summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_thread.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/kern/kern_thread.c')
-rw-r--r--sys/kern/kern_thread.c2118
1 files changed, 2118 insertions, 0 deletions
diff --git a/sys/kern/kern_thread.c b/sys/kern/kern_thread.c
new file mode 100644
index 0000000..3683de8
--- /dev/null
+++ b/sys/kern/kern_thread.c
@@ -0,0 +1,2118 @@
+/*
+ * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer as
+ * the first lines of this file unmodified other than the possible
+ * addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
+ * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/kernel.h>
+#include <sys/lock.h>
+#include <sys/malloc.h>
+#include <sys/mutex.h>
+#include <sys/proc.h>
+#include <sys/smp.h>
+#include <sys/sysctl.h>
+#include <sys/sysproto.h>
+#include <sys/filedesc.h>
+#include <sys/sched.h>
+#include <sys/signalvar.h>
+#include <sys/sx.h>
+#include <sys/tty.h>
+#include <sys/turnstile.h>
+#include <sys/user.h>
+#include <sys/jail.h>
+#include <sys/kse.h>
+#include <sys/ktr.h>
+#include <sys/ucontext.h>
+
+#include <vm/vm.h>
+#include <vm/vm_extern.h>
+#include <vm/vm_object.h>
+#include <vm/pmap.h>
+#include <vm/uma.h>
+#include <vm/vm_map.h>
+
+#include <machine/frame.h>
+
+/*
+ * KSEGRP related storage.
+ */
+static uma_zone_t ksegrp_zone;
+static uma_zone_t kse_zone;
+static uma_zone_t thread_zone;
+static uma_zone_t upcall_zone;
+
+/* DEBUG ONLY */
+SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
+static int thread_debug = 0;
+SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW,
+ &thread_debug, 0, "thread debug");
+
+static int max_threads_per_proc = 150;
+SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
+ &max_threads_per_proc, 0, "Limit on threads per proc");
+
+static int max_groups_per_proc = 50;
+SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW,
+ &max_groups_per_proc, 0, "Limit on thread groups per proc");
+
+static int max_threads_hits;
+SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
+ &max_threads_hits, 0, "");
+
+static int virtual_cpu;
+
+#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
+
+TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
+TAILQ_HEAD(, kse) zombie_kses = TAILQ_HEAD_INITIALIZER(zombie_kses);
+TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps);
+TAILQ_HEAD(, kse_upcall) zombie_upcalls =
+ TAILQ_HEAD_INITIALIZER(zombie_upcalls);
+struct mtx kse_zombie_lock;
+MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN);
+
+static void kse_purge(struct proc *p, struct thread *td);
+static void kse_purge_group(struct thread *td);
+static int thread_update_usr_ticks(struct thread *td, int user);
+static void thread_alloc_spare(struct thread *td, struct thread *spare);
+
+static int
+sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
+{
+ int error, new_val;
+ int def_val;
+
+#ifdef SMP
+ def_val = mp_ncpus;
+#else
+ def_val = 1;
+#endif
+ if (virtual_cpu == 0)
+ new_val = def_val;
+ else
+ new_val = virtual_cpu;
+ error = sysctl_handle_int(oidp, &new_val, 0, req);
+ if (error != 0 || req->newptr == NULL)
+ return (error);
+ if (new_val < 0)
+ return (EINVAL);
+ virtual_cpu = new_val;
+ return (0);
+}
+
+/* DEBUG ONLY */
+SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
+ 0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
+ "debug virtual cpus");
+
+/*
+ * Prepare a thread for use.
+ */
+static void
+thread_ctor(void *mem, int size, void *arg)
+{
+ struct thread *td;
+
+ td = (struct thread *)mem;
+ td->td_state = TDS_INACTIVE;
+ td->td_oncpu = NOCPU;
+ td->td_critnest = 1;
+}
+
+/*
+ * Reclaim a thread after use.
+ */
+static void
+thread_dtor(void *mem, int size, void *arg)
+{
+ struct thread *td;
+
+ td = (struct thread *)mem;
+
+#ifdef INVARIANTS
+ /* Verify that this thread is in a safe state to free. */
+ switch (td->td_state) {
+ case TDS_INHIBITED:
+ case TDS_RUNNING:
+ case TDS_CAN_RUN:
+ case TDS_RUNQ:
+ /*
+ * We must never unlink a thread that is in one of
+ * these states, because it is currently active.
+ */
+ panic("bad state for thread unlinking");
+ /* NOTREACHED */
+ case TDS_INACTIVE:
+ break;
+ default:
+ panic("bad thread state");
+ /* NOTREACHED */
+ }
+#endif
+}
+
+/*
+ * Initialize type-stable parts of a thread (when newly created).
+ */
+static void
+thread_init(void *mem, int size)
+{
+ struct thread *td;
+
+ td = (struct thread *)mem;
+ mtx_lock(&Giant);
+ vm_thread_new(td, 0);
+ mtx_unlock(&Giant);
+ cpu_thread_setup(td);
+ td->td_turnstile = turnstile_alloc();
+ td->td_sched = (struct td_sched *)&td[1];
+}
+
+/*
+ * Tear down type-stable parts of a thread (just before being discarded).
+ */
+static void
+thread_fini(void *mem, int size)
+{
+ struct thread *td;
+
+ td = (struct thread *)mem;
+ turnstile_free(td->td_turnstile);
+ vm_thread_dispose(td);
+}
+
+/*
+ * Initialize type-stable parts of a kse (when newly created).
+ */
+static void
+kse_init(void *mem, int size)
+{
+ struct kse *ke;
+
+ ke = (struct kse *)mem;
+ ke->ke_sched = (struct ke_sched *)&ke[1];
+}
+
+/*
+ * Initialize type-stable parts of a ksegrp (when newly created).
+ */
+static void
+ksegrp_init(void *mem, int size)
+{
+ struct ksegrp *kg;
+
+ kg = (struct ksegrp *)mem;
+ kg->kg_sched = (struct kg_sched *)&kg[1];
+}
+
+/*
+ * KSE is linked into kse group.
+ */
+void
+kse_link(struct kse *ke, struct ksegrp *kg)
+{
+ struct proc *p = kg->kg_proc;
+
+ TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist);
+ kg->kg_kses++;
+ ke->ke_state = KES_UNQUEUED;
+ ke->ke_proc = p;
+ ke->ke_ksegrp = kg;
+ ke->ke_thread = NULL;
+ ke->ke_oncpu = NOCPU;
+ ke->ke_flags = 0;
+}
+
+void
+kse_unlink(struct kse *ke)
+{
+ struct ksegrp *kg;
+
+ mtx_assert(&sched_lock, MA_OWNED);
+ kg = ke->ke_ksegrp;
+ TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
+ if (ke->ke_state == KES_IDLE) {
+ TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
+ kg->kg_idle_kses--;
+ }
+ --kg->kg_kses;
+ /*
+ * Aggregate stats from the KSE
+ */
+ kse_stash(ke);
+}
+
+void
+ksegrp_link(struct ksegrp *kg, struct proc *p)
+{
+
+ TAILQ_INIT(&kg->kg_threads);
+ TAILQ_INIT(&kg->kg_runq); /* links with td_runq */
+ TAILQ_INIT(&kg->kg_slpq); /* links with td_runq */
+ TAILQ_INIT(&kg->kg_kseq); /* all kses in ksegrp */
+ TAILQ_INIT(&kg->kg_iq); /* all idle kses in ksegrp */
+ TAILQ_INIT(&kg->kg_upcalls); /* all upcall structure in ksegrp */
+ kg->kg_proc = p;
+ /*
+ * the following counters are in the -zero- section
+ * and may not need clearing
+ */
+ kg->kg_numthreads = 0;
+ kg->kg_runnable = 0;
+ kg->kg_kses = 0;
+ kg->kg_runq_kses = 0; /* XXXKSE change name */
+ kg->kg_idle_kses = 0;
+ kg->kg_numupcalls = 0;
+ /* link it in now that it's consistent */
+ p->p_numksegrps++;
+ TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp);
+}
+
+void
+ksegrp_unlink(struct ksegrp *kg)
+{
+ struct proc *p;
+
+ mtx_assert(&sched_lock, MA_OWNED);
+ KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads"));
+ KASSERT((kg->kg_kses == 0), ("ksegrp_unlink: residual kses"));
+ KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls"));
+
+ p = kg->kg_proc;
+ TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
+ p->p_numksegrps--;
+ /*
+ * Aggregate stats from the KSE
+ */
+ ksegrp_stash(kg);
+}
+
+struct kse_upcall *
+upcall_alloc(void)
+{
+ struct kse_upcall *ku;
+
+ ku = uma_zalloc(upcall_zone, M_WAITOK);
+ bzero(ku, sizeof(*ku));
+ return (ku);
+}
+
+void
+upcall_free(struct kse_upcall *ku)
+{
+
+ uma_zfree(upcall_zone, ku);
+}
+
+void
+upcall_link(struct kse_upcall *ku, struct ksegrp *kg)
+{
+
+ mtx_assert(&sched_lock, MA_OWNED);
+ TAILQ_INSERT_TAIL(&kg->kg_upcalls, ku, ku_link);
+ ku->ku_ksegrp = kg;
+ kg->kg_numupcalls++;
+}
+
+void
+upcall_unlink(struct kse_upcall *ku)
+{
+ struct ksegrp *kg = ku->ku_ksegrp;
+
+ mtx_assert(&sched_lock, MA_OWNED);
+ KASSERT(ku->ku_owner == NULL, ("%s: have owner", __func__));
+ TAILQ_REMOVE(&kg->kg_upcalls, ku, ku_link);
+ kg->kg_numupcalls--;
+ upcall_stash(ku);
+}
+
+void
+upcall_remove(struct thread *td)
+{
+
+ if (td->td_upcall) {
+ td->td_upcall->ku_owner = NULL;
+ upcall_unlink(td->td_upcall);
+ td->td_upcall = 0;
+ }
+}
+
+/*
+ * For a newly created process,
+ * link up all the structures and its initial threads etc.
