summaryrefslogtreecommitdiffstats
path: root/sys/kern/sched_4bsd.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/kern/sched_4bsd.c')
-rw-r--r--sys/kern/sched_4bsd.c1784
1 files changed, 1784 insertions, 0 deletions
diff --git a/sys/kern/sched_4bsd.c b/sys/kern/sched_4bsd.c
new file mode 100644
index 0000000..d1595c7
--- /dev/null
+++ b/sys/kern/sched_4bsd.c
@@ -0,0 +1,1784 @@
+/*-
+ * Copyright (c) 1982, 1986, 1990, 1991, 1993
+ * The Regents of the University of California. All rights reserved.
+ * (c) UNIX System Laboratories, Inc.
+ * All or some portions of this file are derived from material licensed
+ * to the University of California by American Telephone and Telegraph
+ * Co. or Unix System Laboratories, Inc. and are reproduced herein with
+ * the permission of UNIX System Laboratories, Inc.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include "opt_hwpmc_hooks.h"
+#include "opt_sched.h"
+#include "opt_kdtrace.h"
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/cpuset.h>
+#include <sys/kernel.h>
+#include <sys/ktr.h>
+#include <sys/lock.h>
+#include <sys/kthread.h>
+#include <sys/mutex.h>
+#include <sys/proc.h>
+#include <sys/resourcevar.h>
+#include <sys/sched.h>
+#include <sys/sdt.h>
+#include <sys/smp.h>
+#include <sys/sysctl.h>
+#include <sys/sx.h>
+#include <sys/turnstile.h>
+#include <sys/umtx.h>
+#include <machine/pcb.h>
+#include <machine/smp.h>
+
+#ifdef HWPMC_HOOKS
+#include <sys/pmckern.h>
+#endif
+
+#ifdef KDTRACE_HOOKS
+#include <sys/dtrace_bsd.h>
+int dtrace_vtime_active;
+dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
+#endif
+
+/*
+ * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
+ * the range 100-256 Hz (approximately).
+ */
+#define ESTCPULIM(e) \
+ min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
+ RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
+#ifdef SMP
+#define INVERSE_ESTCPU_WEIGHT (8 * smp_cpus)
+#else
+#define INVERSE_ESTCPU_WEIGHT 8 /* 1 / (priorities per estcpu level). */
+#endif
+#define NICE_WEIGHT 1 /* Priorities per nice level. */
+
+#define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
+
+/*
+ * The schedulable entity that runs a context.
+ * This is an extension to the thread structure and is tailored to
+ * the requirements of this scheduler
+ */
+struct td_sched {
+ fixpt_t ts_pctcpu; /* (j) %cpu during p_swtime. */
+ int ts_cpticks; /* (j) Ticks of cpu time. */
+ int ts_slptime; /* (j) Seconds !RUNNING. */
+ int ts_slice; /* Remaining part of time slice. */
+ int ts_flags;
+ struct runq *ts_runq; /* runq the thread is currently on */
+#ifdef KTR
+ char ts_name[TS_NAME_LEN];
+#endif
+};
+
+/* flags kept in td_flags */
+#define TDF_DIDRUN TDF_SCHED0 /* thread actually ran. */
+#define TDF_BOUND TDF_SCHED1 /* Bound to one CPU. */
+#define TDF_SLICEEND TDF_SCHED2 /* Thread time slice is over. */
+
+/* flags kept in ts_flags */
+#define TSF_AFFINITY 0x0001 /* Has a non-"full" CPU set. */
+
+#define SKE_RUNQ_PCPU(ts) \
+ ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
+
+#define THREAD_CAN_SCHED(td, cpu) \
+ CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
+
+static struct td_sched td_sched0;
+struct mtx sched_lock;
+
+static int realstathz = 127; /* stathz is sometimes 0 and run off of hz. */
+static int sched_tdcnt; /* Total runnable threads in the system. */
+static int sched_slice = 12; /* Thread run time before rescheduling. */
+
+static void setup_runqs(void);
+static void schedcpu(void);
+static void schedcpu_thread(void);
+static void sched_priority(struct thread *td, u_char prio);
+static void sched_setup(void *dummy);
+static void maybe_resched(struct thread *td);
+static void updatepri(struct thread *td);
+static void resetpriority(struct thread *td);
+static void resetpriority_thread(struct thread *td);
+#ifdef SMP
+static int sched_pickcpu(struct thread *td);
+static int forward_wakeup(int cpunum);
+static void kick_other_cpu(int pri, int cpuid);
+#endif
+
+static struct kproc_desc sched_kp = {
+ "schedcpu",
+ schedcpu_thread,
+ NULL
+};
+SYSINIT(schedcpu, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, kproc_start,
+ &sched_kp);
+SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
+
+static void sched_initticks(void *dummy);
+SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
+ NULL);
+
+/*
+ * Global run queue.
