summaryrefslogtreecommitdiffstats
path: root/sys/kern/sched_4bsd.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/kern/sched_4bsd.c')
-rw-r--r--sys/kern/sched_4bsd.c764
1 files changed, 135 insertions, 629 deletions
diff --git a/sys/kern/sched_4bsd.c b/sys/kern/sched_4bsd.c
index dc9d288..3fe2682 100644
--- a/sys/kern/sched_4bsd.c
+++ b/sys/kern/sched_4bsd.c
@@ -37,8 +37,6 @@ __FBSDID("$FreeBSD$");
#include "opt_hwpmc_hooks.h"
-#define kse td_sched
-
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
@@ -75,99 +73,38 @@ __FBSDID("$FreeBSD$");
#endif
#define NICE_WEIGHT 1 /* Priorities per nice level. */
-#ifdef KSE
-/*
- * The schedulable entity that can be given a context to run.
- * A process may have several of these. Probably one per processor
- * but possibly a few more. In this universe they are grouped
- * with a KSEG that contains the priority and niceness
- * for the group.
- */
-#else
/*
* The schedulable entity that runs a context.
- * A process may have several of these. Probably one per processor
- * but posibly a few more.
+ * This is an extension to the thread structure and is tailored to
+ * the requirements of this scheduler
*/
-#endif
-struct kse {
- TAILQ_ENTRY(kse) ke_procq; /* (j/z) Run queue. */
- struct thread *ke_thread; /* (*) Active associated thread. */
- fixpt_t ke_pctcpu; /* (j) %cpu during p_swtime. */
- u_char ke_rqindex; /* (j) Run queue index. */
+struct td_sched {
+ TAILQ_ENTRY(td_sched) ts_procq; /* (j/z) Run queue. */
+ struct thread *ts_thread; /* (*) Active associated thread. */
+ fixpt_t ts_pctcpu; /* (j) %cpu during p_swtime. */
+ u_char ts_rqindex; /* (j) Run queue index. */
enum {
- KES_THREAD = 0x0, /* slaved to thread state */
- KES_ONRUNQ
- } ke_state; /* (j) KSE status. */
- int ke_cpticks; /* (j) Ticks of cpu time. */
- struct runq *ke_runq; /* runq the kse is currently on */
+ TSS_THREAD = 0x0, /* slaved to thread state */
+ TSS_ONRUNQ
+ } ts_state; /* (j) TD_STAT in scheduler status. */
+ int ts_cpticks; /* (j) Ticks of cpu time. */
+ struct runq *ts_runq; /* runq the thread is currently on */
};
-#ifdef KSE
-#define ke_proc ke_thread->td_proc
-#define ke_ksegrp ke_thread->td_ksegrp
-#endif
-
-#define td_kse td_sched
-
/* flags kept in td_flags */
-#define TDF_DIDRUN TDF_SCHED0 /* KSE actually ran. */
-#define TDF_EXIT TDF_SCHED1 /* KSE is being killed. */
+#define TDF_DIDRUN TDF_SCHED0 /* thread actually ran. */
+#define TDF_EXIT TDF_SCHED1 /* thread is being killed. */
#define TDF_BOUND TDF_SCHED2
-#define ke_flags ke_thread->td_flags
-#define KEF_DIDRUN TDF_DIDRUN /* KSE actually ran. */
-#define KEF_EXIT TDF_EXIT /* KSE is being killed. */
-#define KEF_BOUND TDF_BOUND /* stuck to one CPU */
-
-#define SKE_RUNQ_PCPU(ke) \
- ((ke)->ke_runq != 0 && (ke)->ke_runq != &runq)
-
-#ifdef KSE
-struct kg_sched {
- struct thread *skg_last_assigned; /* (j) Last thread assigned to */
- /* the system scheduler. */
- int skg_avail_opennings; /* (j) Num KSEs requested in group. */
- int skg_concurrency; /* (j) Num KSEs requested in group. */
-};
-#define kg_last_assigned kg_sched->skg_last_assigned
-#define kg_avail_opennings kg_sched->skg_avail_opennings
-#define kg_concurrency kg_sched->skg_concurrency
-
-#define SLOT_RELEASE(kg) \
-do { \
- kg->kg_avail_opennings++; \
- CTR3(KTR_RUNQ, "kg %p(%d) Slot released (->%d)", \
- kg, \
- kg->kg_concurrency, \
- kg->kg_avail_opennings); \
-/* KASSERT((kg->kg_avail_opennings <= kg->kg_concurrency), \
- ("slots out of whack"));*/ \
-} while (0)
-
-#define SLOT_USE(kg) \
-do { \
- kg->kg_avail_opennings--; \
- CTR3(KTR_RUNQ, "kg %p(%d) Slot used (->%d)", \
- kg, \
- kg->kg_concurrency, \
- kg->kg_avail_opennings); \
-/* KASSERT((kg->kg_avail_opennings >= 0), \
- ("slots out of whack"));*/ \
-} while (0)
-#endif
+#define ts_flags ts_thread->td_flags
+#define TSF_DIDRUN TDF_DIDRUN /* thread actually ran. */
+#define TSF_EXIT TDF_EXIT /* thread is being killed. */
+#define TSF_BOUND TDF_BOUND /* stuck to one CPU */
-/*
- * KSE_CAN_MIGRATE macro returns true if the kse can migrate between
- * cpus.
