summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_synch.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/kern/kern_synch.c')
-rw-r--r--sys/kern/kern_synch.c962
1 files changed, 962 insertions, 0 deletions
diff --git a/sys/kern/kern_synch.c b/sys/kern/kern_synch.c
new file mode 100644
index 0000000..0a8e176
--- /dev/null
+++ b/sys/kern/kern_synch.c
@@ -0,0 +1,962 @@
+/*-
+ * Copyright (c) 1982, 1986, 1990, 1991, 1993
+ * The Regents of the University of California. All rights reserved.
+ * (c) UNIX System Laboratories, Inc.
+ * All or some portions of this file are derived from material licensed
+ * to the University of California by American Telephone and Telegraph
+ * Co. or Unix System Laboratories, Inc. and are reproduced herein with
+ * the permission of UNIX System Laboratories, Inc.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
+ * $FreeBSD$
+ */
+
+#include "opt_ktrace.h"
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/proc.h>
+#include <sys/kernel.h>
+#include <sys/signalvar.h>
+#include <sys/resourcevar.h>
+#include <sys/vmmeter.h>
+#include <sys/sysctl.h>
+#include <vm/vm.h>
+#include <vm/vm_extern.h>
+#ifdef KTRACE
+#include <sys/uio.h>
+#include <sys/ktrace.h>
+#endif
+
+#include <machine/cpu.h>
+#include <machine/ipl.h>
+#include <machine/smp.h>
+
+static void sched_setup __P((void *dummy));
+SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
+
+u_char curpriority;
+int hogticks;
+int lbolt;
+int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
+
+static int curpriority_cmp __P((struct proc *p));
+static void endtsleep __P((void *));
+static void maybe_resched __P((struct proc *chk));
+static void roundrobin __P((void *arg));
+static void schedcpu __P((void *arg));
+static void updatepri __P((struct proc *p));
+
+static int
+sysctl_kern_quantum SYSCTL_HANDLER_ARGS
+{
+ int error, new_val;
+
+ new_val = sched_quantum * tick;
+ error = sysctl_handle_int(oidp, &new_val, 0, req);
+ if (error != 0 || req->newptr == NULL)
+ return (error);
+ if (new_val < tick)
+ return (EINVAL);
+ sched_quantum = new_val / tick;
+ hogticks = 2 * sched_quantum;
+ return (0);
+}
+
+SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
+ 0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
+
+/*-
+ * Compare priorities. Return:
+ * <0: priority of p < current priority
+ * 0: priority of p == current priority
+ * >0: priority of p > current priority
+ * The priorities are the normal priorities or the normal realtime priorities
+ * if p is on the same scheduler as curproc. Otherwise the process on the
+ * more realtimeish scheduler has lowest priority. As usual, a higher
+ * priority really means a lower priority.
+ */
+static int
+curpriority_cmp(p)
+ struct proc *p;
+{
+ int c_class, p_class;
+
+ c_class = RTP_PRIO_BASE(curproc->p_rtprio.type);
+ p_class = RTP_PRIO_BASE(p->p_rtprio.type);
+ if (p_class != c_class)
+ return (p_class - c_class);
+ if (p_class == RTP_PRIO_NORMAL)
+ return (((int)p->p_priority - (int)curpriority) / PPQ);
+ return ((int)p->p_rtprio.prio - (int)curproc->p_rtprio.prio);
+}
+
+/*
+ * Arrange to reschedule if necessary, taking the priorities and
+ * schedulers into account.
+ */
+static void
+maybe_resched(chk)
+ struct proc *chk;
+{
+ struct proc *p = curproc; /* XXX */
+
+ /*
+ * XXX idle scheduler still broken because proccess stays on idle
+ * scheduler during waits (such as when getting FS locks). If a
+ * standard process becomes runaway cpu-bound, the system can lockup
+ * due to idle-scheduler processes in wakeup never getting any cpu.
