summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_synch.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/kern/kern_synch.c')
-rw-r--r--sys/kern/kern_synch.c970
1 files changed, 970 insertions, 0 deletions
diff --git a/sys/kern/kern_synch.c b/sys/kern/kern_synch.c
new file mode 100644
index 0000000..6f9adad
--- /dev/null
+++ b/sys/kern/kern_synch.c
@@ -0,0 +1,970 @@
+/*-
+ * Copyright (c) 1982, 1986, 1990, 1991, 1993
+ * The Regents of the University of California. All rights reserved.
+ * (c) UNIX System Laboratories, Inc.
+ * All or some portions of this file are derived from material licensed
+ * to the University of California by American Telephone and Telegraph
+ * Co. or Unix System Laboratories, Inc. and are reproduced herein with
+ * the permission of UNIX System Laboratories, Inc.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
+ * $FreeBSD$
+ */
+
+#include "opt_ddb.h"
+#include "opt_ktrace.h"
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/condvar.h>
+#include <sys/kernel.h>
+#include <sys/ktr.h>
+#include <sys/lock.h>
+#include <sys/mutex.h>
+#include <sys/proc.h>
+#include <sys/resourcevar.h>
+#include <sys/signalvar.h>
+#include <sys/smp.h>
+#include <sys/sx.h>
+#include <sys/sysctl.h>
+#include <sys/sysproto.h>
+#include <sys/vmmeter.h>
+#ifdef DDB
+#include <ddb/ddb.h>
+#endif
+#ifdef KTRACE
+#include <sys/uio.h>
+#include <sys/ktrace.h>
+#endif
+
+#include <machine/cpu.h>
+
+static void sched_setup(void *dummy);
+SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
+
+int hogticks;
+int lbolt;
+int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
+
+static struct callout loadav_callout;
+static struct callout schedcpu_callout;
+static struct callout roundrobin_callout;
+
+struct loadavg averunnable =
+ { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
+/*
+ * Constants for averages over 1, 5, and 15 minutes
+ * when sampling at 5 second intervals.
+ */
+static fixpt_t cexp[3] = {
+ 0.9200444146293232 * FSCALE, /* exp(-1/12) */
+ 0.9834714538216174 * FSCALE, /* exp(-1/60) */
+ 0.9944598480048967 * FSCALE, /* exp(-1/180) */
+};
+
+static void endtsleep(void *);
+static void loadav(void *arg);
+static void roundrobin(void *arg);
+static void schedcpu(void *arg);
+
+static int
+sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
+{
+ int error, new_val;
+
+ new_val = sched_quantum * tick;
+ error = sysctl_handle_int(oidp, &new_val, 0, req);
+ if (error != 0 || req->newptr == NULL)
+ return (error);
+ if (new_val < tick)
+ return (EINVAL);
+ sched_quantum = new_val / tick;
+ hogticks = 2 * sched_quantum;
+ return (0);
+}
+
+SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
+ 0, sizeof sched_quantum, sysctl_kern_quantum, "I",
+ "Roundrobin scheduling quantum in microseconds");
+
+/*
+ * Arrange to reschedule if necessary, taking the priorities and
+ * schedulers into account.
+ */
+void
+maybe_resched(struct thread *td)
+{
+
+ mtx_assert(&sched_lock, MA_OWNED);
+ if (td->td_priority < curthread->td_priority)
+ curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
+}
+
+int
+roundrobin_interval(void)
+{
+ return (sched_quantum);
+}
+
+/*
+ * Force switch among equal priority processes every 100ms.
+ * We don't actually need to force a context switch of the current process.
+ * The act of firing the event triggers a context switch to softclock() and
+ * then switching back out again which is equivalent to a preemption, thus
+ * no further work is needed on the local CPU.