- */
-#define KSE_CAN_MIGRATE(ke) \
- ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
+#define SKE_RUNQ_PCPU(ts) \
+ ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
-static struct kse kse0;
-#ifdef KSE
-static struct kg_sched kg_sched0;
-#endif
+static struct td_sched td_sched0;
static int sched_tdcnt; /* Total runnable threads in the system. */
static int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
@@ -175,12 +112,7 @@ static int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
static struct callout roundrobin_callout;
-#ifdef KSE
-static void slot_fill(struct ksegrp *kg);
-static struct kse *sched_choose(void); /* XXX Should be thread * */
-#else
-static struct thread *sched_choose(void);
-#endif
+static struct td_sched *sched_choose(void);
static void setup_runqs(void);
static void roundrobin(void *arg);
@@ -189,15 +121,9 @@ static void schedcpu_thread(void);
static void sched_priority(struct thread *td, u_char prio);
static void sched_setup(void *dummy);
static void maybe_resched(struct thread *td);
-#ifdef KSE
-static void updatepri(struct ksegrp *kg);
-static void resetpriority(struct ksegrp *kg);
-static void resetpriority_thread(struct thread *td, struct ksegrp *kg);
-#else
static void updatepri(struct thread *td);
static void resetpriority(struct thread *td);
static void resetpriority_thread(struct thread *td);
-#endif
#ifdef SMP
static int forward_wakeup(int cpunum);
#endif
@@ -300,21 +226,11 @@ SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, htt2, CTLFLAG_RW,
"account for htt");
#endif
-#ifdef KSE
+#if 0
static int sched_followon = 0;
SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
&sched_followon, 0,
"allow threads to share a quantum");
-
-static int sched_pfollowons = 0;
-SYSCTL_INT(_kern_sched, OID_AUTO, pfollowons, CTLFLAG_RD,
- &sched_pfollowons, 0,
- "number of followons done to a different ksegrp");
-
-static int sched_kgfollowons = 0;
-SYSCTL_INT(_kern_sched, OID_AUTO, kgfollowons, CTLFLAG_RD,
- &sched_kgfollowons, 0,
- "number of followons done in a ksegrp");
#endif
static __inline void
@@ -366,40 +282,20 @@ roundrobin(void *arg)
/*
* Constants for digital decay and forget:
- * ifdef KSE
- * 90% of (kg_estcpu) usage in 5 * loadav time
- * else
* 90% of (td_estcpu) usage in 5 * loadav time
- * endif
- * 95% of (ke_pctcpu) usage in 60 seconds (load insensitive)
+ * 95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
* Note that, as ps(1) mentions, this can let percentages
* total over 100% (I've seen 137.9% for 3 processes).
*
- * ifdef KSE
- * Note that schedclock() updates kg_estcpu and p_cpticks asynchronously.
- * else
* Note that schedclock() updates td_estcpu and p_cpticks asynchronously.
- * endif
*
- * ifdef KSE
- * We wish to decay away 90% of kg_estcpu in (5 * loadavg) seconds.
- * else
* We wish to decay away 90% of td_estcpu in (5 * loadavg) seconds.
- * endif
* That is, the system wants to compute a value of decay such
* that the following for loop:
* for (i = 0; i < (5 * loadavg); i++)
- * ifdef KSE
- * kg_estcpu *= decay;
- * else
* td_estcpu *= decay;
- * endif
* will compute
- * ifdef KSE
- * kg_estcpu *= 0.1;
- * else
* td_estcpu *= 0.1;
- * endif
* for all values of loadavg:
*
* Mathematically this loop can be expressed by saying:
@@ -452,7 +348,7 @@ roundrobin(void *arg)
#define loadfactor(loadav) (2 * (loadav))
#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
-/* decay 95% of `ke_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
+/* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
@@ -481,10 +377,7 @@ schedcpu(void)
register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
struct thread *td;
struct proc *p;
- struct kse *ke;
-#ifdef KSE
- struct ksegrp *kg;
-#endif
+ struct td_sched *ts;
int awake, realstathz;
realstathz = stathz ? stathz : hz;
@@ -499,126 +392,63 @@ schedcpu(void)
* 16-bit int's (remember them?) overflow takes 45 days.
*/
p->p_swtime++;
-#ifdef KSE
- FOREACH_KSEGRP_IN_PROC(p, kg) {
-#else
FOREACH_THREAD_IN_PROC(p, td) {
-#endif
awake = 0;
-#ifdef KSE
- FOREACH_THREAD_IN_GROUP(kg, td) {
- ke = td->td_kse;
- /*
- * Increment sleep time (if sleeping). We
- * ignore overflow, as above.
- */
- /*
- * The kse slptimes are not touched in wakeup
- * because the thread may not HAVE a KSE.
- */
- if (ke->ke_state == KES_ONRUNQ) {
- awake = 1;
- ke->ke_flags &= ~KEF_DIDRUN;
- } else if ((ke->ke_state == KES_THREAD) &&
- (TD_IS_RUNNING(td))) {
- awake = 1;
- /* Do not clear KEF_DIDRUN */
- } else if (ke->ke_flags & KEF_DIDRUN) {
- awake = 1;
- ke->ke_flags &= ~KEF_DIDRUN;
- }
-
- /*
- * ke_pctcpu is only for ps and ttyinfo().
- * Do it per kse, and add them up at the end?
- * XXXKSE
- */
- ke->ke_pctcpu = (ke->ke_pctcpu * ccpu) >>
- FSHIFT;
- /*
- * If the kse has been idle the entire second,
- * stop recalculating its priority until
- * it wakes up.