+ */
+void
+proc_linkup(struct proc *p, struct ksegrp *kg,
+ struct kse *ke, struct thread *td)
+{
+
+ TAILQ_INIT(&p->p_ksegrps); /* all ksegrps in proc */
+ TAILQ_INIT(&p->p_threads); /* all threads in proc */
+ TAILQ_INIT(&p->p_suspended); /* Threads suspended */
+ p->p_numksegrps = 0;
+ p->p_numthreads = 0;
+
+ ksegrp_link(kg, p);
+ kse_link(ke, kg);
+ thread_link(td, kg);
+}
+
+/*
+struct kse_thr_interrupt_args {
+ struct kse_thr_mailbox * tmbx;
+ int cmd;
+ long data;
+};
+*/
+int
+kse_thr_interrupt(struct thread *td, struct kse_thr_interrupt_args *uap)
+{
+ struct proc *p;
+ struct thread *td2;
+
+ p = td->td_proc;
+
+ if (!(p->p_flag & P_SA))
+ return (EINVAL);
+
+ switch (uap->cmd) {
+ case KSE_INTR_SENDSIG:
+ if (uap->data < 0 || uap->data > _SIG_MAXSIG)
+ return (EINVAL);
+ case KSE_INTR_INTERRUPT:
+ case KSE_INTR_RESTART:
+ PROC_LOCK(p);
+ mtx_lock_spin(&sched_lock);
+ FOREACH_THREAD_IN_PROC(p, td2) {
+ if (td2->td_mailbox == uap->tmbx)
+ break;
+ }
+ if (td2 == NULL) {
+ mtx_unlock_spin(&sched_lock);
+ PROC_UNLOCK(p);
+ return (ESRCH);
+ }
+ if (uap->cmd == KSE_INTR_SENDSIG) {
+ if (uap->data > 0) {
+ td2->td_flags &= ~TDF_INTERRUPT;
+ mtx_unlock_spin(&sched_lock);
+ tdsignal(td2, (int)uap->data, SIGTARGET_TD);
+ } else {
+ mtx_unlock_spin(&sched_lock);
+ }
+ } else {
+ td2->td_flags |= TDF_INTERRUPT | TDF_ASTPENDING;
+ if (TD_CAN_UNBIND(td2))
+ td2->td_upcall->ku_flags |= KUF_DOUPCALL;
+ if (uap->cmd == KSE_INTR_INTERRUPT)
+ td2->td_intrval = EINTR;
+ else
+ td2->td_intrval = ERESTART;
+ if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR)) {
+ if (td2->td_flags & TDF_CVWAITQ)
+ cv_abort(td2);
+ else
+ abortsleep(td2);
+ }
+ mtx_unlock_spin(&sched_lock);
+ }
+ PROC_UNLOCK(p);
+ break;
+ case KSE_INTR_SIGEXIT:
+ if (uap->data < 1 || uap->data > _SIG_MAXSIG)
+ return (EINVAL);
+ PROC_LOCK(p);
+ sigexit(td, (int)uap->data);
+ break;
+ default:
+ return (EINVAL);
+ }
+ return (0);
+}
+
+/*
+struct kse_exit_args {
+ register_t dummy;
+};
+*/
+int
+kse_exit(struct thread *td, struct kse_exit_args *uap)
+{
+ struct proc *p;
+ struct ksegrp *kg;
+ struct kse *ke;
+ struct kse_upcall *ku, *ku2;
+ int error, count;
+
+ p = td->td_proc;
+ if ((ku = td->td_upcall) == NULL || TD_CAN_UNBIND(td))
+ return (EINVAL);
+ kg = td->td_ksegrp;
+ count = 0;
+ PROC_LOCK(p);
+ mtx_lock_spin(&sched_lock);
+ FOREACH_UPCALL_IN_GROUP(kg, ku2) {
+ if (ku2->ku_flags & KUF_EXITING)
+ count++;
+ }
+ if ((kg->kg_numupcalls - count) == 1 &&
+ (kg->kg_numthreads > 1)) {
+ mtx_unlock_spin(&sched_lock);
+ PROC_UNLOCK(p);
+ return (EDEADLK);
+ }
+ ku->ku_flags |= KUF_EXITING;
+ mtx_unlock_spin(&sched_lock);
+ PROC_UNLOCK(p);
+ error = suword(&ku->ku_mailbox->km_flags, ku->ku_mflags|KMF_DONE);
+ PROC_LOCK(p);
+ if (error)
+ psignal(p, SIGSEGV);
+ mtx_lock_spin(&sched_lock);
+ upcall_remove(td);
+ ke = td->td_kse;
+ if (p->p_numthreads == 1) {
+ kse_purge(p, td);
+ p->p_flag &= ~P_SA;
+ mtx_unlock_spin(&sched_lock);
+ PROC_UNLOCK(p);
+ } else {
+ if (kg->kg_numthreads == 1) { /* Shutdown a group */
+ kse_purge_group(td);
+ ke->ke_flags |= KEF_EXIT;
+ }
+ thread_stopped(p);
+ thread_exit();
+ /* NOTREACHED */
+ }
+ return (0);
+}
+
+/*
+ * Either becomes an upcall or waits for an awakening event and
+ * then becomes an upcall. Only error cases return.