+ */
+ if (p == NULL) {
+#if 0
+ need_resched();
+#endif
+ } else if (chk == p) {
+ /* We may need to yield if our priority has been raised. */
+ if (curpriority_cmp(chk) > 0)
+ need_resched();
+ } else if (curpriority_cmp(chk) < 0)
+ need_resched();
+}
+
+int
+roundrobin_interval(void)
+{
+ return (sched_quantum);
+}
+
+/*
+ * Force switch among equal priority processes every 100ms.
+ */
+/* ARGSUSED */
+static void
+roundrobin(arg)
+ void *arg;
+{
+#ifndef SMP
+ struct proc *p = curproc; /* XXX */
+#endif
+
+#ifdef SMP
+ need_resched();
+ forward_roundrobin();
+#else
+ if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type))
+ need_resched();
+#endif
+
+ timeout(roundrobin, NULL, sched_quantum);
+}
+
+/*
+ * Constants for digital decay and forget:
+ * 90% of (p_estcpu) usage in 5 * loadav time
+ * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
+ * Note that, as ps(1) mentions, this can let percentages
+ * total over 100% (I've seen 137.9% for 3 processes).
+ *
+ * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
+ *
+ * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
+ * That is, the system wants to compute a value of decay such
+ * that the following for loop:
+ * for (i = 0; i < (5 * loadavg); i++)
+ * p_estcpu *= decay;
+ * will compute
+ * p_estcpu *= 0.1;
+ * for all values of loadavg:
+ *
+ * Mathematically this loop can be expressed by saying:
+ * decay ** (5 * loadavg) ~= .1
+ *
+ * The system computes decay as:
+ * decay = (2 * loadavg) / (2 * loadavg + 1)
+ *
+ * We wish to prove that the system's computation of decay
+ * will always fulfill the equation:
+ * decay ** (5 * loadavg) ~= .1
+ *
+ * If we compute b as:
+ * b = 2 * loadavg
+ * then
+ * decay = b / (b + 1)
+ *
+ * We now need to prove two things:
+ * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
+ * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
+ *
+ * Facts:
+ * For x close to zero, exp(x) =~ 1 + x, since
+ * exp(x) = 0! + x**1/1! + x**2/2! + ... .
+ * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
+ * For x close to zero, ln(1+x) =~ x, since
+ * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
+ * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
+ * ln(.1) =~ -2.30
+ *
+ * Proof of (1):
+ * Solve (factor)**(power) =~ .1 given power (5*loadav):
+ * solving for factor,
+ * ln(factor) =~ (-2.30/5*loadav), or
+ * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
+ * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
+ *
+ * Proof of (2):
+ * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
+ * solving for power,
+ * power*ln(b/(b+1)) =~ -2.30, or
+ * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
+ *
+ * Actual power values for the implemented algorithm are as follows:
+ * loadav: 1 2 3 4
+ * power: 5.68 10.32 14.94 19.55
+ */
+
+/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
+#define loadfactor(loadav) (2 * (loadav))
+#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
+
+/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
+static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
+SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
+
+/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
+static int fscale __unused = FSCALE;
+SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
+
+/*
+ * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
+ * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
+ * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
+ *
+ * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
+ * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
+ *
+ * If you don't want to bother with the faster/more-accurate formula, you
+ * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
+ * (more general) method of calculating the %age of CPU used by a process.
+ */
+#define CCPU_SHIFT 11
+
+/*
+ * Recompute process priorities, every hz ticks.
+ */
+/* ARGSUSED */
+static void
+schedcpu(arg)
+ void *arg;
+{
+ register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
+ register struct proc *p;
+ register int realstathz, s;
+
+ realstathz = stathz ? stathz : hz;
+ LIST_FOREACH(p, &allproc, p_list) {
+ /*
+ * Increment time in/out of memory and sleep time
+ * (if sleeping). We ignore overflow; with 16-bit int's
+ * (remember them?) overflow takes 45 days.
+ */
+ p->p_swtime++;
+ if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
+ p->p_slptime++;
+ p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
+ /*
+ * If the process has slept the entire second,
+ * stop recalculating its priority until it wakes up.
+ */
+ if (p->p_slptime > 1)
+ continue;
+ s = splhigh(); /* prevent state changes and protect run queue */
+ /*
+ * p_pctcpu is only for ps.