- */
- if (ke->ke_cpticks == 0)
- continue;
-#if (FSHIFT >= CCPU_SHIFT)
- ke->ke_pctcpu += (realstathz == 100)
- ? ((fixpt_t) ke->ke_cpticks) <<
- (FSHIFT - CCPU_SHIFT) :
- 100 * (((fixpt_t) ke->ke_cpticks)
- << (FSHIFT - CCPU_SHIFT)) / realstathz;
-#else
- ke->ke_pctcpu += ((FSCALE - ccpu) *
- (ke->ke_cpticks *
- FSCALE / realstathz)) >> FSHIFT;
-#endif
- ke->ke_cpticks = 0;
- } /* end of kse loop */
-#else
- ke = td->td_kse;
+ ts = td->td_sched;
/*
* Increment sleep time (if sleeping). We
* ignore overflow, as above.
*/
/*
- * The kse slptimes are not touched in wakeup
- * because the thread may not HAVE a KSE.
+ * The td_sched slptimes are not touched in wakeup
+ * because the thread may not HAVE everything in
+ * memory? XXX I think this is out of date.
*/
- if (ke->ke_state == KES_ONRUNQ) {
+ if (ts->ts_state == TSS_ONRUNQ) {
awake = 1;
- ke->ke_flags &= ~KEF_DIDRUN;
- } else if ((ke->ke_state == KES_THREAD) &&
+ ts->ts_flags &= ~TSF_DIDRUN;
+ } else if ((ts->ts_state == TSS_THREAD) &&
(TD_IS_RUNNING(td))) {
awake = 1;
- /* Do not clear KEF_DIDRUN */
- } else if (ke->ke_flags & KEF_DIDRUN) {
+ /* Do not clear TSF_DIDRUN */
+ } else if (ts->ts_flags & TSF_DIDRUN) {
awake = 1;
- ke->ke_flags &= ~KEF_DIDRUN;
+ ts->ts_flags &= ~TSF_DIDRUN;
}
/*
- * ke_pctcpu is only for ps and ttyinfo().
- * Do it per kse, and add them up at the end?
+ * ts_pctcpu is only for ps and ttyinfo().
+ * Do it per td_sched, and add them up at the end?
* XXXKSE
*/
- ke->ke_pctcpu = (ke->ke_pctcpu * ccpu) >>
- FSHIFT;
+ ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
/*
- * If the kse has been idle the entire second,
+ * If the td_sched has been idle the entire second,
* stop recalculating its priority until
* it wakes up.
*/
- if (ke->ke_cpticks != 0) {
+ if (ts->ts_cpticks != 0) {
#if (FSHIFT >= CCPU_SHIFT)
- ke->ke_pctcpu += (realstathz == 100)
- ? ((fixpt_t) ke->ke_cpticks) <<
- (FSHIFT - CCPU_SHIFT) :
- 100 * (((fixpt_t) ke->ke_cpticks)
- << (FSHIFT - CCPU_SHIFT)) / realstathz;
+ ts->ts_pctcpu += (realstathz == 100)
+ ? ((fixpt_t) ts->ts_cpticks) <<
+ (FSHIFT - CCPU_SHIFT) :
+ 100 * (((fixpt_t) ts->ts_cpticks)
+ << (FSHIFT - CCPU_SHIFT)) / realstathz;
#else
- ke->ke_pctcpu += ((FSCALE - ccpu) *
- (ke->ke_cpticks *
- FSCALE / realstathz)) >> FSHIFT;
+ ts->ts_pctcpu += ((FSCALE - ccpu) *
+ (ts->ts_cpticks *
+ FSCALE / realstathz)) >> FSHIFT;
#endif
- ke->ke_cpticks = 0;
+ ts->ts_cpticks = 0;
}
-#endif
-
/*
- * ifdef KSE
- * If there are ANY running threads in this KSEGRP,
- * else
* If there are ANY running threads in this process,
- * endif
* then don't count it as sleeping.
+XXX this is broken
+
*/
if (awake) {
-#ifdef KSE
- if (kg->kg_slptime > 1) {
-#else
- if (td->td_slptime > 1) {
-#endif
+ if (p->p_slptime > 1) {
/*
* In an ideal world, this should not
* happen, because whoever woke us
@@ -628,21 +458,6 @@ schedcpu(void)
* priority. Should KASSERT at some
* point when all the cases are fixed.
*/
-#ifdef KSE
- updatepri(kg);
- }
- kg->kg_slptime = 0;
- } else
- kg->kg_slptime++;
- if (kg->kg_slptime > 1)
- continue;
- kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
- resetpriority(kg);
- FOREACH_THREAD_IN_GROUP(kg, td) {
- resetpriority_thread(td, kg);
- }
- } /* end of ksegrp loop */
-#else
updatepri(td);
}
td->td_slptime = 0;
@@ -654,7 +469,6 @@ schedcpu(void)
resetpriority(td);
resetpriority_thread(td);
} /* end of thread loop */
-#endif
mtx_unlock_spin(&sched_lock);
} /* end of process loop */
sx_sunlock(&allproc_lock);
@@ -676,48 +490,24 @@ schedcpu_thread(void)
/*
* Recalculate the priority of a process after it has slept for a while.
- * ifdef KSE
- * For all load averages >= 1 and max kg_estcpu of 255, sleeping for at
- * least six times the loadfactor will decay kg_estcpu to zero.
- * else
* For all load averages >= 1 and max td_estcpu of 255, sleeping for at
* least six times the loadfactor will decay td_estcpu to zero.