+ */
+static struct runq runq;
+
+#ifdef SMP
+/*
+ * Per-CPU run queues
+ */
+static struct runq runq_pcpu[MAXCPU];
+long runq_length[MAXCPU];
+
+static cpuset_t idle_cpus_mask;
+#endif
+
+struct pcpuidlestat {
+ u_int idlecalls;
+ u_int oldidlecalls;
+};
+static DPCPU_DEFINE(struct pcpuidlestat, idlestat);
+
+static void
+setup_runqs(void)
+{
+#ifdef SMP
+ int i;
+
+ for (i = 0; i < MAXCPU; ++i)
+ runq_init(&runq_pcpu[i]);
+#endif
+
+ runq_init(&runq);
+}
+
+static int
+sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
+{
+ int error, new_val, period;
+
+ period = 1000000 / realstathz;
+ new_val = period * sched_slice;
+ error = sysctl_handle_int(oidp, &new_val, 0, req);
+ if (error != 0 || req->newptr == NULL)
+ return (error);
+ if (new_val <= 0)
+ return (EINVAL);
+ sched_slice = imax(1, (new_val + period / 2) / period);
+ hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
+ realstathz);
+ return (0);
+}
+
+SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler");
+
+SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
+ "Scheduler name");
+SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
+ NULL, 0, sysctl_kern_quantum, "I",
+ "Quantum for timeshare threads in microseconds");
+SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
+ "Quantum for timeshare threads in stathz ticks");
+#ifdef SMP
+/* Enable forwarding of wakeups to all other cpus */
+static SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL,
+ "Kernel SMP");
+
+static int runq_fuzz = 1;
+SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
+
+static int forward_wakeup_enabled = 1;
+SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
+ &forward_wakeup_enabled, 0,
+ "Forwarding of wakeup to idle CPUs");
+
+static int forward_wakeups_requested = 0;
+SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
+ &forward_wakeups_requested, 0,
+ "Requests for Forwarding of wakeup to idle CPUs");
+
+static int forward_wakeups_delivered = 0;
+SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
+ &forward_wakeups_delivered, 0,
+ "Completed Forwarding of wakeup to idle CPUs");
+
+static int forward_wakeup_use_mask = 1;
+SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
+ &forward_wakeup_use_mask, 0,
+ "Use the mask of idle cpus");
+
+static int forward_wakeup_use_loop = 0;
+SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
+ &forward_wakeup_use_loop, 0,
+ "Use a loop to find idle cpus");
+
+#endif
+#if 0
+static int sched_followon = 0;
+SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
+ &sched_followon, 0,
+ "allow threads to share a quantum");
+#endif
+
+SDT_PROVIDER_DEFINE(sched);
+
+SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *",
+ "struct proc *", "uint8_t");
+SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *",
+ "struct proc *", "void *");
+SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *",
+ "struct proc *", "void *", "int");
+SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *",
+ "struct proc *", "uint8_t", "struct thread *");
+SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
+SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
+ "struct proc *");
+SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
+SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
+SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
+ "struct proc *");
+
+static __inline void
+sched_load_add(void)
+{
+
+ sched_tdcnt++;
+ KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
+ SDT_PROBE2(sched, , , load_change, NOCPU, sched_tdcnt);
+}
+
+static __inline void
+sched_load_rem(void)
+{
+
+ sched_tdcnt--;
+ KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
+ SDT_PROBE2(sched, , , load_change, NOCPU, sched_tdcnt);
+}
+/*
+ * Arrange to reschedule if necessary, taking the priorities and
+ * schedulers into account.
+ */
+static void
+maybe_resched(struct thread *td)
+{
+
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ if (td->td_priority < curthread->td_priority)
+ curthread->td_flags |= TDF_NEEDRESCHED;
+}
+
+/*
+ * This function is called when a thread is about to be put on run queue
+ * because it has been made runnable or its priority has been adjusted. It
+ * determines if the new thread should be immediately preempted to. If so,
+ * it switches to it and eventually returns true. If not, it returns false
+ * so that the caller may place the thread on an appropriate run queue.
+ */
+int
+maybe_preempt(struct thread *td)
+{
+#ifdef PREEMPTION
+ struct thread *ctd;
+ int cpri, pri;
+
+ /*
+ * The new thread should not preempt the current thread if any of the
+ * following conditions are true:
+ *
+ * - The kernel is in the throes of crashing (panicstr).
+ * - The current thread has a higher (numerically lower) or
+ * equivalent priority. Note that this prevents curthread from
+ * trying to preempt to itself.
+ * - It is too early in the boot for context switches (cold is set).
+ * - The current thread has an inhibitor set or is in the process of
+ * exiting. In this case, the current thread is about to switch
+ * out anyways, so there's no point in preempting. If we did,
+ * the current thread would not be properly resumed as well, so
+ * just avoid that whole landmine.
+ * - If the new thread's priority is not a realtime priority and
+ * the current thread's priority is not an idle priority and
+ * FULL_PREEMPTION is disabled.
+ *
+ * If all of these conditions are false, but the current thread is in
+ * a nested critical section, then we have to defer the preemption
+ * until we exit the critical section. Otherwise, switch immediately
+ * to the new thread.
+ */
+ ctd = curthread;
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ KASSERT((td->td_inhibitors == 0),
+ ("maybe_preempt: trying to run inhibited thread"));
+ pri = td->td_priority;
+ cpri = ctd->td_priority;
+ if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
+ TD_IS_INHIBITED(ctd))
+ return (0);
+#ifndef FULL_PREEMPTION
+ if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
+ return (0);
+#endif
+
+ if (ctd->td_critnest > 1) {
+ CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
+ ctd->td_critnest);
+ ctd->td_owepreempt = 1;
+ return (0);
+ }
+ /*
+ * Thread is runnable but not yet put on system run queue.
+ */
+ MPASS(ctd->td_lock == td->td_lock);
+ MPASS(TD_ON_RUNQ(td));
+ TD_SET_RUNNING(td);
+ CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
+ td->td_proc->p_pid, td->td_name);
+ mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, td);
+ /*
+ * td's lock pointer may have changed. We have to return with it
+ * locked.
+ */
+ spinlock_enter();
+ thread_unlock(ctd);
+ thread_lock(td);
+ spinlock_exit();
+ return (1);
+#else
+ return (0);
+#endif
+}
+
+/*
+ * Constants for digital decay and forget:
+ * 90% of (td_estcpu) usage in 5 * loadav time
+ * 95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
+ * Note that, as ps(1) mentions, this can let percentages
+ * total over 100% (I've seen 137.9% for 3 processes).
+ *
+ * Note that schedclock() updates td_estcpu and p_cpticks asynchronously.
+ *
+ * We wish to decay away 90% of td_estcpu in (5 * loadavg) seconds.
+ * That is, the system wants to compute a value of decay such
+ * that the following for loop:
+ * for (i = 0; i < (5 * loadavg); i++)
+ * td_estcpu *= decay;
+ * will compute
+ * td_estcpu *= 0.1;
+ * for all values of loadavg:
+ *
+ * Mathematically this loop can be expressed by saying:
+ * decay ** (5 * loadavg) ~= .1
+ *
+ * The system computes decay as:
+ * decay = (2 * loadavg) / (2 * loadavg + 1)
+ *
+ * We wish to prove that the system's computation of decay
+ * will always fulfill the equation:
+ * decay ** (5 * loadavg) ~= .1
+ *
+ * If we compute b as:
+ * b = 2 * loadavg
+ * then
+ * decay = b / (b + 1)
+ *
+ * We now need to prove two things:
+ * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
+ * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
+ *
+ * Facts:
+ * For x close to zero, exp(x) =~ 1 + x, since
+ * exp(x) = 0! + x**1/1! + x**2/2! + ... .
+ * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
+ * For x close to zero, ln(1+x) =~ x, since
+ * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
+ * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
+ * ln(.1) =~ -2.30
+ *
+ * Proof of (1):
+ * Solve (factor)**(power) =~ .1 given power (5*loadav):
+ * solving for factor,
+ * ln(factor) =~ (-2.30/5*loadav), or
+ * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
+ * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
+ *
+ * Proof of (2):
+ * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
+ * solving for power,
+ * power*ln(b/(b+1)) =~ -2.30, or
+ * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
+ *
+ * Actual power values for the implemented algorithm are as follows:
+ * loadav: 1 2 3 4
+ * power: 5.68 10.32 14.94 19.55
+ */
+
+/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
+#define loadfactor(loadav) (2 * (loadav))
+#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
+
+/* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
+static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
+SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
+
+/*
+ * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
+ * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
+ * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
+ *
+ * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
+ * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
+ *
+ * If you don't want to bother with the faster/more-accurate formula, you
+ * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
+ * (more general) method of calculating the %age of CPU used by a process.
+ */
+#define CCPU_SHIFT 11
+
+/*
+ * Recompute process priorities, every hz ticks.
+ * MP-safe, called without the Giant mutex.
+ */
+/* ARGSUSED */
+static void
+schedcpu(void)
+{
+ register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
+ struct thread *td;
+ struct proc *p;
+ struct td_sched *ts;
+ int awake;
+
+ sx_slock(&allproc_lock);
+ FOREACH_PROC_IN_SYSTEM(p) {
+ PROC_LOCK(p);
+ if (p->p_state == PRS_NEW) {
+ PROC_UNLOCK(p);
+ continue;
+ }
+ FOREACH_THREAD_IN_PROC(p, td) {
+ awake = 0;
+ thread_lock(td);
+ ts = td->td_sched;
+ /*
+ * Increment sleep time (if sleeping). We
+ * ignore overflow, as above.
+ */
+ /*
+ * The td_sched slptimes are not touched in wakeup
+ * because the thread may not HAVE everything in
+ * memory? XXX I think this is out of date.
+ */
+ if (TD_ON_RUNQ(td)) {
+ awake = 1;
+ td->td_flags &= ~TDF_DIDRUN;
+ } else if (TD_IS_RUNNING(td)) {
+ awake = 1;
+ /* Do not clear TDF_DIDRUN */
+ } else if (td->td_flags & TDF_DIDRUN) {
+ awake = 1;
+ td->td_flags &= ~TDF_DIDRUN;
+ }
+
+ /*
+ * ts_pctcpu is only for ps and ttyinfo().
+ */
+ ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
+ /*
+ * If the td_sched has been idle the entire second,
+ * stop recalculating its priority until
+ * it wakes up.
+ */
+ if (ts->ts_cpticks != 0) {
+#if (FSHIFT >= CCPU_SHIFT)
+ ts->ts_pctcpu += (realstathz == 100)
+ ? ((fixpt_t) ts->ts_cpticks) <<
+ (FSHIFT - CCPU_SHIFT) :
+ 100 * (((fixpt_t) ts->ts_cpticks)
+ << (FSHIFT - CCPU_SHIFT)) / realstathz;
+#else
+ ts->ts_pctcpu += ((FSCALE - ccpu) *
+ (ts->ts_cpticks *
+ FSCALE / realstathz)) >> FSHIFT;
+#endif
+ ts->ts_cpticks = 0;
+ }
+ /*
+ * If there are ANY running threads in this process,
+ * then don't count it as sleeping.
+ * XXX: this is broken.
+ */
+ if (awake) {
+ if (ts->ts_slptime > 1) {
+ /*
+ * In an ideal world, this should not
+ * happen, because whoever woke us
+ * up from the long sleep should have
+ * unwound the slptime and reset our
+ * priority before we run at the stale
+ * priority. Should KASSERT at some
+ * point when all the cases are fixed.
+ */
+ updatepri(td);
+ }
+ ts->ts_slptime = 0;
+ } else
+ ts->ts_slptime++;
+ if (ts->ts_slptime > 1) {
+ thread_unlock(td);
+ continue;
+ }
+ td->td_estcpu = decay_cpu(loadfac, td->td_estcpu);
+ resetpriority(td);
+ resetpriority_thread(td);
+ thread_unlock(td);
+ }
+ PROC_UNLOCK(p);
+ }
+ sx_sunlock(&allproc_lock);
+}
+
+/*
+ * Main loop for a kthread that executes schedcpu once a second.
+ */
+static void
+schedcpu_thread(void)
+{
+
+ for (;;) {
+ schedcpu();
+ pause("-", hz);
+ }
+}
+
+/*
+ * Recalculate the priority of a process after it has slept for a while.
+ * For all load averages >= 1 and max td_estcpu of 255, sleeping for at
+ * least six times the loadfactor will decay td_estcpu to zero.
+ */
+static void
+updatepri(struct thread *td)
+{
+ struct td_sched *ts;
+ fixpt_t loadfac;
+ unsigned int newcpu;
+
+ ts = td->td_sched;
+ loadfac = loadfactor(averunnable.ldavg[0]);
+ if (ts->ts_slptime > 5 * loadfac)
+ td->td_estcpu = 0;
+ else {
+ newcpu = td->td_estcpu;
+ ts->ts_slptime--; /* was incremented in schedcpu() */
+ while (newcpu && --ts->ts_slptime)
+ newcpu = decay_cpu(loadfac, newcpu);
+ td->td_estcpu = newcpu;
+ }
+}
+
+/*
+ * Compute the priority of a process when running in user mode.
+ * Arrange to reschedule if the resulting priority is better
+ * than that of the current process.
+ */
+static void
+resetpriority(struct thread *td)
+{
+ register unsigned int newpriority;
+
+ if (td->td_pri_class == PRI_TIMESHARE) {
+ newpriority = PUSER + td->td_estcpu / INVERSE_ESTCPU_WEIGHT +
+ NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
+ newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
+ PRI_MAX_TIMESHARE);
+ sched_user_prio(td, newpriority);
+ }
+}
+
+/*
+ * Update the thread's priority when the associated process's user
+ * priority changes.
+ */
+static void
+resetpriority_thread(struct thread *td)
+{
+
+ /* Only change threads with a time sharing user priority. */
+ if (td->td_priority < PRI_MIN_TIMESHARE ||
+ td->td_priority > PRI_MAX_TIMESHARE)
+ return;
+
+ /* XXX the whole needresched thing is broken, but not silly. */
+ maybe_resched(td);
+
+ sched_prio(td, td->td_user_pri);
+}
+
+/* ARGSUSED */
+static void
+sched_setup(void *dummy)
+{
+
+ setup_runqs();
+
+ /* Account for thread0. */
+ sched_load_add();
+}
+
+/*
+ * This routine determines time constants after stathz and hz are setup.
