summaryrefslogtreecommitdiffstats
path: root/sys/kern/subr_prof.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/kern/subr_prof.c')
-rw-r--r--sys/kern/subr_prof.c531
1 files changed, 531 insertions, 0 deletions
diff --git a/sys/kern/subr_prof.c b/sys/kern/subr_prof.c
new file mode 100644
index 0000000..706863d
--- /dev/null
+++ b/sys/kern/subr_prof.c
@@ -0,0 +1,531 @@
+/*-
+ * Copyright (c) 1982, 1986, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)subr_prof.c 8.3 (Berkeley) 9/23/93
+ * $FreeBSD$
+ */
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/sysproto.h>
+#include <sys/kernel.h>
+#include <sys/lock.h>
+#include <sys/mutex.h>
+#include <sys/proc.h>
+#include <sys/resourcevar.h>
+#include <sys/sysctl.h>
+
+#include <machine/cpu.h>
+
+#ifdef GPROF
+#include <sys/malloc.h>
+#include <sys/gmon.h>
+#undef MCOUNT
+
+static MALLOC_DEFINE(M_GPROF, "gprof", "kernel profiling buffer");
+
+static void kmstartup(void *);
+SYSINIT(kmem, SI_SUB_KPROF, SI_ORDER_FIRST, kmstartup, NULL)
+
+struct gmonparam _gmonparam = { GMON_PROF_OFF };
+
+#ifdef GUPROF
+#include <machine/asmacros.h>
+
+void
+nullfunc_loop_profiled()
+{
+ int i;
+
+ for (i = 0; i < CALIB_SCALE; i++)
+ nullfunc_profiled();
+}
+
+#define nullfunc_loop_profiled_end nullfunc_profiled /* XXX */
+
+void
+nullfunc_profiled()
+{
+}
+#endif /* GUPROF */
+
+/*
+ * Update the histograms to support extending the text region arbitrarily.
+ * This is done slightly naively (no sparse regions), so will waste slight
+ * amounts of memory, but will overall work nicely enough to allow profiling
+ * of KLDs.
+ */
+void
+kmupetext(uintfptr_t nhighpc)
+{
+ struct gmonparam np; /* slightly large */
+ struct gmonparam *p = &_gmonparam;
+ char *cp;
+
+ GIANT_REQUIRED;
+ bcopy(p, &np, sizeof(*p));
+ np.highpc = ROUNDUP(nhighpc, HISTFRACTION * sizeof(HISTCOUNTER));
+ if (np.highpc <= p->highpc)
+ return;
+ np.textsize = np.highpc - p->lowpc;
+ np.kcountsize = np.textsize / HISTFRACTION;
+ np.hashfraction = HASHFRACTION;
+ np.fromssize = np.textsize / HASHFRACTION;
+ np.tolimit = np.textsize * ARCDENSITY / 100;
+ if (np.tolimit < MINARCS)
+ np.tolimit = MINARCS;
+ else if (np.tolimit > MAXARCS)
+ np.tolimit = MAXARCS;
+ np.tossize = np.tolimit * sizeof(struct tostruct);
+ cp = malloc(np.kcountsize + np.fromssize + np.tossize,
+ M_GPROF, M_WAITOK);
+ /*
+ * Check for something else extending highpc while we slept.