+ */
+/*
+struct kse_release_args {
+ struct timespec *timeout;
+};
+*/
+int
+kse_release(struct thread *td, struct kse_release_args *uap)
+{
+ struct proc *p;
+ struct ksegrp *kg;
+ struct kse_upcall *ku;
+ struct timespec timeout;
+ struct timeval tv;
+ sigset_t sigset;
+ int error;
+
+ p = td->td_proc;
+ kg = td->td_ksegrp;
+ if ((ku = td->td_upcall) == NULL || TD_CAN_UNBIND(td))
+ return (EINVAL);
+ if (uap->timeout != NULL) {
+ if ((error = copyin(uap->timeout, &timeout, sizeof(timeout))))
+ return (error);
+ TIMESPEC_TO_TIMEVAL(&tv, &timeout);
+ }
+ if (td->td_flags & TDF_SA)
+ td->td_pflags |= TDP_UPCALLING;
+ else {
+ ku->ku_mflags = fuword(&ku->ku_mailbox->km_flags);
+ if (ku->ku_mflags == -1) {
+ PROC_LOCK(p);
+ sigexit(td, SIGSEGV);
+ }
+ }
+ PROC_LOCK(p);
+ if (ku->ku_mflags & KMF_WAITSIGEVENT) {
+ /* UTS wants to wait for signal event */
+ if (!(p->p_flag & P_SIGEVENT) && !(ku->ku_flags & KUF_DOUPCALL))
+ error = msleep(&p->p_siglist, &p->p_mtx, PPAUSE|PCATCH,
+ "ksesigwait", (uap->timeout ? tvtohz(&tv) : 0));
+ p->p_flag &= ~P_SIGEVENT;
+ sigset = p->p_siglist;
+ PROC_UNLOCK(p);
+ error = copyout(&sigset, &ku->ku_mailbox->km_sigscaught,
+ sizeof(sigset));
+ } else {
+ if (! kg->kg_completed && !(ku->ku_flags & KUF_DOUPCALL)) {
+ kg->kg_upsleeps++;
+ error = msleep(&kg->kg_completed, &p->p_mtx,
+ PPAUSE|PCATCH, "kserel",
+ (uap->timeout ? tvtohz(&tv) : 0));
+ kg->kg_upsleeps--;
+ }
+ PROC_UNLOCK(p);
+ }
+ if (ku->ku_flags & KUF_DOUPCALL) {
+ mtx_lock_spin(&sched_lock);
+ ku->ku_flags &= ~KUF_DOUPCALL;
+ mtx_unlock_spin(&sched_lock);
+ }
+ return (0);
+}
+
+/* struct kse_wakeup_args {
+ struct kse_mailbox *mbx;
+}; */
+int
+kse_wakeup(struct thread *td, struct kse_wakeup_args *uap)
+{
+ struct proc *p;
+ struct ksegrp *kg;
+ struct kse_upcall *ku;
+ struct thread *td2;
+
+ p = td->td_proc;
+ td2 = NULL;
+ ku = NULL;
+ /* KSE-enabled processes only, please. */
+ if (!(p->p_flag & P_SA))
+ return (EINVAL);
+ PROC_LOCK(p);
+ mtx_lock_spin(&sched_lock);
+ if (uap->mbx) {
+ FOREACH_KSEGRP_IN_PROC(p, kg) {
+ FOREACH_UPCALL_IN_GROUP(kg, ku) {
+ if (ku->ku_mailbox == uap->mbx)
+ break;
+ }
+ if (ku)
+ break;
+ }
+ } else {
+ kg = td->td_ksegrp;
+ if (kg->kg_upsleeps) {
+ wakeup_one(&kg->kg_completed);
+ mtx_unlock_spin(&sched_lock);
+ PROC_UNLOCK(p);
+ return (0);
+ }
+ ku = TAILQ_FIRST(&kg->kg_upcalls);
+ }
+ if (ku) {
+ if ((td2 = ku->ku_owner) == NULL) {
+ panic("%s: no owner", __func__);
+ } else if (TD_ON_SLEEPQ(td2) &&
+ ((td2->td_wchan == &kg->kg_completed) ||
+ (td2->td_wchan == &p->p_siglist &&
+ (ku->ku_mflags & KMF_WAITSIGEVENT)))) {
+ abortsleep(td2);
+ } else {
+ ku->ku_flags |= KUF_DOUPCALL;
+ }
+ mtx_unlock_spin(&sched_lock);
+ PROC_UNLOCK(p);
+ return (0);
+ }
+ mtx_unlock_spin(&sched_lock);
+ PROC_UNLOCK(p);
+ return (ESRCH);
+}
+
+/*
+ * No new KSEG: first call: use current KSE, don't schedule an upcall
+ * All other situations, do allocate max new KSEs and schedule an upcall.
+ */
+/* struct kse_create_args {
+ struct kse_mailbox *mbx;
+ int newgroup;
+}; */
+int
+kse_create(struct thread *td, struct kse_create_args *uap)
+{
+ struct kse *newke;
+ struct ksegrp *newkg;
+ struct ksegrp *kg;
+ struct proc *p;
+ struct kse_mailbox mbx;
+ struct kse_upcall *newku;
+ int err, ncpus, sa = 0, first = 0;
+ struct thread *newtd;
+
+ p = td->td_proc;
+ if ((err = copyin(uap->mbx, &mbx, sizeof(mbx))))
+ return (err);
+
+ /* Too bad, why hasn't kernel always a cpu counter !? */
+#ifdef SMP
+ ncpus = mp_ncpus;
+#else
+ ncpus = 1;
+#endif
+ if (virtual_cpu != 0)
+ ncpus = virtual_cpu;
+ if (!(mbx.km_flags & KMF_BOUND))
+ sa = TDF_SA;
+ else
+ ncpus = 1;
+ PROC_LOCK(p);
+ if (!(p->p_flag & P_SA)) {
+ first = 1;
+ p->p_flag |= P_SA;
+ }
+ PROC_UNLOCK(p);
+ if (!sa && !uap->newgroup && !first)
+ return (EINVAL);
+ kg = td->td_ksegrp;
+ if (uap->newgroup) {
+ /* Have race condition but it is cheap */
+ if (p->p_numksegrps >= max_groups_per_proc)
+ return (EPROCLIM);
+ /*
+ * If we want a new KSEGRP it doesn't matter whether
+ * we have already fired up KSE mode before or not.
+ * We put the process in KSE mode and create a new KSEGRP.
+ */
+ newkg = ksegrp_alloc();
+ bzero(&newkg->kg_startzero, RANGEOF(struct ksegrp,
+ kg_startzero, kg_endzero));
+ bcopy(&kg->kg_startcopy, &newkg->kg_startcopy,
+ RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
+ PROC_LOCK(p);
+ mtx_lock_spin(&sched_lock);
+ if (p->p_numksegrps >= max_groups_per_proc) {
+ mtx_unlock_spin(&sched_lock);
+ PROC_UNLOCK(p);
+ ksegrp_free(newkg);
+ return (EPROCLIM);
+ }
+ ksegrp_link(newkg, p);
+ sched_fork_ksegrp(kg, newkg);
+ mtx_unlock_spin(&sched_lock);
+ PROC_UNLOCK(p);
+ } else {
+ if (!first && ((td->td_flags & TDF_SA) ^ sa) != 0)
+ return (EINVAL);
+ newkg = kg;
+ }
+
+ /*
+ * Creating upcalls more than number of physical cpu does
+ * not help performance.
+ */
+ if (newkg->kg_numupcalls >= ncpus)
+ return (EPROCLIM);
+
+ if (newkg->kg_numupcalls == 0) {
+ /*
+ * Initialize KSE group
+ *
+ * For multiplxed group, create KSEs as many as physical
+ * cpus. This increases concurrent even if userland
+ * is not MP safe and can only run on single CPU.
+ * In ideal world, every physical cpu should execute a thread.
+ * If there is enough KSEs, threads in kernel can be
+ * executed parallel on different cpus with full speed,
+ * Concurrent in kernel shouldn't be restricted by number of
+ * upcalls userland provides. Adding more upcall structures
+ * only increases concurrent in userland.
+ *
+ * For bound thread group, because there is only thread in the
+ * group, we only create one KSE for the group. Thread in this
+ * kind of group will never schedule an upcall when blocked,
+ * this intends to simulate pthread system scope thread.
+ */
+ while (newkg->kg_kses < ncpus) {
+ newke = kse_alloc();
+ bzero(&newke->ke_startzero, RANGEOF(struct kse,
+ ke_startzero, ke_endzero));
+#if 0
+ mtx_lock_spin(&sched_lock);
+ bcopy(&ke->ke_startcopy, &newke->ke_startcopy,
+ RANGEOF(struct kse, ke_startcopy, ke_endcopy));
+ mtx_unlock_spin(&sched_lock);
+#endif
+ mtx_lock_spin(&sched_lock);
+ kse_link(newke, newkg);
+ sched_fork_kse(td->td_kse, newke);
+ /* Add engine */
+ kse_reassign(newke);
+ mtx_unlock_spin(&sched_lock);
+ }
+ }
+ newku = upcall_alloc();
+ newku->ku_mailbox = uap->mbx;
+ newku->ku_func = mbx.km_func;
+ bcopy(&mbx.km_stack, &newku->ku_stack, sizeof(stack_t));
+
+ /* For the first call this may not have been set */
+ if (td->td_standin == NULL)
+ thread_alloc_spare(td, NULL);
+
+ PROC_LOCK(p);
+ if (newkg->kg_numupcalls >= ncpus) {
+ PROC_UNLOCK(p);
+ upcall_free(newku);
+ return (EPROCLIM);
+ }
+ if (first && sa) {
+ SIGSETOR(p->p_siglist, td->td_siglist);
+ SIGEMPTYSET(td->td_siglist);
+ SIGFILLSET(td->td_sigmask);
+ SIG_CANTMASK(td->td_sigmask);
+ }
+ mtx_lock_spin(&sched_lock);
+ PROC_UNLOCK(p);
+ upcall_link(newku, newkg);
+ if (mbx.km_quantum)
+ newkg->kg_upquantum = max(1, mbx.km_quantum/tick);
+
+ /*
+ * Each upcall structure has an owner thread, find which
+ * one owns it.
+ */
+ if (uap->newgroup) {
+ /*
+ * Because new ksegrp hasn't thread,
+ * create an initial upcall thread to own it.
+ */
+ newtd = thread_schedule_upcall(td, newku);
+ } else {
+ /*
+ * If current thread hasn't an upcall structure,
+ * just assign the upcall to it.
+ */
+ if (td->td_upcall == NULL) {
+ newku->ku_owner = td;
+ td->td_upcall = newku;
+ newtd = td;
+ } else {
+ /*
+ * Create a new upcall thread to own it.