+ */
+#if (FSHIFT >= CCPU_SHIFT)
+ p->p_pctcpu += (realstathz == 100)?
+ ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
+ 100 * (((fixpt_t) p->p_cpticks)
+ << (FSHIFT - CCPU_SHIFT)) / realstathz;
+#else
+ p->p_pctcpu += ((FSCALE - ccpu) *
+ (p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
+#endif
+ p->p_cpticks = 0;
+ p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
+ resetpriority(p);
+ if (p->p_priority >= PUSER) {
+ if ((p != curproc) &&
+#ifdef SMP
+ p->p_oncpu == 0xff && /* idle */
+#endif
+ p->p_stat == SRUN &&
+ (p->p_flag & P_INMEM) &&
+ (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
+ remrunqueue(p);
+ p->p_priority = p->p_usrpri;
+ setrunqueue(p);
+ } else
+ p->p_priority = p->p_usrpri;
+ }
+ splx(s);
+ }
+ vmmeter();
+ wakeup((caddr_t)&lbolt);
+ timeout(schedcpu, (void *)0, hz);
+}
+
+/*
+ * Recalculate the priority of a process after it has slept for a while.
+ * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
+ * least six times the loadfactor will decay p_estcpu to zero.
+ */
+static void
+updatepri(p)
+ register struct proc *p;
+{
+ register unsigned int newcpu = p->p_estcpu;
+ register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
+
+ if (p->p_slptime > 5 * loadfac)
+ p->p_estcpu = 0;
+ else {
+ p->p_slptime--; /* the first time was done in schedcpu */
+ while (newcpu && --p->p_slptime)
+ newcpu = decay_cpu(loadfac, newcpu);
+ p->p_estcpu = newcpu;
+ }
+ resetpriority(p);
+}
+
+/*
+ * We're only looking at 7 bits of the address; everything is
+ * aligned to 4, lots of things are aligned to greater powers
+ * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
+ */
+#define TABLESIZE 128
+static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
+#define LOOKUP(x) (((intptr_t)(x) >> 8) & (TABLESIZE - 1))
+
+/*
+ * During autoconfiguration or after a panic, a sleep will simply
+ * lower the priority briefly to allow interrupts, then return.
+ * The priority to be used (safepri) is machine-dependent, thus this
+ * value is initialized and maintained in the machine-dependent layers.
+ * This priority will typically be 0, or the lowest priority
+ * that is safe for use on the interrupt stack; it can be made
+ * higher to block network software interrupts after panics.
+ */
+int safepri;
+
+void
+sleepinit(void)
+{
+ int i;
+
+ sched_quantum = hz/10;
+ hogticks = 2 * sched_quantum;
+ for (i = 0; i < TABLESIZE; i++)
+ TAILQ_INIT(&slpque[i]);
+}
+
+/*
+ * General sleep call. Suspends the current process until a wakeup is
+ * performed on the specified identifier. The process will then be made
+ * runnable with the specified priority. Sleeps at most timo/hz seconds
+ * (0 means no timeout). If pri includes PCATCH flag, signals are checked
+ * before and after sleeping, else signals are not checked. Returns 0 if
+ * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
+ * signal needs to be delivered, ERESTART is returned if the current system
+ * call should be restarted if possible, and EINTR is returned if the system
+ * call should be interrupted by the signal (return EINTR).
+ */
+int
+tsleep(ident, priority, wmesg, timo)
+ void *ident;
+ int priority, timo;
+ const char *wmesg;
+{
+ struct proc *p = curproc;
+ int s, sig, catch = priority & PCATCH;
+ struct callout_handle thandle;
+
+#ifdef KTRACE
+ if (p && KTRPOINT(p, KTR_CSW))
+ ktrcsw(p->p_tracep, 1, 0);
+#endif
+ s = splhigh();
+ if (cold || panicstr) {
+ /*
+ * After a panic, or during autoconfiguration,
+ * just give interrupts a chance, then just return;
+ * don't run any other procs or panic below,
+ * in case this is the idle process and already asleep.
