diff options
Diffstat (limited to 'sys/kern/kern_synch.c')
-rw-r--r-- | sys/kern/kern_synch.c | 666 |
1 files changed, 666 insertions, 0 deletions
diff --git a/sys/kern/kern_synch.c b/sys/kern/kern_synch.c new file mode 100644 index 0000000..1c2a578 --- /dev/null +++ b/sys/kern/kern_synch.c @@ -0,0 +1,666 @@ +/*- + * Copyright (c) 1982, 1986, 1990, 1991, 1993 + * The Regents of the University of California. All rights reserved. + * (c) UNIX System Laboratories, Inc. + * All or some portions of this file are derived from material licensed + * to the University of California by American Telephone and Telegraph + * Co. or Unix System Laboratories, Inc. and are reproduced herein with + * the permission of UNIX System Laboratories, Inc. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Berkeley and its contributors. + * 4. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94 + */ + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/proc.h> +#include <sys/kernel.h> +#include <sys/buf.h> +#include <sys/signalvar.h> +#include <sys/resourcevar.h> +#include <sys/vmmeter.h> +#ifdef KTRACE +#include <sys/ktrace.h> +#endif + +#include <machine/cpu.h> + +u_char curpriority; /* usrpri of curproc */ +int lbolt; /* once a second sleep address */ + +/* + * Force switch among equal priority processes every 100ms. + */ +/* ARGSUSED */ +void +roundrobin(arg) + void *arg; +{ + + need_resched(); + timeout(roundrobin, NULL, hz / 10); +} + +/* + * Constants for digital decay and forget: + * 90% of (p_estcpu) usage in 5 * loadav time + * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) + * Note that, as ps(1) mentions, this can let percentages + * total over 100% (I've seen 137.9% for 3 processes). + * + * Note that hardclock updates p_estcpu and p_cpticks independently. + * + * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. + * That is, the system wants to compute a value of decay such + * that the following for loop: + * for (i = 0; i < (5 * loadavg); i++) + * p_estcpu *= decay; + * will compute + * p_estcpu *= 0.1; + * for all values of loadavg: + * + * Mathematically this loop can be expressed by saying: + * decay ** (5 * loadavg) ~= .1 + * + * The system computes decay as: + * decay = (2 * loadavg) / (2 * loadavg + 1) + * + * We wish to prove that the system's computation of decay + * will always fulfill the equation: + * decay ** (5 * loadavg) ~= .1 + * + * If we compute b as: + * b = 2 * loadavg + * then + * decay = b / (b + 1) + * + * We now need to prove two things: + * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) + * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) + * + * Facts: + * For x close to zero, exp(x) =~ 1 + x, since + * exp(x) = 0! + x**1/1! + x**2/2! + ... . + * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. + * For x close to zero, ln(1+x) =~ x, since + * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 + * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). + * ln(.1) =~ -2.30 + * + * Proof of (1): + * Solve (factor)**(power) =~ .1 given power (5*loadav): + * solving for factor, + * ln(factor) =~ (-2.30/5*loadav), or + * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = + * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED + * + * Proof of (2): + * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): + * solving for power, + * power*ln(b/(b+1)) =~ -2.30, or + * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED + * + * Actual power values for the implemented algorithm are as follows: + * loadav: 1 2 3 4 + * power: 5.68 10.32 14.94 19.55 + */ + +/* calculations for digital decay to forget 90% of usage in 5*loadav sec */ +#define loadfactor(loadav) (2 * (loadav)) +#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) + +/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ +fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ + +/* + * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the + * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below + * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). + * + * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: + * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). + * + * If you dont want to bother with the faster/more-accurate formula, you + * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate + * (more general) method of calculating the %age of CPU used by a process. + */ +#define CCPU_SHIFT 11 + +/* + * Recompute process priorities, every hz ticks. + */ +/* ARGSUSED */ +void +schedcpu(arg) + void *arg; +{ + register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); + register struct proc *p; + register int s; + register unsigned int newcpu; + + wakeup((caddr_t)&lbolt); + for (p = (struct proc *)allproc; p != NULL; p = p->p_next) { + /* + * Increment time in/out of memory and sleep time + * (if sleeping). We ignore overflow; with 16-bit int's + * (remember them?) overflow takes 45 days. + */ + p->p_swtime++; + if (p->p_stat == SSLEEP || p->p_stat == SSTOP) + p->p_slptime++; + p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; + /* + * If the process has slept the entire second, + * stop recalculating its priority until it wakes up. + */ + if (p->p_slptime > 1) + continue; + s = splstatclock(); /* prevent state changes */ + /* + * p_pctcpu is only for ps. + */ +#if (FSHIFT >= CCPU_SHIFT) + p->p_pctcpu += (hz == 100)? + ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): + 100 * (((fixpt_t) p->p_cpticks) + << (FSHIFT - CCPU_SHIFT)) / hz; +#else + p->p_pctcpu += ((FSCALE - ccpu) * + (p->p_cpticks * FSCALE / hz)) >> FSHIFT; +#endif + p->p_cpticks = 0; + newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice; + p->p_estcpu = min(newcpu, UCHAR_MAX); + resetpriority(p); + if (p->p_priority >= PUSER) { +#define PPQ (128 / NQS) /* priorities per queue */ + if ((p != curproc) && + p->p_stat == SRUN && + (p->p_flag & P_INMEM) && + (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) { + remrq(p); + p->p_priority = p->p_usrpri; + setrunqueue(p); + } else + p->p_priority = p->p_usrpri; + } + splx(s); + } + vmmeter(); + if (bclnlist != NULL) + wakeup((caddr_t)pageproc); + timeout(schedcpu, (void *)0, hz); +} + +/* + * Recalculate the priority of a process after it has slept for a while. + * For all load averages >= 1 and max p_estcpu of 255, sleeping for at + * least six times the loadfactor will decay p_estcpu to zero. + */ +void +updatepri(p) + register struct proc *p; +{ + register unsigned int newcpu = p->p_estcpu; + register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); + + if (p->p_slptime > 5 * loadfac) + p->p_estcpu = 0; + else { + p->p_slptime--; /* the first time was done in schedcpu */ + while (newcpu && --p->p_slptime) + newcpu = (int) decay_cpu(loadfac, newcpu); + p->p_estcpu = min(newcpu, UCHAR_MAX); + } + resetpriority(p); +} + +/* + * We're only looking at 7 bits of the address; everything is + * aligned to 4, lots of things are aligned to greater powers + * of 2. Shift right by 8, i.e. drop the bottom 256 worth. + */ +#define TABLESIZE 128 +#define LOOKUP(x) (((int)(x) >> 8) & (TABLESIZE - 1)) +struct slpque { + struct proc *sq_head; + struct proc **sq_tailp; +} slpque[TABLESIZE]; + +/* + * During autoconfiguration or after a panic, a sleep will simply + * lower the priority briefly to allow interrupts, then return. + * The priority to be used (safepri) is machine-dependent, thus this + * value is initialized and maintained in the machine-dependent layers. + * This priority will typically be 0, or the lowest priority + * that is safe for use on the interrupt stack; it can be made + * higher to block network software interrupts after panics. + */ +int safepri; + +/* + * General sleep call. Suspends the current process until a wakeup is + * performed on the specified identifier. The process will then be made + * runnable with the specified priority. Sleeps at most timo/hz seconds + * (0 means no timeout). If pri includes PCATCH flag, signals are checked + * before and after sleeping, else signals are not checked. Returns 0 if + * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a + * signal needs to be delivered, ERESTART is returned if the current system + * call should be restarted if possible, and EINTR is returned if the system + * call should be