+ */
+ if (np.highpc <= p->highpc) {
+ free(cp, M_GPROF);
+ return;
+ }
+ np.tos = (struct tostruct *)cp;
+ cp += np.tossize;
+ np.kcount = (HISTCOUNTER *)cp;
+ cp += np.kcountsize;
+ np.froms = (u_short *)cp;
+#ifdef GUPROF
+ /* Reinitialize pointers to overhead counters. */
+ np.cputime_count = &KCOUNT(&np, PC_TO_I(&np, cputime));
+ np.mcount_count = &KCOUNT(&np, PC_TO_I(&np, mcount));
+ np.mexitcount_count = &KCOUNT(&np, PC_TO_I(&np, mexitcount));
+#endif
+ critical_enter();
+ bcopy(p->tos, np.tos, p->tossize);
+ bzero((char *)np.tos + p->tossize, np.tossize - p->tossize);
+ bcopy(p->kcount, np.kcount, p->kcountsize);
+ bzero((char *)np.kcount + p->kcountsize, np.kcountsize -
+ p->kcountsize);
+ bcopy(p->froms, np.froms, p->fromssize);
+ bzero((char *)np.froms + p->fromssize, np.fromssize - p->fromssize);
+ cp = (char *)p->tos;
+ bcopy(&np, p, sizeof(*p));
+ critical_exit();
+ free(cp, M_GPROF);
+}
+
+static void
+kmstartup(dummy)
+ void *dummy;
+{
+ char *cp;
+ struct gmonparam *p = &_gmonparam;
+#ifdef GUPROF
+ int cputime_overhead;
+ int empty_loop_time;
+ int i;
+ int mcount_overhead;
+ int mexitcount_overhead;
+ int nullfunc_loop_overhead;
+ int nullfunc_loop_profiled_time;
+ uintfptr_t tmp_addr;
+#endif
+
+ /*
+ * Round lowpc and highpc to multiples of the density we're using
+ * so the rest of the scaling (here and in gprof) stays in ints.
+ */
+ p->lowpc = ROUNDDOWN((u_long)btext, HISTFRACTION * sizeof(HISTCOUNTER));
+ p->highpc = ROUNDUP((u_long)etext, HISTFRACTION * sizeof(HISTCOUNTER));
+ p->textsize = p->highpc - p->lowpc;
+ printf("Profiling kernel, textsize=%lu [%x..%x]\n",
+ p->textsize, p->lowpc, p->highpc);
+ p->kcountsize = p->textsize / HISTFRACTION;
+ p->hashfraction = HASHFRACTION;
+ p->fromssize = p->textsize / HASHFRACTION;
+ p->tolimit = p->textsize * ARCDENSITY / 100;
+ if (p->tolimit < MINARCS)
+ p->tolimit = MINARCS;
+ else if (p->tolimit > MAXARCS)
+ p->tolimit = MAXARCS;
+ p->tossize = p->tolimit * sizeof(struct tostruct);
+ cp = (char *)malloc(p->kcountsize + p->fromssize + p->tossize,
+ M_GPROF, M_WAITOK | M_ZERO);
+ p->tos = (struct tostruct *)cp;
+ cp += p->tossize;
+ p->kcount = (HISTCOUNTER *)cp;
+ cp += p->kcountsize;
+ p->froms = (u_short *)cp;
+
+#ifdef GUPROF
+ /* Initialize pointers to overhead counters. */
+ p->cputime_count = &KCOUNT(p, PC_TO_I(p, cputime));
+ p->mcount_count = &KCOUNT(p, PC_TO_I(p, mcount));
+ p->mexitcount_count = &KCOUNT(p, PC_TO_I(p, mexitcount));
+
+ /*
+ * Disable interrupts to avoid interference while we calibrate
+ * things.
+ */
+ critical_enter();
+
+ /*
+ * Determine overheads.
+ * XXX this needs to be repeated for each useful timer/counter.
+ */
+ cputime_overhead = 0;
+ startguprof(p);
+ for (i = 0; i < CALIB_SCALE; i++)
+ cputime_overhead += cputime();
+
+ empty_loop();
+ startguprof(p);
+ empty_loop();
+ empty_loop_time = cputime();
+
+ nullfunc_loop_profiled();
+
+ /*
+ * Start profiling. There won't be any normal function calls since
+ * interrupts are disabled, but we will call the profiling routines
+ * directly to determine their overheads.
