summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_tc.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/kern/kern_tc.c')
-rw-r--r--sys/kern/kern_tc.c684
1 files changed, 684 insertions, 0 deletions
diff --git a/sys/kern/kern_tc.c b/sys/kern/kern_tc.c
new file mode 100644
index 0000000..fabc204
--- /dev/null
+++ b/sys/kern/kern_tc.c
@@ -0,0 +1,684 @@
+/*-
+ * ----------------------------------------------------------------------------
+ * "THE BEER-WARE LICENSE" (Revision 42):
+ * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
+ * can do whatever you want with this stuff. If we meet some day, and you think
+ * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
+ * ----------------------------------------------------------------------------
+ *
+ * $FreeBSD$
+ */
+
+#include "opt_ntp.h"
+
+#include <sys/param.h>
+#include <sys/kernel.h>
+#include <sys/sysctl.h>
+#include <sys/systm.h>
+#include <sys/timepps.h>
+#include <sys/timetc.h>
+#include <sys/timex.h>
+
+/*
+ * Implement a dummy timecounter which we can use until we get a real one
+ * in the air. This allows the console and other early stuff to use
+ * time services.
+ */
+
+static u_int
+dummy_get_timecount(struct timecounter *tc)
+{
+ static u_int now;
+
+ return (++now);
+}
+
+static struct timecounter dummy_timecounter = {
+ dummy_get_timecount, 0, ~0u, 1000000, "dummy",
+};
+
+struct timehands {
+ /* These fields must be initialized by the driver. */
+ struct timecounter *th_counter;
+ int64_t th_adjustment;
+ u_int64_t th_scale;
+ u_int th_offset_count;
+ struct bintime th_offset;
+ struct timeval th_microtime;
+ struct timespec th_nanotime;
+ /* Fields not to be copied in tc_windup start with th_generation. */
+ volatile u_int th_generation;
+ struct timehands *th_next;
+};
+
+extern struct timehands th0;
+static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
+static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
+static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
+static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
+static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
+static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
+static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
+static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
+static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
+static struct timehands th0 = {
+ &dummy_timecounter,
+ 0,
+ (uint64_t)-1 / 1000000,
+ 0,
+ {1, 0},
+ {0, 0},
+ {0, 0},
+ 1,
+ &th1
+};
+
+static struct timehands *volatile timehands = &th0;
+struct timecounter *timecounter = &dummy_timecounter;
+static struct timecounter *timecounters = &dummy_timecounter;
+
+time_t time_second = 1;
+
+static struct bintime boottimebin;
+struct timeval boottime;
+SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
+ &boottime, timeval, "System boottime");
+
+SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
+
+#define TC_STATS(foo) \
+ static u_int foo; \
+ SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "") \
+ struct __hack
+
+TC_STATS(nbinuptime); TC_STATS(nnanouptime); TC_STATS(nmicrouptime);
+TC_STATS(nbintime); TC_STATS(nnanotime); TC_STATS(nmicrotime);
+TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
+TC_STATS(ngetbintime); TC_STATS(ngetnanotime); TC_STATS(ngetmicrotime);
+
+#undef TC_STATS
+
+static void tc_windup(void);
+
+/*
+ * Return the difference between the timehands' counter value now and what
+ * was when we copied it to the timehands' offset_count.
+ */
+static __inline u_int
+tc_delta(struct timehands *th)
+{
+ struct timecounter *tc;
+
+ tc = th->th_counter;
+ return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
+ tc->tc_counter_mask);
+}
+
+/*
+ * Functions for reading the time. We have to loop until we are sure that
+ * the timehands that we operated on was not updated under our feet. See
+ * the comment in <sys/time.h> for a description of these 12 functions.
