm_page_busy(m);
+ vm_page_protect(m, VM_PROT_NONE);
+ vm_page_free(m);
+ }
+ }
+ }
+ bufspace -= bp->b_bufsize;
+ vmiospace -= bp->b_bufsize;
+ runningbufspace -= bp->b_bufsize;
+ splx(s);
+ pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
+ if (bp->b_bufsize)
+ bufspacewakeup();
+ bp->b_npages = 0;
+ bp->b_bufsize = 0;
+ bp->b_flags &= ~B_VMIO;
+ if (bp->b_vp)
+ brelvp(bp);
+}
+
+/*
+ * Check to see if a block is currently memory resident.
+ */
+struct buf *
+gbincore(struct vnode * vp, daddr_t blkno)
+{
+ struct buf *bp;
+ struct bufhashhdr *bh;
+
+ bh = bufhash(vp, blkno);
+
+ /* Search hash chain */
+ LIST_FOREACH(bp, bh, b_hash) {
+ /* hit */
+ if (bp->b_vp == vp && bp->b_lblkno == blkno &&
+ (bp->b_flags & B_INVAL) == 0) {
+ break;
+ }
+ }
+ return (bp);
+}
+
+/*
+ * vfs_bio_awrite:
+ *
+ * Implement clustered async writes for clearing out B_DELWRI buffers.
+ * This is much better then the old way of writing only one buffer at
+ * a time. Note that we may not be presented with the buffers in the
+ * correct order, so we search for the cluster in both directions.
+ */
+int
+vfs_bio_awrite(struct buf * bp)
+{
+ int i;
+ int j;
+ daddr_t lblkno = bp->b_lblkno;
+ struct vnode *vp = bp->b_vp;
+ int s;
+ int ncl;
+ struct buf *bpa;
+ int nwritten;
+ int size;
+ int maxcl;
+
+ s = splbio();
+ /*
+ * right now we support clustered writing only to regular files. If
+ * we find a clusterable block we could be in the middle of a cluster
+ * rather then at the beginning.
+ */
+ if ((vp->v_type == VREG) &&
+ (vp->v_mount != 0) && /* Only on nodes that have the size info */
+ (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
+
+ size = vp->v_mount->mnt_stat.f_iosize;
+ maxcl = MAXPHYS / size;
+
+ for (i = 1; i < maxcl; i++) {
+ if ((bpa = gbincore(vp, lblkno + i)) &&
+ BUF_REFCNT(bpa) == 0 &&
+ ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
+ (B_DELWRI | B_CLUSTEROK)) &&
+ (bpa->b_bufsize == size)) {
+ if ((bpa->b_blkno == bpa->b_lblkno) ||
+ (bpa->b_blkno !=
+ bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
+ break;
+ } else {
+ break;
+ }
+ }
+ for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
+ if ((bpa = gbincore(vp, lblkno - j)) &&
+ BUF_REFCNT(bpa) == 0 &&
+ ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
+ (B_DELWRI | B_CLUSTEROK)) &&
+ (bpa->b_bufsize == size)) {
+ if ((bpa->b_blkno == bpa->b_lblkno) ||
+ (bpa->b_blkno !=
+ bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
+ break;
+ } else {
+ break;
+ }
+ }
+ --j;
+ ncl = i + j;
+ /*
+ * this is a possible cluster write
+ */
+ if (ncl != 1) {
+ nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
+ splx(s);
+ return nwritten;
+ }
+ }
+
+ BUF_LOCK(bp, LK_EXCLUSIVE);
+ bremfree(bp);
+ bp->b_flags |= B_ASYNC;
+
+ splx(s);
+ /*
+ * default (old) behavior, writing out only one block
+ *
+ * XXX returns b_bufsize instead of b_bcount for nwritten?
+ */
+ nwritten = bp->b_bufsize;
+ (void) VOP_BWRITE(bp->b_vp, bp);
+
+ return nwritten;
+}
+
+/*
+ * getnewbuf:
+ *
+ * Find and initialize a new buffer header, freeing up existing buffers
+ * in the bufqueues as necessary. The new buffer is returned locked.
+ *
+ * Important: B_INVAL is not set. If the caller wishes to throw the
+ * buffer away, the caller must set B_INVAL prior to calling brelse().
+ *
+ * We block if:
+ * We have insufficient buffer headers
+ * We have insufficient buffer space
+ * buffer_map is too fragmented ( space reservation fails )
+ * If we have to flush dirty buffers ( but we try to avoid this )
+ *
+ * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
+ * Instead we ask the buf daemon to do it for us. We attempt to
+ * avoid piecemeal wakeups of the pageout daemon.
+ */
+
+static struct buf *
+getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
+{
+ struct buf *bp;
+ struct buf *nbp;
+ struct buf *dbp;
+ int outofspace;
+ int nqindex;
+ int defrag = 0;
+
+ ++getnewbufcalls;
+ --getnewbufrestarts;
+restart:
+ ++getnewbufrestarts;
+
+ /*
+ * Calculate whether we are out of buffer space. This state is
+ * recalculated on every restart. If we are out of space, we
+ * have to turn off defragmentation. Setting defrag to -1 when
+ * outofspace is positive means "defrag while freeing buffers".
+ * The looping conditional will be muffed up if defrag is left
+ * positive when outofspace is positive.
+ */
+
+ dbp = NULL;
+ outofspace = 0;
+ if (bufspace >= hibufspace) {
+ if ((curproc && (curproc->p_flag & P_BUFEXHAUST) == 0) ||
+ bufspace >= maxbufspace) {
+ outofspace = 1;
+ if (defrag > 0)
+ defrag = -1;
+ }
+ }
+
+ /*
+ * defrag state is semi-persistant. 1 means we are flagged for
+ * defragging. -1 means we actually defragged something.
+ */
+ /* nop */
+
+ /*
+ * Setup for scan. If we do not have enough free buffers,
+ * we setup a degenerate case that immediately fails. Note
+ * that if we are specially marked process, we are allowed to
+ * dip into our reserves.
+ *
+ * Normally we want to find an EMPTYKVA buffer. That is, a
+ * buffer with kva already allocated. If there are no EMPTYKVA
+ * buffers we back up to the truely EMPTY buffers. When defragging
+ * we do not bother backing up since we have to locate buffers with
+ * kva to defrag. If we are out of space we skip both EMPTY and
+ * EMPTYKVA and dig right into the CLEAN queue.
+ *
+ * In this manner we avoid scanning unnecessary buffers. It is very
+ * important for us to do this because the buffer cache is almost
+ * constantly out of space or in need of defragmentation.
+ */
+
+ if (curproc && (curproc->p_flag & P_BUFEXHAUST) == 0 &&
+ numfreebuffers < lofreebuffers) {
+ nqindex = QUEUE_CLEAN;
+ nbp = NULL;
+ } else {
+ nqindex = QUEUE_EMPTYKVA;
+ nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
+ if (nbp == NULL) {
+ if (defrag <= 0) {
+ nqindex = QUEUE_EMPTY;
+ nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
+ }
+ }
+ if (outofspace || nbp == NULL) {
+ nqindex = QUEUE_CLEAN;
+ nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
+ }
+ }
+
+ /*
+ * Run scan, possibly freeing data and/or kva mappings on the fly
+ * depending.