+ */
+ splx(safepri);
+ splx(s);
+ return (0);
+ }
+ KASSERT(p != NULL, ("tsleep1"));
+ KASSERT(ident != NULL && p->p_stat == SRUN, ("tsleep"));
+ /*
+ * Process may be sitting on a slpque if asleep() was called, remove
+ * it before re-adding.
+ */
+ if (p->p_wchan != NULL)
+ unsleep(p);
+
+ p->p_wchan = ident;
+ p->p_wmesg = wmesg;
+ p->p_slptime = 0;
+ p->p_priority = priority & PRIMASK;
+ TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
+ if (timo)
+ thandle = timeout(endtsleep, (void *)p, timo);
+ /*
+ * We put ourselves on the sleep queue and start our timeout
+ * before calling CURSIG, as we could stop there, and a wakeup
+ * or a SIGCONT (or both) could occur while we were stopped.
+ * A SIGCONT would cause us to be marked as SSLEEP
+ * without resuming us, thus we must be ready for sleep
+ * when CURSIG is called. If the wakeup happens while we're
+ * stopped, p->p_wchan will be 0 upon return from CURSIG.
+ */
+ if (catch) {
+ p->p_flag |= P_SINTR;
+ if ((sig = CURSIG(p))) {
+ if (p->p_wchan)
+ unsleep(p);
+ p->p_stat = SRUN;
+ goto resume;
+ }
+ if (p->p_wchan == 0) {
+ catch = 0;
+ goto resume;
+ }
+ } else
+ sig = 0;
+ p->p_stat = SSLEEP;
+ p->p_stats->p_ru.ru_nvcsw++;
+ mi_switch();
+resume:
+ curpriority = p->p_usrpri;
+ splx(s);
+ p->p_flag &= ~P_SINTR;
+ if (p->p_flag & P_TIMEOUT) {
+ p->p_flag &= ~P_TIMEOUT;
+ if (sig == 0) {
+#ifdef KTRACE
+ if (KTRPOINT(p, KTR_CSW))
+ ktrcsw(p->p_tracep, 0, 0);
+#endif
+ return (EWOULDBLOCK);
+ }
+ } else if (timo)
+ untimeout(endtsleep, (void *)p, thandle);
+ if (catch && (sig != 0 || (sig = CURSIG(p)))) {
+#ifdef KTRACE
+ if (KTRPOINT(p, KTR_CSW))
+ ktrcsw(p->p_tracep, 0, 0);
+#endif
+ if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
+ return (EINTR);
+ return (ERESTART);
+ }
+#ifdef KTRACE
+ if (KTRPOINT(p, KTR_CSW))
+ ktrcsw(p->p_tracep, 0, 0);
+#endif
+ return (0);
+}
+
+/*
+ * asleep() - async sleep call. Place process on wait queue and return
+ * immediately without blocking. The process stays runnable until await()
+ * is called. If ident is NULL, remove process from wait queue if it is still
+ * on one.
+ *
+ * Only the most recent sleep condition is effective when making successive
+ * calls to asleep() or when calling tsleep().
+ *
+ * The timeout, if any, is not initiated until await() is called. The sleep
+ * priority, signal, and timeout is specified in the asleep() call but may be
+ * overriden in the await() call.
+ *
+ * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
+ */
+
+int
+asleep(void *ident, int priority, const char *wmesg, int timo)
+{
+ struct proc *p = curproc;
+ int s;
+
+ /*
+ * splhigh() while manipulating sleep structures and slpque.
+ *
+ * Remove preexisting wait condition (if any) and place process
+ * on appropriate slpque, but do not put process to sleep.
+ */
+
+ s = splhigh();
+
+ if (p->p_wchan != NULL)
+ unsleep(p);
+
+ if (ident) {
+ p->p_wchan = ident;
+ p->p_wmesg = wmesg;
+ p->p_slptime = 0;
+ p->p_asleep.as_priority = priority;
+ p->p_asleep.as_timo = timo;
+ TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
+ }
+
+ splx(s);
+
+ return(0);
+}
+
+/*
+ * await() - wait for async condition to occur. The process blocks until
+ * wakeup() is called on the most recent asleep() address. If wakeup is called
+ * priority to await(), await() winds up being a NOP.