+ */
+/* ARGSUSED */
+static void
+roundrobin(arg)
+ void *arg;
+{
+
+#ifdef SMP
+ mtx_lock_spin(&sched_lock);
+ forward_roundrobin();
+ mtx_unlock_spin(&sched_lock);
+#endif
+
+ callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
+}
+
+/*
+ * Constants for digital decay and forget:
+ * 90% of (p_estcpu) usage in 5 * loadav time
+ * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
+ * Note that, as ps(1) mentions, this can let percentages
+ * total over 100% (I've seen 137.9% for 3 processes).
+ *
+ * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
+ *
+ * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
+ * That is, the system wants to compute a value of decay such
+ * that the following for loop:
+ * for (i = 0; i < (5 * loadavg); i++)
+ * p_estcpu *= decay;
+ * will compute
+ * p_estcpu *= 0.1;
+ * for all values of loadavg:
+ *
+ * Mathematically this loop can be expressed by saying:
+ * decay ** (5 * loadavg) ~= .1
+ *
+ * The system computes decay as:
+ * decay = (2 * loadavg) / (2 * loadavg + 1)
+ *
+ * We wish to prove that the system's computation of decay
+ * will always fulfill the equation:
+ * decay ** (5 * loadavg) ~= .1
+ *
+ * If we compute b as:
+ * b = 2 * loadavg
+ * then
+ * decay = b / (b + 1)
+ *
+ * We now need to prove two things:
+ * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
+ * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
+ *
+ * Facts:
+ * For x close to zero, exp(x) =~ 1 + x, since
+ * exp(x) = 0! + x**1/1! + x**2/2! + ... .
+ * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
+ * For x close to zero, ln(1+x) =~ x, since
+ * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
+ * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
+ * ln(.1) =~ -2.30
+ *
+ * Proof of (1):
+ * Solve (factor)**(power) =~ .1 given power (5*loadav):
+ * solving for factor,
+ * ln(factor) =~ (-2.30/5*loadav), or
+ * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
+ * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
+ *
+ * Proof of (2):
+ * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
+ * solving for power,
+ * power*ln(b/(b+1)) =~ -2.30, or
+ * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
+ *
+ * Actual power values for the implemented algorithm are as follows:
+ * loadav: 1 2 3 4
+ * power: 5.68 10.32 14.94 19.55
+ */
+
+/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
+#define loadfactor(loadav) (2 * (loadav))
+#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
+
+/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
+static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
+SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
+
+/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
+static int fscale __unused = FSCALE;
+SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
+
+/*
+ * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
+ * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
+ * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
+ *
+ * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
+ * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
+ *
+ * If you don't want to bother with the faster/more-accurate formula, you
+ * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
+ * (more general) method of calculating the %age of CPU used by a process.
+ */
+#define CCPU_SHIFT 11
+
+/*
+ * Recompute process priorities, every hz ticks.
+ * MP-safe, called without the Giant mutex.
+ */
+/* ARGSUSED */
+static void
+schedcpu(arg)
+ void *arg;
+{
+ register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
+ struct thread *td;
+ struct proc *p;
+ struct kse *ke;
+ struct ksegrp *kg;
+ int realstathz;
+ int awake;
+
+ realstathz = stathz ? stathz : hz;
+ sx_slock(&allproc_lock);
+ FOREACH_PROC_IN_SYSTEM(p) {
+ mtx_lock_spin(&sched_lock);
+ p->p_swtime++;
+ FOREACH_KSEGRP_IN_PROC(p, kg) {
+ awake = 0;
+ FOREACH_KSE_IN_GROUP(kg, ke) {
+ /*
+ * Increment time in/out of memory and sleep
+ * time (if sleeping). We ignore overflow;
+ * with 16-bit int's (remember them?)
+ * overflow takes 45 days.
+ */
+ /* XXXKSE */
+ /* if ((ke->ke_flags & KEF_ONRUNQ) == 0) */
+ if (p->p_stat == SSLEEP || p->p_stat == SSTOP) {
+ ke->ke_slptime++;
+ } else {
+ ke->ke_slptime = 0;
+ awake = 1;
+ }
+
+ /*
+ * pctcpu is only for ps?