+ */
+
+ while ((bp = nbp) != NULL) {
+ int qindex = nqindex;
+
+ /*
+ * Calculate next bp ( we can only use it if we do not block
+ * or do other fancy things ).
+ */
+ if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
+ switch(qindex) {
+ case QUEUE_EMPTY:
+ nqindex = QUEUE_EMPTYKVA;
+ if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
+ break;
+ /* fall through */
+ case QUEUE_EMPTYKVA:
+ nqindex = QUEUE_CLEAN;
+ if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
+ break;
+ /* fall through */
+ case QUEUE_CLEAN:
+ /*
+ * nbp is NULL.
+ */
+ break;
+ }
+ }
+
+ /*
+ * Sanity Checks
+ */
+ KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
+
+ /*
+ * Note: we no longer distinguish between VMIO and non-VMIO
+ * buffers.
+ */
+
+ KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
+
+ /*
+ * If we are defragging and the buffer isn't useful for fixing
+ * that problem we continue. If we are out of space and the
+ * buffer isn't useful for fixing that problem we continue.
+ */
+
+ if (defrag > 0 && bp->b_kvasize == 0)
+ continue;
+ if (outofspace > 0 && bp->b_bufsize == 0)
+ continue;
+
+ /*
+ * Start freeing the bp. This is somewhat involved. nbp
+ * remains valid only for QUEUE_EMPTY[KVA] bp's.
+ */
+
+ if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
+ panic("getnewbuf: locked buf");
+ bremfree(bp);
+
+ if (qindex == QUEUE_CLEAN) {
+ if (bp->b_flags & B_VMIO) {
+ bp->b_flags &= ~B_ASYNC;
+ vfs_vmio_release(bp);
+ }
+ if (bp->b_vp)
+ brelvp(bp);
+ }
+
+ /*
+ * NOTE: nbp is now entirely invalid. We can only restart
+ * the scan from this point on.
+ *
+ * Get the rest of the buffer freed up. b_kva* is still
+ * valid after this operation.
+ */
+
+ if (bp->b_rcred != NOCRED) {
+ crfree(bp->b_rcred);
+ bp->b_rcred = NOCRED;
+ }
+ if (bp->b_wcred != NOCRED) {
+ crfree(bp->b_wcred);
+ bp->b_wcred = NOCRED;
+ }
+ if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
+ (*bioops.io_deallocate)(bp);
+ LIST_REMOVE(bp, b_hash);
+ LIST_INSERT_HEAD(&invalhash, bp, b_hash);
+
+ if (bp->b_bufsize)
+ allocbuf(bp, 0);
+
+ bp->b_flags = 0;
+ bp->b_dev = NODEV;
+ bp->b_vp = NULL;
+ bp->b_blkno = bp->b_lblkno = 0;
+ bp->b_offset = NOOFFSET;
+ bp->b_iodone = 0;
+ bp->b_error = 0;
+ bp->b_resid = 0;
+ bp->b_bcount = 0;
+ bp->b_npages = 0;
+ bp->b_dirtyoff = bp->b_dirtyend = 0;
+
+ LIST_INIT(&bp->b_dep);
+
+ /*
+ * Ok, now that we have a free buffer, if we are defragging
+ * we have to recover the kvaspace. If we are out of space
+ * we have to free the buffer (which we just did), but we
+ * do not have to recover kva space unless we hit a defrag
+ * hicup. Being able to avoid freeing the kva space leads
+ * to a significant reduction in overhead.
+ */
+
+ if (defrag > 0) {
+ defrag = -1;
+ bp->b_flags |= B_INVAL;
+ bfreekva(bp);
+ brelse(bp);
+ goto restart;
+ }
+
+ if (outofspace > 0) {
+ outofspace = -1;
+ bp->b_flags |= B_INVAL;
+ if (defrag < 0)
+ bfreekva(bp);
+ brelse(bp);
+ goto restart;
+ }
+
+ /*
+ * We are done
+ */
+ break;
+ }
+
+ /*
+ * If we exhausted our list, sleep as appropriate. We may have to
+ * wakeup various daemons and write out some dirty buffers.
+ *
+ * Generally we are sleeping due to insufficient buffer space.
+ */
+
+ if (bp == NULL) {
+ int flags;
+ char *waitmsg;
+
+ if (defrag > 0) {
+ flags = VFS_BIO_NEED_KVASPACE;
+ waitmsg = "nbufkv";
+ } else if (outofspace > 0) {
+ waitmsg = "nbufbs";
+ flags = VFS_BIO_NEED_BUFSPACE;
+ } else {
+ waitmsg = "newbuf";
+ flags = VFS_BIO_NEED_ANY;
+ }
+
+ /* XXX */
+
+ (void) speedup_syncer();
+ needsbuffer |= flags;
+ while (needsbuffer & flags) {
+ if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
+ waitmsg, slptimeo))
+ return (NULL);
+ }
+ } else {
+ /*
+ * We finally have a valid bp. We aren't quite out of the
+ * woods, we still have to reserve kva space.
+ */
+ vm_offset_t addr = 0;
+
+ maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
+
+ if (maxsize != bp->b_kvasize) {
+ bfreekva(bp);
+
+ if (vm_map_findspace(buffer_map,
+ vm_map_min(buffer_map), maxsize, &addr)) {
+ /*
+ * Uh oh. Buffer map is to fragmented. Try
+ * to defragment.
+ */
+ if (defrag <= 0) {
+ defrag = 1;
+ bp->b_flags |= B_INVAL;
+ brelse(bp);
+ goto restart;
+ }
+ /*
+ * Uh oh. We couldn't seem to defragment
+ */
+ panic("getnewbuf: unreachable code reached");
+ }
+ }
+ if (addr) {
+ vm_map_insert(buffer_map, NULL, 0,
+ addr, addr + maxsize,
+ VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
+
+ bp->b_kvabase = (caddr_t) addr;
+ bp->b_kvasize = maxsize;
+ }
+ bp->b_data = bp->b_kvabase;
+ }
+ return(bp);
+}
+
+/*
+ * waitfreebuffers:
+ *
+ * Wait for sufficient free buffers. Only called from normal processes.
+ */
+
+static void
+waitfreebuffers(int slpflag, int slptimeo)
+{
+ while (numfreebuffers < hifreebuffers) {
+ if (numfreebuffers >= hifreebuffers)
+ break;
+ needsbuffer |= VFS_BIO_NEED_FREE;
+ if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
+ break;
+ }
+}
+
+/*
+ * buf_daemon:
+ *
+ * buffer flushing daemon. Buffers are normally flushed by the
+ * update daemon but if it cannot keep up this process starts to
+ * take the load in an attempt to prevent getnewbuf() from blocking.