- * endif
*/
static void
-#ifdef KSE
-updatepri(struct ksegrp *kg)
-#else
updatepri(struct thread *td)
-#endif
{
register fixpt_t loadfac;
register unsigned int newcpu;
loadfac = loadfactor(averunnable.ldavg[0]);
-#ifdef KSE
- if (kg->kg_slptime > 5 * loadfac)
- kg->kg_estcpu = 0;
-#else
if (td->td_slptime > 5 * loadfac)
td->td_estcpu = 0;
-#endif
else {
-#ifdef KSE
- newcpu = kg->kg_estcpu;
- kg->kg_slptime--; /* was incremented in schedcpu() */
- while (newcpu && --kg->kg_slptime)
-#else
newcpu = td->td_estcpu;
td->td_slptime--; /* was incremented in schedcpu() */
while (newcpu && --td->td_slptime)
-#endif
newcpu = decay_cpu(loadfac, newcpu);
-#ifdef KSE
- kg->kg_estcpu = newcpu;
-#else
td->td_estcpu = newcpu;
-#endif
}
}
@@ -727,43 +517,25 @@ updatepri(struct thread *td)
* than that of the current process.
*/
static void
-#ifdef KSE
-resetpriority(struct ksegrp *kg)
-#else
resetpriority(struct thread *td)
-#endif
{
register unsigned int newpriority;
-#ifdef KSE
- if (kg->kg_pri_class == PRI_TIMESHARE) {
- newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
- NICE_WEIGHT * (kg->kg_proc->p_nice - PRIO_MIN);
-#else
if (td->td_pri_class == PRI_TIMESHARE) {
newpriority = PUSER + td->td_estcpu / INVERSE_ESTCPU_WEIGHT +
NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
-#endif
newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
PRI_MAX_TIMESHARE);
-#ifdef KSE
- sched_user_prio(kg, newpriority);
-#else
sched_user_prio(td, newpriority);
-#endif
}
}
/*
- * Update the thread's priority when the associated ksegroup's user
+ * Update the thread's priority when the associated process's user
* priority changes.
*/
static void
-#ifdef KSE
-resetpriority_thread(struct thread *td, struct ksegrp *kg)
-#else
resetpriority_thread(struct thread *td)
-#endif
{
/* Only change threads with a time sharing user priority. */
@@ -774,11 +546,7 @@ resetpriority_thread(struct thread *td)
/* XXX the whole needresched thing is broken, but not silly. */
maybe_resched(td);
-#ifdef KSE
- sched_prio(td, kg->kg_user_pri);
-#else
sched_prio(td, td->td_user_pri);
-#endif
}
/* ARGSUSED */
@@ -814,16 +582,9 @@ schedinit(void)
* Set up the scheduler specific parts of proc0.
*/
proc0.p_sched = NULL; /* XXX */
-#ifdef KSE
- ksegrp0.kg_sched = &kg_sched0;
-#endif
- thread0.td_sched = &kse0;
- kse0.ke_thread = &thread0;
- kse0.ke_state = KES_THREAD;
-#ifdef KSE
- kg_sched0.skg_concurrency = 1;
- kg_sched0.skg_avail_opennings = 0; /* we are already running */
-#endif
+ thread0.td_sched = &td_sched0;
+ td_sched0.ts_thread = &thread0;
+ td_sched0.ts_state = TSS_THREAD;
}
int
@@ -847,13 +608,8 @@ sched_rr_interval(void)
/*
* We adjust the priority of the current process. The priority of
* a process gets worse as it accumulates CPU time. The cpu usage
- * ifdef KSE
- * estimator (kg_estcpu) is increased here. resetpriority() will
- * compute a different priority each time kg_estcpu increases by
- * else
* estimator (td_estcpu) is increased here. resetpriority() will
* compute a different priority each time td_estcpu increases by
- * endif
* INVERSE_ESTCPU_WEIGHT
* (until MAXPRI is reached). The cpu usage estimator ramps up
* quite quickly when the process is running (linearly), and decays
@@ -866,163 +622,83 @@ sched_rr_interval(void)
void
sched_clock(struct thread *td)
{
-#ifdef KSE
- struct ksegrp *kg;
-#endif
- struct kse *ke;
+ struct td_sched *ts;
mtx_assert(&sched_lock, MA_OWNED);
-#ifdef KSE
- kg = td->td_ksegrp;
-#endif
- ke = td->td_kse;
-
- ke->ke_cpticks++;
-#ifdef KSE
- kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
- if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
- resetpriority(kg);
- resetpriority_thread(td, kg);
-#else
+ ts = td->td_sched;
+
+ ts->ts_cpticks++;
td->td_estcpu = ESTCPULIM(td->td_estcpu + 1);
if ((td->td_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
resetpriority(td);
resetpriority_thread(td);
-#endif
}
}
-#ifdef KSE
-/*
- * charge childs scheduling cpu usage to parent.
- *
- * XXXKSE assume only one thread & kse & ksegrp keep estcpu in each ksegrp.
- * Charge it to the ksegrp that did the wait since process estcpu is sum of
- * all ksegrps, this is strictly as expected. Assume that the child process
- * aggregated all the estcpu into the 'built-in' ksegrp.
- */
-#else
/*
* charge childs scheduling cpu usage to parent.