+ */
+static void
+sched_initticks(void *dummy)
+{
+
+ realstathz = stathz ? stathz : hz;
+ sched_slice = realstathz / 10; /* ~100ms */
+ hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
+ realstathz);
+}
+
+/* External interfaces start here */
+
+/*
+ * Very early in the boot some setup of scheduler-specific
+ * parts of proc0 and of some scheduler resources needs to be done.
+ * Called from:
+ * proc0_init()
+ */
+void
+schedinit(void)
+{
+ /*
+ * Set up the scheduler specific parts of proc0.
+ */
+ proc0.p_sched = NULL; /* XXX */
+ thread0.td_sched = &td_sched0;
+ thread0.td_lock = &sched_lock;
+ td_sched0.ts_slice = sched_slice;
+ mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
+}
+
+int
+sched_runnable(void)
+{
+#ifdef SMP
+ return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
+#else
+ return runq_check(&runq);
+#endif
+}
+
+int
+sched_rr_interval(void)
+{
+
+ /* Convert sched_slice from stathz to hz. */
+ return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
+}
+
+/*
+ * We adjust the priority of the current process. The priority of
+ * a process gets worse as it accumulates CPU time. The cpu usage
+ * estimator (td_estcpu) is increased here. resetpriority() will
+ * compute a different priority each time td_estcpu increases by
+ * INVERSE_ESTCPU_WEIGHT
+ * (until MAXPRI is reached). The cpu usage estimator ramps up
+ * quite quickly when the process is running (linearly), and decays
+ * away exponentially, at a rate which is proportionally slower when
+ * the system is busy. The basic principle is that the system will
+ * 90% forget that the process used a lot of CPU time in 5 * loadav
+ * seconds. This causes the system to favor processes which haven't
+ * run much recently, and to round-robin among other processes.
+ */
+void
+sched_clock(struct thread *td)
+{
+ struct pcpuidlestat *stat;
+ struct td_sched *ts;
+
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ ts = td->td_sched;
+
+ ts->ts_cpticks++;
+ td->td_estcpu = ESTCPULIM(td->td_estcpu + 1);
+ if ((td->td_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
+ resetpriority(td);
+ resetpriority_thread(td);
+ }
+
+ /*
+ * Force a context switch if the current thread has used up a full
+ * time slice (default is 100ms).
+ */
+ if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
+ ts->ts_slice = sched_slice;
+ td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
+ }
+
+ stat = DPCPU_PTR(idlestat);
+ stat->oldidlecalls = stat->idlecalls;
+ stat->idlecalls = 0;
+}
+
+/*
+ * Charge child's scheduling CPU usage to parent.
+ */
+void
+sched_exit(struct proc *p, struct thread *td)
+{
+
+ KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
+ "prio:%d", td->td_priority);
+
+ PROC_LOCK_ASSERT(p, MA_OWNED);
+ sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
+}
+
+void
+sched_exit_thread(struct thread *td, struct thread *child)
+{
+
+ KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
+ "prio:%d", child->td_priority);
+ thread_lock(td);
+ td->td_estcpu = ESTCPULIM(td->td_estcpu + child->td_estcpu);
+ thread_unlock(td);
+ thread_lock(child);
+ if ((child->td_flags & TDF_NOLOAD) == 0)
+ sched_load_rem();
+ thread_unlock(child);
+}
+
+void
+sched_fork(struct thread *td, struct thread *childtd)
+{
+ sched_fork_thread(td, childtd);
+}
+
+void
+sched_fork_thread(struct thread *td, struct thread *childtd)
+{
+ struct td_sched *ts;
+
+ childtd->td_estcpu = td->td_estcpu;
+ childtd->td_lock = &sched_lock;
+ childtd->td_cpuset = cpuset_ref(td->td_cpuset);
+ childtd->td_priority = childtd->td_base_pri;
+ ts = childtd->td_sched;
+ bzero(ts, sizeof(*ts));
+ ts->ts_flags |= (td->td_sched->ts_flags & TSF_AFFINITY);
+ ts->ts_slice = 1;
+}
+
+void
+sched_nice(struct proc *p, int nice)
+{
+ struct thread *td;
+
+ PROC_LOCK_ASSERT(p, MA_OWNED);
+ p->p_nice = nice;
+ FOREACH_THREAD_IN_PROC(p, td) {
+ thread_lock(td);
+ resetpriority(td);
+ resetpriority_thread(td);
+ thread_unlock(td);
+ }
+}
+
+void
+sched_class(struct thread *td, int class)
+{
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ td->td_pri_class = class;
+}
+
+/*
+ * Adjust the priority of a thread.
+ */
+static void
+sched_priority(struct thread *td, u_char prio)
+{
+
+
+ KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
+ "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
+ sched_tdname(curthread));
+ SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
+ if (td != curthread && prio > td->td_priority) {
+ KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
+ "lend prio", "prio:%d", td->td_priority, "new prio:%d",
+ prio, KTR_ATTR_LINKED, sched_tdname(td));
+ SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio,
+ curthread);
+ }
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ if (td->td_priority == prio)
+ return;
+ td->td_priority = prio;
+ if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
+ sched_rem(td);
+ sched_add(td, SRQ_BORING);
+ }
+}
+
+/*
+ * Update a thread's priority when it is lent another thread's
+ * priority.
+ */
+void
+sched_lend_prio(struct thread *td, u_char prio)
+{
+
+ td->td_flags |= TDF_BORROWING;
+ sched_priority(td, prio);
+}
+
+/*
+ * Restore a thread's priority when priority propagation is
+ * over. The prio argument is the minimum priority the thread
+ * needs to have to satisfy other possible priority lending
+ * requests. If the thread's regulary priority is less
+ * important than prio the thread will keep a priority boost
+ * of prio.
+ */
+void
+sched_unlend_prio(struct thread *td, u_char prio)
+{
+ u_char base_pri;
+
+ if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
+ td->td_base_pri <= PRI_MAX_TIMESHARE)
+ base_pri = td->td_user_pri;
+ else
+ base_pri = td->td_base_pri;
+ if (prio >= base_pri) {
+ td->td_flags &= ~TDF_BORROWING;
+ sched_prio(td, base_pri);
+ } else
+ sched_lend_prio(td, prio);
+}
+
+void
+sched_prio(struct thread *td, u_char prio)
+{
+ u_char oldprio;
+
+ /* First, update the base priority. */
+ td->td_base_pri = prio;
+
+ /*
+ * If the thread is borrowing another thread's priority, don't ever
+ * lower the priority.
+ */
+ if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
+ return;
+
+ /* Change the real priority. */
+ oldprio = td->td_priority;
+ sched_priority(td, prio);
+
+ /*
+ * If the thread is on a turnstile, then let the turnstile update
+ * its state.