+ */
+
+static struct proc *bufdaemonproc;
+static int bd_interval;
+static int bd_flushto;
+
+static struct kproc_desc buf_kp = {
+ "bufdaemon",
+ buf_daemon,
+ &bufdaemonproc
+};
+SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
+
+static void
+buf_daemon()
+{
+ int s;
+ /*
+ * This process is allowed to take the buffer cache to the limit
+ */
+ curproc->p_flag |= P_BUFEXHAUST;
+ s = splbio();
+
+ bd_interval = 5 * hz; /* dynamically adjusted */
+ bd_flushto = hidirtybuffers; /* dynamically adjusted */
+
+ while (TRUE) {
+ bd_request = 0;
+
+ /*
+ * Do the flush. Limit the number of buffers we flush in one
+ * go. The failure condition occurs when processes are writing
+ * buffers faster then we can dispose of them. In this case
+ * we may be flushing so often that the previous set of flushes
+ * have not had time to complete, causing us to run out of
+ * physical buffers and block.
+ */
+ {
+ int runcount = maxbdrun;
+
+ while (numdirtybuffers > bd_flushto && runcount) {
+ --runcount;
+ if (flushbufqueues() == 0)
+ break;
+ }
+ }
+
+ /*
+ * If nobody is requesting anything we sleep
+ */
+ if (bd_request == 0)
+ tsleep(&bd_request, PVM, "psleep", bd_interval);
+
+ /*
+ * We calculate how much to add or subtract from bd_flushto
+ * and bd_interval based on how far off we are from the
+ * optimal number of dirty buffers, which is 20% below the
+ * hidirtybuffers mark. We cannot use hidirtybuffers straight
+ * because being right on the mark will cause getnewbuf()
+ * to oscillate our wakeup.
+ *
+ * The larger the error in either direction, the more we adjust
+ * bd_flushto and bd_interval. The time interval is adjusted
+ * by 2 seconds per whole-buffer-range of error. This is an
+ * exponential convergence algorithm, with large errors
+ * producing large changes and small errors producing small
+ * changes.
+ */
+
+ {
+ int brange = hidirtybuffers - lodirtybuffers;
+ int middb = hidirtybuffers - brange / 5;
+ int deltabuf = middb - numdirtybuffers;
+
+ bd_flushto += deltabuf / 20;
+ bd_interval += deltabuf * (2 * hz) / (brange * 1);
+ }
+ if (bd_flushto < lodirtybuffers)
+ bd_flushto = lodirtybuffers;
+ if (bd_flushto > hidirtybuffers)
+ bd_flushto = hidirtybuffers;
+ if (bd_interval < hz / 10)
+ bd_interval = hz / 10;
+ if (bd_interval > 5 * hz)
+ bd_interval = 5 * hz;
+ }
+}
+
+/*
+ * flushbufqueues:
+ *
+ * Try to flush a buffer in the dirty queue. We must be careful to
+ * free up B_INVAL buffers instead of write them, which NFS is
+ * particularly sensitive to.
+ */
+
+static int
+flushbufqueues(void)
+{
+ struct buf *bp;
+ int r = 0;
+
+ bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
+
+ while (bp) {
+ KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
+ if ((bp->b_flags & B_DELWRI) != 0) {
+ if (bp->b_flags & B_INVAL) {
+ if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
+ panic("flushbufqueues: locked buf");
+ bremfree(bp);
+ brelse(bp);
+ ++r;
+ break;
+ }
+ vfs_bio_awrite(bp);
+ ++r;
+ break;
+ }
+ bp = TAILQ_NEXT(bp, b_freelist);
+ }
+ return(r);
+}
+
+/*
+ * Check to see if a block is currently memory resident.
+ */
+struct buf *
+incore(struct vnode * vp, daddr_t blkno)
+{
+ struct buf *bp;
+
+ int s = splbio();
+ bp = gbincore(vp, blkno);
+ splx(s);
+ return (bp);
+}
+
+/*
+ * Returns true if no I/O is needed to access the
+ * associated VM object. This is like incore except
+ * it also hunts around in the VM system for the data.
+ */
+
+int
+inmem(struct vnode * vp, daddr_t blkno)
+{
+ vm_object_t obj;
+ vm_offset_t toff, tinc, size;
+ vm_page_t m;
+ vm_ooffset_t off;
+
+ if (incore(vp, blkno))
+ return 1;
+ if (vp->v_mount == NULL)
+ return 0;
+ if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
+ return 0;
+
+ obj = vp->v_object;
+ size = PAGE_SIZE;
+ if (size > vp->v_mount->mnt_stat.f_iosize)
+ size = vp->v_mount->mnt_stat.f_iosize;
+ off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
+
+ for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
+ m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
+ if (!m)
+ return 0;
+ tinc = size;
+ if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
+ tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
+ if (vm_page_is_valid(m,
+ (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
+ return 0;
+ }
+ return 1;
+}
+
+/*
+ * vfs_setdirty:
+ *
+ * Sets the dirty range for a buffer based on the status of the dirty
+ * bits in the pages comprising the buffer.
+ *
+ * The range is limited to the size of the buffer.
+ *
+ * This routine is primarily used by NFS, but is generalized for the
+ * B_VMIO case.
+ */
+static void
+vfs_setdirty(struct buf *bp)
+{
+ int i;
+ vm_object_t object;
+
+ /*
+ * Degenerate case - empty buffer
+ */
+
+ if (bp->b_bufsize == 0)
+ return;
+
+ /*
+ * We qualify the scan for modified pages on whether the
+ * object has been flushed yet. The OBJ_WRITEABLE flag
+ * is not cleared simply by protecting pages off.
+ */
+
+ if ((bp->b_flags & B_VMIO) == 0)
+ return;
+
+ object = bp->b_pages[0]->object;
+
+ if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
+ printf("Warning: object %p writeable but not mightbedirty\n", object);
+ if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
+ printf("Warning: object %p mightbedirty but not writeable\n", object);
+
+ if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
+ vm_offset_t boffset;
+ vm_offset_t eoffset;
+
+ /*
+ * test the pages to see if they have been modified directly
+ * by users through the VM system.
+ */
+ for (i = 0; i < bp->b_npages; i++) {
+ vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
+ vm_page_test_dirty(bp->b_pages[i]);
+ }
+
+ /*
+ * Calculate the encompassing dirty range, boffset and eoffset,
+ * (eoffset - boffset) bytes.
+ */
+
+ for (i = 0; i < bp->b_npages; i++) {
+ if (bp->b_pages[i]->dirty)
+ break;
+ }
+ boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
+
+ for (i = bp->b_npages - 1; i >= 0; --i) {
+ if (bp->b_pages[i]->dirty) {
+ break;
+ }
+ }
+ eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
+
+ /*
+ * Fit it to the buffer.
+ */
+
+ if (eoffset > bp->b_bcount)
+ eoffset = bp->b_bcount;
+
+ /*
+ * If we have a good dirty range, merge with the existing
+ * dirty range.
+ */
+
+ if (boffset < eoffset) {
+ if (bp->b_dirtyoff > boffset)
+ bp->b_dirtyoff = boffset;
+ if (bp->b_dirtyend < eoffset)
+ bp->b_dirtyend = eoffset;
+ }
+ }
+}
+
+/*
+ * getblk:
+ *
+ * Get a block given a specified block and offset into a file/device.
+ * The buffers B_DONE bit will be cleared on return, making it almost
+ * ready for an I/O initiation. B_INVAL may or may not be set on
+ * return. The caller should clear B_INVAL prior to initiating a
+ * READ.
+ *
+ * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
+ * an existing buffer.
+ *
+ * For a VMIO buffer, B_CACHE is modified according to the backing VM.
+ * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
+ * and then cleared based on the backing VM. If the previous buffer is
+ * non-0-sized but invalid, B_CACHE will be cleared.
+ *
+ * If getblk() must create a new buffer, the new buffer is returned with
+ * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
+ * case it is returned with B_INVAL clear and B_CACHE set based on the
+ * backing VM.
+ *
+ * getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
+ * B_CACHE bit is clear.
+ *
+ * What this means, basically, is that the caller should use B_CACHE to
+ * determine whether the buffer is fully valid or not and should clear
+ * B_INVAL prior to issuing a read. If the caller intends to validate
+ * the buffer by loading its data area with something, the caller needs
+ * to clear B_INVAL. If the caller does this without issuing an I/O,
+ * the caller should set B_CACHE ( as an optimization ), else the caller
+ * should issue the I/O and biodone() will set B_CACHE if the I/O was
+ * a write attempt or if it was a successfull read. If the caller
+ * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
+ * prior to issuing the READ. biodone() will *not* clear B_INVAL.
+ */
+struct buf *
+getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
+{
+ struct buf *bp;
+ int s;
+ struct bufhashhdr *bh;
+
+#if !defined(MAX_PERF)
+ if (size > MAXBSIZE)
+ panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
+#endif
+
+ s = splbio();
+loop:
+ /*
+ * Block if we are low on buffers. Certain processes are allowed
+ * to completely exhaust the buffer cache.
+ *
+ * If this check ever becomes a bottleneck it may be better to
+ * move it into the else, when gbincore() fails. At the moment
+ * it isn't a problem.
+ */
+ if (!curproc || (curproc->p_flag & P_BUFEXHAUST)) {
+ if (numfreebuffers == 0) {
+ if (!curproc)
+ return NULL;
+ needsbuffer |= VFS_BIO_NEED_ANY;
+ tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
+ slptimeo);
+ }
+ } else if (numfreebuffers < lofreebuffers) {
+ waitfreebuffers(slpflag, slptimeo);
+ }
+
+ if ((bp = gbincore(vp, blkno))) {
+ /*
+ * Buffer is in-core. If the buffer is not busy, it must
+ * be on a queue.
+ */
+
+ if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
+ if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
+ "getblk", slpflag, slptimeo) == ENOLCK)
+ goto loop;
+ splx(s);
+ return (struct buf *) NULL;
+ }
+
+ /*
+ * The buffer is locked. B_CACHE is cleared if the buffer is
+ * invalid. Ohterwise, for a non-VMIO buffer, B_CACHE is set
+ * and for a VMIO buffer B_CACHE is adjusted according to the
+ * backing VM cache.
+ */
+ if (bp->b_flags & B_INVAL)
+ bp->b_flags &= ~B_CACHE;
+ else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
+ bp->b_flags |= B_CACHE;
+ bremfree(bp);
+
+ /*
+ * check for size inconsistancies for non-VMIO case.
+ */
+
+ if (bp->b_bcount != size) {
+ if ((bp->b_flags & B_VMIO) == 0 ||
+ (size > bp->b_kvasize)) {
+ if (bp->b_flags & B_DELWRI) {
+ bp->b_flags |= B_NOCACHE;
+ VOP_BWRITE(bp->b_vp, bp);
+ } else {
+ if ((bp->b_flags & B_VMIO) &&
+ (LIST_FIRST(&bp->b_dep) == NULL)) {
+ bp->b_flags |= B_RELBUF;
+ brelse(bp);
+ } else {
+ bp->b_flags |= B_NOCACHE;
+ VOP_BWRITE(bp->b_vp, bp);
+ }
+ }
+ goto loop;
+ }
+ }
+
+ /*
+ * If the size is inconsistant in the VMIO case, we can resize
+ * the buffer. This might lead to B_CACHE getting set or
+ * cleared. If the size has not changed, B_CACHE remains
+ * unchanged from its previous state.
+ */
+
+ if (bp->b_bcount != size)
+ allocbuf(bp, size);
+
+ KASSERT(bp->b_offset != NOOFFSET,
+ ("getblk: no buffer offset"));
+
+ /*
+ * A buffer with B_DELWRI set and B_CACHE clear must
+ * be committed before we can return the buffer in
+ * order to prevent the caller from issuing a read
+ * ( due to B_CACHE not being set ) and overwriting
+ * it.
+ *
+ * Most callers, including NFS and FFS, need this to
+ * operate properly either because they assume they
+ * can issue a read if B_CACHE is not set, or because
+ * ( for example ) an uncached B_DELWRI might loop due
+ * to softupdates re-dirtying the buffer. In the latter
+ * case, B_CACHE is set after the first write completes,
+ * preventing further loops.
+ */
+
+ if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
+ VOP_BWRITE(bp->b_vp, bp);
+ goto loop;
+ }
+
+ splx(s);
+ bp->b_flags &= ~B_DONE;
+ } else {
+ /*
+ * Buffer is not in-core, create new buffer. The buffer
+ * returned by getnewbuf() is locked. Note that the returned
+ * buffer is also considered valid (not marked B_INVAL).
+ */
+ int bsize, maxsize, vmio;
+ off_t offset;
+
+ if (vn_isdisk(vp))
+ bsize = DEV_BSIZE;
+ else if (vp->v_mountedhere)
+ bsize = vp->v_mountedhere->mnt_stat.f_iosize;
+ else if (vp->v_mount)
+ bsize = vp->v_mount->mnt_stat.f_iosize;
+ else
+ bsize = size;
+
+ offset = (off_t)blkno * bsize;
+ vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
+ maxsize = vmio ? size + (offset & PAGE_MASK) : size;
+ maxsize = imax(maxsize, bsize);
+
+ if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
+ if (slpflag || slptimeo) {
+ splx(s);
+ return NULL;
+ }
+ goto loop;
+ }
+
+ /*
+ * This code is used to make sure that a buffer is not
+ * created while the getnewbuf routine is blocked.
+ * This can be a problem whether the vnode is locked or not.
+ * If the buffer is created out from under us, we have to
+ * throw away the one we just created. There is now window
+ * race because we are safely running at splbio() from the
+ * point of the duplicate buffer creation through to here,
+ * and we've locked the buffer.
+ */
+ if (gbincore(vp, blkno)) {
+ bp->b_flags |= B_INVAL;
+ brelse(bp);
+ goto loop;
+ }
+
+ /*
+ * Insert the buffer into the hash, so that it can
+ * be found by incore.
+ */
+ bp->b_blkno = bp->b_lblkno = blkno;
+ bp->b_offset = offset;
+
+ bgetvp(vp, bp);
+ LIST_REMOVE(bp, b_hash);
+ bh = bufhash(vp, blkno);
+ LIST_INSERT_HEAD(bh, bp, b_hash);
+
+ /*
+ * set B_VMIO bit. allocbuf() the buffer bigger. Since the
+ * buffer size starts out as 0, B_CACHE will be set by
+ * allocbuf() for the VMIO case prior to it testing the
+ * backing store for validity.