+ */
+ newtd = thread_schedule_upcall(td, newku);
+ }
+ }
+ if (!sa) {
+ newtd->td_mailbox = mbx.km_curthread;
+ newtd->td_flags &= ~TDF_SA;
+ if (newtd != td) {
+ mtx_unlock_spin(&sched_lock);
+ cpu_set_upcall_kse(newtd, newku);
+ mtx_lock_spin(&sched_lock);
+ }
+ } else {
+ newtd->td_flags |= TDF_SA;
+ }
+ if (newtd != td)
+ setrunqueue(newtd);
+ mtx_unlock_spin(&sched_lock);
+ return (0);
+}
+
+/*
+ * Initialize global thread allocation resources.
+ */
+void
+threadinit(void)
+{
+
+ thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
+ thread_ctor, thread_dtor, thread_init, thread_fini,
+ UMA_ALIGN_CACHE, 0);
+ ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(),
+ NULL, NULL, ksegrp_init, NULL,
+ UMA_ALIGN_CACHE, 0);
+ kse_zone = uma_zcreate("KSE", sched_sizeof_kse(),
+ NULL, NULL, kse_init, NULL,
+ UMA_ALIGN_CACHE, 0);
+ upcall_zone = uma_zcreate("UPCALL", sizeof(struct kse_upcall),
+ NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
+}
+
+/*
+ * Stash an embarasingly extra thread into the zombie thread queue.
+ */
+void
+thread_stash(struct thread *td)
+{
+ mtx_lock_spin(&kse_zombie_lock);
+ TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq);
+ mtx_unlock_spin(&kse_zombie_lock);
+}
+
+/*
+ * Stash an embarasingly extra kse into the zombie kse queue.
+ */
+void
+kse_stash(struct kse *ke)
+{
+ mtx_lock_spin(&kse_zombie_lock);
+ TAILQ_INSERT_HEAD(&zombie_kses, ke, ke_procq);
+ mtx_unlock_spin(&kse_zombie_lock);
+}
+
+/*
+ * Stash an embarasingly extra upcall into the zombie upcall queue.
+ */
+
+void
+upcall_stash(struct kse_upcall *ku)
+{
+ mtx_lock_spin(&kse_zombie_lock);
+ TAILQ_INSERT_HEAD(&zombie_upcalls, ku, ku_link);
+ mtx_unlock_spin(&kse_zombie_lock);
+}
+
+/*
+ * Stash an embarasingly extra ksegrp into the zombie ksegrp queue.
+ */
+void
+ksegrp_stash(struct ksegrp *kg)
+{
+ mtx_lock_spin(&kse_zombie_lock);
+ TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp);
+ mtx_unlock_spin(&kse_zombie_lock);
+}
+
+/*
+ * Reap zombie kse resource.
+ */
+void
+thread_reap(void)
+{
+ struct thread *td_first, *td_next;
+ struct kse *ke_first, *ke_next;
+ struct ksegrp *kg_first, * kg_next;
+ struct kse_upcall *ku_first, *ku_next;
+
+ /*
+ * Don't even bother to lock if none at this instant,
+ * we really don't care about the next instant..
+ */
+ if ((!TAILQ_EMPTY(&zombie_threads))
+ || (!TAILQ_EMPTY(&zombie_kses))
+ || (!TAILQ_EMPTY(&zombie_ksegrps))
+ || (!TAILQ_EMPTY(&zombie_upcalls))) {
+ mtx_lock_spin(&kse_zombie_lock);
+ td_first = TAILQ_FIRST(&zombie_threads);
+ ke_first = TAILQ_FIRST(&zombie_kses);
+ kg_first = TAILQ_FIRST(&zombie_ksegrps);
+ ku_first = TAILQ_FIRST(&zombie_upcalls);
+ if (td_first)
+ TAILQ_INIT(&zombie_threads);
+ if (ke_first)
+ TAILQ_INIT(&zombie_kses);
+ if (kg_first)
+ TAILQ_INIT(&zombie_ksegrps);
+ if (ku_first)
+ TAILQ_INIT(&zombie_upcalls);
+ mtx_unlock_spin(&kse_zombie_lock);
+ while (td_first) {
+ td_next = TAILQ_NEXT(td_first, td_runq);
+ if (td_first->td_ucred)
+ crfree(td_first->td_ucred);
+ thread_free(td_first);
+ td_first = td_next;
+ }
+ while (ke_first) {
+ ke_next = TAILQ_NEXT(ke_first, ke_procq);
+ kse_free(ke_first);
+ ke_first = ke_next;
+ }
+ while (kg_first) {
+ kg_next = TAILQ_NEXT(kg_first, kg_ksegrp);
+ ksegrp_free(kg_first);
+ kg_first = kg_next;
+ }
+ while (ku_first) {
+ ku_next = TAILQ_NEXT(ku_first, ku_link);
+ upcall_free(ku_first);
+ ku_first = ku_next;
+ }
+ }
+}
+
+/*
+ * Allocate a ksegrp.
+ */
+struct ksegrp *
+ksegrp_alloc(void)
+{
+ return (uma_zalloc(ksegrp_zone, M_WAITOK));
+}
+
+/*
+ * Allocate a kse.
+ */
+struct kse *
+kse_alloc(void)
+{
+ return (uma_zalloc(kse_zone, M_WAITOK));
+}
+
+/*
+ * Allocate a thread.
+ */
+struct thread *
+thread_alloc(void)
+{
+ thread_reap(); /* check if any zombies to get */
+ return (uma_zalloc(thread_zone, M_WAITOK));
+}
+
+/*
+ * Deallocate a ksegrp.
+ */
+void
+ksegrp_free(struct ksegrp *td)
+{
+ uma_zfree(ksegrp_zone, td);
+}
+
+/*
+ * Deallocate a kse.
+ */
+void
+kse_free(struct kse *td)
+{
+ uma_zfree(kse_zone, td);
+}
+
+/*
+ * Deallocate a thread.
+ */
+void
+thread_free(struct thread *td)
+{
+
+ cpu_thread_clean(td);
+ uma_zfree(thread_zone, td);
+}
+
+/*
+ * Store the thread context in the UTS's mailbox.
+ * then add the mailbox at the head of a list we are building in user space.
+ * The list is anchored in the ksegrp structure.
+ */
+int
+thread_export_context(struct thread *td, int willexit)
+{
+ struct proc *p;
+ struct ksegrp *kg;
+ uintptr_t mbx;
+ void *addr;
+ int error = 0, temp, sig;
+ mcontext_t mc;
+
+ p = td->td_proc;
+ kg = td->td_ksegrp;
+
+ /* Export the user/machine context. */
+ get_mcontext(td, &mc, 0);
+ addr = (void *)(&td->td_mailbox->tm_context.uc_mcontext);
+ error = copyout(&mc, addr, sizeof(mcontext_t));
+ if (error)
+ goto bad;
+
+ /* Exports clock ticks in kernel mode */
+ addr = (caddr_t)(&td->td_mailbox->tm_sticks);
+ temp = fuword32(addr) + td->td_usticks;
+ if (suword32(addr, temp)) {
+ error = EFAULT;
+ goto bad;
+ }
+
+ /*
+ * Post sync signal, or process SIGKILL and SIGSTOP.
+ * For sync signal, it is only possible when the signal is not
+ * caught by userland or process is being debugged.
+ */
+ PROC_LOCK(p);
+ if (td->td_flags & TDF_NEEDSIGCHK) {
+ mtx_lock_spin(&sched_lock);
+ td->td_flags &= ~TDF_NEEDSIGCHK;
+ mtx_unlock_spin(&sched_lock);
+ mtx_lock(&p->p_sigacts->ps_mtx);
+ while ((sig = cursig(td)) != 0)
+ postsig(sig);
+ mtx_unlock(&p->p_sigacts->ps_mtx);
+ }
+ if (willexit)
+ SIGFILLSET(td->td_sigmask);
+ PROC_UNLOCK(p);
+
+ /* Get address in latest mbox of list pointer */
+ addr = (void *)(&td->td_mailbox->tm_next);
+ /*
+ * Put the saved address of the previous first
+ * entry into this one
+ */
+ for (;;) {
+ mbx = (uintptr_t)kg->kg_completed;
+ if (suword(addr, mbx)) {
+ error = EFAULT;
+ goto bad;
+ }
+ PROC_LOCK(p);
+ if (mbx == (uintptr_t)kg->kg_completed) {
+ kg->kg_completed = td->td_mailbox;
+ /*
+ * The thread context may be taken away by
+ * other upcall threads when we unlock
+ * process lock. it's no longer valid to
+ * use it again in any other places.