+ */
+ if (TD_ON_LOCK(td) && oldprio != prio)
+ turnstile_adjust(td, oldprio);
+}
+
+void
+sched_user_prio(struct thread *td, u_char prio)
+{
+
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ td->td_base_user_pri = prio;
+ if (td->td_lend_user_pri <= prio)
+ return;
+ td->td_user_pri = prio;
+}
+
+void
+sched_lend_user_prio(struct thread *td, u_char prio)
+{
+
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ td->td_lend_user_pri = prio;
+ td->td_user_pri = min(prio, td->td_base_user_pri);
+ if (td->td_priority > td->td_user_pri)
+ sched_prio(td, td->td_user_pri);
+ else if (td->td_priority != td->td_user_pri)
+ td->td_flags |= TDF_NEEDRESCHED;
+}
+
+void
+sched_sleep(struct thread *td, int pri)
+{
+
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ td->td_slptick = ticks;
+ td->td_sched->ts_slptime = 0;
+ if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
+ sched_prio(td, pri);
+ if (TD_IS_SUSPENDED(td) || pri >= PSOCK)
+ td->td_flags |= TDF_CANSWAP;
+}
+
+void
+sched_switch(struct thread *td, struct thread *newtd, int flags)
+{
+ struct mtx *tmtx;
+ struct td_sched *ts;
+ struct proc *p;
+ int preempted;
+
+ tmtx = NULL;
+ ts = td->td_sched;
+ p = td->td_proc;
+
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+
+ /*
+ * Switch to the sched lock to fix things up and pick
+ * a new thread.
+ * Block the td_lock in order to avoid breaking the critical path.
+ */
+ if (td->td_lock != &sched_lock) {
+ mtx_lock_spin(&sched_lock);
+ tmtx = thread_lock_block(td);
+ }
+
+ if ((td->td_flags & TDF_NOLOAD) == 0)
+ sched_load_rem();
+
+ td->td_lastcpu = td->td_oncpu;
+ preempted = !(td->td_flags & TDF_SLICEEND);
+ td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
+ td->td_owepreempt = 0;
+ td->td_oncpu = NOCPU;
+
+ /*
+ * At the last moment, if this thread is still marked RUNNING,
+ * then put it back on the run queue as it has not been suspended
+ * or stopped or any thing else similar. We never put the idle
+ * threads on the run queue, however.
+ */
+ if (td->td_flags & TDF_IDLETD) {
+ TD_SET_CAN_RUN(td);
+#ifdef SMP
+ CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
+#endif
+ } else {
+ if (TD_IS_RUNNING(td)) {
+ /* Put us back on the run queue. */
+ sched_add(td, preempted ?
+ SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
+ SRQ_OURSELF|SRQ_YIELDING);
+ }
+ }
+ if (newtd) {
+ /*
+ * The thread we are about to run needs to be counted
+ * as if it had been added to the run queue and selected.
+ * It came from:
+ * * A preemption
+ * * An upcall
+ * * A followon
+ */
+ KASSERT((newtd->td_inhibitors == 0),
+ ("trying to run inhibited thread"));
+ newtd->td_flags |= TDF_DIDRUN;
+ TD_SET_RUNNING(newtd);
+ if ((newtd->td_flags & TDF_NOLOAD) == 0)
+ sched_load_add();
+ } else {
+ newtd = choosethread();
+ MPASS(newtd->td_lock == &sched_lock);
+ }
+
+ if (td != newtd) {
+#ifdef HWPMC_HOOKS
+ if (PMC_PROC_IS_USING_PMCS(td->td_proc))
+ PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
+#endif
+
+ SDT_PROBE2(sched, , , off_cpu, td, td->td_proc);
+
+ /* I feel sleepy */
+ lock_profile_release_lock(&sched_lock.lock_object);
+#ifdef KDTRACE_HOOKS
+ /*
+ * If DTrace has set the active vtime enum to anything
+ * other than INACTIVE (0), then it should have set the
+ * function to call.
+ */
+ if (dtrace_vtime_active)
+ (*dtrace_vtime_switch_func)(newtd);
+#endif
+
+ cpu_switch(td, newtd, tmtx != NULL ? tmtx : td->td_lock);
+ lock_profile_obtain_lock_success(&sched_lock.lock_object,
+ 0, 0, __FILE__, __LINE__);
+ /*
+ * Where am I? What year is it?
+ * We are in the same thread that went to sleep above,
+ * but any amount of time may have passed. All our context
+ * will still be available as will local variables.
+ * PCPU values however may have changed as we may have
+ * changed CPU so don't trust cached values of them.
+ * New threads will go to fork_exit() instead of here
+ * so if you change things here you may need to change
+ * things there too.
+ *
+ * If the thread above was exiting it will never wake
+ * up again here, so either it has saved everything it
+ * needed to, or the thread_wait() or wait() will
+ * need to reap it.
+ */
+
+ SDT_PROBE0(sched, , , on_cpu);
+#ifdef HWPMC_HOOKS
+ if (PMC_PROC_IS_USING_PMCS(td->td_proc))
+ PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
+#endif
+ } else
+ SDT_PROBE0(sched, , , remain_cpu);
+
+#ifdef SMP
+ if (td->td_flags & TDF_IDLETD)
+ CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
+#endif
+ sched_lock.mtx_lock = (uintptr_t)td;
+ td->td_oncpu = PCPU_GET(cpuid);
+ MPASS(td->td_lock == &sched_lock);
+}
+
+void
+sched_wakeup(struct thread *td)
+{
+ struct td_sched *ts;
+
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ ts = td->td_sched;
+ td->td_flags &= ~TDF_CANSWAP;
+ if (ts->ts_slptime > 1) {
+ updatepri(td);
+ resetpriority(td);
+ }
+ td->td_slptick = 0;
+ ts->ts_slptime = 0;
+ ts->ts_slice = sched_slice;
+ sched_add(td, SRQ_BORING);
+}
+
+#ifdef SMP
+static int
+forward_wakeup(int cpunum)
+{
+ struct pcpu *pc;
+ cpuset_t dontuse, map, map2;
+ u_int id, me;
+ int iscpuset;
+
+ mtx_assert(&sched_lock, MA_OWNED);
+
+ CTR0(KTR_RUNQ, "forward_wakeup()");
+
+ if ((!forward_wakeup_enabled) ||
+ (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
+ return (0);
+ if (!smp_started || cold || panicstr)
+ return (0);
+
+ forward_wakeups_requested++;
+
+ /*
+ * Check the idle mask we received against what we calculated
+ * before in the old version.