+ */
+
+ if (vmio) {
+ bp->b_flags |= B_VMIO;
+#if defined(VFS_BIO_DEBUG)
+ if (vp->v_type != VREG && vp->v_type != VBLK)
+ printf("getblk: vmioing file type %d???\n", vp->v_type);
+#endif
+ } else {
+ bp->b_flags &= ~B_VMIO;
+ }
+
+ allocbuf(bp, size);
+
+ splx(s);
+ bp->b_flags &= ~B_DONE;
+ }
+ return (bp);
+}
+
+/*
+ * Get an empty, disassociated buffer of given size. The buffer is initially
+ * set to B_INVAL.
+ */
+struct buf *
+geteblk(int size)
+{
+ struct buf *bp;
+ int s;
+
+ s = splbio();
+ while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0);
+ splx(s);
+ allocbuf(bp, size);
+ bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
+ return (bp);
+}
+
+
+/*
+ * This code constitutes the buffer memory from either anonymous system
+ * memory (in the case of non-VMIO operations) or from an associated
+ * VM object (in the case of VMIO operations). This code is able to
+ * resize a buffer up or down.
+ *
+ * Note that this code is tricky, and has many complications to resolve
+ * deadlock or inconsistant data situations. Tread lightly!!!
+ * There are B_CACHE and B_DELWRI interactions that must be dealt with by
+ * the caller. Calling this code willy nilly can result in the loss of data.
+ *
+ * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
+ * B_CACHE for the non-VMIO case.
+ */
+
+int
+allocbuf(struct buf *bp, int size)
+{
+ int newbsize, mbsize;
+ int i;
+
+#if !defined(MAX_PERF)
+ if (BUF_REFCNT(bp) == 0)
+ panic("allocbuf: buffer not busy");
+
+ if (bp->b_kvasize < size)
+ panic("allocbuf: buffer too small");
+#endif
+
+ if ((bp->b_flags & B_VMIO) == 0) {
+ caddr_t origbuf;
+ int origbufsize;
+ /*
+ * Just get anonymous memory from the kernel. Don't
+ * mess with B_CACHE.
+ */
+ mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
+#if !defined(NO_B_MALLOC)
+ if (bp->b_flags & B_MALLOC)
+ newbsize = mbsize;
+ else
+#endif
+ newbsize = round_page(size);
+
+ if (newbsize < bp->b_bufsize) {
+#if !defined(NO_B_MALLOC)
+ /*
+ * malloced buffers are not shrunk
+ */
+ if (bp->b_flags & B_MALLOC) {
+ if (newbsize) {
+ bp->b_bcount = size;
+ } else {
+ free(bp->b_data, M_BIOBUF);
+ bufspace -= bp->b_bufsize;
+ bufmallocspace -= bp->b_bufsize;
+ runningbufspace -= bp->b_bufsize;
+ if (bp->b_bufsize)
+ bufspacewakeup();
+ bp->b_data = bp->b_kvabase;
+ bp->b_bufsize = 0;
+ bp->b_bcount = 0;
+ bp->b_flags &= ~B_MALLOC;
+ }
+ return 1;
+ }
+#endif
+ vm_hold_free_pages(
+ bp,
+ (vm_offset_t) bp->b_data + newbsize,
+ (vm_offset_t) bp->b_data + bp->b_bufsize);
+ } else if (newbsize > bp->b_bufsize) {
+#if !defined(NO_B_MALLOC)
+ /*
+ * We only use malloced memory on the first allocation.
+ * and revert to page-allocated memory when the buffer
+ * grows.
+ */
+ if ( (bufmallocspace < maxbufmallocspace) &&
+ (bp->b_bufsize == 0) &&
+ (mbsize <= PAGE_SIZE/2)) {
+
+ bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
+ bp->b_bufsize = mbsize;
+ bp->b_bcount = size;
+ bp->b_flags |= B_MALLOC;
+ bufspace += mbsize;
+ bufmallocspace += mbsize;
+ runningbufspace += bp->b_bufsize;
+ return 1;
+ }
+#endif
+ origbuf = NULL;
+ origbufsize = 0;
+#if !defined(NO_B_MALLOC)
+ /*
+ * If the buffer is growing on its other-than-first allocation,
+ * then we revert to the page-allocation scheme.
+ */
+ if (bp->b_flags & B_MALLOC) {
+ origbuf = bp->b_data;
+ origbufsize = bp->b_bufsize;
+ bp->b_data = bp->b_kvabase;
+ bufspace -= bp->b_bufsize;
+ bufmallocspace -= bp->b_bufsize;
+ runningbufspace -= bp->b_bufsize;
+ if (bp->b_bufsize)
+ bufspacewakeup();
+ bp->b_bufsize = 0;
+ bp->b_flags &= ~B_MALLOC;
+ newbsize = round_page(newbsize);
+ }
+#endif
+ vm_hold_load_pages(
+ bp,
+ (vm_offset_t) bp->b_data + bp->b_bufsize,
+ (vm_offset_t) bp->b_data + newbsize);
+#if !defined(NO_B_MALLOC)
+ if (origbuf) {
+ bcopy(origbuf, bp->b_data, origbufsize);
+ free(origbuf, M_BIOBUF);
+ }
+#endif
+ }
+ } else {
+ vm_page_t m;
+ int desiredpages;
+
+ newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
+ desiredpages = (size == 0) ? 0 :
+ num_pages((bp->b_offset & PAGE_MASK) + newbsize);
+
+#if !defined(NO_B_MALLOC)
+ if (bp->b_flags & B_MALLOC)
+ panic("allocbuf: VMIO buffer can't be malloced");
+#endif
+ /*
+ * Set B_CACHE initially if buffer is 0 length or will become
+ * 0-length.
+ */
+ if (size == 0 || bp->b_bufsize == 0)
+ bp->b_flags |= B_CACHE;
+
+ if (newbsize < bp->b_bufsize) {
+ /*
+ * DEV_BSIZE aligned new buffer size is less then the
+ * DEV_BSIZE aligned existing buffer size. Figure out
+ * if we have to remove any pages.
+ */
+ if (desiredpages < bp->b_npages) {
+ for (i = desiredpages; i < bp->b_npages; i++) {
+ /*
+ * the page is not freed here -- it
+ * is the responsibility of
+ * vnode_pager_setsize
+ */
+ m = bp->b_pages[i];
+ KASSERT(m != bogus_page,
+ ("allocbuf: bogus page found"));
+ while (vm_page_sleep_busy(m, TRUE, "biodep"))
+ ;
+
+ bp->b_pages[i] = NULL;
+ vm_page_unwire(m, 0);
+ }
+ pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
+ (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
+ bp->b_npages = desiredpages;
+ }
+ } else if (size > bp->b_bcount) {
+ /*
+ * We are growing the buffer, possibly in a
+ * byte-granular fashion.
+ */
+ struct vnode *vp;
+ vm_object_t obj;
+ vm_offset_t toff;
+ vm_offset_t tinc;
+
+ /*
+ * Step 1, bring in the VM pages from the object,
+ * allocating them if necessary. We must clear
+ * B_CACHE if these pages are not valid for the
+ * range covered by the buffer.