+ * Do it per kse.. and add them up at the end?
+ * XXXKSE
+ */
+ ke->ke_pctcpu = (ke->ke_pctcpu * ccpu) >> FSHIFT;
+ /*
+ * If the kse has been idle the entire second,
+ * stop recalculating its priority until
+ * it wakes up.
+ */
+ if (ke->ke_slptime > 1) {
+ continue;
+ }
+
+#if (FSHIFT >= CCPU_SHIFT)
+ ke->ke_pctcpu += (realstathz == 100) ?
+ ((fixpt_t) ke->ke_cpticks) <<
+ (FSHIFT - CCPU_SHIFT) :
+ 100 * (((fixpt_t) ke->ke_cpticks) <<
+ (FSHIFT - CCPU_SHIFT)) / realstathz;
+#else
+ ke->ke_pctcpu += ((FSCALE - ccpu) *
+ (ke->ke_cpticks * FSCALE / realstathz)) >>
+ FSHIFT;
+#endif
+ ke->ke_cpticks = 0;
+ } /* end of kse loop */
+ if (awake == 0) {
+ kg->kg_slptime++;
+ } else {
+ kg->kg_slptime = 0;
+ }
+ kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
+ resetpriority(kg);
+ td = FIRST_THREAD_IN_PROC(p);
+ if (td->td_priority >= PUSER &&
+ (p->p_sflag & PS_INMEM)) {
+ int changedqueue =
+ ((td->td_priority / RQ_PPQ) !=
+ (kg->kg_user_pri / RQ_PPQ));
+
+ td->td_priority = kg->kg_user_pri;
+ FOREACH_KSE_IN_GROUP(kg, ke) {
+ if ((ke->ke_oncpu == NOCPU) &&
+ (p->p_stat == SRUN) && /* XXXKSE */
+ changedqueue) {
+ remrunqueue(ke->ke_thread);
+ setrunqueue(ke->ke_thread);
+ }
+ }
+ }
+ } /* end of ksegrp loop */
+ mtx_unlock_spin(&sched_lock);
+ } /* end of process loop */
+ sx_sunlock(&allproc_lock);
+ wakeup((caddr_t)&lbolt);
+ callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
+}
+
+/*
+ * Recalculate the priority of a process after it has slept for a while.
+ * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
+ * least six times the loadfactor will decay p_estcpu to zero.
+ */
+void
+updatepri(td)
+ register struct thread *td;
+{
+ register struct ksegrp *kg;
+ register unsigned int newcpu;
+ register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
+
+ if (td == NULL)
+ return;
+ kg = td->td_ksegrp;
+ newcpu = kg->kg_estcpu;
+ if (kg->kg_slptime > 5 * loadfac)
+ kg->kg_estcpu = 0;
+ else {
+ kg->kg_slptime--; /* the first time was done in schedcpu */
+ while (newcpu && --kg->kg_slptime)
+ newcpu = decay_cpu(loadfac, newcpu);
+ kg->kg_estcpu = newcpu;
+ }
+ resetpriority(td->td_ksegrp);
+}
+
+/*
+ * We're only looking at 7 bits of the address; everything is
+ * aligned to 4, lots of things are aligned to greater powers
+ * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
+ */
+#define TABLESIZE 128
+static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
+#define LOOKUP(x) (((intptr_t)(x) >> 8) & (TABLESIZE - 1))
+
+void
+sleepinit(void)
+{
+ int i;
+
+ sched_quantum = hz/10;
+ hogticks = 2 * sched_quantum;
+ for (i = 0; i < TABLESIZE; i++)
+ TAILQ_INIT(&slpque[i]);
+}
+
+/*
+ * General sleep call. Suspends the current process until a wakeup is
+ * performed on the specified identifier. The process will then be made
+ * runnable with the specified priority. Sleeps at most timo/hz seconds
+ * (0 means no timeout). If pri includes PCATCH flag, signals are checked
+ * before and after sleeping, else signals are not checked. Returns 0 if
+ * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
+ * signal needs to be delivered, ERESTART is returned if the current system
+ * call should be restarted if possible, and EINTR is returned if the system
+ * call should be interrupted by the signal (return EINTR).