interrupted by the signal (return EINTR). + */ +int +tsleep(ident, priority, wmesg, timo) + void *ident; + int priority, timo; + char *wmesg; +{ + register struct proc *p = curproc; + register struct slpque *qp; + register s; + int sig, catch = priority & PCATCH; + extern int cold; + void endtsleep __P((void *)); + +#ifdef KTRACE + if (KTRPOINT(p, KTR_CSW)) + ktrcsw(p->p_tracep, 1, 0); +#endif + s = splhigh(); + if (cold || panicstr) { + /* + * After a panic, or during autoconfiguration, + * just give interrupts a chance, then just return; + * don't run any other procs or panic below, + * in case this is the idle process and already asleep. + */ + splx(safepri); + splx(s); + return (0); + } +#ifdef DIAGNOSTIC + if (ident == NULL || p->p_stat != SRUN || p->p_back) + panic("tsleep"); +#endif + p->p_wchan = ident; + p->p_wmesg = wmesg; + p->p_slptime = 0; + p->p_priority = priority & PRIMASK; + qp = &slpque[LOOKUP(ident)]; + if (qp->sq_head == 0) + qp->sq_head = p; + else + *qp->sq_tailp = p; + *(qp->sq_tailp = &p->p_forw) = 0; + if (timo) + timeout(endtsleep, (void *)p, timo); + /* + * We put ourselves on the sleep queue and start our timeout + * before calling CURSIG, as we could stop there, and a wakeup + * or a SIGCONT (or both) could occur while we were stopped. + * A SIGCONT would cause us to be marked as SSLEEP + * without resuming us, thus we must be ready for sleep + * when CURSIG is called. If the wakeup happens while we're + * stopped, p->p_wchan will be 0 upon return from CURSIG. + */ + if (catch) { + p->p_flag |= P_SINTR; + if (sig = CURSIG(p)) { + if (p->p_wchan) + unsleep(p); + p->p_stat = SRUN; + goto resume; + } + if (p->p_wchan == 0) { + catch = 0; + goto resume; + } + } else + sig = 0; + p->p_stat = SSLEEP; + p->p_stats->p_ru.ru_nvcsw++; + mi_switch(); +resume: + curpriority = p->p_usrpri; + splx(s); + p->p_flag &= ~P_SINTR; + if (p->p_flag & P_TIMEOUT) { + p->p_flag &= ~P_TIMEOUT; + if (sig == 0) { +#ifdef KTRACE + if (KTRPOINT(p, KTR_CSW)) + ktrcsw(p->p_tracep, 0, 0); +#endif + return (EWOULDBLOCK); + } + } else if (timo) + untimeout(endtsleep, (void *)p); + if (catch && (sig != 0 || (sig = CURSIG(p)))) { +#ifdef KTRACE + if (KTRPOINT(p, KTR_CSW)) + ktrcsw(p->p_tracep, 0, 0); +#endif + if (p->p_sigacts->ps_sigintr & sigmask(sig)) + return (EINTR); + return (ERESTART); + } +#ifdef KTRACE + if (KTRPOINT(p, KTR_CSW)) + ktrcsw(p->p_tracep, 0, 0); +#endif + return (0); +} + +/* + * Implement timeout for tsleep. + * If process hasn't been awakened (wchan non-zero), + * set timeout flag and undo the sleep. If proc + * is stopped, just unsleep so it will remain stopped. + */ +void +endtsleep(arg) + void *arg; +{ + register struct proc *p; + int s; + + p = (struct proc *)arg; + s = splhigh(); + if (p->p_wchan) { + if (p->p_stat == SSLEEP) + setrunnable(p); + else + unsleep(p); + p->p_flag |= P_TIMEOUT; + } + splx(s); +} + +/* + * Short-term, non-interruptable sleep. + */ +void +sleep(ident, priority) + void *ident; + int priority; +{ + register struct proc *p = curproc; + register struct slpque *qp; + register s; + extern int cold; + +#ifdef DIAGNOSTIC + if (priority > PZERO) { + printf("sleep called with priority %d > PZERO, wchan: %x\n", + priority, ident); + panic("old sleep"); + } +#endif + s = splhigh(); + if (cold || panicstr) { + /* + * After a panic, or during autoconfiguration, + * just give interrupts a chance, then just return; + * don't run any other procs or panic below, + * in case this is the idle process and already asleep. + */ + splx(safepri); + splx(s); + return; + } +#ifdef DIAGNOSTIC + if (ident == NULL || p->p_stat != SRUN || p->p_back) + panic("sleep"); +#endif + p->p_wchan = ident; + p->p_wmesg = NULL; + p->p_slptime = 0; + p->p_priority = priority; + qp = &slpque[LOOKUP(ident)]; + if (qp->sq_head == 0) + qp->sq_head = p; + else + *qp->sq_tailp = p; + *(qp->sq_tailp = &p->p_forw) = 0; + p->p_stat = SSLEEP; + p->p_stats->p_ru.ru_nvcsw++; +#ifdef KTRACE + if (KTRPOINT(p, KTR_CSW)) + ktrcsw(p->p_tracep, 1, 0); +#endif + mi_switch(); +#ifdef KTRACE + if (KTRPOINT(p, KTR_CSW)) + ktrcsw(p->p_tracep, 0, 0); +#endif + curpriority = p->p_usrpri; + splx(s); +} + +/* + * Remove a process from its wait queue + */ +void +unsleep(p) + register struct proc *p; +{ + register struct slpque *qp; + register struct proc **hp; + int s; + + s = splhigh(); + if (p->p_wchan) { + hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head; + while (*hp != p) + hp = &(*hp)->p_forw; + *hp = p->p_forw; + if (qp->sq_tailp == &p->p_forw) + qp->sq_tailp = hp; + p->p_wchan = 0; + } + splx(s); +} + +/* + * Make all processes sleeping on the specified identifier runnable. + */ +void +wakeup(ident) + register void *ident; +{ + register struct slpque *qp; + register struct proc *p, **q; + int s; + + s = splhigh(); + qp = &slpque[LOOKUP(ident)]; +restart: + for (q = &qp->sq_head; p = *q; ) { +#ifdef DIAGNOSTIC + if (p->p_back || p->p_stat != SSLEEP && p->p_stat != SSTOP) + panic("wakeup"); +#endif + if (p->p_wchan == ident) { + p->p_wchan = 0; + *q = p->p_forw; + if (qp->sq_tailp == &p->p_forw) + qp->sq_tailp = q; + if (p->p_stat == SSLEEP) { + /* OPTIMIZED EXPANSION OF setrunnable(p); */ + if (p->p_slptime > 1) + updatepri(p); + p->p_slptime = 0; + p->p_stat = SRUN; + if (p->p_flag & P_INMEM) + setrunqueue(p); + /* + * Since curpriority is a user priority, + * p->p_priority is always better than + * curpriority. + */ + if ((p->p_flag & P_INMEM) == 0) + wakeup((caddr_t)&proc0); + else + need_resched(); + /* END INLINE EXPANSION */ + goto restart; + } + } else + q = &p->p_forw; + } + splx(s); +} + +/* + * The machine independent parts of mi_switch(). + * Must be called at splstatclock() or higher. + */ +void +mi_switch() +{ + register struct proc *p = curproc; /* XXX */ + register struct rlimit *rlim; + register long s, u; + struct timeval tv; + + /* + * Compute the amount of time during which the current + * process was running, and add that to its total so far. + */ + microtime(&tv); + u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec); + s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec); + if (u < 0) { + u += 1000000; + s--; + } else if (u >= 1000000) { + u -= 1000000; + s++; + } + p->p_rtime.tv_usec = u; + p->p_rtime.tv_sec = s; + + /* + * Check if the process exceeds its cpu resource allocation. + * If over max, kill it. In any case, if it has run for more + * than 10 minutes, reduce priority to give others a chance. + */ + rlim = &p->p_rlimit[RLIMIT_CPU]; + if (s >= rlim->rlim_cur) { + if (s >= rlim->rlim_max) + psignal(p, SIGKILL); + else { + psignal(p, SIGXCPU); + if (rlim->rlim_cur < rlim->rlim_max) + rlim->rlim_cur += 5; + } + } + if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) { + p->p_nice = NZERO + 4; + resetpriority(p); + } + + /* + * Pick a new current process and record its start time. + */ + cnt.v_swtch++; + cpu_switch(p); + microtime(&runtime); +} + +/* + * Initialize the (doubly-linked) run queues + * to be empty. + */ +rqinit() +{ + register int i; + + for (i = 0; i < NQS; i++) + qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i]; +} + +/* + * Change process state to be runnable, + * placing it on the run queue if it is in memory, + * and awakening the swapper if it isn't in memory. + */ +void +setrunnable(p) + register struct proc *p; +{ + register int s; + + s = splhigh(); + switch (p->p_stat) { + case 0: + case SRUN: + case SZOMB: + default: + panic("setrunnable"); + case SSTOP: + case SSLEEP: + unsleep(p); /* e.g. when sending signals */ + break; + + case SIDL: + break; + } + p->p_stat = SRUN; + if (p->p_flag & P_INMEM) + setrunqueue(p); + splx(s); + if (p->p_slptime > 1) + updatepri(p); + p->p_slptime = 0; + if ((p->p_flag & P_INMEM) == 0) + wakeup((caddr_t)&proc0); + else if (p->p_priority < curpriority) + need_resched(); +} + +/* + * Compute the priority of a process when running in user mode. + * Arrange to reschedule if the resulting priority is better + * than that of the current process. + */ +void +resetpriority(p) + register struct proc *p; +{ + register unsigned int newpriority; + + newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice; + newpriority = min(newpriority, MAXPRI); + p->p_usrpri = newpriority; + if (newpriority < curpriority) + need_resched(); +} |