+ */
+
+ vp = bp->b_vp;
+ obj = vp->v_object;
+
+ while (bp->b_npages < desiredpages) {
+ vm_page_t m;
+ vm_pindex_t pi;
+
+ pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
+ if ((m = vm_page_lookup(obj, pi)) == NULL) {
+ m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL);
+ if (m == NULL) {
+ VM_WAIT;
+ vm_pageout_deficit += desiredpages - bp->b_npages;
+ } else {
+ vm_page_wire(m);
+ vm_page_wakeup(m);
+ bp->b_flags &= ~B_CACHE;
+ bp->b_pages[bp->b_npages] = m;
+ ++bp->b_npages;
+ }
+ continue;
+ }
+
+ /*
+ * We found a page. If we have to sleep on it,
+ * retry because it might have gotten freed out
+ * from under us.
+ *
+ * We can only test PG_BUSY here. Blocking on
+ * m->busy might lead to a deadlock:
+ *
+ * vm_fault->getpages->cluster_read->allocbuf
+ *
+ */
+
+ if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
+ continue;
+
+ /*
+ * We have a good page. Should we wakeup the
+ * page daemon?
+ */
+ if ((curproc != pageproc) &&
+ ((m->queue - m->pc) == PQ_CACHE) &&
+ ((cnt.v_free_count + cnt.v_cache_count) <
+ (cnt.v_free_min + cnt.v_cache_min))) {
+ pagedaemon_wakeup();
+ }
+ vm_page_flag_clear(m, PG_ZERO);
+ vm_page_wire(m);
+ bp->b_pages[bp->b_npages] = m;
+ ++bp->b_npages;
+ }
+
+ /*
+ * Step 2. We've loaded the pages into the buffer,
+ * we have to figure out if we can still have B_CACHE
+ * set. Note that B_CACHE is set according to the
+ * byte-granular range ( bcount and size ), new the
+ * aligned range ( newbsize ).
+ *
+ * The VM test is against m->valid, which is DEV_BSIZE
+ * aligned. Needless to say, the validity of the data
+ * needs to also be DEV_BSIZE aligned. Note that this
+ * fails with NFS if the server or some other client
+ * extends the file's EOF. If our buffer is resized,
+ * B_CACHE may remain set! XXX
+ */
+
+ toff = bp->b_bcount;
+ tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
+
+ while ((bp->b_flags & B_CACHE) && toff < size) {
+ vm_pindex_t pi;
+
+ if (tinc > (size - toff))
+ tinc = size - toff;
+
+ pi = ((bp->b_offset & PAGE_MASK) + toff) >>
+ PAGE_SHIFT;
+
+ vfs_buf_test_cache(
+ bp,
+ bp->b_offset,
+ toff,
+ tinc,
+ bp->b_pages[pi]
+ );
+ toff += tinc;
+ tinc = PAGE_SIZE;
+ }
+
+ /*
+ * Step 3, fixup the KVM pmap. Remember that
+ * bp->b_data is relative to bp->b_offset, but
+ * bp->b_offset may be offset into the first page.
+ */
+
+ bp->b_data = (caddr_t)
+ trunc_page((vm_offset_t)bp->b_data);
+ pmap_qenter(
+ (vm_offset_t)bp->b_data,
+ bp->b_pages,
+ bp->b_npages
+ );
+ bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
+ (vm_offset_t)(bp->b_offset & PAGE_MASK));
+ }
+ }
+ if (bp->b_flags & B_VMIO)
+ vmiospace += (newbsize - bp->b_bufsize);
+ bufspace += (newbsize - bp->b_bufsize);
+ runningbufspace += (newbsize - bp->b_bufsize);
+ if (newbsize < bp->b_bufsize)
+ bufspacewakeup();
+ bp->b_bufsize = newbsize; /* actual buffer allocation */
+ bp->b_bcount = size; /* requested buffer size */
+ return 1;
+}
+
+/*
+ * biowait:
+ *
+ * Wait for buffer I/O completion, returning error status. The buffer
+ * is left locked and B_DONE on return. B_EINTR is converted into a EINTR
+ * error and cleared.
+ */
+int
+biowait(register struct buf * bp)
+{
+ int s;
+
+ s = splbio();
+ while ((bp->b_flags & B_DONE) == 0) {
+#if defined(NO_SCHEDULE_MODS)
+ tsleep(bp, PRIBIO, "biowait", 0);
+#else
+ if (bp->b_flags & B_READ)
+ tsleep(bp, PRIBIO, "biord", 0);
+ else
+ tsleep(bp, PRIBIO, "biowr", 0);
+#endif
+ }
+ splx(s);
+ if (bp->b_flags & B_EINTR) {
+ bp->b_flags &= ~B_EINTR;
+ return (EINTR);
+ }
+ if (bp->b_flags & B_ERROR) {
+ return (bp->b_error ? bp->b_error : EIO);
+ } else {
+ return (0);
+ }
+}
+
+/*
+ * biodone:
+ *
+ * Finish I/O on a buffer, optionally calling a completion function.
+ * This is usually called from an interrupt so process blocking is
+ * not allowed.
+ *
+ * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
+ * In a non-VMIO bp, B_CACHE will be set on the next getblk()
+ * assuming B_INVAL is clear.
+ *
+ * For the VMIO case, we set B_CACHE if the op was a read and no
+ * read error occured, or if the op was a write. B_CACHE is never
+ * set if the buffer is invalid or otherwise uncacheable.
+ *
+ * biodone does not mess with B_INVAL, allowing the I/O routine or the
+ * initiator to leave B_INVAL set to brelse the buffer out of existance
+ * in the biodone routine.
+ */
+void
+biodone(register struct buf * bp)
+{
+ int s;
+
+ s = splbio();
+
+ KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
+ KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
+
+ bp->b_flags |= B_DONE;
+
+ if (bp->b_flags & B_FREEBUF) {
+ brelse(bp);
+ splx(s);
+ return;
+ }
+
+ if ((bp->b_flags & B_READ) == 0) {
+ vwakeup(bp);
+ }
+
+ /* call optional completion function if requested */
+ if (bp->b_flags & B_CALL) {
+ bp->b_flags &= ~B_CALL;
+ (*bp->b_iodone) (bp);
+ splx(s);
+ return;
+ }
+ if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
+ (*bioops.io_complete)(bp);
+
+ if (bp->b_flags & B_VMIO) {
+ int i, resid;
+ vm_ooffset_t foff;
+ vm_page_t m;
+ vm_object_t obj;
+ int iosize;
+ struct vnode *vp = bp->b_vp;
+
+ obj = vp->v_object;
+
+#if defined(VFS_BIO_DEBUG)
+ if (vp->v_usecount == 0) {
+ panic("biodone: zero vnode ref count");
+ }
+
+ if (vp->v_object == NULL) {
+ panic("biodone: missing VM object");
+ }
+
+ if ((vp->v_flag & VOBJBUF) == 0) {
+ panic("biodone: vnode is not setup for merged cache");
+ }
+#endif
+
+ foff = bp->b_offset;
+ KASSERT(bp->b_offset != NOOFFSET,
+ ("biodone: no buffer offset"));
+
+#if !defined(MAX_PERF)
+ if (!obj) {
+ panic("biodone: no object");
+ }
+#endif
+#if defined(VFS_BIO_DEBUG)
+ if (obj->paging_in_progress < bp->b_npages) {
+ printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
+ obj->paging_in_progress, bp->b_npages);
+ }
+#endif
+
+ /*
+ * Set B_CACHE if the op was a normal read and no error
+ * occured. B_CACHE is set for writes in the b*write()
+ * routines.