+ *
+ * The mutex argument is exited before the caller is suspended, and
+ * entered before msleep returns. If priority includes the PDROP
+ * flag the mutex is not entered before returning.
+ */
+int
+msleep(ident, mtx, priority, wmesg, timo)
+ void *ident;
+ struct mtx *mtx;
+ int priority, timo;
+ const char *wmesg;
+{
+ struct thread *td = curthread;
+ struct proc *p = td->td_proc;
+ int sig, catch = priority & PCATCH;
+ int rval = 0;
+ WITNESS_SAVE_DECL(mtx);
+
+#ifdef KTRACE
+ if (KTRPOINT(td, KTR_CSW))
+ ktrcsw(1, 0);
+#endif
+ WITNESS_SLEEP(0, &mtx->mtx_object);
+ KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
+ ("sleeping without a mutex"));
+ mtx_lock_spin(&sched_lock);
+ if (cold || panicstr) {
+ /*
+ * After a panic, or during autoconfiguration,
+ * just give interrupts a chance, then just return;
+ * don't run any other procs or panic below,
+ * in case this is the idle process and already asleep.
+ */
+ if (mtx != NULL && priority & PDROP)
+ mtx_unlock(mtx);
+ mtx_unlock_spin(&sched_lock);
+ return (0);
+ }
+
+ DROP_GIANT();
+
+ if (mtx != NULL) {
+ mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
+ WITNESS_SAVE(&mtx->mtx_object, mtx);
+ mtx_unlock(mtx);
+ if (priority & PDROP)
+ mtx = NULL;
+ }
+
+ KASSERT(p != NULL, ("msleep1"));
+ KASSERT(ident != NULL && td->td_proc->p_stat == SRUN, ("msleep"));
+
+ td->td_wchan = ident;
+ td->td_wmesg = wmesg;
+ td->td_kse->ke_slptime = 0; /* XXXKSE */
+ td->td_ksegrp->kg_slptime = 0;
+ td->td_priority = priority & PRIMASK;
+ CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
+ td, p->p_pid, p->p_comm, wmesg, ident);
+ TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
+ if (timo)
+ callout_reset(&td->td_slpcallout, timo, endtsleep, td);
+ /*
+ * We put ourselves on the sleep queue and start our timeout
+ * before calling cursig, as we could stop there, and a wakeup
+ * or a SIGCONT (or both) could occur while we were stopped.
+ * A SIGCONT would cause us to be marked as SSLEEP
+ * without resuming us, thus we must be ready for sleep
+ * when cursig is called. If the wakeup happens while we're
+ * stopped, td->td_wchan will be 0 upon return from cursig.