*/
-#endif
void
sched_exit(struct proc *p, struct thread *td)
{
-#ifdef KSE
- sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), td);
- sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
-#else
- struct thread *parent = FIRST_THREAD_IN_PROC(p);
CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
td, td->td_proc->p_comm, td->td_priority);
- parent->td_estcpu = ESTCPULIM(parent->td_estcpu + td->td_estcpu);
- if ((td->td_proc->p_flag & P_NOLOAD) == 0)
- sched_load_rem();
-#endif
-}
-
-#ifdef KSE
-void
-sched_exit_ksegrp(struct ksegrp *kg, struct thread *childtd)
-{
-
- mtx_assert(&sched_lock, MA_OWNED);
- kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + childtd->td_ksegrp->kg_estcpu);
+ sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
}
void
sched_exit_thread(struct thread *td, struct thread *child)
{
+ struct proc *childproc = child->td_proc;
+
CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
- child, child->td_proc->p_comm, child->td_priority);
+ child, childproc->p_comm, child->td_priority);
+ td->td_estcpu = ESTCPULIM(td->td_estcpu + child->td_estcpu);
+ childproc->p_estcpu = ESTCPULIM(childproc->p_estcpu +
+ child->td_estcpu);
if ((child->td_proc->p_flag & P_NOLOAD) == 0)
sched_load_rem();
}
-#endif
void
sched_fork(struct thread *td, struct thread *childtd)
{
-#ifdef KSE
- sched_fork_ksegrp(td, childtd->td_ksegrp);
sched_fork_thread(td, childtd);
-#else
- childtd->td_estcpu = td->td_estcpu;
- sched_newthread(childtd);
-#endif
-}
-
-#ifdef KSE
-void
-sched_fork_ksegrp(struct thread *td, struct ksegrp *child)
-{
- mtx_assert(&sched_lock, MA_OWNED);
- child->kg_estcpu = td->td_ksegrp->kg_estcpu;
}
void
sched_fork_thread(struct thread *td, struct thread *childtd)
{
+ childtd->td_estcpu = td->td_estcpu;
sched_newthread(childtd);
}
-#endif
void
sched_nice(struct proc *p, int nice)
{
-#ifdef KSE
- struct ksegrp *kg;
-#endif
struct thread *td;
PROC_LOCK_ASSERT(p, MA_OWNED);
mtx_assert(&sched_lock, MA_OWNED);
p->p_nice = nice;
-#ifdef KSE
- FOREACH_KSEGRP_IN_PROC(p, kg) {
- resetpriority(kg);
- FOREACH_THREAD_IN_GROUP(kg, td) {
- resetpriority_thread(td, kg);
- }
- }
-#else
FOREACH_THREAD_IN_PROC(p, td) {
resetpriority(td);
resetpriority_thread(td);
}
-#endif
}
void
-#ifdef KSE
-sched_class(struct ksegrp *kg, int class)
-#else
sched_class(struct thread *td, int class)
-#endif
{
mtx_assert(&sched_lock, MA_OWNED);
-#ifdef KSE
- kg->kg_pri_class = class;
-#else
td->td_pri_class = class;
-#endif
}
-#ifdef KSE
-/*
- * Adjust the priority of a thread.
- * This may include moving the thread within the KSEGRP,
- * changing the assignment of a kse to the thread,
- * and moving a KSE in the system run queue.
- */
-#else
/*
* Adjust the priority of a thread.
*/
-#endif
static void
sched_priority(struct thread *td, u_char prio)
{
@@ -1067,11 +743,7 @@ sched_unlend_prio(struct thread *td, u_char prio)
if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
td->td_base_pri <= PRI_MAX_TIMESHARE)
-#ifdef KSE
- base_pri = td->td_ksegrp->kg_user_pri;
-#else
base_pri = td->td_user_pri;
-#endif
else
base_pri = td->td_base_pri;
if (prio >= base_pri) {
@@ -1109,40 +781,15 @@ sched_prio(struct thread *td, u_char prio)
}
void
-#ifdef KSE
-sched_user_prio(struct ksegrp *kg, u_char prio)
-#else
sched_user_prio(struct thread *td, u_char prio)
-#endif
{
-#ifdef KSE
- struct thread *td;
-#endif
u_char oldprio;
-#ifdef KSE
- kg->kg_base_user_pri = prio;
-
- /* XXXKSE only for 1:1 */
-
- td = TAILQ_FIRST(&kg->kg_threads);
- if (td == NULL) {
- kg->kg_user_pri = prio;
- return;
- }
-
- if (td->td_flags & TDF_UBORROWING && kg->kg_user_pri <= prio)
- return;
-
- oldprio = kg->kg_user_pri;
- kg->kg_user_pri = prio;
-#else
td->td_base_user_pri = prio;
if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
return;
oldprio = td->td_user_pri;
td->td_user_pri = prio;
-#endif
if (TD_ON_UPILOCK(td) && oldprio != prio)
umtx_pi_adjust(td, oldprio);
@@ -1155,13 +802,8 @@ sched_lend_user_prio(struct thread *td, u_char prio)
td->td_flags |= TDF_UBORROWING;
-#ifdef KSE
- oldprio = td->td_ksegrp->kg_user_pri;
- td->td_ksegrp->kg_user_pri = prio;
-#else
oldprio = td->td_user_pri;
td->td_user_pri = prio;
-#endif
if (TD_ON_UPILOCK(td) && oldprio != prio)
umtx_pi_adjust(td, oldprio);
@@ -1170,23 +812,12 @@ sched_lend_user_prio(struct thread *td, u_char prio)
void
sched_unlend_user_prio(struct thread *td, u_char prio)
{
-#ifdef KSE
- struct ksegrp *kg = td->td_ksegrp;
-#endif
u_char base_pri;
-#ifdef KSE
- base_pri = kg->kg_base_user_pri;
-#else
base_pri = td->td_base_user_pri;
-#endif
if (prio >= base_pri) {
td->td_flags &= ~TDF_UBORROWING;
-#ifdef KSE
- sched_user_prio(kg, base_pri);
-#else
sched_user_prio(td, base_pri);
-#endif
} else
sched_lend_user_prio(td, prio);
}
@@ -1196,59 +827,37 @@ sched_sleep(struct thread *td)
{
mtx_assert(&sched_lock, MA_OWNED);
-#ifdef KSE
- td->td_ksegrp->kg_slptime = 0;
-#else
td->td_slptime = 0;
-#endif
}
-#ifdef KSE
-static void remrunqueue(struct thread *td);
-#endif
-
void
sched_switch(struct thread *td, struct thread *newtd, int flags)
{
- struct kse *ke;
-#ifdef KSE
- struct ksegrp *kg;
-#endif
+ struct td_sched *ts;
struct proc *p;
- ke = td->td_kse;
+ ts = td->td_sched;
p = td->td_proc;
mtx_assert(&sched_lock, MA_OWNED);
if ((p->p_flag & P_NOLOAD) == 0)
sched_load_rem();
-#ifdef KSE
+#if 0
/*
* We are volunteering to switch out so we get to nominate
* a successor for the rest of our quantum
- * First try another thread in our ksegrp, and then look for
- * other ksegrps in our process.