+ */
+ me = PCPU_GET(cpuid);
+
+ /* Don't bother if we should be doing it ourself. */
+ if (CPU_ISSET(me, &idle_cpus_mask) &&
+ (cpunum == NOCPU || me == cpunum))
+ return (0);
+
+ CPU_SETOF(me, &dontuse);
+ CPU_OR(&dontuse, &stopped_cpus);
+ CPU_OR(&dontuse, &hlt_cpus_mask);
+ CPU_ZERO(&map2);
+ if (forward_wakeup_use_loop) {
+ STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
+ id = pc->pc_cpuid;
+ if (!CPU_ISSET(id, &dontuse) &&
+ pc->pc_curthread == pc->pc_idlethread) {
+ CPU_SET(id, &map2);
+ }
+ }
+ }
+
+ if (forward_wakeup_use_mask) {
+ map = idle_cpus_mask;
+ CPU_NAND(&map, &dontuse);
+
+ /* If they are both on, compare and use loop if different. */
+ if (forward_wakeup_use_loop) {
+ if (CPU_CMP(&map, &map2)) {
+ printf("map != map2, loop method preferred\n");
+ map = map2;
+ }
+ }
+ } else {
+ map = map2;
+ }
+
+ /* If we only allow a specific CPU, then mask off all the others. */
+ if (cpunum != NOCPU) {
+ KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
+ iscpuset = CPU_ISSET(cpunum, &map);
+ if (iscpuset == 0)
+ CPU_ZERO(&map);
+ else
+ CPU_SETOF(cpunum, &map);
+ }
+ if (!CPU_EMPTY(&map)) {
+ forward_wakeups_delivered++;
+ STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
+ id = pc->pc_cpuid;
+ if (!CPU_ISSET(id, &map))
+ continue;
+ if (cpu_idle_wakeup(pc->pc_cpuid))
+ CPU_CLR(id, &map);
+ }
+ if (!CPU_EMPTY(&map))
+ ipi_selected(map, IPI_AST);
+ return (1);
+ }
+ if (cpunum == NOCPU)
+ printf("forward_wakeup: Idle processor not found\n");
+ return (0);
+}
+
+static void
+kick_other_cpu(int pri, int cpuid)
+{
+ struct pcpu *pcpu;
+ int cpri;
+
+ pcpu = pcpu_find(cpuid);
+ if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
+ forward_wakeups_delivered++;
+ if (!cpu_idle_wakeup(cpuid))
+ ipi_cpu(cpuid, IPI_AST);
+ return;
+ }
+
+ cpri = pcpu->pc_curthread->td_priority;
+ if (pri >= cpri)
+ return;
+
+#if defined(IPI_PREEMPTION) && defined(PREEMPTION)
+#if !defined(FULL_PREEMPTION)
+ if (pri <= PRI_MAX_ITHD)
+#endif /* ! FULL_PREEMPTION */
+ {
+ ipi_cpu(cpuid, IPI_PREEMPT);
+ return;
+ }
+#endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
+
+ pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
+ ipi_cpu(cpuid, IPI_AST);
+ return;
+}
+#endif /* SMP */
+
+#ifdef SMP
+static int
+sched_pickcpu(struct thread *td)
+{
+ int best, cpu;
+
+ mtx_assert(&sched_lock, MA_OWNED);
+
+ if (THREAD_CAN_SCHED(td, td->td_lastcpu))
+ best = td->td_lastcpu;
+ else
+ best = NOCPU;
+ CPU_FOREACH(cpu) {
+ if (!THREAD_CAN_SCHED(td, cpu))
+ continue;
+
+ if (best == NOCPU)
+ best = cpu;
+ else if (runq_length[cpu] < runq_length[best])
+ best = cpu;
+ }
+ KASSERT(best != NOCPU, ("no valid CPUs"));
+
+ return (best);
+}
+#endif
+
+void
+sched_add(struct thread *td, int flags)
+#ifdef SMP
+{
+ cpuset_t tidlemsk;
+ struct td_sched *ts;
+ u_int cpu, cpuid;
+ int forwarded = 0;
+ int single_cpu = 0;
+
+ ts = td->td_sched;
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ KASSERT((td->td_inhibitors == 0),
+ ("sched_add: trying to run inhibited thread"));
+ KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
+ ("sched_add: bad thread state"));
+ KASSERT(td->td_flags & TDF_INMEM,
+ ("sched_add: thread swapped out"));
+
+ KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
+ "prio:%d", td->td_priority, KTR_ATTR_LINKED,
+ sched_tdname(curthread));
+ KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
+ KTR_ATTR_LINKED, sched_tdname(td));
+ SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
+ flags & SRQ_PREEMPTED);
+
+
+ /*
+ * Now that the thread is moving to the run-queue, set the lock
+ * to the scheduler's lock.
+ */
+ if (td->td_lock != &sched_lock) {
+ mtx_lock_spin(&sched_lock);
+ thread_lock_set(td, &sched_lock);
+ }
+ TD_SET_RUNQ(td);
+
+ /*
+ * If SMP is started and the thread is pinned or otherwise limited to
+ * a specific set of CPUs, queue the thread to a per-CPU run queue.
+ * Otherwise, queue the thread to the global run queue.
+ *
+ * If SMP has not yet been started we must use the global run queue
+ * as per-CPU state may not be initialized yet and we may crash if we
+ * try to access the per-CPU run queues.