+ */
+ if (catch) {
+ CTR3(KTR_PROC, "msleep caught: proc %p (pid %d, %s)", p,
+ p->p_pid, p->p_comm);
+ td->td_flags |= TDF_SINTR;
+ mtx_unlock_spin(&sched_lock);
+ PROC_LOCK(p);
+ sig = cursig(p);
+ mtx_lock_spin(&sched_lock);
+ PROC_UNLOCK(p);
+ if (sig != 0) {
+ if (td->td_wchan != NULL)
+ unsleep(td);
+ } else if (td->td_wchan == NULL)
+ catch = 0;
+ } else
+ sig = 0;
+ if (td->td_wchan != NULL) {
+ td->td_proc->p_stat = SSLEEP;
+ p->p_stats->p_ru.ru_nvcsw++;
+ mi_switch();
+ }
+ CTR3(KTR_PROC, "msleep resume: proc %p (pid %d, %s)", td, p->p_pid,
+ p->p_comm);
+ KASSERT(td->td_proc->p_stat == SRUN, ("running but not SRUN"));
+ td->td_flags &= ~TDF_SINTR;
+ if (td->td_flags & TDF_TIMEOUT) {
+ td->td_flags &= ~TDF_TIMEOUT;
+ if (sig == 0)
+ rval = EWOULDBLOCK;
+ } else if (td->td_flags & TDF_TIMOFAIL)
+ td->td_flags &= ~TDF_TIMOFAIL;
+ else if (timo && callout_stop(&td->td_slpcallout) == 0) {
+ /*
+ * This isn't supposed to be pretty. If we are here, then
+ * the endtsleep() callout is currently executing on another
+ * CPU and is either spinning on the sched_lock or will be
+ * soon. If we don't synchronize here, there is a chance
+ * that this process may msleep() again before the callout
+ * has a chance to run and the callout may end up waking up
+ * the wrong msleep(). Yuck.
+ */
+ td->td_flags |= TDF_TIMEOUT;
+ p->p_stats->p_ru.ru_nivcsw++;
+ mi_switch();
+ }
+ mtx_unlock_spin(&sched_lock);
+
+ if (rval == 0 && catch) {
+ PROC_LOCK(p);
+ /* XXX: shouldn't we always be calling cursig() */
+ if (sig != 0 || (sig = cursig(p))) {
+ if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
+ rval = EINTR;
+ else
+ rval = ERESTART;
+ }
+ PROC_UNLOCK(p);
+ }
+#ifdef KTRACE
+ if (KTRPOINT(td, KTR_CSW))
+ ktrcsw(0, 0);
+#endif
+ PICKUP_GIANT();
+ if (mtx != NULL) {
+ mtx_lock(mtx);
+ WITNESS_RESTORE(&mtx->mtx_object, mtx);
+ }
+ return (rval);
+}
+
+/*
+ * Implement timeout for msleep()
+ *
+ * If process hasn't been awakened (wchan non-zero),
+ * set timeout flag and undo the sleep. If proc
+ * is stopped, just unsleep so it will remain stopped.
+ * MP-safe, called without the Giant mutex.
+ */
+static void
+endtsleep(arg)
+ void *arg;
+{
+ register struct thread *td = arg;
+
+ CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)", td, td->td_proc->p_pid,
+ td->td_proc->p_comm);
+ mtx_lock_spin(&sched_lock);
+ /*
+ * This is the other half of the synchronization with msleep()
+ * described above. If the PS_TIMEOUT flag is set, we lost the
+ * race and just need to put the process back on the runqueue.
+ */
+ if ((td->td_flags & TDF_TIMEOUT) != 0) {
+ td->td_flags &= ~TDF_TIMEOUT;
+ setrunqueue(td);
+ } else if (td->td_wchan != NULL) {
+ if (td->td_proc->p_stat == SSLEEP) /* XXXKSE */
+ setrunnable(td);
+ else
+ unsleep(td);
+ td->td_flags |= TDF_TIMEOUT;
+ } else {
+ td->td_flags |= TDF_TIMOFAIL;
+ }
+ mtx_unlock_spin(&sched_lock);
+}
+
+/*
+ * Remove a process from its wait queue
+ */
+void
+unsleep(struct thread *td)
+{
+
+ mtx_lock_spin(&sched_lock);
+ if (td->td_wchan != NULL) {
+ TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
+ td->td_wchan = NULL;
+ }
+ mtx_unlock_spin(&sched_lock);
+}
+
+/*
+ * Make all processes sleeping on the specified identifier runnable.