+ */
+
+void
+binuptime(struct bintime *bt)
+{
+ struct timehands *th;
+ u_int gen;
+
+ nbinuptime++;
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *bt = th->th_offset;
+ bintime_addx(bt, th->th_scale * tc_delta(th));
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+nanouptime(struct timespec *tsp)
+{
+ struct bintime bt;
+
+ nnanouptime++;
+ binuptime(&bt);
+ bintime2timespec(&bt, tsp);
+}
+
+void
+microuptime(struct timeval *tvp)
+{
+ struct bintime bt;
+
+ nmicrouptime++;
+ binuptime(&bt);
+ bintime2timeval(&bt, tvp);
+}
+
+void
+bintime(struct bintime *bt)
+{
+
+ nbintime++;
+ binuptime(bt);
+ bintime_add(bt, &boottimebin);
+}
+
+void
+nanotime(struct timespec *tsp)
+{
+ struct bintime bt;
+
+ nnanotime++;
+ bintime(&bt);
+ bintime2timespec(&bt, tsp);
+}
+
+void
+microtime(struct timeval *tvp)
+{
+ struct bintime bt;
+
+ nmicrotime++;
+ bintime(&bt);
+ bintime2timeval(&bt, tvp);
+}
+
+void
+getbinuptime(struct bintime *bt)
+{
+ struct timehands *th;
+ u_int gen;
+
+ ngetbinuptime++;
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *bt = th->th_offset;
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getnanouptime(struct timespec *tsp)
+{
+ struct timehands *th;
+ u_int gen;
+
+ ngetnanouptime++;
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ bintime2timespec(&th->th_offset, tsp);
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getmicrouptime(struct timeval *tvp)
+{
+ struct timehands *th;
+ u_int gen;
+
+ ngetmicrouptime++;
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ bintime2timeval(&th->th_offset, tvp);
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getbintime(struct bintime *bt)
+{
+ struct timehands *th;
+ u_int gen;
+
+ ngetbintime++;
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *bt = th->th_offset;
+ } while (gen == 0 || gen != th->th_generation);
+ bintime_add(bt, &boottimebin);
+}
+
+void
+getnanotime(struct timespec *tsp)
+{
+ struct timehands *th;
+ u_int gen;
+
+ ngetnanotime++;
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *tsp = th->th_nanotime;
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getmicrotime(struct timeval *tvp)
+{
+ struct timehands *th;
+ u_int gen;
+
+ ngetmicrotime++;
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *tvp = th->th_microtime;
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+/*
+ * Initialize a new timecounter.
+ * We should really try to rank the timecounters and intelligently determine
+ * if the new timecounter is better than the current one. This is subject
+ * to further study. For now always use the new timecounter.
+ */
+void
+tc_init(struct timecounter *tc)
+{
+
+ tc->tc_next = timecounters;
+ timecounters = tc;
+ printf("Timecounter \"%s\" frequency %lu Hz\n",
+ tc->tc_name, (u_long)tc->tc_frequency);
+ (void)tc->tc_get_timecount(tc);
+ (void)tc->tc_get_timecount(tc);
+ timecounter = tc;
+}
+
+/* Report the frequency of the current timecounter. */
+u_int32_t
+tc_getfrequency(void)
+{
+
+ return (timehands->th_counter->tc_frequency);
+}
+
+/*
+ * Step our concept of GMT. This is done by modifying our estimate of
+ * when we booted. XXX: needs futher work.
+ */
+void
+tc_setclock(struct timespec *ts)
+{
+ struct timespec ts2;
+
+ nanouptime(&ts2);
+ boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
+ /* XXX boottime should probably be a timespec. */
+ boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
+ if (boottime.tv_usec < 0) {
+ boottime.tv_usec += 1000000;
+ boottime.tv_sec--;
+ }
+ timeval2bintime(&boottime, &boottimebin);
+
+ /* XXX fiddle all the little crinkly bits around the fiords... */
+ tc_windup();
+}
+
+/*
+ * Initialize the next struct timehands in the ring and make
+ * it the active timehands. Along the way we might switch to a different
+ * timecounter and/or do seconds processing in NTP. Slightly magic.