+ */
+ if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
+ ts->ts_flags & TSF_AFFINITY)) {
+ if (td->td_pinned != 0)
+ cpu = td->td_lastcpu;
+ else if (td->td_flags & TDF_BOUND) {
+ /* Find CPU from bound runq. */
+ KASSERT(SKE_RUNQ_PCPU(ts),
+ ("sched_add: bound td_sched not on cpu runq"));
+ cpu = ts->ts_runq - &runq_pcpu[0];
+ } else
+ /* Find a valid CPU for our cpuset */
+ cpu = sched_pickcpu(td);
+ ts->ts_runq = &runq_pcpu[cpu];
+ single_cpu = 1;
+ CTR3(KTR_RUNQ,
+ "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
+ cpu);
+ } else {
+ CTR2(KTR_RUNQ,
+ "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
+ td);
+ cpu = NOCPU;
+ ts->ts_runq = &runq;
+ }
+
+ cpuid = PCPU_GET(cpuid);
+ if (single_cpu && cpu != cpuid) {
+ kick_other_cpu(td->td_priority, cpu);
+ } else {
+ if (!single_cpu) {
+ tidlemsk = idle_cpus_mask;
+ CPU_NAND(&tidlemsk, &hlt_cpus_mask);
+ CPU_CLR(cpuid, &tidlemsk);
+
+ if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
+ ((flags & SRQ_INTR) == 0) &&
+ !CPU_EMPTY(&tidlemsk))
+ forwarded = forward_wakeup(cpu);
+ }
+
+ if (!forwarded) {
+ if ((flags & SRQ_YIELDING) == 0 && maybe_preempt(td))
+ return;
+ else
+ maybe_resched(td);
+ }
+ }
+
+ if ((td->td_flags & TDF_NOLOAD) == 0)
+ sched_load_add();
+ runq_add(ts->ts_runq, td, flags);
+ if (cpu != NOCPU)
+ runq_length[cpu]++;
+}
+#else /* SMP */
+{
+ struct td_sched *ts;
+
+ ts = td->td_sched;
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ KASSERT((td->td_inhibitors == 0),
+ ("sched_add: trying to run inhibited thread"));
+ KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
+ ("sched_add: bad thread state"));
+ KASSERT(td->td_flags & TDF_INMEM,
+ ("sched_add: thread swapped out"));
+ KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
+ "prio:%d", td->td_priority, KTR_ATTR_LINKED,
+ sched_tdname(curthread));
+ KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
+ KTR_ATTR_LINKED, sched_tdname(td));
+ SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
+ flags & SRQ_PREEMPTED);
+
+ /*
+ * Now that the thread is moving to the run-queue, set the lock
+ * to the scheduler's lock.
+ */
+ if (td->td_lock != &sched_lock) {
+ mtx_lock_spin(&sched_lock);
+ thread_lock_set(td, &sched_lock);
+ }
+ TD_SET_RUNQ(td);
+ CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
+ ts->ts_runq = &runq;
+
+ /*
+ * If we are yielding (on the way out anyhow) or the thread
+ * being saved is US, then don't try be smart about preemption
+ * or kicking off another CPU as it won't help and may hinder.
+ * In the YIEDLING case, we are about to run whoever is being
+ * put in the queue anyhow, and in the OURSELF case, we are
+ * puting ourself on the run queue which also only happens
+ * when we are about to yield.
+ */
+ if ((flags & SRQ_YIELDING) == 0) {
+ if (maybe_preempt(td))
+ return;
+ }
+ if ((td->td_flags & TDF_NOLOAD) == 0)
+ sched_load_add();
+ runq_add(ts->ts_runq, td, flags);
+ maybe_resched(td);
+}
+#endif /* SMP */
+
+void
+sched_rem(struct thread *td)
+{
+ struct td_sched *ts;
+
+ ts = td->td_sched;
+ KASSERT(td->td_flags & TDF_INMEM,
+ ("sched_rem: thread swapped out"));
+ KASSERT(TD_ON_RUNQ(td),
+ ("sched_rem: thread not on run queue"));
+ mtx_assert(&sched_lock, MA_OWNED);
+ KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
+ "prio:%d", td->td_priority, KTR_ATTR_LINKED,
+ sched_tdname(curthread));
+ SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
+
+ if ((td->td_flags & TDF_NOLOAD) == 0)
+ sched_load_rem();
+#ifdef SMP
+ if (ts->ts_runq != &runq)
+ runq_length[ts->ts_runq - runq_pcpu]--;
+#endif
+ runq_remove(ts->ts_runq, td);
+ TD_SET_CAN_RUN(td);
+}
+
+/*
+ * Select threads to run. Note that running threads still consume a
+ * slot.
+ */
+struct thread *
+sched_choose(void)
+{
+ struct thread *td;
+ struct runq *rq;
+
+ mtx_assert(&sched_lock, MA_OWNED);
+#ifdef SMP
+ struct thread *tdcpu;
+
+ rq = &runq;
+ td = runq_choose_fuzz(&runq, runq_fuzz);
+ tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
+
+ if (td == NULL ||
+ (tdcpu != NULL &&
+ tdcpu->td_priority < td->td_priority)) {
+ CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
+ PCPU_GET(cpuid));
+ td = tdcpu;
+ rq = &runq_pcpu[PCPU_GET(cpuid)];
+ } else {
+ CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
+ }
+
+#else
+ rq = &runq;
+ td = runq_choose(&runq);
+#endif
+
+ if (td) {
+#ifdef SMP
+ if (td == tdcpu)
+ runq_length[PCPU_GET(cpuid)]--;
+#endif
+ runq_remove(rq, td);
+ td->td_flags |= TDF_DIDRUN;
+
+ KASSERT(td->td_flags & TDF_INMEM,
+ ("sched_choose: thread swapped out"));
+ return (td);
+ }
+ return (PCPU_GET(idlethread));
+}
+
+void
+sched_preempt(struct thread *td)
+{
+
+ SDT_PROBE2(sched, , , surrender, td, td->td_proc);
+ thread_lock(td);
+ if (td->td_critnest > 1)
+ td->td_owepreempt = 1;
+ else
+ mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, NULL);
+ thread_unlock(td);
+}
+
+void
+sched_userret(struct thread *td)
+{
+ /*
+ * XXX we cheat slightly on the locking here to avoid locking in
+ * the usual case. Setting td_priority here is essentially an
+ * incomplete workaround for not setting it properly elsewhere.
+ * Now that some interrupt handlers are threads, not setting it
+ * properly elsewhere can clobber it in the window between setting
+ * it here and returning to user mode, so don't waste time setting
+ * it perfectly here.
+ */
+ KASSERT((td->td_flags & TDF_BORROWING) == 0,
+ ("thread with borrowed priority returning to userland"));
+ if (td->td_priority != td->td_user_pri) {
+ thread_lock(td);
+ td->td_priority = td->td_user_pri;
+ td->td_base_pri = td->td_user_pri;
+ thread_unlock(td);
+ }
+}
+
+void
+sched_bind(struct thread *td, int cpu)
+{
+ struct td_sched *ts;
+
+ THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
+ KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
+
+ ts = td->td_sched;
+
+ td->td_flags |= TDF_BOUND;
+#ifdef SMP
+ ts->ts_runq = &runq_pcpu[cpu];
+ if (PCPU_GET(cpuid) == cpu)
+ return;
+
+ mi_switch(SW_VOL, NULL);
+#endif
+}
+
+void
+sched_unbind(struct thread* td)
+{
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
+ td->td_flags &= ~TDF_BOUND;
+}
+
+int
+sched_is_bound(struct thread *td)
+{
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ return (td->td_flags & TDF_BOUND);
+}
+
+void
+sched_relinquish(struct thread *td)
+{
+ thread_lock(td);
+ mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
+ thread_unlock(td);
+}
+
+int
+sched_load(void)
+{
+ return (sched_tdcnt);
+}
+
+int
+sched_sizeof_proc(void)
+{
+ return (sizeof(struct proc));
+}
+
+int
+sched_sizeof_thread(void)
+{
+ return (sizeof(struct thread) + sizeof(struct td_sched));
+}
+
+fixpt_t
+sched_pctcpu(struct thread *td)
+{
+ struct td_sched *ts;
+
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ ts = td->td_sched;
+ return (ts->ts_pctcpu);
+}
+
+#ifdef RACCT
+/*
+ * Calculates the contribution to the thread cpu usage for the latest
+ * (unfinished) second.