+ */
+void
+wakeup(ident)
+ register void *ident;
+{
+ register struct slpquehead *qp;
+ register struct thread *td;
+ struct thread *ntd;
+ struct proc *p;
+
+ mtx_lock_spin(&sched_lock);
+ qp = &slpque[LOOKUP(ident)];
+restart:
+ for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
+ ntd = TAILQ_NEXT(td, td_slpq);
+ p = td->td_proc;
+ if (td->td_wchan == ident) {
+ TAILQ_REMOVE(qp, td, td_slpq);
+ td->td_wchan = NULL;
+ if (td->td_proc->p_stat == SSLEEP) {
+ /* OPTIMIZED EXPANSION OF setrunnable(p); */
+ CTR3(KTR_PROC, "wakeup: thread %p (pid %d, %s)",
+ td, p->p_pid, p->p_comm);
+ if (td->td_ksegrp->kg_slptime > 1)
+ updatepri(td);
+ td->td_ksegrp->kg_slptime = 0;
+ td->td_kse->ke_slptime = 0;
+ td->td_proc->p_stat = SRUN;
+ if (p->p_sflag & PS_INMEM) {
+ setrunqueue(td);
+ maybe_resched(td);
+ } else {
+ p->p_sflag |= PS_SWAPINREQ;
+ wakeup((caddr_t)&proc0);
+ }
+ /* END INLINE EXPANSION */
+ goto restart;
+ }
+ }
+ }
+ mtx_unlock_spin(&sched_lock);
+}
+
+/*
+ * Make a process sleeping on the specified identifier runnable.
+ * May wake more than one process if a target process is currently
+ * swapped out.
+ */
+void
+wakeup_one(ident)
+ register void *ident;
+{
+ register struct slpquehead *qp;
+ register struct thread *td;
+ register struct proc *p;
+ struct thread *ntd;
+
+ mtx_lock_spin(&sched_lock);
+ qp = &slpque[LOOKUP(ident)];
+restart:
+ for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
+ ntd = TAILQ_NEXT(td, td_slpq);
+ p = td->td_proc;
+ if (td->td_wchan == ident) {
+ TAILQ_REMOVE(qp, td, td_slpq);
+ td->td_wchan = NULL;
+ if (td->td_proc->p_stat == SSLEEP) {
+ /* OPTIMIZED EXPANSION OF setrunnable(p); */
+ CTR3(KTR_PROC, "wakeup1: proc %p (pid %d, %s)",
+ p, p->p_pid, p->p_comm);
+ if (td->td_ksegrp->kg_slptime > 1)
+ updatepri(td);
+ td->td_ksegrp->kg_slptime = 0;
+ td->td_kse->ke_slptime = 0;
+ td->td_proc->p_stat = SRUN;
+ if (p->p_sflag & PS_INMEM) {
+ setrunqueue(td);
+ maybe_resched(td);
+ break;
+ } else {
+ p->p_sflag |= PS_SWAPINREQ;
+ wakeup((caddr_t)&proc0);
+ }
+ /* END INLINE EXPANSION */
+ goto restart;
+ }
+ }
+ }
+ mtx_unlock_spin(&sched_lock);
+}
+
+/*
+ * The machine independent parts of mi_switch().
+ */
+void
+mi_switch()
+{
+ struct bintime new_switchtime;
+ struct thread *td = curthread; /* XXX */
+ register struct proc *p = td->td_proc; /* XXX */
+#if 0
+ register struct rlimit *rlim;
+#endif
+ u_int sched_nest;
+
+ mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
+#ifdef INVARIANTS
+ if (p->p_stat != SMTX && p->p_stat != SRUN)
+ mtx_assert(&Giant, MA_NOTOWNED);
+#endif
+
+ /*
+ * Compute the amount of time during which the current
+ * process was running, and add that to its total so far.
+ */
+ binuptime(&new_switchtime);
+ bintime_add(&p->p_runtime, &new_switchtime);
+ bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
+
+#ifdef DDB
+ /*
+ * Don't perform context switches from the debugger.
+ */
+ if (db_active) {
+ mtx_unlock_spin(&sched_lock);
+ db_error("Context switches not allowed in the debugger.");
+ }
+#endif
+
+#if 0
+ /*
+ * Check if the process exceeds its cpu resource allocation.