+ *
+ * If await() is called more then once (without an intervening asleep() call),
+ * await() is still effectively a NOP but it calls mi_switch() to give other
+ * processes some cpu before returning. The process is left runnable.
+ *
+ * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
+ */
+
+int
+await(int priority, int timo)
+{
+ struct proc *p = curproc;
+ int s;
+
+ s = splhigh();
+
+ if (p->p_wchan != NULL) {
+ struct callout_handle thandle;
+ int sig;
+ int catch;
+
+ /*
+ * The call to await() can override defaults specified in
+ * the original asleep().
+ */
+ if (priority < 0)
+ priority = p->p_asleep.as_priority;
+ if (timo < 0)
+ timo = p->p_asleep.as_timo;
+
+ /*
+ * Install timeout
+ */
+
+ if (timo)
+ thandle = timeout(endtsleep, (void *)p, timo);
+
+ sig = 0;
+ catch = priority & PCATCH;
+
+ if (catch) {
+ p->p_flag |= P_SINTR;
+ if ((sig = CURSIG(p))) {
+ if (p->p_wchan)
+ unsleep(p);
+ p->p_stat = SRUN;
+ goto resume;
+ }
+ if (p->p_wchan == NULL) {
+ catch = 0;
+ goto resume;
+ }
+ }
+ p->p_stat = SSLEEP;
+ p->p_stats->p_ru.ru_nvcsw++;
+ mi_switch();
+resume:
+ curpriority = p->p_usrpri;
+
+ splx(s);
+ p->p_flag &= ~P_SINTR;
+ if (p->p_flag & P_TIMEOUT) {
+ p->p_flag &= ~P_TIMEOUT;
+ if (sig == 0) {
+#ifdef KTRACE
+ if (KTRPOINT(p, KTR_CSW))
+ ktrcsw(p->p_tracep, 0, 0);
+#endif
+ return (EWOULDBLOCK);
+ }
+ } else if (timo)
+ untimeout(endtsleep, (void *)p, thandle);
+ if (catch && (sig != 0 || (sig = CURSIG(p)))) {
+#ifdef KTRACE
+ if (KTRPOINT(p, KTR_CSW))
+ ktrcsw(p->p_tracep, 0, 0);
+#endif
+ if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
+ return (EINTR);
+ return (ERESTART);
+ }
+#ifdef KTRACE
+ if (KTRPOINT(p, KTR_CSW))
+ ktrcsw(p->p_tracep, 0, 0);
+#endif
+ } else {
+ /*
+ * If as_priority is 0, await() has been called without an
+ * intervening asleep(). We are still effectively a NOP,
+ * but we call mi_switch() for safety.
+ */
+
+ if (p->p_asleep.as_priority == 0) {
+ p->p_stats->p_ru.ru_nvcsw++;
+ mi_switch();
+ }
+ splx(s);
+ }
+
+ /*
+ * clear p_asleep.as_priority as an indication that await() has been
+ * called. If await() is called again without an intervening asleep(),
+ * await() is still effectively a NOP but the above mi_switch() code
+ * is triggered as a safety.
+ */
+ p->p_asleep.as_priority = 0;
+
+ return (0);
+}
+
+/*
+ * Implement timeout for tsleep or asleep()/await()
+ *
+ * If process hasn't been awakened (wchan non-zero),
+ * set timeout flag and undo the sleep. If proc
+ * is stopped, just unsleep so it will remain stopped.
+ */
+static void
+endtsleep(arg)
+ void *arg;
+{
+ register struct proc *p;
+ int s;
+
+ p = (struct proc *)arg;
+ s = splhigh();
+ if (p->p_wchan) {
+ if (p->p_stat == SSLEEP)
+ setrunnable(p);
+ else
+ unsleep(p);
+ p->p_flag |= P_TIMEOUT;
+ }
+ splx(s);
+}
+
+/*
+ * Remove a process from its wait queue
+ */
+void
+unsleep(p)
+ register struct proc *p;
+{
+ int s;
+
+ s = splhigh();
+ if (p->p_wchan) {
+ TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
+ p->p_wchan = 0;
+ }
+ splx(s);
+}
+
+/*
+ * Make all processes sleeping on the specified identifier runnable.