+ */
+fixpt_t
+sched_pctcpu_delta(struct thread *td)
+{
+ struct td_sched *ts;
+ fixpt_t delta;
+ int realstathz;
+
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+ ts = td->td_sched;
+ delta = 0;
+ realstathz = stathz ? stathz : hz;
+ if (ts->ts_cpticks != 0) {
+#if (FSHIFT >= CCPU_SHIFT)
+ delta = (realstathz == 100)
+ ? ((fixpt_t) ts->ts_cpticks) <<
+ (FSHIFT - CCPU_SHIFT) :
+ 100 * (((fixpt_t) ts->ts_cpticks)
+ << (FSHIFT - CCPU_SHIFT)) / realstathz;
+#else
+ delta = ((FSCALE - ccpu) *
+ (ts->ts_cpticks *
+ FSCALE / realstathz)) >> FSHIFT;
+#endif
+ }
+
+ return (delta);
+}
+#endif
+
+void
+sched_tick(int cnt)
+{
+}
+
+/*
+ * The actual idle process.
+ */
+void
+sched_idletd(void *dummy)
+{
+ struct pcpuidlestat *stat;
+
+ THREAD_NO_SLEEPING();
+ stat = DPCPU_PTR(idlestat);
+ for (;;) {
+ mtx_assert(&Giant, MA_NOTOWNED);
+
+ while (sched_runnable() == 0) {
+ cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
+ stat->idlecalls++;
+ }
+
+ mtx_lock_spin(&sched_lock);
+ mi_switch(SW_VOL | SWT_IDLE, NULL);
+ mtx_unlock_spin(&sched_lock);
+ }
+}
+
+/*
+ * A CPU is entering for the first time or a thread is exiting.
+ */
+void
+sched_throw(struct thread *td)
+{
+ /*
+ * Correct spinlock nesting. The idle thread context that we are
+ * borrowing was created so that it would start out with a single
+ * spin lock (sched_lock) held in fork_trampoline(). Since we've
+ * explicitly acquired locks in this function, the nesting count
+ * is now 2 rather than 1. Since we are nested, calling
+ * spinlock_exit() will simply adjust the counts without allowing
+ * spin lock using code to interrupt us.
+ */
+ if (td == NULL) {
+ mtx_lock_spin(&sched_lock);
+ spinlock_exit();
+ PCPU_SET(switchtime, cpu_ticks());
+ PCPU_SET(switchticks, ticks);
+ } else {
+ lock_profile_release_lock(&sched_lock.lock_object);
+ MPASS(td->td_lock == &sched_lock);
+ }
+ mtx_assert(&sched_lock, MA_OWNED);
+ KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
+ cpu_throw(td, choosethread()); /* doesn't return */
+}
+
+void
+sched_fork_exit(struct thread *td)
+{
+
+ /*
+ * Finish setting up thread glue so that it begins execution in a
+ * non-nested critical section with sched_lock held but not recursed.
+ */
+ td->td_oncpu = PCPU_GET(cpuid);
+ sched_lock.mtx_lock = (uintptr_t)td;
+ lock_profile_obtain_lock_success(&sched_lock.lock_object,
+ 0, 0, __FILE__, __LINE__);
+ THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
+}
+
+char *
+sched_tdname(struct thread *td)
+{
+#ifdef KTR
+ struct td_sched *ts;
+
+ ts = td->td_sched;
+ if (ts->ts_name[0] == '\0')
+ snprintf(ts->ts_name, sizeof(ts->ts_name),
+ "%s tid %d", td->td_name, td->td_tid);
+ return (ts->ts_name);
+#else
+ return (td->td_name);
+#endif
+}
+
+#ifdef KTR
+void
+sched_clear_tdname(struct thread *td)
+{
+ struct td_sched *ts;
+
+ ts = td->td_sched;
+ ts->ts_name[0] = '\0';
+}
+#endif
+
+void
+sched_affinity(struct thread *td)
+{
+#ifdef SMP
+ struct td_sched *ts;
+ int cpu;
+
+ THREAD_LOCK_ASSERT(td, MA_OWNED);
+
+ /*
+ * Set the TSF_AFFINITY flag if there is at least one CPU this
+ * thread can't run on.
+ */
+ ts = td->td_sched;
+ ts->ts_flags &= ~TSF_AFFINITY;
+ CPU_FOREACH(cpu) {
+ if (!THREAD_CAN_SCHED(td, cpu)) {
+ ts->ts_flags |= TSF_AFFINITY;
+ break;
+ }
+ }
+
+ /*
+ * If this thread can run on all CPUs, nothing else to do.
+ */
+ if (!(ts->ts_flags & TSF_AFFINITY))
+ return;
+
+ /* Pinned threads and bound threads should be left alone. */
+ if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
+ return;
+
+ switch (td->td_state) {
+ case TDS_RUNQ:
+ /*
+ * If we are on a per-CPU runqueue that is in the set,
+ * then nothing needs to be done.
+ */
+ if (ts->ts_runq != &runq &&
+ THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
+ return;
+
+ /* Put this thread on a valid per-CPU runqueue. */
+ sched_rem(td);
+ sched_add(td, SRQ_BORING);
+ break;
+ case TDS_RUNNING:
+ /*
+ * See if our current CPU is in the set. If not, force a
+ * context switch.
+ */
+ if (THREAD_CAN_SCHED(td, td->td_oncpu))
+ return;
+
+ td->td_flags |= TDF_NEEDRESCHED;
+ if (td != curthread)
+ ipi_cpu(cpu, IPI_AST);
+ break;
+ default:
+ break;
+ }
+#endif
+}
OpenPOWER on IntegriCloud