+ * First try another thread in our process
+ *
+ * this is too expensive to do without per process run queues
+ * so skip it for now.
+ * XXX keep this comment as a marker.
*/
if (sched_followon &&
(p->p_flag & P_HADTHREADS) &&
(flags & SW_VOL) &&
- newtd == NULL) {
- /* lets schedule another thread from this process */
- kg = td->td_ksegrp;
- if ((newtd = TAILQ_FIRST(&kg->kg_runq))) {
- remrunqueue(newtd);
- sched_kgfollowons++;
- } else {
- FOREACH_KSEGRP_IN_PROC(p, kg) {
- if ((newtd = TAILQ_FIRST(&kg->kg_runq))) {
- sched_pfollowons++;
- remrunqueue(newtd);
- break;
- }
- }
- }
- }
+ newtd == NULL)
+ newtd = mumble();
#endif
if (newtd)
@@ -1267,25 +876,11 @@ sched_switch(struct thread *td, struct thread *newtd, int flags)
if (td == PCPU_GET(idlethread))
TD_SET_CAN_RUN(td);
else {
-#ifdef KSE
- SLOT_RELEASE(td->td_ksegrp);
-#endif
if (TD_IS_RUNNING(td)) {
- /* Put us back on the run queue (kse and all). */
+ /* Put us back on the run queue. */
setrunqueue(td, (flags & SW_PREEMPT) ?
SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
SRQ_OURSELF|SRQ_YIELDING);
-#ifdef KSE
- } else if (p->p_flag & P_HADTHREADS) {
- /*
- * We will not be on the run queue. So we must be
- * sleeping or similar. As it's available,
- * someone else can use the KSE if they need it.
- * It's NOT available if we are about to need it
- */
- if (newtd == NULL || newtd->td_ksegrp != td->td_ksegrp)
- slot_fill(td->td_ksegrp);
-#endif
}
}
if (newtd) {
@@ -1294,17 +889,12 @@ sched_switch(struct thread *td, struct thread *newtd, int flags)
* as if it had been added to the run queue and selected.
* It came from:
* * A preemption
- * ifdef KSE
* * An upcall
- * endif
* * A followon
*/
KASSERT((newtd->td_inhibitors == 0),
("trying to run inhibitted thread"));
-#ifdef KSE
- SLOT_USE(newtd->td_ksegrp);
-#endif
- newtd->td_kse->ke_flags |= KEF_DIDRUN;
+ newtd->td_sched->ts_flags |= TSF_DIDRUN;
TD_SET_RUNNING(newtd);
if ((newtd->td_proc->p_flag & P_NOLOAD) == 0)
sched_load_add();
@@ -1332,25 +922,12 @@ sched_switch(struct thread *td, struct thread *newtd, int flags)
void
sched_wakeup(struct thread *td)
{
-#ifdef KSE
- struct ksegrp *kg;
-#endif
-
mtx_assert(&sched_lock, MA_OWNED);
-#ifdef KSE
- kg = td->td_ksegrp;
- if (kg->kg_slptime > 1) {
- updatepri(kg);
- resetpriority(kg);
- }
- kg->kg_slptime = 0;
-#else
if (td->td_slptime > 1) {
updatepri(td);
resetpriority(td);
}
td->td_slptime = 0;
-#endif
setrunqueue(td, SRQ_BORING);
}
@@ -1481,22 +1058,17 @@ void
sched_add(struct thread *td, int flags)
#ifdef SMP
{
- struct kse *ke;
+ struct td_sched *ts;
int forwarded = 0;
int cpu;
int single_cpu = 0;
- ke = td->td_kse;
+ ts = td->td_sched;
mtx_assert(&sched_lock, MA_OWNED);
- KASSERT(ke->ke_state != KES_ONRUNQ,
- ("sched_add: kse %p (%s) already in run queue", ke,
-#ifdef KSE
- ke->ke_proc->p_comm));
- KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
-#else
+ KASSERT(ts->ts_state != TSS_ONRUNQ,
+ ("sched_add: td_sched %p (%s) already in run queue", ts,
td->td_proc->p_comm));
KASSERT(td->td_proc->p_sflag & PS_INMEM,
-#endif
("sched_add: process swapped out"));
CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
td, td->td_proc->p_comm, td->td_priority, curthread,
@@ -1505,22 +1077,22 @@ sched_add(struct thread *td, int flags)
if (td->td_pinned != 0) {
cpu = td->td_lastcpu;
- ke->ke_runq = &runq_pcpu[cpu];
+ ts->ts_runq = &runq_pcpu[cpu];
single_cpu = 1;
CTR3(KTR_RUNQ,