+ */
+void
+wakeup(ident)
+ register void *ident;
+{
+ register struct slpquehead *qp;
+ register struct proc *p;
+ int s;
+
+ s = splhigh();
+ qp = &slpque[LOOKUP(ident)];
+restart:
+ TAILQ_FOREACH(p, qp, p_procq) {
+ if (p->p_wchan == ident) {
+ TAILQ_REMOVE(qp, p, p_procq);
+ p->p_wchan = 0;
+ if (p->p_stat == SSLEEP) {
+ /* OPTIMIZED EXPANSION OF setrunnable(p); */
+ if (p->p_slptime > 1)
+ updatepri(p);
+ p->p_slptime = 0;
+ p->p_stat = SRUN;
+ if (p->p_flag & P_INMEM) {
+ setrunqueue(p);
+ maybe_resched(p);
+ } else {
+ p->p_flag |= P_SWAPINREQ;
+ wakeup((caddr_t)&proc0);
+ }
+ /* END INLINE EXPANSION */
+ goto restart;
+ }
+ }
+ }
+ splx(s);
+}
+
+/*
+ * Make a process sleeping on the specified identifier runnable.
+ * May wake more than one process if a target process is currently
+ * swapped out.
+ */
+void
+wakeup_one(ident)
+ register void *ident;
+{
+ register struct slpquehead *qp;
+ register struct proc *p;
+ int s;
+
+ s = splhigh();
+ qp = &slpque[LOOKUP(ident)];
+
+ TAILQ_FOREACH(p, qp, p_procq) {
+ if (p->p_wchan == ident) {
+ TAILQ_REMOVE(qp, p, p_procq);
+ p->p_wchan = 0;
+ if (p->p_stat == SSLEEP) {
+ /* OPTIMIZED EXPANSION OF setrunnable(p); */
+ if (p->p_slptime > 1)
+ updatepri(p);
+ p->p_slptime = 0;
+ p->p_stat = SRUN;
+ if (p->p_flag & P_INMEM) {
+ setrunqueue(p);
+ maybe_resched(p);
+ break;
+ } else {
+ p->p_flag |= P_SWAPINREQ;
+ wakeup((caddr_t)&proc0);
+ }
+ /* END INLINE EXPANSION */
+ }
+ }
+ }
+ splx(s);
+}
+
+/*
+ * The machine independent parts of mi_switch().
+ * Must be called at splstatclock() or higher.
+ */
+void
+mi_switch()
+{
+ struct timeval new_switchtime;
+ register struct proc *p = curproc; /* XXX */
+ register struct rlimit *rlim;
+ int x;
+
+ /*
+ * XXX this spl is almost unnecessary. It is partly to allow for
+ * sloppy callers that don't do it (issignal() via CURSIG() is the
+ * main offender). It is partly to work around a bug in the i386
+ * cpu_switch() (the ipl is not preserved). We ran for years
+ * without it. I think there was only a interrupt latency problem.
+ * The main caller, tsleep(), does an splx() a couple of instructions
+ * after calling here. The buggy caller, issignal(), usually calls
+ * here at spl0() and sometimes returns at splhigh(). The process
+ * then runs for a little too long at splhigh(). The ipl gets fixed
+ * when the process returns to user mode (or earlier).
+ *
+ * It would probably be better to always call here at spl0(). Callers
+ * are prepared to give up control to another process, so they must
+ * be prepared to be interrupted. The clock stuff here may not
+ * actually need splstatclock().
+ */
+ x = splstatclock();
+
+#ifdef SIMPLELOCK_DEBUG
+ if (p->p_simple_locks)
+ printf("sleep: holding simple lock\n");
+#endif
+ /*
+ * Compute the amount of time during which the current
+ * process was running, and add that to its total so far.