+ */
+ td->td_mailbox = NULL;
+ PROC_UNLOCK(p);
+ break;
+ }
+ PROC_UNLOCK(p);
+ }
+ td->td_usticks = 0;
+ return (0);
+
+bad:
+ PROC_LOCK(p);
+ sigexit(td, SIGILL);
+ return (error);
+}
+
+/*
+ * Take the list of completed mailboxes for this KSEGRP and put them on this
+ * upcall's mailbox as it's the next one going up.
+ */
+static int
+thread_link_mboxes(struct ksegrp *kg, struct kse_upcall *ku)
+{
+ struct proc *p = kg->kg_proc;
+ void *addr;
+ uintptr_t mbx;
+
+ addr = (void *)(&ku->ku_mailbox->km_completed);
+ for (;;) {
+ mbx = (uintptr_t)kg->kg_completed;
+ if (suword(addr, mbx)) {
+ PROC_LOCK(p);
+ psignal(p, SIGSEGV);
+ PROC_UNLOCK(p);
+ return (EFAULT);
+ }
+ PROC_LOCK(p);
+ if (mbx == (uintptr_t)kg->kg_completed) {
+ kg->kg_completed = NULL;
+ PROC_UNLOCK(p);
+ break;
+ }
+ PROC_UNLOCK(p);
+ }
+ return (0);
+}
+
+/*
+ * This function should be called at statclock interrupt time
+ */
+int
+thread_statclock(int user)
+{
+ struct thread *td = curthread;
+ struct ksegrp *kg = td->td_ksegrp;
+
+ if (kg->kg_numupcalls == 0 || !(td->td_flags & TDF_SA))
+ return (0);
+ if (user) {
+ /* Current always do via ast() */
+ mtx_lock_spin(&sched_lock);
+ td->td_flags |= (TDF_USTATCLOCK|TDF_ASTPENDING);
+ mtx_unlock_spin(&sched_lock);
+ td->td_uuticks++;
+ } else {
+ if (td->td_mailbox != NULL)
+ td->td_usticks++;
+ else {
+ /* XXXKSE
+ * We will call thread_user_enter() for every
+ * kernel entry in future, so if the thread mailbox
+ * is NULL, it must be a UTS kernel, don't account
+ * clock ticks for it.
+ */
+ }
+ }
+ return (0);
+}
+
+/*
+ * Export state clock ticks for userland
+ */
+static int
+thread_update_usr_ticks(struct thread *td, int user)
+{
+ struct proc *p = td->td_proc;
+ struct kse_thr_mailbox *tmbx;
+ struct kse_upcall *ku;
+ struct ksegrp *kg;
+ caddr_t addr;
+ u_int uticks;
+
+ if ((ku = td->td_upcall) == NULL)
+ return (-1);
+
+ tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread);
+ if ((tmbx == NULL) || (tmbx == (void *)-1))
+ return (-1);
+ if (user) {
+ uticks = td->td_uuticks;
+ td->td_uuticks = 0;
+ addr = (caddr_t)&tmbx->tm_uticks;
+ } else {
+ uticks = td->td_usticks;
+ td->td_usticks = 0;
+ addr = (caddr_t)&tmbx->tm_sticks;
+ }
+ if (uticks) {
+ if (suword32(addr, uticks+fuword32(addr))) {
+ PROC_LOCK(p);
+ psignal(p, SIGSEGV);
+ PROC_UNLOCK(p);
+ return (-2);
+ }
+ }
+ kg = td->td_ksegrp;
+ if (kg->kg_upquantum && ticks >= kg->kg_nextupcall) {
+ mtx_lock_spin(&sched_lock);
+ td->td_upcall->ku_flags |= KUF_DOUPCALL;
+ mtx_unlock_spin(&sched_lock);
+ }
+ return (0);
+}
+
+/*
+ * Discard the current thread and exit from its context.
+ *
+ * Because we can't free a thread while we're operating under its context,
+ * push the current thread into our CPU's deadthread holder. This means
+ * we needn't worry about someone else grabbing our context before we
+ * do a cpu_throw().
+ */
+void
+thread_exit(void)
+{
+ struct thread *td;
+ struct kse *ke;
+ struct proc *p;
+ struct ksegrp *kg;
+
+ td = curthread;
+ kg = td->td_ksegrp;
+ p = td->td_proc;
+ ke = td->td_kse;
+
+ mtx_assert(&sched_lock, MA_OWNED);
+ KASSERT(p != NULL, ("thread exiting without a process"));
+ KASSERT(ke != NULL, ("thread exiting without a kse"));
+ KASSERT(kg != NULL, ("thread exiting without a kse group"));
+ PROC_LOCK_ASSERT(p, MA_OWNED);
+ CTR1(KTR_PROC, "thread_exit: thread %p", td);
+ KASSERT(!mtx_owned(&Giant), ("dying thread owns giant"));
+
+ if (td->td_standin != NULL) {
+ thread_stash(td->td_standin);
+ td->td_standin = NULL;
+ }
+
+ cpu_thread_exit(td); /* XXXSMP */
+
+ /*
+ * The last thread is left attached to the process
+ * So that the whole bundle gets recycled. Skip
+ * all this stuff.
+ */
+ if (p->p_numthreads > 1) {
+ thread_unlink(td);
+ if (p->p_maxthrwaits)
+ wakeup(&p->p_numthreads);
+ /*
+ * The test below is NOT true if we are the
+ * sole exiting thread. P_STOPPED_SNGL is unset
+ * in exit1() after it is the only survivor.
+ */
+ if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
+ if (p->p_numthreads == p->p_suspcount) {
+ thread_unsuspend_one(p->p_singlethread);
+ }
+ }
+
+ /*
+ * Because each upcall structure has an owner thread,
+ * owner thread exits only when process is in exiting
+ * state, so upcall to userland is no longer needed,
+ * deleting upcall structure is safe here.
+ * So when all threads in a group is exited, all upcalls
+ * in the group should be automatically freed.
+ */
+ if (td->td_upcall)
+ upcall_remove(td);
+
+ sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
+ sched_exit_kse(FIRST_KSE_IN_PROC(p), ke);
+ ke->ke_state = KES_UNQUEUED;
+ ke->ke_thread = NULL;
+ /*
+ * Decide what to do with the KSE attached to this thread.
+ */
+ if (ke->ke_flags & KEF_EXIT) {
+ kse_unlink(ke);
+ if (kg->kg_kses == 0) {
+ sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), kg);
+ ksegrp_unlink(kg);
+ }
+ }
+ else
+ kse_reassign(ke);
+ PROC_UNLOCK(p);
+ td->td_kse = NULL;
+ td->td_state = TDS_INACTIVE;
+#if 0
+ td->td_proc = NULL;
+#endif
+ td->td_ksegrp = NULL;
+ td->td_last_kse = NULL;
+ PCPU_SET(deadthread, td);
+ } else {
+ PROC_UNLOCK(p);
+ }
+ /* XXX Shouldn't cpu_throw() here. */
+ mtx_assert(&sched_lock, MA_OWNED);
+ cpu_throw(td, choosethread());
+ panic("I'm a teapot!");
+ /* NOTREACHED */
+}
+
+/*
+ * Do any thread specific cleanups that may be needed in wait()
+ * called with Giant held, proc and schedlock not held.
+ */
+void
+thread_wait(struct proc *p)
+{
+ struct thread *td;
+
+ KASSERT((p->p_numthreads == 1), ("Muliple threads in wait1()"));
+ KASSERT((p->p_numksegrps == 1), ("Muliple ksegrps in wait1()"));
+ FOREACH_THREAD_IN_PROC(p, td) {
+ if (td->td_standin != NULL) {
+ thread_free(td->td_standin);
+ td->td_standin = NULL;
+ }
+ cpu_thread_clean(td);
+ }
+ thread_reap(); /* check for zombie threads etc. */
+}
+
+/*
+ * Link a thread to a process.
+ * set up anything that needs to be initialized for it to
+ * be used by the process.
+ *
+ * Note that we do not link to the proc's ucred here.
+ * The thread is linked as if running but no KSE assigned.
+ */
+void
+thread_link(struct thread *td, struct ksegrp *kg)
+{
+ struct proc *p;
+
+ p = kg->kg_proc;
+ td->td_state = TDS_INACTIVE;
+ td->td_proc = p;
+ td->td_ksegrp = kg;
+ td->td_last_kse = NULL;
+ td->td_flags = 0;
+ td->td_kse = NULL;
+
+ LIST_INIT(&td->td_contested);
+ callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
+ TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
+ TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist);
+ p->p_numthreads++;
+ kg->kg_numthreads++;
+}
+
+void
+thread_unlink(struct thread *td)
+{
+ struct proc *p = td->td_proc;
+ struct ksegrp *kg = td->td_ksegrp;
+
+ mtx_assert(&sched_lock, MA_OWNED);
+ TAILQ_REMOVE(&p->p_threads, td, td_plist);
+ p->p_numthreads--;
+ TAILQ_REMOVE(&kg->kg_threads, td, td_kglist);
+ kg->kg_numthreads--;
+ /* could clear a few other things here */
+}
+
+/*
+ * Purge a ksegrp resource. When a ksegrp is preparing to
+ * exit, it calls this function.