+ */
+ p->state = GMON_PROF_HIRES;
+
+ startguprof(p);
+ nullfunc_loop_profiled();
+
+ startguprof(p);
+ for (i = 0; i < CALIB_SCALE; i++)
+#if defined(__i386__) && __GNUC__ >= 2
+ __asm("pushl %0; call __mcount; popl %%ecx"
+ :
+ : "i" (profil)
+ : "ax", "bx", "cx", "dx", "memory");
+#else
+#error
+#endif
+ mcount_overhead = KCOUNT(p, PC_TO_I(p, profil));
+
+ startguprof(p);
+ for (i = 0; i < CALIB_SCALE; i++)
+#if defined(__i386__) && __GNUC__ >= 2
+ __asm("call " __XSTRING(HIDENAME(mexitcount)) "; 1:"
+ : : : "ax", "bx", "cx", "dx", "memory");
+ __asm("movl $1b,%0" : "=rm" (tmp_addr));
+#else
+#error
+#endif
+ mexitcount_overhead = KCOUNT(p, PC_TO_I(p, tmp_addr));
+
+ p->state = GMON_PROF_OFF;
+ stopguprof(p);
+
+ critical_exit();
+
+ nullfunc_loop_profiled_time = 0;
+ for (tmp_addr = (uintfptr_t)nullfunc_loop_profiled;
+ tmp_addr < (uintfptr_t)nullfunc_loop_profiled_end;
+ tmp_addr += HISTFRACTION * sizeof(HISTCOUNTER))
+ nullfunc_loop_profiled_time += KCOUNT(p, PC_TO_I(p, tmp_addr));
+#define CALIB_DOSCALE(count) (((count) + CALIB_SCALE / 3) / CALIB_SCALE)
+#define c2n(count, freq) ((int)((count) * 1000000000LL / freq))
+ printf("cputime %d, empty_loop %d, nullfunc_loop_profiled %d, mcount %d, mexitcount %d\n",
+ CALIB_DOSCALE(c2n(cputime_overhead, p->profrate)),
+ CALIB_DOSCALE(c2n(empty_loop_time, p->profrate)),
+ CALIB_DOSCALE(c2n(nullfunc_loop_profiled_time, p->profrate)),
+ CALIB_DOSCALE(c2n(mcount_overhead, p->profrate)),
+ CALIB_DOSCALE(c2n(mexitcount_overhead, p->profrate)));
+ cputime_overhead -= empty_loop_time;
+ mcount_overhead -= empty_loop_time;
+ mexitcount_overhead -= empty_loop_time;
+
+ /*-
+ * Profiling overheads are determined by the times between the
+ * following events:
+ * MC1: mcount() is called
+ * MC2: cputime() (called from mcount()) latches the timer
+ * MC3: mcount() completes
+ * ME1: mexitcount() is called
+ * ME2: cputime() (called from mexitcount()) latches the timer
+ * ME3: mexitcount() completes.
+ * The times between the events vary slightly depending on instruction
+ * combination and cache misses, etc. Attempt to determine the
+ * minimum times. These can be subtracted from the profiling times
+ * without much risk of reducing the profiling times below what they
+ * would be when profiling is not configured. Abbreviate:
+ * ab = minimum time between MC1 and MC3
+ * a = minumum time between MC1 and MC2
+ * b = minimum time between MC2 and MC3
+ * cd = minimum time between ME1 and ME3
+ * c = minimum time between ME1 and ME2
+ * d = minimum time between ME2 and ME3.
+ * These satisfy the relations:
+ * ab <= mcount_overhead (just measured)
+ * a + b <= ab
+ * cd <= mexitcount_overhead (just measured)
+ * c + d <= cd
+ * a + d <= nullfunc_loop_profiled_time (just measured)
+ * a >= 0, b >= 0, c >= 0, d >= 0.
+ * Assume that ab and cd are equal to the minimums.