+ */
+ microuptime(&new_switchtime);
+ if (timevalcmp(&new_switchtime, &switchtime, <)) {
+ printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
+ switchtime.tv_sec, switchtime.tv_usec,
+ new_switchtime.tv_sec, new_switchtime.tv_usec);
+ new_switchtime = switchtime;
+ } else {
+ p->p_runtime += (new_switchtime.tv_usec - switchtime.tv_usec) +
+ (new_switchtime.tv_sec - switchtime.tv_sec) * (int64_t)1000000;
+ }
+
+ /*
+ * Check if the process exceeds its cpu resource allocation.
+ * If over max, kill it.
+ */
+ if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
+ p->p_runtime > p->p_limit->p_cpulimit) {
+ rlim = &p->p_rlimit[RLIMIT_CPU];
+ if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
+ killproc(p, "exceeded maximum CPU limit");
+ } else {
+ psignal(p, SIGXCPU);
+ if (rlim->rlim_cur < rlim->rlim_max) {
+ /* XXX: we should make a private copy */
+ rlim->rlim_cur += 5;
+ }
+ }
+ }
+
+ /*
+ * Pick a new current process and record its start time.
+ */
+ cnt.v_swtch++;
+ switchtime = new_switchtime;
+ cpu_switch(p);
+ if (switchtime.tv_sec == 0)
+ microuptime(&switchtime);
+ switchticks = ticks;
+
+ splx(x);
+}
+
+/*
+ * Change process state to be runnable,
+ * placing it on the run queue if it is in memory,
+ * and awakening the swapper if it isn't in memory.
+ */
+void
+setrunnable(p)
+ register struct proc *p;
+{
+ register int s;
+
+ s = splhigh();
+ switch (p->p_stat) {
+ case 0:
+ case SRUN:
+ case SZOMB:
+ default:
+ panic("setrunnable");
+ case SSTOP:
+ case SSLEEP:
+ unsleep(p); /* e.g. when sending signals */
+ break;
+
+ case SIDL:
+ break;
+ }
+ p->p_stat = SRUN;
+ if (p->p_flag & P_INMEM)
+ setrunqueue(p);
+ splx(s);
+ if (p->p_slptime > 1)
+ updatepri(p);
+ p->p_slptime = 0;
+ if ((p->p_flag & P_INMEM) == 0) {
+ p->p_flag |= P_SWAPINREQ;
+ wakeup((caddr_t)&proc0);
+ }
+ else
+ maybe_resched(p);
+}
+
+/*
+ * Compute the priority of a process when running in user mode.
+ * Arrange to reschedule if the resulting priority is better
+ * than that of the current process.
+ */
+void
+resetpriority(p)
+ register struct proc *p;
+{
+ register unsigned int newpriority;
+
+ if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
+ newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
+ NICE_WEIGHT * (p->p_nice - PRIO_MIN);
+ newpriority = min(newpriority, MAXPRI);
+ p->p_usrpri = newpriority;
+ }
+ maybe_resched(p);
+}
+
+/* ARGSUSED */
+static void
+sched_setup(dummy)
+ void *dummy;
+{
+ /* Kick off timeout driven events by calling first time. */
+ roundrobin(NULL);
+ schedcpu(NULL);
+}
+
+/*
+ * We adjust the priority of the current process. The priority of
+ * a process gets worse as it accumulates CPU time. The cpu usage
+ * estimator (p_estcpu) is increased here. resetpriority() will
+ * compute a different priority each time p_estcpu increases by
+ * INVERSE_ESTCPU_WEIGHT
+ * (until MAXPRI is reached). The cpu usage estimator ramps up
+ * quite quickly when the process is running (linearly), and decays
+ * away exponentially, at a rate which is proportionally slower when
+ * the system is busy. The basic principle is that the system will
+ * 90% forget that the process used a lot of CPU time in 5 * loadav
+ * seconds. This causes the system to favor processes which haven't
+ * run much recently, and to round-robin among other processes.
+ */
+void
+schedclock(p)
+ struct proc *p;
+{
+
+ p->p_cpticks++;
+ p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
+ if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
+ resetpriority(p);
+ if (p->p_priority >= PUSER)
+ p->p_priority = p->p_usrpri;
+ }
+}
OpenPOWER on IntegriCloud