+ */
+ iosize = bp->b_bcount - bp->b_resid;
+ if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
+ bp->b_flags |= B_CACHE;
+ }
+
+ for (i = 0; i < bp->b_npages; i++) {
+ int bogusflag = 0;
+ m = bp->b_pages[i];
+ if (m == bogus_page) {
+ bogusflag = 1;
+ m = vm_page_lookup(obj, OFF_TO_IDX(foff));
+ if (!m) {
+#if defined(VFS_BIO_DEBUG)
+ printf("biodone: page disappeared\n");
+#endif
+ vm_object_pip_subtract(obj, 1);
+ bp->b_flags &= ~B_CACHE;
+ continue;
+ }
+ bp->b_pages[i] = m;
+ pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
+ }
+#if defined(VFS_BIO_DEBUG)
+ if (OFF_TO_IDX(foff) != m->pindex) {
+ printf(
+"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
+ (unsigned long)foff, m->pindex);
+ }
+#endif
+ resid = IDX_TO_OFF(m->pindex + 1) - foff;
+ if (resid > iosize)
+ resid = iosize;
+
+ /*
+ * In the write case, the valid and clean bits are
+ * already changed correctly ( see bdwrite() ), so we
+ * only need to do this here in the read case.
+ */
+ if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
+ vfs_page_set_valid(bp, foff, i, m);
+ }
+ vm_page_flag_clear(m, PG_ZERO);
+
+ /*
+ * when debugging new filesystems or buffer I/O methods, this
+ * is the most common error that pops up. if you see this, you
+ * have not set the page busy flag correctly!!!
+ */
+ if (m->busy == 0) {
+#if !defined(MAX_PERF)
+ printf("biodone: page busy < 0, "
+ "pindex: %d, foff: 0x(%x,%x), "
+ "resid: %d, index: %d\n",
+ (int) m->pindex, (int)(foff >> 32),
+ (int) foff & 0xffffffff, resid, i);
+#endif
+ if (!vn_isdisk(vp))
+#if !defined(MAX_PERF)
+ printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
+ bp->b_vp->v_mount->mnt_stat.f_iosize,
+ (int) bp->b_lblkno,
+ bp->b_flags, bp->b_npages);
+ else
+ printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
+ (int) bp->b_lblkno,
+ bp->b_flags, bp->b_npages);
+ printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
+ m->valid, m->dirty, m->wire_count);
+#endif
+ panic("biodone: page busy < 0\n");
+ }
+ vm_page_io_finish(m);
+ vm_object_pip_subtract(obj, 1);
+ foff += resid;
+ iosize -= resid;
+ }
+ if (obj)
+ vm_object_pip_wakeupn(obj, 0);
+ }
+ /*
+ * For asynchronous completions, release the buffer now. The brelse
+ * will do a wakeup there if necessary - so no need to do a wakeup
+ * here in the async case. The sync case always needs to do a wakeup.
+ */
+
+ if (bp->b_flags & B_ASYNC) {
+ if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
+ brelse(bp);
+ else
+ bqrelse(bp);
+ } else {
+ wakeup(bp);
+ }
+ splx(s);
+}
+
+/*
+ * This routine is called in lieu of iodone in the case of
+ * incomplete I/O. This keeps the busy status for pages
+ * consistant.
+ */
+void
+vfs_unbusy_pages(struct buf * bp)
+{
+ int i;
+
+ if (bp->b_flags & B_VMIO) {
+ struct vnode *vp = bp->b_vp;
+ vm_object_t obj = vp->v_object;
+
+ for (i = 0; i < bp->b_npages; i++) {
+ vm_page_t m = bp->b_pages[i];
+
+ if (m == bogus_page) {
+ m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
+#if !defined(MAX_PERF)
+ if (!m) {
+ panic("vfs_unbusy_pages: page missing\n");
+ }
+#endif
+ bp->b_pages[i] = m;
+ pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
+ }
+ vm_object_pip_subtract(obj, 1);
+ vm_page_flag_clear(m, PG_ZERO);
+ vm_page_io_finish(m);
+ }
+ vm_object_pip_wakeupn(obj, 0);
+ }
+}
+
+/*
+ * vfs_page_set_valid:
+ *
+ * Set the valid bits in a page based on the supplied offset. The
+ * range is restricted to the buffer's size.
+ *
+ * This routine is typically called after a read completes.
+ */
+static void
+vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
+{
+ vm_ooffset_t soff, eoff;
+
+ /*
+ * Start and end offsets in buffer. eoff - soff may not cross a
+ * page boundry or cross the end of the buffer. The end of the
+ * buffer, in this case, is our file EOF, not the allocation size
+ * of the buffer.
+ */
+ soff = off;
+ eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
+ if (eoff > bp->b_offset + bp->b_bcount)
+ eoff = bp->b_offset + bp->b_bcount;
+
+ /*
+ * Set valid range. This is typically the entire buffer and thus the
+ * entire page.
+ */
+ if (eoff > soff) {
+ vm_page_set_validclean(
+ m,
+ (vm_offset_t) (soff & PAGE_MASK),
+ (vm_offset_t) (eoff - soff)
+ );
+ }
+}
+
+/*
+ * This routine is called before a device strategy routine.
+ * It is used to tell the VM system that paging I/O is in
+ * progress, and treat the pages associated with the buffer
+ * almost as being PG_BUSY. Also the object paging_in_progress
+ * flag is handled to make sure that the object doesn't become
+ * inconsistant.
+ *
+ * Since I/O has not been initiated yet, certain buffer flags
+ * such as B_ERROR or B_INVAL may be in an inconsistant state
+ * and should be ignored.
+ */
+void
+vfs_busy_pages(struct buf * bp, int clear_modify)
+{
+ int i, bogus;
+
+ if (bp->b_flags & B_VMIO) {
+ struct vnode *vp = bp->b_vp;
+ vm_object_t obj = vp->v_object;
+ vm_ooffset_t foff;
+
+ foff = bp->b_offset;
+ KASSERT(bp->b_offset != NOOFFSET,
+ ("vfs_busy_pages: no buffer offset"));
+ vfs_setdirty(bp);
+
+retry:
+ for (i = 0; i < bp->b_npages; i++) {
+ vm_page_t m = bp->b_pages[i];
+ if (vm_page_sleep_busy(m, FALSE, "vbpage"))
+ goto retry;
+ }
+
+ bogus = 0;
+ for (i = 0; i < bp->b_npages; i++) {
+ vm_page_t m = bp->b_pages[i];
+
+ vm_page_flag_clear(m, PG_ZERO);
+ if ((bp->b_flags & B_CLUSTER) == 0) {
+ vm_object_pip_add(obj, 1);
+ vm_page_io_start(m);
+ }
+
+ /*
+ * When readying a buffer for a read ( i.e
+ * clear_modify == 0 ), it is important to do
+ * bogus_page replacement for valid pages in
+ * partially instantiated buffers. Partially
+ * instantiated buffers can, in turn, occur when
+ * reconstituting a buffer from its VM backing store
+ * base. We only have to do this if B_CACHE is
+ * clear ( which causes the I/O to occur in the
+ * first place ). The replacement prevents the read
+ * I/O from overwriting potentially dirty VM-backed
+ * pages. XXX bogus page replacement is, uh, bogus.