+ */
+ p->cputime_overhead = CALIB_DOSCALE(cputime_overhead);
+ p->mcount_overhead = CALIB_DOSCALE(mcount_overhead - cputime_overhead);
+ p->mexitcount_overhead = CALIB_DOSCALE(mexitcount_overhead
+ - cputime_overhead);
+ nullfunc_loop_overhead = nullfunc_loop_profiled_time - empty_loop_time;
+ p->mexitcount_post_overhead = CALIB_DOSCALE((mcount_overhead
+ - nullfunc_loop_overhead)
+ / 4);
+ p->mexitcount_pre_overhead = p->mexitcount_overhead
+ + p->cputime_overhead
+ - p->mexitcount_post_overhead;
+ p->mcount_pre_overhead = CALIB_DOSCALE(nullfunc_loop_overhead)
+ - p->mexitcount_post_overhead;
+ p->mcount_post_overhead = p->mcount_overhead
+ + p->cputime_overhead
+ - p->mcount_pre_overhead;
+ printf(
+"Profiling overheads: mcount: %d+%d, %d+%d; mexitcount: %d+%d, %d+%d nsec\n",
+ c2n(p->cputime_overhead, p->profrate),
+ c2n(p->mcount_overhead, p->profrate),
+ c2n(p->mcount_pre_overhead, p->profrate),
+ c2n(p->mcount_post_overhead, p->profrate),
+ c2n(p->cputime_overhead, p->profrate),
+ c2n(p->mexitcount_overhead, p->profrate),
+ c2n(p->mexitcount_pre_overhead, p->profrate),
+ c2n(p->mexitcount_post_overhead, p->profrate));
+ printf(
+"Profiling overheads: mcount: %d+%d, %d+%d; mexitcount: %d+%d, %d+%d cycles\n",
+ p->cputime_overhead, p->mcount_overhead,
+ p->mcount_pre_overhead, p->mcount_post_overhead,
+ p->cputime_overhead, p->mexitcount_overhead,
+ p->mexitcount_pre_overhead, p->mexitcount_post_overhead);
+#endif /* GUPROF */
+}
+
+/*
+ * Return kernel profiling information.
+ */
+static int
+sysctl_kern_prof(SYSCTL_HANDLER_ARGS)
+{
+ int *name = (int *) arg1;
+ u_int namelen = arg2;
+ struct gmonparam *gp = &_gmonparam;
+ int error;
+ int state;
+
+ /* all sysctl names at this level are terminal */
+ if (namelen != 1)
+ return (ENOTDIR); /* overloaded */
+
+ switch (name[0]) {
+ case GPROF_STATE:
+ state = gp->state;
+ error = sysctl_handle_int(oidp, &state, 0, req);
+ if (error)
+ return (error);
+ if (!req->newptr)
+ return (0);
+ if (state == GMON_PROF_OFF) {
+ gp->state = state;
+ stopprofclock(&proc0);
+ stopguprof(gp);
+ } else if (state == GMON_PROF_ON) {
+ gp->state = GMON_PROF_OFF;
+ stopguprof(gp);
+ gp->profrate = profhz;
+ startprofclock(&proc0);
+ gp->state = state;
+#ifdef GUPROF
+ } else if (state == GMON_PROF_HIRES) {
+ gp->state = GMON_PROF_OFF;
+ stopprofclock(&proc0);
+ startguprof(gp);
+ gp->state = state;
+#endif
+ } else if (state != gp->state)
+ return (EINVAL);
+ return (0);
+ case GPROF_COUNT:
+ return (sysctl_handle_opaque(oidp,
+ gp->kcount, gp->kcountsize, req));
+ case GPROF_FROMS:
+ return (sysctl_handle_opaque(oidp,
+ gp->froms, gp->fromssize, req));
+ case GPROF_TOS:
+ return (sysctl_handle_opaque(oidp,
+ gp->tos, gp->tossize, req));
+ case GPROF_GMONPARAM:
+ return (sysctl_handle_opaque(oidp, gp, sizeof *gp, req));
+ default:
+ return (EOPNOTSUPP);
+ }
+ /* NOTREACHED */
+}
+
+SYSCTL_NODE(_kern, KERN_PROF, prof, CTLFLAG_RW, sysctl_kern_prof, "");
+#endif /* GPROF */
+
+/*
+ * Profiling system call.
+ *
+ * The scale factor is a fixed point number with 16 bits of fraction, so that
+ * 1.0 is represented as 0x10000. A scale factor of 0 turns off profiling.