+ */
+static void
+tc_windup(void)
+{
+ struct bintime bt;
+ struct timehands *th, *tho;
+ u_int64_t scale;
+ u_int delta, ncount, ogen;
+ int i;
+
+ /*
+ * Make the next timehands a copy of the current one, but do not
+ * overwrite the generation or next pointer. While we update
+ * the contents, the generation must be zero.
+ */
+ tho = timehands;
+ th = tho->th_next;
+ ogen = th->th_generation;
+ th->th_generation = 0;
+ bcopy(tho, th, offsetof(struct timehands, th_generation));
+
+ /*
+ * Capture a timecounter delta on the current timecounter and if
+ * changing timecounters, a counter value from the new timecounter.
+ * Update the offset fields accordingly.
+ */
+ delta = tc_delta(th);
+ if (th->th_counter != timecounter)
+ ncount = timecounter->tc_get_timecount(timecounter);
+ else
+ ncount = 0;
+ th->th_offset_count += delta;
+ th->th_offset_count &= th->th_counter->tc_counter_mask;
+ bintime_addx(&th->th_offset, th->th_scale * delta);
+
+ /*
+ * Hardware latching timecounters may not generate interrupts on
+ * PPS events, so instead we poll them. There is a finite risk that
+ * the hardware might capture a count which is later than the one we
+ * got above, and therefore possibly in the next NTP second which might
+ * have a different rate than the current NTP second. It doesn't
+ * matter in practice.
+ */
+ if (tho->th_counter->tc_poll_pps)
+ tho->th_counter->tc_poll_pps(tho->th_counter);
+
+ /*
+ * Deal with NTP second processing. The for loop normally only
+ * iterates once, but in extreme situations it might keep NTP sane
+ * if timeouts are not run for several seconds.
+ */
+ for (i = th->th_offset.sec - tho->th_offset.sec; i > 0; i--)
+ ntp_update_second(&th->th_adjustment, &th->th_offset.sec);
+
+ /* Now is a good time to change timecounters. */
+ if (th->th_counter != timecounter) {
+ th->th_counter = timecounter;
+ th->th_offset_count = ncount;
+ }
+
+ /*-
+ * Recalculate the scaling factor. We want the number of 1/2^64
+ * fractions of a second per period of the hardware counter, taking
+ * into account the th_adjustment factor which the NTP PLL/adjtime(2)
+ * processing provides us with.
+ *
+ * The th_adjustment is nanoseconds per second with 32 bit binary
+ * fraction and want 64 bit binary fraction of second:
+ *
+ * x = a * 2^32 / 10^9 = a * 4.294967296
+ *
+ * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
+ * we can only multiply by about 850 without overflowing, but that
+ * leaves suitably precise fractions for multiply before divide.
+ *
+ * Divide before multiply with a fraction of 2199/512 results in a
+ * systematic undercompensation of 10PPM of th_adjustment. On a
+ * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
+ *
+ * We happily sacrifice the lowest of the 64 bits of our result
+ * to the goddess of code clarity.
+ *
+ */
+ scale = (u_int64_t)1 << 63;
+ scale += (th->th_adjustment / 1024) * 2199;
+ scale /= th->th_counter->tc_frequency;
+ th->th_scale = scale * 2;
+
+ /* Update the GMT timestamps used for the get*() functions. */
+ bt = th->th_offset;
+ bintime_add(&bt, &boottimebin);
+ bintime2timeval(&bt, &th->th_microtime);
+ bintime2timespec(&bt, &th->th_nanotime);
+
+ /*
+ * Now that the struct timehands is again consistent, set the new
+ * generation number, making sure to not make it zero.