+ */
+static void
+kse_purge_group(struct thread *td)
+{
+ struct ksegrp *kg;
+ struct kse *ke;
+
+ kg = td->td_ksegrp;
+ KASSERT(kg->kg_numthreads == 1, ("%s: bad thread number", __func__));
+ while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
+ KASSERT(ke->ke_state == KES_IDLE,
+ ("%s: wrong idle KSE state", __func__));
+ kse_unlink(ke);
+ }
+ KASSERT((kg->kg_kses == 1),
+ ("%s: ksegrp still has %d KSEs", __func__, kg->kg_kses));
+ KASSERT((kg->kg_numupcalls == 0),
+ ("%s: ksegrp still has %d upcall datas",
+ __func__, kg->kg_numupcalls));
+}
+
+/*
+ * Purge a process's KSE resource. When a process is preparing to
+ * exit, it calls kse_purge to release any extra KSE resources in
+ * the process.
+ */
+static void
+kse_purge(struct proc *p, struct thread *td)
+{
+ struct ksegrp *kg;
+ struct kse *ke;
+
+ KASSERT(p->p_numthreads == 1, ("bad thread number"));
+ while ((kg = TAILQ_FIRST(&p->p_ksegrps)) != NULL) {
+ TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
+ p->p_numksegrps--;
+ /*
+ * There is no ownership for KSE, after all threads
+ * in the group exited, it is possible that some KSEs
+ * were left in idle queue, gc them now.
+ */
+ while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
+ KASSERT(ke->ke_state == KES_IDLE,
+ ("%s: wrong idle KSE state", __func__));
+ TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
+ kg->kg_idle_kses--;
+ TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
+ kg->kg_kses--;
+ kse_stash(ke);
+ }
+ KASSERT(((kg->kg_kses == 0) && (kg != td->td_ksegrp)) ||
+ ((kg->kg_kses == 1) && (kg == td->td_ksegrp)),
+ ("ksegrp has wrong kg_kses: %d", kg->kg_kses));
+ KASSERT((kg->kg_numupcalls == 0),
+ ("%s: ksegrp still has %d upcall datas",
+ __func__, kg->kg_numupcalls));
+
+ if (kg != td->td_ksegrp)
+ ksegrp_stash(kg);
+ }
+ TAILQ_INSERT_HEAD(&p->p_ksegrps, td->td_ksegrp, kg_ksegrp);
+ p->p_numksegrps++;
+}
+
+/*
+ * This function is intended to be used to initialize a spare thread
+ * for upcall. Initialize thread's large data area outside sched_lock
+ * for thread_schedule_upcall().
+ */
+void
+thread_alloc_spare(struct thread *td, struct thread *spare)
+{
+ if (td->td_standin)
+ return;
+ if (spare == NULL)
+ spare = thread_alloc();
+ td->td_standin = spare;
+ bzero(&spare->td_startzero,
+ (unsigned)RANGEOF(struct thread, td_startzero, td_endzero));
+ spare->td_proc = td->td_proc;
+ spare->td_ucred = crhold(td->td_ucred);
+}
+
+/*
+ * Create a thread and schedule it for upcall on the KSE given.
+ * Use our thread's standin so that we don't have to allocate one.
+ */
+struct thread *
+thread_schedule_upcall(struct thread *td, struct kse_upcall *ku)
+{
+ struct thread *td2;
+
+ mtx_assert(&sched_lock, MA_OWNED);
+
+ /*
+ * Schedule an upcall thread on specified kse_upcall,
+ * the kse_upcall must be free.
+ * td must have a spare thread.
+ */
+ KASSERT(ku->ku_owner == NULL, ("%s: upcall has owner", __func__));
+ if ((td2 = td->td_standin) != NULL) {
+ td->td_standin = NULL;
+ } else {
+ panic("no reserve thread when scheduling an upcall");
+ return (NULL);
+ }
+ CTR3(KTR_PROC, "thread_schedule_upcall: thread %p (pid %d, %s)",
+ td2, td->td_proc->p_pid, td->td_proc->p_comm);
+ bcopy(&td->td_startcopy, &td2->td_startcopy,
+ (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
+ thread_link(td2, ku->ku_ksegrp);
+ /* inherit blocked thread's context */
+ cpu_set_upcall(td2, td);
+ /* Let the new thread become owner of the upcall */
+ ku->ku_owner = td2;
+ td2->td_upcall = ku;
+ td2->td_flags = TDF_SA;
+ td2->td_pflags = TDP_UPCALLING;
+ td2->td_kse = NULL;
+ td2->td_state = TDS_CAN_RUN;
+ td2->td_inhibitors = 0;
+ SIGFILLSET(td2->td_sigmask);
+ SIG_CANTMASK(td2->td_sigmask);
+ sched_fork_thread(td, td2);
+ return (td2); /* bogus.. should be a void function */
+}
+
+/*
+ * It is only used when thread generated a trap and process is being
+ * debugged.
+ */
+void
+thread_signal_add(struct thread *td, int sig)
+{
+ struct proc *p;
+ siginfo_t siginfo;
+ struct sigacts *ps;
+ int error;
+
+ p = td->td_proc;
+ PROC_LOCK_ASSERT(p, MA_OWNED);
+ ps = p->p_sigacts;
+ mtx_assert(&ps->ps_mtx, MA_OWNED);
+
+ cpu_thread_siginfo(sig, 0, &siginfo);
+ mtx_unlock(&ps->ps_mtx);
+ PROC_UNLOCK(p);
+ error = copyout(&siginfo, &td->td_mailbox->tm_syncsig, sizeof(siginfo));
+ if (error) {
+ PROC_LOCK(p);
+ sigexit(td, SIGILL);
+ }
+ PROC_LOCK(p);
+ SIGADDSET(td->td_sigmask, sig);
+ mtx_lock(&ps->ps_mtx);
+}
+
+void
+thread_switchout(struct thread *td)
+{
+ struct kse_upcall *ku;
+ struct thread *td2;
+
+ mtx_assert(&sched_lock, MA_OWNED);
+
+ /*
+ * If the outgoing thread is in threaded group and has never
+ * scheduled an upcall, decide whether this is a short
+ * or long term event and thus whether or not to schedule
+ * an upcall.
+ * If it is a short term event, just suspend it in
+ * a way that takes its KSE with it.
+ * Select the events for which we want to schedule upcalls.
+ * For now it's just sleep.
+ * XXXKSE eventually almost any inhibition could do.
+ */
+ if (TD_CAN_UNBIND(td) && (td->td_standin) && TD_ON_SLEEPQ(td)) {
+ /*
+ * Release ownership of upcall, and schedule an upcall
+ * thread, this new upcall thread becomes the owner of
+ * the upcall structure.
+ */
+ ku = td->td_upcall;
+ ku->ku_owner = NULL;
+ td->td_upcall = NULL;
+ td->td_flags &= ~TDF_CAN_UNBIND;
+ td2 = thread_schedule_upcall(td, ku);
+ setrunqueue(td2);
+ }
+}
+
+/*
+ * Setup done on the thread when it enters the kernel.
+ * XXXKSE Presently only for syscalls but eventually all kernel entries.
+ */
+void
+thread_user_enter(struct proc *p, struct thread *td)
+{
+ struct ksegrp *kg;
+ struct kse_upcall *ku;
+ struct kse_thr_mailbox *tmbx;
+ uint32_t tflags;
+
+ kg = td->td_ksegrp;
+
+ /*
+ * First check that we shouldn't just abort.
+ * But check if we are the single thread first!
+ */
+ if (p->p_flag & P_SINGLE_EXIT) {
+ PROC_LOCK(p);
+ mtx_lock_spin(&sched_lock);
+ thread_stopped(p);
+ thread_exit();
+ /* NOTREACHED */
+ }
+
+ /*
+ * If we are doing a syscall in a KSE environment,
+ * note where our mailbox is. There is always the
+ * possibility that we could do this lazily (in kse_reassign()),
+ * but for now do it every time.