+ */
+#ifndef _SYS_SYSPROTO_H_
+struct profil_args {
+ caddr_t samples;
+ size_t size;
+ size_t offset;
+ u_int scale;
+};
+#endif
+/*
+ * MPSAFE
+ */
+/* ARGSUSED */
+int
+profil(td, uap)
+ struct thread *td;
+ register struct profil_args *uap;
+{
+ register struct uprof *upp;
+ int s;
+ int error = 0;
+
+ mtx_lock(&Giant);
+
+ if (uap->scale > (1 << 16)) {
+ error = EINVAL;
+ goto done2;
+ }
+ if (uap->scale == 0) {
+ stopprofclock(td->td_proc);
+ goto done2;
+ }
+ upp = &td->td_proc->p_stats->p_prof;
+
+ /* Block profile interrupts while changing state. */
+ s = splstatclock();
+ upp->pr_off = uap->offset;
+ upp->pr_scale = uap->scale;
+ upp->pr_base = uap->samples;
+ upp->pr_size = uap->size;
+ startprofclock(td->td_proc);
+ splx(s);
+
+done2:
+ mtx_unlock(&Giant);
+ return (error);
+}
+
+/*
+ * Scale is a fixed-point number with the binary point 16 bits
+ * into the value, and is <= 1.0. pc is at most 32 bits, so the
+ * intermediate result is at most 48 bits.
+ */
+#define PC_TO_INDEX(pc, prof) \
+ ((int)(((u_quad_t)((pc) - (prof)->pr_off) * \
+ (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
+
+/*
+ * Collect user-level profiling statistics; called on a profiling tick,
+ * when a process is running in user-mode. This routine may be called
+ * from an interrupt context. We try to update the user profiling buffers
+ * cheaply with fuswintr() and suswintr(). If that fails, we revert to
+ * an AST that will vector us to trap() with a context in which copyin
+ * and copyout will work. Trap will then call addupc_task().
+ *
+ * Note that we may (rarely) not get around to the AST soon enough, and
+ * lose profile ticks when the next tick overwrites this one, but in this
+ * case the system is overloaded and the profile is probably already
+ * inaccurate.
+ */
+void
+addupc_intr(ke, pc, ticks)
+ register struct kse *ke;
+ register uintptr_t pc;
+ u_int ticks;
+{
+ register struct uprof *prof;
+ register caddr_t addr;
+ register u_int i;
+ register int v;
+
+ if (ticks == 0)
+ return;
+ prof = &ke->ke_proc->p_stats->p_prof;
+ if (pc < prof->pr_off ||
+ (i = PC_TO_INDEX(pc, prof)) >= prof->pr_size)
+ return; /* out of range; ignore */
+
+ addr = prof->pr_base + i;
+ if ((v = fuswintr(addr)) == -1 || suswintr(addr, v + ticks) == -1) {
+ mtx_lock_spin(&sched_lock);
+ prof->pr_addr = pc;
+ prof->pr_ticks = ticks;
+ ke->ke_flags |= KEF_OWEUPC | KEF_ASTPENDING ;
+ mtx_unlock_spin(&sched_lock);
+ }
+}
+
+/*
+ * Much like before, but we can afford to take faults here. If the
+ * update fails, we simply turn off profiling.
+ */
+void
+addupc_task(ke, pc, ticks)
+ register struct kse *ke;
+ register uintptr_t pc;
+ u_int ticks;
+{
+ struct proc *p = ke->ke_proc;
+ register struct uprof *prof;
+ register caddr_t addr;
+ register u_int i;
+ u_short v;
+
+ if (ticks == 0)
+ return;
+
+ prof = &p->p_stats->p_prof;
+ if (pc < prof->pr_off ||
+ (i = PC_TO_INDEX(pc, prof)) >= prof->pr_size)
+ return;
+
+ addr = prof->pr_base + i;
+ if (copyin(addr, (caddr_t)&v, sizeof(v)) == 0) {
+ v += ticks;
+ if (copyout((caddr_t)&v, addr, sizeof(v)) == 0)
+ return;
+ }
+ stopprofclock(p);
+}
OpenPOWER on IntegriCloud