+ */
+ if (++ogen == 0)
+ ogen = 1;
+ th->th_generation = ogen;
+
+ /* Go live with the new struct timehands. */
+ time_second = th->th_microtime.tv_sec;
+ timehands = th;
+}
+
+/* Report or change the active timecounter hardware. */
+static int
+sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
+{
+ char newname[32];
+ struct timecounter *newtc, *tc;
+ int error;
+
+ tc = timecounter;
+ strncpy(newname, tc->tc_name, sizeof(newname));
+ newname[sizeof(newname) - 1] = '\0';
+ error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
+ if (error != 0 || req->newptr == NULL ||
+ strcmp(newname, tc->tc_name) == 0)
+ return (error);
+ for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
+ if (strcmp(newname, newtc->tc_name) != 0)
+ continue;
+
+ /* Warm up new timecounter. */
+ (void)newtc->tc_get_timecount(newtc);
+ (void)newtc->tc_get_timecount(newtc);
+
+ timecounter = newtc;
+ return (0);
+ }
+ return (EINVAL);
+}
+
+SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
+ 0, 0, sysctl_kern_timecounter_hardware, "A", "");
+
+/*
+ * RFC 2783 PPS-API implementation.
+ */
+
+int
+pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
+{
+ pps_params_t *app;
+ struct pps_fetch_args *fapi;
+#ifdef PPS_SYNC
+ struct pps_kcbind_args *kapi;
+#endif
+
+ switch (cmd) {
+ case PPS_IOC_CREATE:
+ return (0);
+ case PPS_IOC_DESTROY:
+ return (0);
+ case PPS_IOC_SETPARAMS:
+ app = (pps_params_t *)data;
+ if (app->mode & ~pps->ppscap)
+ return (EINVAL);
+ pps->ppsparam = *app;
+ return (0);
+ case PPS_IOC_GETPARAMS:
+ app = (pps_params_t *)data;
+ *app = pps->ppsparam;
+ app->api_version = PPS_API_VERS_1;
+ return (0);
+ case PPS_IOC_GETCAP:
+ *(int*)data = pps->ppscap;
+ return (0);
+ case PPS_IOC_FETCH:
+ fapi = (struct pps_fetch_args *)data;
+ if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
+ return (EINVAL);
+ if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
+ return (EOPNOTSUPP);
+ pps->ppsinfo.current_mode = pps->ppsparam.mode;
+ fapi->pps_info_buf = pps->ppsinfo;
+ return (0);
+ case PPS_IOC_KCBIND:
+#ifdef PPS_SYNC
+ kapi = (struct pps_kcbind_args *)data;
+ /* XXX Only root should be able to do this */
+ if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
+ return (EINVAL);
+ if (kapi->kernel_consumer != PPS_KC_HARDPPS)
+ return (EINVAL);
+ if (kapi->edge & ~pps->ppscap)
+ return (EINVAL);
+ pps->kcmode = kapi->edge;
+ return (0);
+#else
+ return (EOPNOTSUPP);
+#endif
+ default:
+ return (ENOTTY);
+ }
+}
+
+void
+pps_init(struct pps_state *pps)
+{
+ pps->ppscap |= PPS_TSFMT_TSPEC;
+ if (pps->ppscap & PPS_CAPTUREASSERT)
+ pps->ppscap |= PPS_OFFSETASSERT;
+ if (pps->ppscap & PPS_CAPTURECLEAR)
+ pps->ppscap |= PPS_OFFSETCLEAR;
+}
+
+void
+pps_capture(struct pps_state *pps)
+{
+ struct timehands *th;
+
+ th = timehands;
+ pps->capgen = th->th_generation;
+ pps->capth = th;
+ pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
+ if (pps->capgen != th->th_generation)
+ pps->capgen = 0;
+}
+
+void
+pps_event(struct pps_state *pps, int event)
+{
+ struct bintime bt;
+ struct timespec ts, *tsp, *osp;
+ u_int tcount, *pcount;
+ int foff, fhard;
+ pps_seq_t *pseq;
+
+ /* If the timecounter was wound up underneath us, bail out. */
+ if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
+ return;
+
+ /* Things would be easier with arrays. */
+ if (event == PPS_CAPTUREASSERT) {
+ tsp = &pps->ppsinfo.assert_timestamp;
+ osp = &pps->ppsparam.assert_offset;
+ foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
+ fhard = pps->kcmode & PPS_CAPTUREASSERT;
+ pcount = &pps->ppscount[0];
+ pseq = &pps->ppsinfo.assert_sequence;
+ } else {
+ tsp = &pps->ppsinfo.clear_timestamp;
+ osp = &pps->ppsparam.clear_offset;
+ foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
+ fhard = pps->kcmode & PPS_CAPTURECLEAR;
+ pcount = &pps->ppscount[1];
+ pseq = &pps->ppsinfo.clear_sequence;
+ }
+
+ /*
+ * If the timecounter changed, we cannot compare the count values, so
+ * we have to drop the rest of the PPS-stuff until the next event.