+ */
+ kg = td->td_ksegrp;
+ if (td->td_flags & TDF_SA) {
+ ku = td->td_upcall;
+ KASSERT(ku, ("%s: no upcall owned", __func__));
+ KASSERT((ku->ku_owner == td), ("%s: wrong owner", __func__));
+ KASSERT(!TD_CAN_UNBIND(td), ("%s: can unbind", __func__));
+ ku->ku_mflags = fuword32((void *)&ku->ku_mailbox->km_flags);
+ tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread);
+ if ((tmbx == NULL) || (tmbx == (void *)-1L) ||
+ (ku->ku_mflags & KMF_NOUPCALL)) {
+ td->td_mailbox = NULL;
+ } else {
+ if (td->td_standin == NULL)
+ thread_alloc_spare(td, NULL);
+ tflags = fuword32(&tmbx->tm_flags);
+ /*
+ * On some architectures, TP register points to thread
+ * mailbox but not points to kse mailbox, and userland
+ * can not atomically clear km_curthread, but can
+ * use TP register, and set TMF_NOUPCALL in thread
+ * flag to indicate a critical region.
+ */
+ if (tflags & TMF_NOUPCALL) {
+ td->td_mailbox = NULL;
+ } else {
+ td->td_mailbox = tmbx;
+ mtx_lock_spin(&sched_lock);
+ td->td_flags |= TDF_CAN_UNBIND;
+ mtx_unlock_spin(&sched_lock);
+ }
+ }
+ }
+}
+
+/*
+ * The extra work we go through if we are a threaded process when we
+ * return to userland.
+ *
+ * If we are a KSE process and returning to user mode, check for
+ * extra work to do before we return (e.g. for more syscalls
+ * to complete first). If we were in a critical section, we should
+ * just return to let it finish. Same if we were in the UTS (in
+ * which case the mailbox's context's busy indicator will be set).
+ * The only traps we suport will have set the mailbox.
+ * We will clear it here.
+ */
+int
+thread_userret(struct thread *td, struct trapframe *frame)
+{
+ int error = 0, upcalls, uts_crit;
+ struct kse_upcall *ku;
+ struct ksegrp *kg, *kg2;
+ struct proc *p;
+ struct timespec ts;
+
+ p = td->td_proc;
+ kg = td->td_ksegrp;
+ ku = td->td_upcall;
+
+ /* Nothing to do with bound thread */
+ if (!(td->td_flags & TDF_SA))
+ return (0);
+
+ /*
+ * Stat clock interrupt hit in userland, it
+ * is returning from interrupt, charge thread's
+ * userland time for UTS.
+ */
+ if (td->td_flags & TDF_USTATCLOCK) {
+ thread_update_usr_ticks(td, 1);
+ mtx_lock_spin(&sched_lock);
+ td->td_flags &= ~TDF_USTATCLOCK;
+ mtx_unlock_spin(&sched_lock);
+ if (kg->kg_completed ||
+ (td->td_upcall->ku_flags & KUF_DOUPCALL))
+ thread_user_enter(p, td);
+ }
+
+ uts_crit = (td->td_mailbox == NULL);
+ /*
+ * Optimisation:
+ * This thread has not started any upcall.
+ * If there is no work to report other than ourself,
+ * then it can return direct to userland.
+ */
+ if (TD_CAN_UNBIND(td)) {
+ mtx_lock_spin(&sched_lock);
+ td->td_flags &= ~TDF_CAN_UNBIND;
+ if ((td->td_flags & TDF_NEEDSIGCHK) == 0 &&
+ (kg->kg_completed == NULL) &&
+ (ku->ku_flags & KUF_DOUPCALL) == 0 &&
+ (kg->kg_upquantum && ticks < kg->kg_nextupcall)) {
+ mtx_unlock_spin(&sched_lock);
+ thread_update_usr_ticks(td, 0);
+ nanotime(&ts);
+ error = copyout(&ts,
+ (caddr_t)&ku->ku_mailbox->km_timeofday,
+ sizeof(ts));
+ td->td_mailbox = 0;
+ ku->ku_mflags = 0;
+ if (error)
+ goto out;
+ return (0);
+ }
+ mtx_unlock_spin(&sched_lock);
+ thread_export_context(td, 0);
+ /*
+ * There is something to report, and we own an upcall
+ * strucuture, we can go to userland.
+ * Turn ourself into an upcall thread.
+ */
+ td->td_pflags |= TDP_UPCALLING;
+ } else if (td->td_mailbox && (ku == NULL)) {
+ thread_export_context(td, 1);
+ PROC_LOCK(p);
+ /*
+ * There are upcall threads waiting for
+ * work to do, wake one of them up.
+ * XXXKSE Maybe wake all of them up.
+ */
+ if (kg->kg_upsleeps)
+ wakeup_one(&kg->kg_completed);
+ mtx_lock_spin(&sched_lock);
+ thread_stopped(p);
+ thread_exit();
+ /* NOTREACHED */
+ }
+
+ KASSERT(ku != NULL, ("upcall is NULL\n"));
+ KASSERT(TD_CAN_UNBIND(td) == 0, ("can unbind"));
+
+ if (p->p_numthreads > max_threads_per_proc) {
+ max_threads_hits++;
+ PROC_LOCK(p);
+ mtx_lock_spin(&sched_lock);
+ p->p_maxthrwaits++;
+ while (p->p_numthreads > max_threads_per_proc) {
+ upcalls = 0;
+ FOREACH_KSEGRP_IN_PROC(p, kg2) {
+ if (kg2->kg_numupcalls == 0)
+ upcalls++;
+ else
+ upcalls += kg2->kg_numupcalls;
+ }
+ if (upcalls >= max_threads_per_proc)
+ break;
+ mtx_unlock_spin(&sched_lock);
+ if (msleep(&p->p_numthreads, &p->p_mtx, PPAUSE|PCATCH,
+ "maxthreads", NULL)) {
+ mtx_lock_spin(&sched_lock);
+ break;
+ } else {
+ mtx_lock_spin(&sched_lock);
+ }
+ }
+ p->p_maxthrwaits--;
+ mtx_unlock_spin(&sched_lock);
+ PROC_UNLOCK(p);
+ }
+
+ if (td->td_pflags & TDP_UPCALLING) {
+ uts_crit = 0;
+ kg->kg_nextupcall = ticks+kg->kg_upquantum;
+ /*
+ * There is no more work to do and we are going to ride
+ * this thread up to userland as an upcall.
+ * Do the last parts of the setup needed for the upcall.
+ */
+ CTR3(KTR_PROC, "userret: upcall thread %p (pid %d, %s)",
+ td, td->td_proc->p_pid, td->td_proc->p_comm);
+
+ td->td_pflags &= ~TDP_UPCALLING;
+ if (ku->ku_flags & KUF_DOUPCALL) {
+ mtx_lock_spin(&sched_lock);
+ ku->ku_flags &= ~KUF_DOUPCALL;
+ mtx_unlock_spin(&sched_lock);
+ }
+ /*
+ * Set user context to the UTS
+ */
+ if (!(ku->ku_mflags & KMF_NOUPCALL)) {
+ cpu_set_upcall_kse(td, ku);
+ error = suword(&ku->ku_mailbox->km_curthread, 0);
+ if (error)
+ goto out;
+ }
+
+ /*
+ * Unhook the list of completed threads.
+ * anything that completes after this gets to
+ * come in next time.
+ * Put the list of completed thread mailboxes on
+ * this KSE's mailbox.
+ */
+ if (!(ku->ku_mflags & KMF_NOCOMPLETED) &&
+ (error = thread_link_mboxes(kg, ku)) != 0)
+ goto out;
+ }
+ if (!uts_crit) {
+ nanotime(&ts);
+ error = copyout(&ts, &ku->ku_mailbox->km_timeofday, sizeof(ts));
+ }
+
+out:
+ if (error) {
+ /*
+ * Things are going to be so screwed we should just kill
+ * the process.
+ * how do we do that?
+ */
+ PROC_LOCK(td->td_proc);
+ psignal(td->td_proc, SIGSEGV);
+ PROC_UNLOCK(td->td_proc);
+ } else {
+ /*
+ * Optimisation:
+ * Ensure that we have a spare thread available,
+ * for when we re-enter the kernel.
+ */
+ if (td->td_standin == NULL)
+ thread_alloc_spare(td, NULL);
+ }
+
+ ku->ku_mflags = 0;
+ /*
+ * Clear thread mailbox first, then clear system tick count.
+ * The order is important because thread_statclock() use
+ * mailbox pointer to see if it is an userland thread or
+ * an UTS kernel thread.
+ */
+ td->td_mailbox = NULL;
+ td->td_usticks = 0;
+ return (error); /* go sync */
+}
+
+/*
+ * Enforce single-threading.
+ *
+ * Returns 1 if the caller must abort (another thread is waiting to
+ * exit the process or similar). Process is locked!
+ * Returns 0 when you are successfully the only thread running.
+ * A process has successfully single threaded in the suspend mode when
+ * There are no threads in user mode. Threads in the kernel must be
+ * allowed to continue until they get to the user boundary. They may even
+ * copy out their return values and data before suspending. They may however be
+ * accellerated in reaching the user boundary as we will wake up
+ * any sleeping threads that are interruptable. (PCATCH).