+ * If over max, kill it.
+ *
+ * XXX drop sched_lock, pickup Giant
+ */
+ if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
+ p->p_runtime > p->p_limit->p_cpulimit) {
+ rlim = &p->p_rlimit[RLIMIT_CPU];
+ if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
+ mtx_unlock_spin(&sched_lock);
+ PROC_LOCK(p);
+ killproc(p, "exceeded maximum CPU limit");
+ mtx_lock_spin(&sched_lock);
+ PROC_UNLOCK(p);
+ } else {
+ mtx_unlock_spin(&sched_lock);
+ PROC_LOCK(p);
+ psignal(p, SIGXCPU);
+ mtx_lock_spin(&sched_lock);
+ PROC_UNLOCK(p);
+ if (rlim->rlim_cur < rlim->rlim_max) {
+ /* XXX: we should make a private copy */
+ rlim->rlim_cur += 5;
+ }
+ }
+ }
+#endif
+
+ /*
+ * Pick a new current process and record its start time.
+ */
+ cnt.v_swtch++;
+ PCPU_SET(switchtime, new_switchtime);
+ CTR3(KTR_PROC, "mi_switch: old proc %p (pid %d, %s)", p, p->p_pid,
+ p->p_comm);
+ sched_nest = sched_lock.mtx_recurse;
+ td->td_lastcpu = td->td_kse->ke_oncpu;
+ td->td_kse->ke_oncpu = NOCPU;
+ td->td_kse->ke_flags &= ~KEF_NEEDRESCHED;
+ cpu_switch();
+ td->td_kse->ke_oncpu = PCPU_GET(cpuid);
+ sched_lock.mtx_recurse = sched_nest;
+ sched_lock.mtx_lock = (uintptr_t)td;
+ CTR3(KTR_PROC, "mi_switch: new proc %p (pid %d, %s)", p, p->p_pid,
+ p->p_comm);
+ if (PCPU_GET(switchtime.sec) == 0)
+ binuptime(PCPU_PTR(switchtime));
+ PCPU_SET(switchticks, ticks);
+}
+
+/*
+ * Change process state to be runnable,
+ * placing it on the run queue if it is in memory,
+ * and awakening the swapper if it isn't in memory.
+ */
+void
+setrunnable(struct thread *td)
+{
+ struct proc *p = td->td_proc;
+
+ mtx_lock_spin(&sched_lock);
+ switch (p->p_stat) {
+ case SZOMB: /* not a thread flag XXXKSE */
+ panic("setrunnable(1)");
+ }
+ switch (td->td_proc->p_stat) {
+ case 0:
+ case SRUN:
+ case SWAIT:
+ default:
+ panic("setrunnable(2)");
+ case SSTOP:
+ case SSLEEP: /* e.g. when sending signals */
+ if (td->td_flags & TDF_CVWAITQ)
+ cv_waitq_remove(td);
+ else
+ unsleep(td);
+ break;
+
+ case SIDL:
+ break;
+ }
+ td->td_proc->p_stat = SRUN;
+ if (td->td_ksegrp->kg_slptime > 1)
+ updatepri(td);
+ td->td_ksegrp->kg_slptime = 0;
+ td->td_kse->ke_slptime = 0;
+ if ((p->p_sflag & PS_INMEM) == 0) {
+ p->p_sflag |= PS_SWAPINREQ;
+ wakeup((caddr_t)&proc0);
+ } else {
+ setrunqueue(td);
+ maybe_resched(td);
+ }
+ mtx_unlock_spin(&sched_lock);
+}
+
+/*
+ * Compute the priority of a process when running in user mode.
+ * Arrange to reschedule if the resulting priority is better
+ * than that of the current process.