+ */
+ if (pps->ppstc != pps->capth->th_counter) {
+ pps->ppstc = pps->capth->th_counter;
+ *pcount = pps->capcount;
+ pps->ppscount[2] = pps->capcount;
+ return;
+ }
+
+ /* Return if nothing really happened. */
+ if (*pcount == pps->capcount)
+ return;
+
+ /* Convert the count to a timespec. */
+ tcount = pps->capcount - pps->capth->th_offset_count;
+ tcount &= pps->capth->th_counter->tc_counter_mask;
+ bt = pps->capth->th_offset;
+ bintime_addx(&bt, pps->capth->th_scale * tcount);
+ bintime_add(&bt, &boottimebin);
+ bintime2timespec(&bt, &ts);
+
+ /* If the timecounter was wound up underneath us, bail out. */
+ if (pps->capgen != pps->capth->th_generation)
+ return;
+
+ *pcount = pps->capcount;
+ (*pseq)++;
+ *tsp = ts;
+
+ if (foff) {
+ timespecadd(tsp, osp);
+ if (tsp->tv_nsec < 0) {
+ tsp->tv_nsec += 1000000000;
+ tsp->tv_sec -= 1;
+ }
+ }
+#ifdef PPS_SYNC
+ if (fhard) {
+ /*
+ * Feed the NTP PLL/FLL.
+ * The FLL wants to know how many nanoseconds elapsed since
+ * the previous event.
+ * I have never been able to convince myself that this code
+ * is actually correct: Using th_scale is bound to contain
+ * a phase correction component from userland, when running
+ * as FLL, so the number hardpps() gets is not meaningful IMO.
+ */
+ tcount = pps->capcount - pps->ppscount[2];
+ pps->ppscount[2] = pps->capcount;
+ tcount &= pps->capth->th_counter->tc_counter_mask;
+ bt.sec = 0;
+ bt.frac = 0;
+ bintime_addx(&bt, pps->capth->th_scale * tcount);
+ bintime2timespec(&bt, &ts);
+ hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
+ }
+#endif
+}
+
+/*
+ * Timecounters need to be updated every so often to prevent the hardware
+ * counter from overflowing. Updating also recalculates the cached values
+ * used by the get*() family of functions, so their precision depends on
+ * the update frequency.
+ */
+
+static int tc_tick;
+SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tick, 0, "");
+
+static void
+tc_ticktock(void *dummy)
+{
+
+ tc_windup();
+ timeout(tc_ticktock, NULL, tc_tick);
+}
+
+static void
+inittimecounter(void *dummy)
+{
+ u_int p;
+
+ /*
+ * Set the initial timeout to
+ * max(1, <approx. number of hardclock ticks in a millisecond>).
+ * People should probably not use the sysctl to set the timeout
+ * to smaller than its inital value, since that value is the
+ * smallest reasonable one. If they want better timestamps they
+ * should use the non-"get"* functions.
+ */
+ if (hz > 1000)
+ tc_tick = (hz + 500) / 1000;
+ else
+ tc_tick = 1;
+ p = (tc_tick * 1000000) / hz;
+ printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
+
+ /* warm up new timecounter (again) and get rolling. */
+ (void)timecounter->tc_get_timecount(timecounter);
+ (void)timecounter->tc_get_timecount(timecounter);
+ tc_ticktock(NULL);
+}
+
+SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_FIRST, inittimecounter, NULL)
OpenPOWER on IntegriCloud