+ */
+int
+thread_single(int force_exit)
+{
+ struct thread *td;
+ struct thread *td2;
+ struct proc *p;
+
+ td = curthread;
+ p = td->td_proc;
+ mtx_assert(&Giant, MA_OWNED);
+ PROC_LOCK_ASSERT(p, MA_OWNED);
+ KASSERT((td != NULL), ("curthread is NULL"));
+
+ if ((p->p_flag & P_SA) == 0 && p->p_numthreads == 1)
+ return (0);
+
+ /* Is someone already single threading? */
+ if (p->p_singlethread)
+ return (1);
+
+ if (force_exit == SINGLE_EXIT) {
+ p->p_flag |= P_SINGLE_EXIT;
+ } else
+ p->p_flag &= ~P_SINGLE_EXIT;
+ p->p_flag |= P_STOPPED_SINGLE;
+ mtx_lock_spin(&sched_lock);
+ p->p_singlethread = td;
+ while ((p->p_numthreads - p->p_suspcount) != 1) {
+ FOREACH_THREAD_IN_PROC(p, td2) {
+ if (td2 == td)
+ continue;
+ td2->td_flags |= TDF_ASTPENDING;
+ if (TD_IS_INHIBITED(td2)) {
+ if (force_exit == SINGLE_EXIT) {
+ if (TD_IS_SUSPENDED(td2)) {
+ thread_unsuspend_one(td2);
+ }
+ if (TD_ON_SLEEPQ(td2) &&
+ (td2->td_flags & TDF_SINTR)) {
+ if (td2->td_flags & TDF_CVWAITQ)
+ cv_abort(td2);
+ else
+ abortsleep(td2);
+ }
+ } else {
+ if (TD_IS_SUSPENDED(td2))
+ continue;
+ /*
+ * maybe other inhibitted states too?
+ * XXXKSE Is it totally safe to
+ * suspend a non-interruptable thread?
+ */
+ if (td2->td_inhibitors &
+ (TDI_SLEEPING | TDI_SWAPPED))
+ thread_suspend_one(td2);
+ }
+ }
+ }
+ /*
+ * Maybe we suspended some threads.. was it enough?
+ */
+ if ((p->p_numthreads - p->p_suspcount) == 1)
+ break;
+
+ /*
+ * Wake us up when everyone else has suspended.
+ * In the mean time we suspend as well.
+ */
+ thread_suspend_one(td);
+ DROP_GIANT();
+ PROC_UNLOCK(p);
+ p->p_stats->p_ru.ru_nvcsw++;
+ mi_switch();
+ mtx_unlock_spin(&sched_lock);
+ PICKUP_GIANT();
+ PROC_LOCK(p);
+ mtx_lock_spin(&sched_lock);
+ }
+ if (force_exit == SINGLE_EXIT) {
+ if (td->td_upcall)
+ upcall_remove(td);
+ kse_purge(p, td);
+ }
+ mtx_unlock_spin(&sched_lock);
+ return (0);
+}
+
+/*
+ * Called in from locations that can safely check to see
+ * whether we have to suspend or at least throttle for a
+ * single-thread event (e.g. fork).
+ *
+ * Such locations include userret().
+ * If the "return_instead" argument is non zero, the thread must be able to
+ * accept 0 (caller may continue), or 1 (caller must abort) as a result.
+ *
+ * The 'return_instead' argument tells the function if it may do a
+ * thread_exit() or suspend, or whether the caller must abort and back
+ * out instead.
+ *
+ * If the thread that set the single_threading request has set the
+ * P_SINGLE_EXIT bit in the process flags then this call will never return
+ * if 'return_instead' is false, but will exit.
+ *
+ * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
+ *---------------+--------------------+---------------------
+ * 0 | returns 0 | returns 0 or 1
+ * | when ST ends | immediatly
+ *---------------+--------------------+---------------------
+ * 1 | thread exits | returns 1
+ * | | immediatly
+ * 0 = thread_exit() or suspension ok,
+ * other = return error instead of stopping the thread.
+ *
+ * While a full suspension is under effect, even a single threading
+ * thread would be suspended if it made this call (but it shouldn't).
+ * This call should only be made from places where
+ * thread_exit() would be safe as that may be the outcome unless
+ * return_instead is set.
+ */
+int
+thread_suspend_check(int return_instead)
+{
+ struct thread *td;
+ struct proc *p;
+
+ td = curthread;
+ p = td->td_proc;
+ PROC_LOCK_ASSERT(p, MA_OWNED);
+ while (P_SHOULDSTOP(p)) {
+ if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
+ KASSERT(p->p_singlethread != NULL,
+ ("singlethread not set"));
+ /*
+ * The only suspension in action is a
+ * single-threading. Single threader need not stop.
+ * XXX Should be safe to access unlocked
+ * as it can only be set to be true by us.
+ */
+ if (p->p_singlethread == td)
+ return (0); /* Exempt from stopping. */
+ }
+ if (return_instead)
+ return (1);
+
+ mtx_lock_spin(&sched_lock);
+ thread_stopped(p);
+ /*
+ * If the process is waiting for us to exit,
+ * this thread should just suicide.
+ * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
+ */
+ if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
+ while (mtx_owned(&Giant))
+ mtx_unlock(&Giant);
+ if (p->p_flag & P_SA)
+ thread_exit();
+ else
+ thr_exit1();
+ }
+
+ /*
+ * When a thread suspends, it just
+ * moves to the processes's suspend queue
+ * and stays there.
+ */
+ thread_suspend_one(td);
+ if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
+ if (p->p_numthreads == p->p_suspcount) {
+ thread_unsuspend_one(p->p_singlethread);
+ }
+ }
+ DROP_GIANT();
+ PROC_UNLOCK(p);
+ p->p_stats->p_ru.ru_nivcsw++;
+ mi_switch();
+ mtx_unlock_spin(&sched_lock);
+ PICKUP_GIANT();
+ PROC_LOCK(p);
+ }
+ return (0);
+}
+
+void
+thread_suspend_one(struct thread *td)
+{
+ struct proc *p = td->td_proc;
+
+ mtx_assert(&sched_lock, MA_OWNED);
+ PROC_LOCK_ASSERT(p, MA_OWNED);
+ KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
+ p->p_suspcount++;
+ TD_SET_SUSPENDED(td);
+ TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq);
+ /*
+ * Hack: If we are suspending but are on the sleep queue
+ * then we are in msleep or the cv equivalent. We
+ * want to look like we have two Inhibitors.
+ * May already be set.. doesn't matter.
+ */
+ if (TD_ON_SLEEPQ(td))
+ TD_SET_SLEEPING(td);
+}
+
+void
+thread_unsuspend_one(struct thread *td)
+{
+ struct proc *p = td->td_proc;
+
+ mtx_assert(&sched_lock, MA_OWNED);
+ PROC_LOCK_ASSERT(p, MA_OWNED);
+ TAILQ_REMOVE(&p->p_suspended, td, td_runq);
+ TD_CLR_SUSPENDED(td);
+ p->p_suspcount--;
+ setrunnable(td);
+}
+
+/*
+ * Allow all threads blocked by single threading to continue running.
+ */
+void
+thread_unsuspend(struct proc *p)
+{
+ struct thread *td;
+
+ mtx_assert(&sched_lock, MA_OWNED);
+ PROC_LOCK_ASSERT(p, MA_OWNED);
+ if (!P_SHOULDSTOP(p)) {
+ while (( td = TAILQ_FIRST(&p->p_suspended))) {
+ thread_unsuspend_one(td);
+ }
+ } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
+ (p->p_numthreads == p->p_suspcount)) {
+ /*
+ * Stopping everything also did the job for the single
+ * threading request. Now we've downgraded to single-threaded,
+ * let it continue.
+ */
+ thread_unsuspend_one(p->p_singlethread);
+ }
+}
+
+void
+thread_single_end(void)
+{
+ struct thread *td;
+ struct proc *p;
+
+ td = curthread;
+ p = td->td_proc;
+ PROC_LOCK_ASSERT(p, MA_OWNED);
+ p->p_flag &= ~P_STOPPED_SINGLE;
+ mtx_lock_spin(&sched_lock);
+ p->p_singlethread = NULL;
+ /*
+ * If there are other threads they mey now run,
+ * unless of course there is a blanket 'stop order'
+ * on the process. The single threader must be allowed
+ * to continue however as this is a bad place to stop.
+ */
+ if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
+ while (( td = TAILQ_FIRST(&p->p_suspended))) {
+ thread_unsuspend_one(td);
+ }
+ }
+ mtx_unlock_spin(&sched_lock);
+}
+
+
OpenPOWER on IntegriCloud