+ */
+void
+resetpriority(kg)
+ register struct ksegrp *kg;
+{
+ register unsigned int newpriority;
+ struct thread *td;
+
+ mtx_lock_spin(&sched_lock);
+ if (kg->kg_pri_class == PRI_TIMESHARE) {
+ newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
+ NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
+ newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
+ PRI_MAX_TIMESHARE);
+ kg->kg_user_pri = newpriority;
+ }
+ FOREACH_THREAD_IN_GROUP(kg, td) {
+ maybe_resched(td);
+ }
+ mtx_unlock_spin(&sched_lock);
+}
+
+/*
+ * Compute a tenex style load average of a quantity on
+ * 1, 5 and 15 minute intervals.
+ * XXXKSE Needs complete rewrite when correct info is available.
+ * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
+ */
+static void
+loadav(void *arg)
+{
+ int i, nrun;
+ struct loadavg *avg;
+ struct proc *p;
+ struct ksegrp *kg;
+
+ avg = &averunnable;
+ sx_slock(&allproc_lock);
+ nrun = 0;
+ FOREACH_PROC_IN_SYSTEM(p) {
+ FOREACH_KSEGRP_IN_PROC(p, kg) {
+ switch (p->p_stat) {
+ case SRUN:
+ if ((p->p_flag & P_NOLOAD) != 0)
+ goto nextproc;
+ /* FALLTHROUGH */
+ case SIDL:
+ nrun++;
+ }
+nextproc:
+ continue;
+ }
+ }
+ sx_sunlock(&allproc_lock);
+ for (i = 0; i < 3; i++)
+ avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
+ nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
+
+ /*
+ * Schedule the next update to occur after 5 seconds, but add a
+ * random variation to avoid synchronisation with processes that
+ * run at regular intervals.
+ */
+ callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
+ loadav, NULL);
+}
+
+/* ARGSUSED */
+static void
+sched_setup(dummy)
+ void *dummy;
+{
+
+ callout_init(&schedcpu_callout, 1);
+ callout_init(&roundrobin_callout, 0);
+ callout_init(&loadav_callout, 0);
+
+ /* Kick off timeout driven events by calling first time. */
+ roundrobin(NULL);
+ schedcpu(NULL);
+ loadav(NULL);
+}
+
+/*
+ * We adjust the priority of the current process. The priority of
+ * a process gets worse as it accumulates CPU time. The cpu usage
+ * estimator (p_estcpu) is increased here. resetpriority() will
+ * compute a different priority each time p_estcpu increases by
+ * INVERSE_ESTCPU_WEIGHT
+ * (until MAXPRI is reached). The cpu usage estimator ramps up
+ * quite quickly when the process is running (linearly), and decays
+ * away exponentially, at a rate which is proportionally slower when
+ * the system is busy. The basic principle is that the system will
+ * 90% forget that the process used a lot of CPU time in 5 * loadav
+ * seconds. This causes the system to favor processes which haven't
+ * run much recently, and to round-robin among other processes.
+ */
+void
+schedclock(td)
+ struct thread *td;
+{
+ struct kse *ke = td->td_kse;
+ struct ksegrp *kg = td->td_ksegrp;
+
+ if (td) {
+ ke->ke_cpticks++;
+ kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
+ if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
+ resetpriority(td->td_ksegrp);
+ if (td->td_priority >= PUSER)
+ td->td_priority = kg->kg_user_pri;
+ }
+ } else {
+ panic("schedclock");
+ }
+}
+
+/*
+ * General purpose yield system call
+ */
+int
+yield(struct thread *td, struct yield_args *uap)
+{
+ struct ksegrp *kg = td->td_ksegrp;
+
+ mtx_assert(&Giant, MA_NOTOWNED);
+ mtx_lock_spin(&sched_lock);
+ td->td_priority = PRI_MAX_TIMESHARE;
+ setrunqueue(td);
+ kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
+ mi_switch();
+ mtx_unlock_spin(&sched_lock);
+ td->td_retval[0] = 0;
+
+ return (0);
+}
+
OpenPOWER on IntegriCloud