- "sched_add: Put kse:%p(td:%p) on cpu%d runq", ke, td, cpu);
- } else if ((ke)->ke_flags & KEF_BOUND) {
+ "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td, cpu);
+ } else if ((ts)->ts_flags & TSF_BOUND) {
/* Find CPU from bound runq */
- KASSERT(SKE_RUNQ_PCPU(ke),("sched_add: bound kse not on cpu runq"));
- cpu = ke->ke_runq - &runq_pcpu[0];
+ KASSERT(SKE_RUNQ_PCPU(ts),("sched_add: bound td_sched not on cpu runq"));
+ cpu = ts->ts_runq - &runq_pcpu[0];
single_cpu = 1;
CTR3(KTR_RUNQ,
- "sched_add: Put kse:%p(td:%p) on cpu%d runq", ke, td, cpu);
+ "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td, cpu);
} else {
CTR2(KTR_RUNQ,
- "sched_add: adding kse:%p (td:%p) to gbl runq", ke, td);
+ "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts, td);
cpu = NOCPU;
- ke->ke_runq = &runq;
+ ts->ts_runq = &runq;
}
if (single_cpu && (cpu != PCPU_GET(cpuid))) {
@@ -1546,32 +1118,24 @@ sched_add(struct thread *td, int flags)
if ((td->td_proc->p_flag & P_NOLOAD) == 0)
sched_load_add();
-#ifdef KSE
- SLOT_USE(td->td_ksegrp);
-#endif
- runq_add(ke->ke_runq, ke, flags);
- ke->ke_state = KES_ONRUNQ;
+ runq_add(ts->ts_runq, ts, flags);
+ ts->ts_state = TSS_ONRUNQ;
}
#else /* SMP */
{
- struct kse *ke;
- ke = td->td_kse;
+ struct td_sched *ts;
+ ts = td->td_sched;
mtx_assert(&sched_lock, MA_OWNED);
- KASSERT(ke->ke_state != KES_ONRUNQ,
- ("sched_add: kse %p (%s) already in run queue", ke,
-#ifdef KSE
- ke->ke_proc->p_comm));
- KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
-#else
+ KASSERT(ts->ts_state != TSS_ONRUNQ,
+ ("sched_add: td_sched %p (%s) already in run queue", ts,
td->td_proc->p_comm));
KASSERT(td->td_proc->p_sflag & PS_INMEM,
-#endif
("sched_add: process swapped out"));
CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
td, td->td_proc->p_comm, td->td_priority, curthread,
curthread->td_proc->p_comm);
- CTR2(KTR_RUNQ, "sched_add: adding kse:%p (td:%p) to runq", ke, td);
- ke->ke_runq = &runq;
+ CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
+ ts->ts_runq = &runq;
/*
* If we are yielding (on the way out anyhow)
@@ -1590,11 +1154,8 @@ sched_add(struct thread *td, int flags)
}
if ((td->td_proc->p_flag & P_NOLOAD) == 0)
sched_load_add();
-#ifdef KSE
- SLOT_USE(td->td_ksegrp);
-#endif
- runq_add(ke->ke_runq, ke, flags);
- ke->ke_state = KES_ONRUNQ;
+ runq_add(ts->ts_runq, ts, flags);
+ ts->ts_state = TSS_ONRUNQ;
maybe_resched(td);
}
#endif /* SMP */
@@ -1602,17 +1163,13 @@ sched_add(struct thread *td, int flags)
void
sched_rem(struct thread *td)
{
- struct kse *ke;
+ struct td_sched *ts;
- ke = td->td_kse;
-#ifdef KSE
- KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
-#else
+ ts = td->td_sched;
KASSERT(td->td_proc->p_sflag & PS_INMEM,
-#endif
("sched_rem: process swapped out"));
- KASSERT((ke->ke_state == KES_ONRUNQ),
- ("sched_rem: KSE not on run queue"));
+ KASSERT((ts->ts_state == TSS_ONRUNQ),
+ ("sched_rem: thread not on run queue"));
mtx_assert(&sched_lock, MA_OWNED);
CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
td, td->td_proc->p_comm, td->td_priority, curthread,
@@ -1620,81 +1177,57 @@ sched_rem(struct thread *td)
if ((td->td_proc->p_flag & P_NOLOAD) == 0)
sched_load_rem();
-#ifdef KSE
- SLOT_RELEASE(td->td_ksegrp);
-#endif
- runq_remove(ke->ke_runq, ke);
+ runq_remove(ts->ts_runq, ts);
- ke->ke_state = KES_THREAD;
+ ts->ts_state = TSS_THREAD;
}
/*
* Select threads to run.
* Notice that the running threads still consume a slot.