+ * It may not work properly with small-block devices.
+ * We need to find a better way.
+ */
+
+ vm_page_protect(m, VM_PROT_NONE);
+ if (clear_modify)
+ vfs_page_set_valid(bp, foff, i, m);
+ else if (m->valid == VM_PAGE_BITS_ALL &&
+ (bp->b_flags & B_CACHE) == 0) {
+ bp->b_pages[i] = bogus_page;
+ bogus++;
+ }
+ foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
+ }
+ if (bogus)
+ pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
+ }
+}
+
+/*
+ * Tell the VM system that the pages associated with this buffer
+ * are clean. This is used for delayed writes where the data is
+ * going to go to disk eventually without additional VM intevention.
+ *
+ * Note that while we only really need to clean through to b_bcount, we
+ * just go ahead and clean through to b_bufsize.
+ */
+static void
+vfs_clean_pages(struct buf * bp)
+{
+ int i;
+
+ if (bp->b_flags & B_VMIO) {
+ vm_ooffset_t foff;
+
+ foff = bp->b_offset;
+ KASSERT(bp->b_offset != NOOFFSET,
+ ("vfs_clean_pages: no buffer offset"));
+ for (i = 0; i < bp->b_npages; i++) {
+ vm_page_t m = bp->b_pages[i];
+ vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK;
+ vm_ooffset_t eoff = noff;
+
+ if (eoff > bp->b_offset + bp->b_bufsize)
+ eoff = bp->b_offset + bp->b_bufsize;
+ vfs_page_set_valid(bp, foff, i, m);
+ /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
+ foff = noff;
+ }
+ }
+}
+
+/*
+ * vfs_bio_set_validclean:
+ *
+ * Set the range within the buffer to valid and clean. The range is
+ * relative to the beginning of the buffer, b_offset. Note that b_offset
+ * itself may be offset from the beginning of the first page.
+ */
+
+void
+vfs_bio_set_validclean(struct buf *bp, int base, int size)
+{
+ if (bp->b_flags & B_VMIO) {
+ int i;
+ int n;
+
+ /*
+ * Fixup base to be relative to beginning of first page.
+ * Set initial n to be the maximum number of bytes in the
+ * first page that can be validated.
+ */
+
+ base += (bp->b_offset & PAGE_MASK);
+ n = PAGE_SIZE - (base & PAGE_MASK);
+
+ for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
+ vm_page_t m = bp->b_pages[i];
+
+ if (n > size)
+ n = size;
+
+ vm_page_set_validclean(m, base & PAGE_MASK, n);
+ base += n;
+ size -= n;
+ n = PAGE_SIZE;
+ }
+ }
+}
+
+/*
+ * vfs_bio_clrbuf:
+ *
+ * clear a buffer. This routine essentially fakes an I/O, so we need
+ * to clear B_ERROR and B_INVAL.
+ *
+ * Note that while we only theoretically need to clear through b_bcount,
+ * we go ahead and clear through b_bufsize.
+ */
+
+void
+vfs_bio_clrbuf(struct buf *bp) {
+ int i, mask = 0;
+ caddr_t sa, ea;
+ if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
+ bp->b_flags &= ~(B_INVAL|B_ERROR);
+ if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
+ (bp->b_offset & PAGE_MASK) == 0) {
+ mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
+ if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
+ ((bp->b_pages[0]->valid & mask) != mask)) {
+ bzero(bp->b_data, bp->b_bufsize);
+ }
+ bp->b_pages[0]->valid |= mask;
+ bp->b_resid = 0;
+ return;
+ }
+ ea = sa = bp->b_data;
+ for(i=0;i<bp->b_npages;i++,sa=ea) {
+ int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
+ ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
+ ea = (caddr_t)(vm_offset_t)ulmin(
+ (u_long)(vm_offset_t)ea,
+ (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
+ mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
+ if ((bp->b_pages[i]->valid & mask) == mask)
+ continue;
+ if ((bp->b_pages[i]->valid & mask) == 0) {
+ if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
+ bzero(sa, ea - sa);
+ }
+ } else {
+ for (; sa < ea; sa += DEV_BSIZE, j++) {
+ if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
+ (bp->b_pages[i]->valid & (1<<j)) == 0)
+ bzero(sa, DEV_BSIZE);
+ }
+ }
+ bp->b_pages[i]->valid |= mask;
+ vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
+ }
+ bp->b_resid = 0;
+ } else {
+ clrbuf(bp);
+ }
+}
+
+/*
+ * vm_hold_load_pages and vm_hold_unload pages get pages into
+ * a buffers address space. The pages are anonymous and are
+ * not associated with a file object.
+ */
+void
+vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
+{
+ vm_offset_t pg;
+ vm_page_t p;
+ int index;
+
+ to = round_page(to);
+ from = round_page(from);
+ index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
+
+ for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
+
+tryagain:
+
+ p = vm_page_alloc(kernel_object,
+ ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
+ VM_ALLOC_NORMAL);
+ if (!p) {
+ vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
+ VM_WAIT;
+ goto tryagain;
+ }
+ vm_page_wire(p);
+ p->valid = VM_PAGE_BITS_ALL;
+ vm_page_flag_clear(p, PG_ZERO);
+ pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
+ bp->b_pages[index] = p;
+ vm_page_wakeup(p);
+ }
+ bp->b_npages = index;
+}
+
+void
+vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
+{
+ vm_offset_t pg;
+ vm_page_t p;
+ int index, newnpages;
+
+ from = round_page(from);
+ to = round_page(to);
+ newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
+
+ for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
+ p = bp->b_pages[index];
+ if (p && (index < bp->b_npages)) {
+#if !defined(MAX_PERF)
+ if (p->busy) {
+ printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
+ bp->b_blkno, bp->b_lblkno);
+ }
+#endif
+ bp->b_pages[index] = NULL;
+ pmap_kremove(pg);
+ vm_page_busy(p);
+ vm_page_unwire(p, 0);
+ vm_page_free(p);
+ }
+ }
+ bp->b_npages = newnpages;
+}
+
+
+#include "opt_ddb.h"
+#ifdef DDB
+#include <ddb/ddb.h>
+
+DB_SHOW_COMMAND(buffer, db_show_buffer)
+{
+ /* get args */
+ struct buf *bp = (struct buf *)addr;
+
+ if (!have_addr) {
+ db_printf("usage: show buffer <addr>\n");
+ return;
+ }
+
+ db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
+ db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
+ "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
+ "b_blkno = %d, b_pblkno = %d\n",
+ bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
+ major(bp->b_dev), minor(bp->b_dev),
+ bp->b_data, bp->b_blkno, bp->b_pblkno);
+ if (bp->b_npages) {
+ int i;
+ db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
+ for (i = 0; i < bp->b_npages; i++) {
+ vm_page_t m;
+ m = bp->b_pages[i];
+ db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
+ (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
+ if ((i + 1) < bp->b_npages)
+ db_printf(",");
+ }
+ db_printf("\n");
+ }
+}
+#endif /* DDB */
OpenPOWER on IntegriCloud