*/
-#ifdef KSE
-struct kse *
-#else
-struct thread *
-#endif
+struct td_sched *
sched_choose(void)
{
- struct kse *ke;
+ struct td_sched *ts;
struct runq *rq;
#ifdef SMP
- struct kse *kecpu;
+ struct td_sched *kecpu;
rq = &runq;
- ke = runq_choose(&runq);
+ ts = runq_choose(&runq);
kecpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
- if (ke == NULL ||
+ if (ts == NULL ||
(kecpu != NULL &&
- kecpu->ke_thread->td_priority < ke->ke_thread->td_priority)) {
- CTR2(KTR_RUNQ, "choosing kse %p from pcpu runq %d", kecpu,
+ kecpu->ts_thread->td_priority < ts->ts_thread->td_priority)) {
+ CTR2(KTR_RUNQ, "choosing td_sched %p from pcpu runq %d", kecpu,
PCPU_GET(cpuid));
- ke = kecpu;
+ ts = kecpu;
rq = &runq_pcpu[PCPU_GET(cpuid)];
} else {
- CTR1(KTR_RUNQ, "choosing kse %p from main runq", ke);
+ CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", ts);
}
#else
rq = &runq;
- ke = runq_choose(&runq);
+ ts = runq_choose(&runq);
#endif
-#ifdef KSE
- if (ke != NULL) {
-#else
- if (ke) {
-#endif
- runq_remove(rq, ke);
- ke->ke_state = KES_THREAD;
+ if (ts) {
+ runq_remove(rq, ts);
+ ts->ts_state = TSS_THREAD;
-#ifdef KSE
- KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
+ KASSERT(ts->ts_thread->td_proc->p_sflag & PS_INMEM,
("sched_choose: process swapped out"));
-#else
- KASSERT(ke->ke_thread->td_proc->p_sflag & PS_INMEM,
- ("sched_choose: process swapped out"));
- return (ke->ke_thread);
-#endif
}
-#ifdef KSE
- return (ke);
-#else
- return (NULL);
-#endif
+ return (ts);
}
void
sched_userret(struct thread *td)
{
-#ifdef KSE
- struct ksegrp *kg;
-#endif
/*
* XXX we cheat slightly on the locking here to avoid locking in
* the usual case. Setting td_priority here is essentially an
@@ -1706,42 +1239,32 @@ sched_userret(struct thread *td)
*/
KASSERT((td->td_flags & TDF_BORROWING) == 0,
("thread with borrowed priority returning to userland"));
-#ifdef KSE
- kg = td->td_ksegrp;
- if (td->td_priority != kg->kg_user_pri) {
- mtx_lock_spin(&sched_lock);
- td->td_priority = kg->kg_user_pri;
- td->td_base_pri = kg->kg_user_pri;
- mtx_unlock_spin(&sched_lock);
- }
-#else
if (td->td_priority != td->td_user_pri) {
mtx_lock_spin(&sched_lock);
td->td_priority = td->td_user_pri;
td->td_base_pri = td->td_user_pri;
mtx_unlock_spin(&sched_lock);
}
-#endif
}
void
sched_bind(struct thread *td, int cpu)
{
- struct kse *ke;
+ struct td_sched *ts;
mtx_assert(&sched_lock, MA_OWNED);
KASSERT(TD_IS_RUNNING(td),
("sched_bind: cannot bind non-running thread"));
- ke = td->td_kse;
+ ts = td->td_sched;
- ke->ke_flags |= KEF_BOUND;
+ ts->ts_flags |= TSF_BOUND;
#ifdef SMP
- ke->ke_runq = &runq_pcpu[cpu];
+ ts->ts_runq = &runq_pcpu[cpu];
if (PCPU_GET(cpuid) == cpu)
return;
- ke->ke_state = KES_THREAD;
+ ts->ts_state = TSS_THREAD;
mi_switch(SW_VOL, NULL);
#endif
@@ -1751,30 +1274,21 @@ void
sched_unbind(struct thread* td)
{
mtx_assert(&sched_lock, MA_OWNED);
- td->td_kse->ke_flags &= ~KEF_BOUND;
+ td->td_sched->ts_flags &= ~TSF_BOUND;
}
int
sched_is_bound(struct thread *td)
{
mtx_assert(&sched_lock, MA_OWNED);
- return (td->td_kse->ke_flags & KEF_BOUND);
+ return (td->td_sched->ts_flags & TSF_BOUND);
}
void
sched_relinquish(struct thread *td)
{
-#ifdef KSE
- struct ksegrp *kg;
-
- kg = td->td_ksegrp;
-#endif
mtx_lock_spin(&sched_lock);
-#ifdef KSE
- if (kg->kg_pri_class == PRI_TIMESHARE)
-#else
if (td->td_pri_class == PRI_TIMESHARE)
-#endif
sched_prio(td, PRI_MAX_TIMESHARE);
mi_switch(SW_VOL, NULL);
mtx_unlock_spin(&sched_lock);
@@ -1786,14 +1300,6 @@ sched_load(void)
return (sched_tdcnt);
}
-#ifdef KSE
-int
-sched_sizeof_ksegrp(void)
-{
- return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
-}
-#endif
-
int
sched_sizeof_proc(void)
{
@@ -1803,16 +1309,16 @@ sched_sizeof_proc(void)
int
sched_sizeof_thread(void)
{
- return (sizeof(struct thread) + sizeof(struct kse));
+ return (sizeof(struct thread) + sizeof(struct td_sched));
}
fixpt_t
sched_pctcpu(struct thread *td)
{
- struct kse *ke;
+ struct td_sched *ts;
- ke = td->td_kse;
- return (ke->ke_pctcpu);
+ ts = td->td_sched;
+ return (ts->ts_pctcpu);
}
void
OpenPOWER on IntegriCloud